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Abstract

Robust speaker verification on short utterances remains a key
consideration when deploying automatic speaker recognition,
as many real world applications often have access to only lim-
ited duration speech data. This paper explores how the recent
technologies focused around total variability modeling behave
when training and testing utterance lengths are reduced. Results
are presented which provide a comparison of Joint Factor Anal-
ysis (JFA) and i-vector based systems including various com-
pensation techniques; Within-Class Covariance Normalization
(WCCN), LDA, Scatter Difference Nuisance Attribute Projec-
tion (SDNAP) and Gaussian Probabilistic Linear Discriminant
Analysis (GPLDA). Speaker verification performance for utter-
ances with as little as 2 sec of data taken from the NIST Speaker
Recognition Evaluations are presented to provide a clearer pic-
ture of the current performance characteristics of these tech-
niques in short utterance conditions.

Index Terms: speaker verification, short utterance, i-vector,
SDNAP, WCCN, LDA, Gaussian PLDA

1. Introduction

The significant amount of speech required for speaker model
enrolment and verification, especially in the presence of large
intersession variability, has limited the widespread use of
speaker verification technology in everyday applications. Con-
tinuous research on this field has been ongoing to address the
robustness of speaker verification technologies under such con-
ditions. Reducing the amount of speech required while obtain-
ing the satisfactory performance has been the focus in a number
of recent studies focused on Joint Factor Analysis (JFA) and
SVM based speaker verification. These studies have shown that
while performance degrades considerably in very short utter-
ances (< 10s) for both approaches, JFA [1] appears to a better
choice in these conditions than SVMs [2]. This paper will fo-
cus on whether a recently proposed factor-analysis front-end ap-
proach to speaker verification, called i-vectors [3], could form a
suitable foundation for continuing research into short utterance
speaker verification.

JFA originally proposed by Kenny [4], has recently evolved
as a powerful tool in speaker verification to model the inter-
speaker variability and to compensate for channel/session vari-
ability in the context of high-dimensional Gaussian Mixture
Model (GMM) supervectors. More recently a new front-end
factor analysis technique, termed i-vector (for intermediate-size
vector) extraction, proposed by Dehak er al.[5], has evolved
from JFA. Rather than taking the JFA approach of modelling
a speaker and channel variability space, the i-vector approach
forms a low-dimensional total-variability space that models
both speaker and channel variability. The i-vector approach
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proposed in [3] also has the advantage that scoring uses a sim-
ple Cosine Similarity Scoring (CSS) kernel directly to perform
verification, making the scoring process faster and less com-
plex than other speaker verification methods, including JFA or
Support Vector Machines (SVM) supervector approaches. Be-
cause the total variability space does contain channel variabil-
ity information, i-vector speaker verification systems need to
be combined with intersession compensation techniques such
as Within-class Covariance Normalisation (WCCN), Linear
Discriminant Analysis (LDA) and Nuisance Attribute Projec-
tion (NAP) [3]. More recently, Kenny et al. [6] have developed
a new technique called Gaussian Probabilistic LDA (GPLDA),
which divides the i-vector space into speaker and session vari-
ability subspaces, which has shown significant promise for in-
tersession compensation for i-vector speaker verification.

The main aim of this paper is to investigate the effect that
short duration utterances have on both enrolment and training
when using the i-vector approach. As this approach is based
on defining only one variability space, instead of the separate
channel and speaker spaces of the JFA approach, we expect that
i-vectors won’t loose any speaker information with reduction of
utterance duration [7]. We also report on the short utterance du-
ration performance when various intersession variability com-
pensation techniques such as WCCN, LDA and NAP are used
in conjunction with i-vectors, including a short investigation of
scatter-difference NAP (SDNAP), which has not yet been con-
sidered for i-vector compensation. In addition we compare the
above combination of techniques with GPLDA [6]. The ex-
perimental results presented give useful indication of how the
systems degrade as training and testing utterance lengths are re-
duced.

Section 2 of the paper provides a condensed introduction to
each of the techniques investigated, from JFA, through the vari-
ous front end factor analysis techniques used with total variabil-
ity modeling and finally GPLDA. Section 3 provides details of
the experimental procedures used to investigate the short utter-
ance performance and presents the outcomes of the three exper-
iments for discussion.

2. Factor analysis speaker verification

Factor analysis approaches to speaker verification were origi-
nally intended to model the intersession variability directly in
the construction of the super-vectors used for scoring verifi-
cation trials, such as in the standard JFA approach [4]. More
recently factor analysis techniques have been considered as a
front-end to form a low-dimensional total-variability subspace
that can be classified more efficiently than the high-dimensional
supervectors used in JFA and SVM speaker verification sys-
tems. This section will briefly outline the JFA approach, fol-
lowed by a more detailed description of the common approaches
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to front-end factor analysis in the i-vector and GPLDA ap-
proaches.

2.1. Joint factor analysis

The factor analysis technique proposed by Kenny [4] is based on
the decomposition of a speaker-dependent GMM super-vector,
W, into separate speaker and channel dependent parts (S and C
respectively):

S+ C.

I ey

The speaker dependent and channel dependent components can
then be represented by

S
C

(@)
3

In the speaker dependent component, m is a session and
speaker independent supervector (extracted from a universal
background model (UBM) trained on a large development set),
V is a low rank matrix representing the primary directions of
speaker variability, or eigenvoices, and D is a diagonal matrix
modelling the residual variability not captured by the speaker
subspace. The speaker factors, y, and speaker residuals, z, are
both independent random vectors having standard normal distri-
butions. Similarly, the channel dependent component contains a
low rank matrix, U, representing the primary directions of chan-
nel variance, or eigenchannels, multiplied by the channel factor
vector X, a normally distributed random vector.

JFA speaker enrolment is performed by calculating the full
speaker-dependent GMM supervectors and discarding the chan-
nel dependent component. During verification, the channel-
dependent component can be estimated directly from the testing
utterances, and the entire supervector can be efficiently scored
using the linear dot-product approach pioneered by Glembek et
al. [8].

m + Vy + Dz,
Ux.

2.2. i-vectors

Inspired by the earlier use of JFA speaker factors directly as
features for SVM classification, Dehak et al. [7] have recently
proposed a new approach to front-end factor analysis, termed
i-vectors. Unlike the separate speaker and channel dependent
subspaces of JFA, i-vectors represent the GMM super-vector by
a single rotal-variability space. This single-subspace approach
was motivated by the discovery in Dehak ez al. [7] that the chan-
nel space of JFA contains information that can be used to dis-
tinguish between speakers. An i-vector speaker and channel
dependent GMM super-vector can be represented by

m 4

where m is the same UBM supervector used in the JFA ap-
proach and T is a low rank matrix representing the primary
directions of variability across all development data. The total-
variability factors, w, is a independent normally-distributed ran-
dom vector.

While i-vectors were originally considered as a feature for
SVM classification, fast scoring approaches using a cosine ker-
nel directly as a classifier, in order to produce a cosine similar-
ity score (CSS), were found to provide similar performance to
SVMs with a considerable increase in efficiency [7]. The CSS
operates by comparing the angles between a test i-vector, Weest,
and a target i-vector Wigrget:

m + Tw,

<wtargel 5 wtesl>
([ warger || [|weest]|

&)

score(Wiarget, Weest )
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As the total variability space represented by T contains both
speaker and channel variability, i-vector approaches require ad-
ditional intersession compensation approaches before scoring to
attenuate the effects of channel variability. A number of exist-
ing approaches borrowed from SVM speaker verification such
as WCCN, LDA and NAP have shown promise for this task,
and will be outlined in the remainder of this section.

2.2.1. WCCN

WCCN is used as a channel compensation technique to scale a
subspace in order to attenuate dimensions of high within-class
variance. For use in speaker verification, a within-class covari-
ance matrix, S,,, is calculated using

1SN 1
= 52

where w; is the mean i-vector for each speaker, S is the total
number of speakers and n, is number of utterances of speaker
s. In evaluation, the inverse of S, is used to normalize the direc-
tion of the projected i-vector components, which is equivalent
to scaling the subspace by the matrix B, where BB” = S,!.

S, S (wi —wowi — W', (©)

i=1

2.2.2. LDA + WCCN

One of the disadvantages of the WCCN approach is that while
it focuses on attenuating dimensions of high within-class vari-
ability, it can also remove information about the between-class
variability that is also contained within the attenuated dimen-
sions. In order to attempt to alleviate this problem with the
WCCN approach, a transformation matrix can be trained using
LDA to transform the i-vectors into a new subspace that seeks
to both minimises the within class variance, defined in (6), and
maximises the between class variance, S.,, defined as

@)

where W is the mean over all training i-vectors.

Once the LDA transformation matrix, A, has been calcu-
lated the WCCN transformation can then calculated in the re-
duced subspace taken from ATw, and similarly in evaluation.

2.2.3. SDNAP + WCCN

NAP can be used to combat the session variation in a similar
manner to WCCN. However, rather than weighting the i-vector
dimensions, NAP attempts to remove the unwanted within-class
variations from the feature vector. A NAP transformation ma-
trix traditionally has the form

P I1—-vvT

= (®)
where I is the identity matrix and the projection matrix V can
be obtained by taking the top N values from an eigen decom-
position of the within class covariance matrix, S.,, defined in
(6).

Similar to the WCCN approach, NAP has a disadvantage
that the unwanted variations due to within-class variance can
have a side-effect of removing useful between class variance. A
discriminative form of NAP called scatter-difference NAP (SD-
NAP) has recently been developed that attempts to trade-off the
between and within class variance [9]. While this approach has
shown promise for SVM speaker verification, it has not yet been
studied in the i-vector approach.



While the calculation of P remains the same in SDNAP, V is
obtained by an eigen-decomposition of a combined covariance
matrix,

S =S, — mSs, )
where m is a parameter defining the relative influence of the
within and between class covariance matrices.

For the system outlined later in this paper, the SDNAP pro-
jection operates has been found to work best in cooperation with
WCCN. Similarly to the LDA + WCCN approach outlined pre-
viously, the i-vectors are first projected into a reduced dimen-
sionality NAP space', followed by calculation of the WCCN
transformation for use in evaluation.

2.3. GPLDA

Rather than attempting to compensate for intersession variabil-
ity, a more sophisticated attempt to directly model session and
speaker variability within the i-vector space was recently pro-
posed by Kenny [6] as PLDA. This approach can be seen to
be very similar to the JFA approach, but using i-vectors rather
than GMM supervectors as the basis for factor modelling. Simi-
larly to the JFA equations outlined in Section 2.1, a speaker and
channel dependent i-vector, w can be defined as

w w+ Uix; + Usxs + € (10)
where U is the eigenvoice matrix and Us is the eigenchannel
matrix. x; and X2 are the speaker and channel factors respec-
tively and ¢ is the speaker residuals. Kenny investigated using
both standard normal and heavy-tailed distributions for x1, X2,
and ¢, but we will only be investigating the Gaussian case for
this paper.

GPLDA based i-vector system scoring calculated using
batch likelihood ratio [6]. Batch likelihood calculation is com-
putationally more expensive than CSS. Given two i-vectors
Wiarget and Wiest, batch likelihood ratio can be calculated as
follows,

P(wta'rgehwtest ‘ Hl)

In
P(wtar'get | HO)P(wtest | HO)

(11)

where H1: The speakers are same, Ho: The speaker are differ-
ent

3. Analysis of short utterance performance
3.1. Methodology

13 feature-warped MFCC with appended delta coefficients and
two gender dependent universal background models (UBM)
containing 512 Gaussians are used throughout our experiments.
These UBM were trained on NIST 2004 Speaker Recognition
Evaluation (SRE) corpus. Speaker and session variability sub-
spaces of dimension R, = 400 and R, 100 are applied
for JFA experiments. Total variability subspace of dimension
R., =400 is applied for i-vector experiments. These total vari-
ability space, channel compensation techniques such as WCCN,
LDA, NAP, SDNAP are trained on NIST 2004 Speaker Recog-
nition Evaluation (SRE), NIST 2005 SRE and Switch board 1II.
Speaker variability subspace of dimension of Ry1 = 300 is
used for GPLDA based experiments. From the experiments, it

IThat is, P = V, where V is taken from the remaining eigenvectors
of S after the top IV are removed, as opposed to the full-space projection
defined in (8)
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Table 1: Comparison of JFA and i-vector systems on the com-
mon set of the 2008 NIST SRE short2-short3, short2-10sec and
10sec-10sec conditions.

System short2-short3 short2-10sec  10sec-10sec
EER DCF EER DCF EER DCF
JFA 3.37% 0.0149 9.16% 0.0390 16.69% 0.0686
WCCN only 3.95% 0.0189 8.86% 0.0439 17.86% 0.0705
LDA-WCCN  3.54% 0.0179 8.99% 0.0416 17.39% 0.0694
NAP-WCCN  3.71% 0.0177 8.71% 0.0415 17.71% 0.0794
SDNAP-WCCN 3.62% 0.0166 8.55% 0.0418 17.42% 0.0698
GPLDA 3.13% 0.0168 7.57% 0.0389 16.40% 0.0705

has been found that best value of SDNAP control parameter (m)
is equal to 0.375.

NIST 2008 SRE telephone based utterances from the
short2-short3, short2-10sec and 10sec-10sec conditions were
used for experiments. The truncated utterances were obtained
by truncating the utterances of the NIST2008 short2-short3 con-
dition to the specified length of active speech data for both train-
ing and testing. For NIST 2008 SRE, det condition 7 [10] was
evaluated corresponding tel-tel trials.

3.2. Experiments

Initial experiments were carried out to compare the performance
of channel compensation based i-vector systems, a GPLDA
based i-vector system and a JFA system with standard NIST
conditions. A second set of experiments were carried to
compare the performance of the LDA + WCCN, SDNAP +
WCCN, GPLDA and JFA systems with truncated training and
testing utterances and full training and truncated testing utter-
ances. ZT normalization was applied to channel compensation
based i-vector system and JFA system, whereas S normalization
was applied to the GPLDA based i-vector system, as defined in
[6].

3.3. Results and Discussions

Table 1 presents results comparing the JFA system, the four al-
ternative channel compensation based i-vector systems, and the
GPLDA system on the standard NIST SRE 08 evaluation con-
dition.

Comparing the different systems generally, the results indi-
cate that opting for the more computationally efficient scoring
processes of CSS with a total variability based system may re-
sult in a marginal drop in performance. Whether the efficiency
gains outweigh the potential performance difference would be
an application dependant design decision. Comparing the per-
formance of SDNAP + WCCN to NAP + WCCN specifically,
the results indicate the gains found for SDNAP over NAP in
SVMs [9] hold in the i-vector systems as well. Of the sys-
tems using log-likelihood scoring, JFA & GPLDA provide sim-
ilar performance on the matched training and testing conditions,
while GPLD appears to be potentially more robust than JFA to
variations in training and testing lengths (short2-10s).

Tables 2(a) and 2(b) presents the results comparing JFA to
channel compensation based i-vector systems, LDA + WCCN
and SDNAP + WCCN, and GPLDA for the truncated train-
ing,testing and full training, truncated testing conditions respec-
tively. Overall, the results show that as the utterance length de-
creases, performance degrades at an increasing rate, rather than



Table 2: Comparison of JFA and i-vector systems on the common subset of the 2008 NIST SRE short2-short3 condition with (a)
truncated training and testing and (b) truncated testing only. The best performing systems by both EER and DCF are highlighted

across each row.

(a) truncated training and testing

Utterance Length  JFA System  LDA + WCCN SDNAP + WCCN GPLDA System
(training-testing) EER DCF EER DCF EER DCF EER DCF

2 sec - 2 sec 35.25% 0.0988 35.35% 0.0986 35.67% 0.0999 36.16% 0.0999

4 sec - 4sec 30.48% 0.0934 31.05% 0.0966 30.23% 0.0968 31.30% 0.0991

8 sec - 8 sec 23.39% 0.0803 23.95% 0.0800 23.56% 0.0801 23.56% 0.0837

10sec - 10sec  21.17% 0.0738 21.56% 0.0741 20.84% 0.0737 20.34% 0.0762

20 sec - 20sec 12.79% 0.0533 13.41% 0.0530 12.84% 0.0528 11.87% 0.0532

50 sec - 50 sec 6.51% 0.0266 6.44% 0.0310 6.42% 0.0299 5.77% 0.0272

full (2.5min) - full 3.37% 0.0149 3.54% 0.0179 3.62% 0.0166 3.13% 0.0168

(b) full training and truncated testing

Utterance Length  JFA System LDA + WCCN SDNAP + WCCN GPLDA System
(training-testing) EER  DCF EER DCF  EER DCF EER DCF
full - 2 sec 22.48% 0.0773 22.01% 0.0783 21.98% 0.0792 22.66% 0.0835
full - 4 sec 17.96% 0.0633 17.38% 0.0662 17.46% 0.0662 17.38% 0.0695

full - 8 sec 13.43% 0.0492 13.59% 0.0493 13.51% 0.0494 12.36% 0.0508
full - 10 sec 12.11% 0.0455 12.19% 0.0451 12.11% 0.0456 11.20% 0.0455

full - 20 sec 7.67% 0.0321 8.22% 0.0338 8.40% 0.0324 7.34% 0.0313

full - 50 sec 4.54% 0.0200 4.94% 0.0241 4.94% 0.0228 4.14% 0.0209
full - full 337% 0.0149 3.54% 0.0179 3.62% 0.0166 3.13% 0.0168

in proportion with the reduced length. No single technique ap-
pears to provide more resilience to this effect than any other,
and though the difference in scores between the systems may
appear to narrow at very short utterance lengths (< 10s) it is
difficult to conclude this difference is significant without fur-
ther exploration.

4. Conclusion

The challenges of providing robust speaker verification for ap-
plications with access to only short speech utterances remains a
key hurdle to the broad adoption of speech verification systems.
This paper has presented a study investigating how the current
selection of factor analysis techniques perform when utterance
lengths are significantly reduced. Overall, the current factor
analysis approaches have not provided any clear differences in
performance for short speech, with the alterative between log-
likelihood based JFA and GPLDA offering marginally better
performance to LDA + WCCN or SDNAP + WCCN based
i-vector systems in lieu of the efficiencies available through op-
erating in the lower-dimensional i-vector space. All the systems
still exhibit performance which declines sharply once utterance
lengths fall below 10s. Problems of very short utterance with
factor analysis approaches will be investigated in future.
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