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Wheelchair-mounted robotic arms have been commercially available for a decade. In order to
operate these robotic arms, a user must have a high level of cognitive function. Our research fo-
cuses on replacing a manufacturer-provided, menu-based interface with a vision-based system
while adding autonomy to reduce the cognitive load. Instead of manual task decomposition
and execution, the user explicitly designates the end goal, and the system autonomously re-
trieves the object. In this paper, we present the complete system which can autonomously
retrieve a desired object from a shelf. We also present the results of a 15-week study in which
12 participants from our target population used our system, totaling 198 trials.
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1. Introduction

According the United States Census in 2000, over 21 million people reported them-
selves as having a physical disability, which is defined as “substantial limitation in
the ability to perform basic physical activities, such as walking, climbing stairs,
reaching, lifting, or carrying” (3). The majority of the people who reported a phys-
ical disability (52.7%) were in the 16-64 age category, followed closely by the over 64
age category (45.1%). A total of 6.8 million Americans not living in an institution-
alized setting use mobility aids to allow for more independent and energy efficient
movement within their environments (4). Of the people using mobility aids, 1.7
million people use scooters and wheelchairs (1.5 million using manual wheelchairs,
155,000 using power wheelchairs, and 142,000 using scooters) (4). As of 2007, the
number of people who will use wheelchairs is predicted to increase 22% over the
next 10 years (5), and we estimate the number of people who use wheelchair to be
greater than 2 million.
Limitations in strength, range of motion, and dexterity in the upper extremities

are issues for many people who use wheelchairs. These challenges may be exac-
erbated by challenges to an individual’s postural control. People with spinal cord
injury, traumatic brain injury, cerebral palsy, multiple sclerosis, muscular dystro-
phy, and other conditions may need assistance to overcome these challenges.
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Many activities of daily living (ADLs) involve reaching and grasping. They in-
clude tasks such as grabbing a can of soup out of the cupboard, pouring a glass of
milk, and picking up an object from the floor or nearby table. Effective assistance
with these tasks could greatly improve the independence and quality of life for
many individuals.1

The Manus Assistive Robotic Manipulator (ARM) is a commercially-available,
wheelchair-mounted robotic arm developed by Exact Dynamics which retails for
aproximately $30,000 USD (6; 7). It is designed to assist the ADLs that require
reaching and grasping and can function in unstructured environments. As pur-
chased, the Manus ARM can be operated using a keypad, joystick, or single switch
using hierarchical menus.
Römer et al. describe the process for obtaining a Manus ARM for the Nether-

lands (8). The potential user must meet the following criteria set forth by Exact
Dynamics:

• “have very limited or non-existent arm and/or hand function, and can not inde-
pendently (without the help of another aid) carry out ADL-tasks,

• “use an electric wheelchair,

• “have cognitive skills sufficient to learn how to operate and control the ARM,

• “have a strong will and determination to gain independence by using the ARM,

• “have a social environment including caregivers, friends, and/or relatives who
encourage the user to become more independent by using the ARM.”

Thus, the Manus ARM is largely suited to users who have limited motor dexterity
and typical cognition.
Operating the Manus ARM via the menu hierarchy can be frustrating for people

who have cognitive impairments in addition to their physical disabilities. They may
not be able to independently perform the multi-stepped processes needed for task
decomposition. They may also have difficulties with the varying levels of abstraction
needed to navigate the menu hierarchy. Thus, we have investigated alternative user
interfaces for the Manus ARM and have created automatic control.
The trajectory of a human arm picking up an object consists of two separate

events: gross reaching motion to the intended location, followed by fine adjustment
of the hand (9). We decompose object retrieval by a robotic arm into three parts:
reaching for the object, grasping the object, and returning the object to the user.
Our research has addressed the creation of a complete system: human-robot in-
teraction, gross motion of the robotic arm, object recognition, fine motion of the
robotic arm and gripper, grasping the object, and returning the object to the user.
The most frequent activity of daily living is object retrieval (10). Thus, our

goal was to simplify the “pick-and-place” ADL. Our interface for the Manus ARM
allows the user to select the desired object from a live video feed that approximates
the view of the user in the wheelchair. The robotic arm then moves towards and
returns the object without further input from the user.

2. Related Works

Because of the high level of cognitive ability required to operate the Manus ARM
and other general purpose assistive robotic arms, several research institutions have

1Some individuals may be able to adapt their living environment to accommodate these limitations, but
adaptations are not always possible. Moving all necessary items to within reach (when reach is extremely
limited) severely limits the quantity of items available. Limits to strength and grasp may limit the effec-
tiveness of nearly all environmental modifications.



investigated alternative interfaces and increasing the level of autonomy of robotic
arms. At TNO Science & Industry and the Delft University of Technology, re-
searchers augmented a Manus ARM with cameras, force torque sensors, and in-
frared distance sensors. Their alternative interface featured a “pilot mode,” which
was Cartesian control with respect to the task frame from a camera mounted on
the workspace, facing the robot (11; 12). Looking at the video feed, the user ma-
nipulated a joystick to move a white cross hair over the object and pressed a switch
to toggle the robotic arm’s automatic visual servoing. Manual corrections for the
robot’s position could be made using their graphical user interface (GUI). Their
robotic arm was capable of picking up unmarked objects using color tracking.
TNO’s user interface with “pilot mode” begins to help reduce some of the cogni-

tive load associated with operating robotic arms. However, the GUI presents a third
person view of the workspace, which would require additional mental translations
when needing to operate the robotic arm manually for correction (13).
Researchers at INRIA (Institut National de Recherche en Informatique et en

Automatique) have explored a “one click” computer vision approach (14; 15; 16).
Their robotic arm was equipped with two cameras. The “eye-in-hand” omnidi-
rectional camera mounted on the robotic arm’s shoulder provided an overview of
the workspace and the “eye-to-hand” stereo camera offered a detailed view of the
scene. The robotic arm moved toward the desired object using a visual servoing
scheme along the corresponding epipolar line. Their robotic arm was capable of
determining how to pick up unknown objects from a highly textured background.
This system has not yet been tested with end-users.
At the Georgia Institute of Technology and the Emory School of Medicine, re-

searchers have also investigated a single click selection approach with a full retrieval
from flat surfaces (17; 18; 19). El-E is a mobile assistive robotic arm which can
autonomously retrieve a variety of household objects. El-E has an omnidirectional
camera on a pan-tilt unit, a high-mounted stereo camera, a Hokuyo URG laser
scanner, and a color “eye-in-hand camera.” Using a touch screen or laser pointer
devices, a user can direct El-E to retrieve unmarked objects or open drawers and
doors flagged with red towels.
El-E has been specifically designed to assist people with Amyotrophic Lateral

Sclerosis (ALS, also known as Lou Gehrig’s disease) and has been evaluated with
eight end-users. The laser pointer interface essentially places a selection “cursor”
in the real-world, which removes a layer of abstraction and decreases the user’s
cognitive load. However, their alternative touch screen interface may increase the
user’s cognitive load if the desired object is not shown on the display. Because
El-E is not necessarily co-located with the user, an additional mental translation
is required because the user must take the perspective of the robot when using the
touch screen interface (13). In our own research, we have found that users least
liked controlling a pan-tilt camera to put the object in view (1).
Our goal was to create a robotic system which could be used by people with

cognitive impairments. Our interface is simply an over the shoulder video feed
displayed on a touch screen. The user can indicate “I want that” by pointing to
an object. With only this single selection, the robotic arm reaches towards the
object, grasps it, and brings it back to the user. Further, we wanted to make the
interface compatible with multiple access devices. In addition to the touch screen,
we support a mouse-emulating joystick and single-switch scanning. In this paper,
we show that end-users with lower levels of cognition are able to successfully use
our system.



(a) Our Manus ARM has been augmented with stereo cameras (over shoul-
der and in gripper) and a pressure sensor within the gripper. A touch
screen or mouse-emulating joystick serve as the input device.

(b) Diagram of the grip-
per and pressure sensor from
overhead view.

Figure 1.

3. Hardware

The Manus ARM is a 6+2 degrees of freedom (DoF) wheelchair-mounted robotic
arm with encoders and slip couplings on each joint. It weighs 31.5 pounds (14.3 kg)
and has a maximum reach of 31.5 in (80 cm) from the shoulder (6). The gripper
can open to 3.5 in (9 cm) and has clamping force of 4 pounds-force (20 N). The
payload capacity at maximum extension is 3.3 pounds (1.5 kg).
The Manus ARM is programmable. The encoders’ values are used for computer

control. The Manus ARM communicates through controller area network (CAN)
packets, sending status packets at a rate of 50Hz to a CAN receiver. It can be
operated in joint mode, which moves the joints individually, or Cartesian mode,
which moves the gripper of the Manus ARM linearly through the 3D xyz plane
from the wrist joint.
We have made several augmentations to our Manus ARM to improve the user

interaction and computer control (Figure 1a). We added a vision system consisting
of two stereo camera systems, one mounted over the shoulder on a fixed post and
one mounted on the gripper. The shoulder camera system is a color Videre stereo
camera (STH-DGCS-STOC-C model), which provides the perspective of the user in
the wheelchair. The live-video graphical user interface is streamed via the firewire
connection from the shoulder camera’s left eye, which is closest to the user’s view
point since our Manus ARM is a right side mounted arm. The video stream is 640
pixels × 480 pixels at 15 frames per second. The focal length is 0.12 in (3.0 mm)
and the baseline is 3.54 in (9 cm). The viewing angle of each eye is 60◦.
The gripper camera system provides a close-up view of the items for object

recognition and autonomous grasping. The custom stereo camera uses two small
PC229XP CCD Snake Cameras (Figure 1b). Each camera CCD measures 0.25
in × 0.25 in × 0.75 in (11 mm × 11mm × 18 mm). There are 6 in (25 cm) of
cable between the lenses and the computational boards, which are mounted to
the outside of the gripper. Each camera has 470 lines horizontally. Its viewing
angle is approximately 50◦, and the capture mode is NTSC with 379,392 effective
pixels. The gripper stereo camera was calibrated using a Matlab camera calibration
toolbox using images with 320 pixels × 240 pixels (20).



We augmented the arm by mounting a “pressure” sensor to the inside of one of
the gripper’s fingers. We used a CUI Inc. SF-4 1.5KGF force sensor; the sensor
senses a change in resistance when force is applied. Because the sensing area is
small (0.16 in × 0.16 in (4mm × 4mm)), we constructed a distributed bumper pad
which is the length of the tip of the gripper’s finger (Figure 1b). We removed the
grip material and adhered a sheet of aluminum for support because the finger is
convex. We then mounted the pressure sensor in the middle of the aluminum sheet
and placed double stick tape on either side to provide a cushion against impact.
We adhered another sheet of aluminum to the double stick tape and replaced the
original grip material. To relieve tension on the pressure sensor’s cable, we firmly
tied the cable to the outside of the gripper.
We have also replaced the Manus ARM’s standard access methods with a touch

screen and assistive computer input device. The touch screen is a 15-inch Advantech
resistive LCD touch screen. The assistive computer input device is a USB Roller
II Joystick which emulates a mouse. The computer that interfaces with the Manus
ARM is a 2.66GHz Intel Core2 Quad (Q9450) with 4 Gb RAM running Windows
XP. The PC has a four-channel frame-grabber to accommodate the gripper stereo
camera and a 1394 firewire card for the shoulder stereo camera. We access the
Manus ARM’s CAN bus with a GridConnect USB CAN adapter.

4. Software Architecture

To operate the robot arm, the user selects an object from the display (Step 1).
Figure 2 shows how the robot arm is able to autonomously retrieve the desired
object; in this case, a bottle of water. The position of the bottle is computed
using stereo vision from the shoulder camera, and the robot arm moves to that
position using the encoder values (Step 2). With the bottle in view, the robot arm
computes a more precise target and adjusts its orientation so that the gripper is
perpendicular to the object, if needed (Step 3). The robot arm compares the left
gripper camera image with the fifty template images in the database and chooses
the best match (Step 4). Using the chosen template, the robot arm moves to align
the feature points (Step 5). Once aligned with the template image, the robot arm
moves forward and closes its gripper (Step 6). The robot arm then returns the
bottle of water to the user (Step 7).
Our software architecture consists of multi-threaded modules in order to ensure

timely response. The system data flow is shown in Figure 3. The graphical user
interface displays the shoulder camera view, which is approximately the view of
the user in the wheelchair. The object selection module streams the live image feed
from the camera and also computes the position of the object. The coordinator
module continuously streams the gripper camera view and is also responsible for
inter-thread communication. The visual tracking module recognizes the object from
a template database and tracks the features while the Manus ARM picks up the
object. The robot control module controls the trajectory of the Manus ARM, grasps
the object, and returns it to the user.

4.1. User Interface

When designing an intuitive interface for the Manus ARM, we leveraged two well-
established access methods: a joystick and touch screen. Many people in our target
population are already able to drive a powered wheelchair with a joystick or use a
mouse-emulating joystick to control a computer. Additionally, these users may have
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Figure 2.: The user provides input via touch screen or joystick. The input is used
in the vision processing to position the robotic arm. (Best viewed in color.)

Figure 3.: Data flow of our direct-selection, human-in-the-loop visual control system
for the Manus ARM.



Algorithm 1 Gross Motion

1: procedure GrossMotion(point of interest, shoulder stereo image pair)
2: Calculate disparity map ← left and right images
3: Get disparity value ← point of interest
4: Generate blobs ← disparity map, disparity value
5: Find largest blob ← blobs, region of interest
6: Get associated world coordinates ← blob
7: Translate to world coordinates
8: return (X, Y, Z in world coordinates relative to Fshoulder camera)
9: end procedure

some experience with touch screens, which are commonly used as communication
devices.
The interface shows the shoulder camera view, which is similar to the user’s view.

The shoulder camera’s left eye is captured using the Small Vision System (SVS)
and continuously streamed to the interface via the UDP network protocol (21).
The interface displays the fullscreen image. We provide a natural interaction in
that the user indicates “I want that” by pointing to an object on the touch screen.
We simplified the input device to either a single press on a touch screen or the

use of a mouse-emulating joystick. For the interface using the joystick, we selected
a large (64×64 pixels) cursor for the interface because of the range of each person’s
vision ability within our target population. The cursor is enhanced with a white
outline to provide visibility against a dark background. The cursor speed can be
set from the Windows Accessibility panel.
A dwell configuration is available for users who are not easily able to move be-

tween a joystick and a button. According to the Open Source Assistive Technology
Software (OATS) Project Consortium, “dwelling is resting the mouse over one area
of the screen for a specified time” (22). The system interprets a mouse click when
the cursor remains stationary for a period greater than the set dwell length. The
dwell length should be a long enough interval to prevent accidental clicks.
Our feedback to the user is multimodal. When an object is selected and the

system is able to correctly identify it, a bold, red rectangle highlight is drawn
around the object (Figure 2) and a “ding” sounds. When the system is unable
to segment the object, a “Please try again” prompt sounds. Also, the robot arm
provides audio prompts at the start of each algorithmic phase to keep the user
aware of the current step in the process (e.g., “I am trying to identify the object
you want” after gross motion, “Ok, I have figured out where to put my fingers”
after fine motion). Additional prompts, such “I am still thinking” and “Maybe I
should try over here,” are spoken at every 5, 10, 20, 30, or 60 seconds depending
on the user’s preference to keep the user aware that the system is still functioning.

4.2. Gross Motion

Given the user’s selected point of interest (POI, shown as a blue dot in Step 2 of
Figure 2), we must move the gripper towards this target position in 3D (Algorithm
1). First, the disparity between the left and right stereo images is calculated using
SVS. We filter the disparity image with a mean shift segmentation filter to further
group similar depth pixels. We then calculate the associated depth layer of the
point selected within 10 pixels. Given this depth layer, we find similar “blobs”
(i.e., continuous regions of pixels) on the disparity map using OpenCV and the



Figure 4.: Four coordinate frames are used to direct the Manus ARM’s end effector
to retrieve an object. The center of our coordinate system is located at the top of
the robot’s shoulder in the center (Fworld).

cvBlobsLib libraries2 (23; 24). We filter the blob noise and constrain blobs to be a
size which the gripper can grasp. We select the largest blob for which the center of
bounding box is within 55 pixels of the selection point (Figure 2).
Using the center of the bounding box of the selected blob (shown as a red cross

in Step 2 of Figure 2), we then calculate the 3D coordinates of that pixel location.
If there is not enough texture, we compute the 3D coordinates of the nearby pixels
in an outward, clockwise spiral. The <X, Y, Z> returned are values in world co-
ordinates (in millimeters) with respect to the center of the left-eye (Fshoulder camera

in Figure 4), X is to the right of the center of the lens, positive Y is to downward
of the center of the lens, and positive Z is outwards from the lens.
As shown in Figure 4, the shoulder camera is fixed to the Manus ARM. We have

calculated offsets from Fshoulder camera to determine the relative target position
to the ARM’s shoulder (Fworld). These Fworld coordinates are the position of the
desired object. In the gross motion, we want to direct the Manus ARM’s end
effector towards the selected object without knocking it over or pushing it away;
we subtract 12 in (307 mm) from the depth. The Manus ARM’s end effector then
moves to this target position.

4.3. 3D Geometry Estimation and Visual Alignment

Now that the object is in the field of view of the gripper camera, we want to find a
more exact 3D target using an analysis of image features. First, we compute a 3D
point close to the object. Then we compute a normal to a locally approximated
plane around the POI.
Algorithm 2 details the computation of the local 3D geometry. We use the Scale

Invariant Feature Tracking (SIFT) descriptor to estimate the 3D position for the
target object from the gripper stereo camera (25). We utilize the SIFT descriptor
because of its invariance with scale, rotation, and illumination conditions.
Given an initial set of SIFT descriptors, we match the descriptors between the

left image and the right image using epipolar constraints (Figure 5). To make the
match, we minimize the error between the measured point from one side to the
projected point on the other side using a least-squares linear optimization.

2OpenCV is an open source computer vision library (23). cvBlobsLib is a library in which similar regions
of an image are grouped together (known as “blobs”) (24).



Figure 5.: 3D geometry estimation: initial SIFT descriptors matched between the
left and right images of the gripper stereo camera at a distance of twelve inches.

Algorithm 2 Estimating Local 3D Geometry

1: procedure Compute3D(gripper stereo image pair)
2: SIFT descriptors ← left and right images
3: 3D point cloud ← matched pairs of SIFT descriptors
4: Eliminate outliers ← 3D point cloud
5: Calculate best normal vector ← 3D point cloud inliers
6: return (3D point cloud, best normal vector)
7: end procedure

Algorithm 3 Visual Alignment

1: procedure VisualAlignment(3D point cloud, best normal vector)
2: Target 3D location x∗ ← 3D point cloud
3: Target 3D orientation θ∗ ← best normal vector
4: repeat

5: Translation error ← x∗ − xc ⊲ xc is current location

6: Rotation error ← θ∗ − θc ⊲ θc is current orientation

7: Generate 6D translation/rotation motion
8: until Gripper is located in the target pose
9: end procedure

We then apply constraints to the initial 3D point cloud to further eliminate out-
liers. First, we consider the depth ratio of each descriptor match. We also consider
the size of the objects that the Manus ARM can grasp given the size of the gripper’s
maximal opening. We constrain the points to be within a six-inch cube around the
POI. Lastly, we examine the distribution of the remaining points.
With this refined 3D point cloud, we compute the normal vector for an approxi-

mate local plane of the POI. We define a set of N prototype normal vectors given
the possible set of poses that an object is likely to have and the camera’s field of
view. We have implemented four normal vectors where three vectors are for upright
objects, and one is for objects that lay down; Step 3 of Figure 2 shows an example
upright pose normal vector as a yellow arrow. For each point in the 3D point cloud,
we compute a rank (from 1 to N) for each plane, indicating the relative likelihood
of the given point being an inlier of these planes. To compute the rank, we use the
estimate of the 3D point closest to the POI and a distance metric. The ranks are
tallied for all points to obtain the best representative normal.
The resultant 3D geometry information is used to refine the target object posi-

tion. The chosen normal is used to compute the gripper’s yaw and pitch angles.



Algorithm 4 Two-Phase Object Identification

1: procedure ObjectID(gripper stereo image pair)
2: SIFT descriptors ← left and right images
3: Eliminate outliers ← SIFT descriptors
4:

5: Phase I: ⊲ Object image retrieval

6: Top 5 list of templates ← SRVT query with inliers
7: for all top 5 list do
8: Number of matched ← RANSAC with left image
9: end for

10: Candidate object image ← top 5 list
11:

12: Phase II: ⊲ Object-view refinement

13: Retrieve multi-view images of candidate object image
14: for all multi-view images do
15: Confidence level ← RANSAC with left image
16: end for

17: Final view of object image ← template database
18: return final view image
19: end procedure

To move to this refined target position with optimized gripper position, we gener-
ate translational and/or rotational velocity command using a proportional control
algorithm (Algorithm 3).3

4.4. Object Recognition

With the gripper positioned normal to the object and in close range (within 12 in
(305 mm)), our next step is to recognize the object. Again, we use SIFT descrip-
tors for their robustness. Our object recognition algorithm has two parts: object
identification and object view selection (Algorithm 4). To recognize the object, we
search our template image database comparing feature points.
Our system requires at least one image template of each object, and there may be

multiple views of each object. In addition, a person may utilize a large number of
objects in his or her ADLs. As a result, our database may become extremely large
making it computationally intractable to retrieve the correct template through a
sequential scan. Instead, we use a decision tree approach known as Scalable Recog-
nition by Vocabulary Tree (SRVT) (27). SRVT consists of a multi-level decision
tree and visual keywords (i.e., sets of feature points) as leaf nodes. Each leaf node
can be shared between multiple template images or solely allocated to a specific
template image.
Figure 6 shows the template database used in our system. It is easily extendible

and scalable to deal with many different natural scenes. A user can add new objects
to the database using an “add object template” procedure. For each object, the user
can provide multiple views of the object on a variety of backgrounds. The SRVT
implementation has been shown to take 25 ms to match an image in a database of
50,000 images (27), therefore we believe that this approach will scale well.
Our vocabulary tree was constructed using more than 40,000 frames from a set of

movie clips. Keypoints representing the current frame were used to query the most

3Detailed mathematical descriptions of Algorithms 2 and 3 can be found in (2) and (26).
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Figure 6.: Template database of 26 unique objects with several having multiple
views. Objects are identified using a decision tree that compares feature points.

similar template image from the ADL template database. We observed inconsistent
results and poor discrimination because of keypoints generated from features in the
background. We improved the performance of the SRVT algorithm by segmenting
the object from the background using stereo information and statistics.
We use a two-phase object identification approach (Algorithm 4). We match the

object with an existing template. Then, we retrieve the top five template matches
based on the keypoints. We compare the current image with each of these templates
using RANSAC (28). This comparison yields only one possible object image. It is
possible that the object is not recognized at all because either the object does not
exist in the database, or the current view is a partial view (e.g., a can of soda
viewed from the side whose template was taken from the front). Figure 7 shows a



Figure 7.: Object recognition: a successful match between template (left) to current
gripper camera view (right) after gross motion and visual alignment.

Figure 8.: Successful fine motion alignment between template (left) and left gripper
camera view (right). (Best viewed in color.)

successful template match.
After identification, we must choose the best view of the object if there are mul-

tiple views in the template database. This refinement provides the most desirable
template for grasping. If a meaningful template is not found, we use a Principle
Component Analysis (PCA) based analysis to reorient the gripper (29).

4.5. Fine Motion

With the object identified and the optimal view chosen, we now compute the fine
motion necessary to position the gripper around the object. We use visual servoing
to guarantee precision and replace SIFT with a fast keypoint feature detector, ferns,
to guarantee speed (30). The fine motion control is composed of a two-phase control
scheme (Algorithm 5). Figure 8 shows a successful alignment with the object.
We use a 2.5D (or hybrid) visual servoing scheme to generate translation and ro-

tation motion to align the current gripper camera view with the pertinent template
database image (31). We compute the Euclidean homography relation between the
current image and the template using matched pairs of local descriptors and the
intrinsic camera calibration matrix of the gripper stereo camera. The computed
homography is decomposed into two feasible solutions for the rotational and/or
translational motions to position the gripper around the object. Only one of these
solutions is physically correct, so we choose the correct solution using the third
view from an auxiliary stereo frame and the extrinsic calibration parameters of the
gripper stereo camera (32).



Algorithm 5 Two-Phase Fine Motion Control algorithm

1: procedure FineMotion(current image)
2: local descriptors using ferns ← current image
3:

4: Phase I: ⊲ x− y plane centering

5: repeat

6: an (trackable) anchor point mc ← local descriptors
7: translation error ←mc −mo

8: ⊲ mo is an image center point

9: generate 2D translation motion
10: until translation error is negligible
11:

12: Phase II: ⊲ 6D alignment

13: repeat

14: an anchor point mc ← local descriptors
15: translation error ←mc −m∗

16: ⊲ m∗ is a correspondent point on the template

17: target 3D orientation θ∗ ← local descriptors
18: rotation error ← θc − θ∗ ⊲ θc is current orientation

19: if mc enters critical zone then

20: generate 2D translation motion
21: else

22: generate 6D translation/rotation motion
23: end if

24: until translation/rotation errors are negligible
25: end procedure

For stable operation of fine motion, it is imperative to keep all of the features
inside the gripper camera’s field of view. We use a two-phase algorithm when
approaching the object (Algorithm 5). In Phase 1, we center the gripper camera
on the target object using lateral motion. Centering on the object provides a large
number of local descriptors which are necessary for a high-confidence homography
solution. In Phase 2, with the object centered on the gripper, we generate rotational
and/or translational velocity commands in real-time using homography analysis.
In order to generate trajectories that converge to the desired pose, the control
alternates between Phase 1 and Phase 2 as needed. That is, the 6-DOF motion
generated in Phase 2 may cause the gripper to drift off center and enter a critical
zone, defined as strips 1/8 image width and height along the image borders. Phase
1 will realign the lateral motion before allowing further progress on the approach.
To generate translational motion, we choose one of the local descriptors from the

current image as an anchor point to visually track. Specifically, we select a median
descriptor among the inliers to provide stable control performance over time. The
rotational motion is generated by parameterizing the retrieved rotation transform
matrix into setpoint information. We begin approaching the object through the op-
tical axis of the gripper camera when signaled by the ratio of the depth information
of both the current pose and the final pose (33).

4.6. Object Grabbing using Force Profile

With the gripper positioned in front of the object, we can now grasp the object.
The grasp must be firm enough that the object does not slip out when we bring it
back to the user, but not so firm that it crushes the object. We use a force sensing



Algorithm 6 Force-Sensitive Object Grabbing

1: procedure ObjectGrab(force profile)
2: start closing action of the gripper
3: repeat

4: n-QueueList ← force signals
5: detect plateau ← n-QueueList
6: until plateau is detected
7: stop closing action
8: end procedure

resistor mounted inside the finger to detect the grabbing force, or pressure, during
the gripper’s closing motion (Figure 1b). We read the pressure values as the gripper
begins to close and keep a history of these values. When the difference between the
last n values is small, a plateau has been detected and the gripper stops closing
(Algorithm 6). In our system, we check the last five values for the plateau.
We use the pressure sensor instead of an absolute threshold for two reasons. First,

the Manus ARM needs to pick up a variety of objects. Second, the same object
may have different states. For example, an empty bottle and a filled bottle need
different amounts of force applied to be appropriately grabbed by the gripper. We
have empirically found that this algorithm works for a wide range of ADL objects
including water bottles, cereal boxes, and beverage cans.

5. Experiment

We conducted an end-user testing with the system presented in this paper at the
Crotched Mountain Rehabilitation Center from July through October 2009. Twelve
people participated in four sessions each, in which each session had at least four
trials. The experiment had a total of 198 trials. Our goal was to explore the level
of cognition required to use the system.

5.1. Participants

The assistive technology director of Crotched Mountain played a central role in
recruitment of participants. Given all of the students and the residents who use
wheelchairs, the director evaluated their overall physical dexterity, cognitive ability,
visual ability, and access method. The inclusion criteria for this experiment was 1)
the person used a wheelchair, 2) the person could attend one practice session and all
four sessions, and 3) the person could select an object from the user interface with
his/her access method. Candidate participants were invited to participate in the
experiment; fourteen participants consented. Twelve of the fourteen participants
met the inclusion criteria.4 The remaining two people were unable to participate
in this study because one participant was unable to see the objects on the shelf or
on the screen, and the other had not yet recovered from surgery.

5.1.1. Ability Description

For this study, we define “high” cognitive ability as a person who has full literacy,
ability to function independently within typical social or environmental situations,
and the ability to successfully complete complex tasks with three or more steps.
We define “medium-high” cognitive ability as a person who has moderate literacy,

4Participant 4 (P4) and Participant 8 (P8) participated in a previous end-user evaluation in 2007 (1).



Table 1.: Participant profiles

Age Sex Diagnosis Cognition Vision Behavior Communication Wheelchair Access

P1 60 M Traumatic Brain
Injury

High Corrected with
glasses

No significant chal-
lenges

No significant chal-
lenges

Manual Touch screen

P2 46 M Traumatic Brain
Injury

High Within normal
limits

No significant chal-
lenges

No significant chal-
lenges

Manual Touch screen

P3 17 M Cerebral Palsy High Corrected with
glasses

No significant chal-
lenges

No significant chal-
lenges

Power with joy-
stick access

Touch screen

P4 20 F Cerebral Palsy High Corrected with
glasses

No significant chal-
lenges

No significant chal-
lenges

Power with joy-
stick access (lim-
ited dexterity in
driving hand)

Touch screen

P5 20 M Cerebral Palsy
Infantyle, Men-
tal Retardation,
Seizure Disorder,
Epilepsy

Medium-high Corrected with
glasses; does not
tolerate wearing

No significant chal-
lenges

Non-verbal; can com-
municate with AAC
device (very limited)
and facial expressions

Power with multi-
ple switch access

Single switch
scanning

P6 60 M Traumatic Brain
Injury

Medium-high Corrected with
glasses

No significant chal-
lenges

No significant chal-
lenges

Manual Touch screen

P7 51 M Traumatic Brain
Injury

Medium-high Corrected with
glasses; left visual
field neglect

No significant chal-
lenges

No significant chal-
lenges

Manual with care-
giver

Touch screen
with key
guard

P8 19 F Spina Bifida Medium-high Within normal
limits

Low frustration toler-
ance; needs encourage-
ment

No significant chal-
lenges

Manual Touch screen

P9 17 F Cerebral Palsy Medium Within normal
limits

Very low frustration
tolerance; needs en-
couragement

Non-verbal; can com-
municate well with
AAC device and
thumbs up/down

Manual Touch screen

P10 21 M Traumatic Brain
Injury, Spastic
Quadriplegia

Medium Corrected with
glasses; does not
tolerate wearing

No significant chal-
lenges

Non-verbal; can com-
municate with AAC
device and thumbs
up/down

Power with joy-
stick access

Touch screen

P11 17 F Cerebral Palsy Medium Within normal
limits

Can be excited which
causes anxiety

Below age level Manual Touch screen

P12 19 M Cerebral Palsy Medium-low Within normal
limits

Can be excited which
causes giddiness

Repeats prompts ver-
batim

Power with joy-
stick access (lim-
ited dexterity due
to high tone in
driving arm)

Touch screen
with key
guard and
head pointer



is mostly independent in typical social and environmental situations, and requires
assistance on some complex tasks. We define “medium” cognitive ability as a person
who has some literacy skills, requires moderate prompting (50%) to function in
typical situation, is able to successfully complete simple tasks with one or two
steps, and is unable to successfully complete complex tasks. We define “medium-
low” cognitive ability as a person who can identify letter and number symbols, is
able to read a few words, requires significant prompting to complete ADLs, and
finds simple tasks with one or two steps challenging. We define “low” cognitive
ability as a person who has no literacy, requires maximum support in completing
ADLs, and is unable to follow simple instructions with consistent accuracy.
All participants in this study either had a traumatic brain injury or a develop-

mental disability. These conditions are marked by challenges that range across all
functional areas. Cognition, motor skills, sensory skills, behaviors, and psychologi-
cal status can all be involved to a greater or lesser degree. All of these components
overlap to such a degree as to render meaningless any attempt to quantify disability
status with any precision.5 For this reason, we provide a description of participants’
characteristics as a measure of relative skills (shown in Table 1).
The twelve participants had varying levels of cognition: four participants were

rated as having high cognition, four with medium-high, three with medium, and
one with medium-low. There were four women and eight men. The participants’
ages ranged from seventeen to sixty. Seven of the participants were students of the
Crotched Mountain School; five were diagnosed with cerebral palsy, one with spina
bifida, and one with traumatic brain injury/spastic quadriplegia. Four of the re-
maining participants were patients of the Crotched Mountain Rehabilitation Brain
Injury Center; all were diagnosed with traumatic brain injury. The last participant
was a short term patient of the hospital who was recovering from surgery. Seven of
the participants used a manual wheelchair; six of the seven were able to transport
themselves, and one required a personal assistant for transportation. The remain-
ing five participants used power wheelchairs; four of the five used joystick access,
and one used a switch array.

5.1.2. Access Methods

Each participant’s first session was a practice session in which we determined the
most appropriate access method for using the robot. Nine participants were able
to use the touch screen. Three participants required alternative access methods.
Two participants required the use of a key guard, which is a rigid plastic cover

with holes directly over the keys or buttons for devices such as keyboards and
touch screens. For the purposes of this experiment, we created a key guard with
five selection points (i.e., top left, top right, center, bottom left, and bottom right).
In general, it would be possible to use a key guard with a grid of selection squares
over the touch screen for selecting an object in an unstructured environment.
Key guards offer two advantages. First, the holes direct the user’s finger to the

appropriate spot for activation, which overcomes the common problem of striking
between the keys and activating two keys at once. Second, the rigid plastic surface
provides a support surface that can be used to stabilize the user’s hand. This
stabilization can be useful for people who have tremors or inaccurate movements
of their hand due to shoulder instability.
Participant 7 (P7) was able to isolate a finger for activation; however, accurate

movements of his shoulder for directing his finger isolation were challenging. It was

5People with traumatic brain injury may be assigned a Ranchos Los Amigos Scale (34) score for progress
in their rehabilitation. Our participants were either level 7 or 8. However, it was inappropriate to assign
Ranchos scores for the participants whose diagnoses were not brain injury.



Figure 9.: Experimental setup with single switch scanning. P5 used Cross Scanner
(35) single switch scanning software and activated the scanning with a head switch.

less physical effort for P7 to use a key guard and his accuracy of the selection with
the key guard was better than without it. In several instances, he rested his hand
on the key guard during selection.
Participant 12 (P12) initially used the mouse-emulating joystick. However, due

to his emerging joystick skills, it was easier for him to use a head pointer (his
previous computer access method) to select on the touch screen with a key guard.
P12’s head pointer was a metal rod approximately 12 in (305 mm) in length with
a rubber cap on the end. The metal rod was attached to a base ball cap under the
center of the cap’s brim. The cap was secured in place using a chin strap.
Participant 5 (P5) used a single switch to access his AAC (alternative augmen-

tative communication) device; he used Cross Scanner (35) to operate the robot
(Figure 9). Cross Scanner is a commercially available supplemental single switch
scanning software. The first switch click starts a top to bottom vertical scan. When
the line is in the desired vertical location, a second click starts a left to right hori-
zontal scan. When the cursor is over the desired horizontal location, the third click
selects.

5.2. Protocol

The protocol used for this experiment was based on that of our 2007 study (1).6 The
task in this experiment was to instruct the robot arm to retrieve object from a shelf
(Figure 9). The experimenter would show the participant a photo of the desired
object, and ask the participant to identify it on the shelf first. The experimenter

6When designing our 2007 study protocol, our clinicians determined that the majority of their clients were
unlikely to be able to use the manufacturer’s interface without experiencing frustration.



would ask questions about the object to determine in the participant could see
the object (e.g., “Is the object on the top, middle, or bottom shelf?”). When the
participant had identified the object on the shelf, the experimenter instructed the
participant to select the object on the user interface using his or her access method.7

After confirmation by the experimenter, the robot would retrieve the desired object
from the shelf.
We selected this matching task because it allowed the experimenter to change

the difficulty of the task. Prior to the experiment, we chose four layouts in which
to configure five, six, eight, and nine objects. With a simpler layout, it is easier
to determine where the desired object is. Also, the size of the object and contrast
of the object to the background were factors in adjusting the difficult of selecting
the object. The mouthwash bottle was the smallest object in our set and had
the least area displayed on the screen in which to select. Lastly, some objects were
more motivating to participants than others. For example, the can of soup featured
DreamWorks Animiation’s Shrek and Donkey on the label which was particularly
motivating to Participant 11 (P11).
Most of the participants came for a practice session and four additional sessions.8

At the start of each session, the experimenter administered a mood rating scale.
The experimenter then asked the participant to retrieve four objects. At the end of
each session, the experimenter administered the mood rating scale again and a post-
session questionnaire. The duration for each session averaged forty-five minutes.
Data was collected from manual logs, pre- and post-session mood rating scales,

post-session questionnaires, and computer generated log files. Each session was
video recorded. The mood rating scale was based on the Profile of Mood States
(36). We administered a shortened version of the Psychological Impact of Assistive
Devices Scale (37) after the practice, first session, and last session; the participants
reported how they perceived the robot with respect to sense of control, usefulness,
frustration, ability to participate, independence, confusion, sense of power, happi-
ness, and eagerness to try new things. In the post-session questionnaire, we asked
the participants what they liked most and least about using the robot, what would
they change about the robot, and what would make it easier to use the robot. After
the final session, we asked the participants how they liked the look of the robot,
how often they would use the robot if it were mounted to their wheelchair, and to
describe how they would use it.

5.3. Results and Discussion

There were 198 trials. For each run, we logged the time for user selection, gross
motion, visual alignment, object identification, fine motion, grasping, and return of
the object to the participant. User selection time was divided into perception time
(i.e., the participant acknowledged where the object was on the shelf and on the
display), and motor time (i.e., the participant selected the object on the display).
For Participants 5, 7, and 12, we refined the perception time by subtracting the time
in which the experimenter was speaking or setting the participants’ access devices
(calculated manually from the videos). From the gripper camera images logged after
the gross motion and fine motion, we calculated the number of feature points in
each image and template, respectively, and computed the matching feature points
between the images.

7Because Participants 5, 7, and 12 required the display to be nearly directly in front of their faces in
order to correctly select objects which obscured the shelf, an assistant moved the display to the side until
selection time.
8Participant 6 attended three sessions while Participant 12 attended five sessions.



5.3.1. System Performance Analysis

We found that our system was able to successfully retrieve an object from the
bookshelf in 129 of the 198 trials (65% overall). For the 129 successful trials,
the average length from user perception of the object to returning the object to
the user was 164.72 s (SD=61.71). The average user selection time was 23.52 s
(SD=27.22) in which the average perception time was 6.26 s (SD=10.39) and mo-
tor 6.11 (SD=10.40). The average algorithm running time (i.e., gross motion to
object return) was 112.2 s (SD=14.5) in which the average gross motion time was
10.01 s (SD=17.12), visual alignment 1.79 s (SD=0.27), object recognition 13.59
s (SD=5.95), fine motion 37.23 s (SD=10.93), and grasping and return 36.51
(SD=2.42). The average number of matched feature points between the left and
right gripper camera images after gross motion was 64.74 points (SD=58.62).
We encountered 69 failures. In 13 of the 69 failures, one or both of the gripper

cameras became disconnected due to the external sensor cables moving and pulling
during the robot arm’s operation. These hardware failures were unavoidable on a
moving arm. A commercial version of this system would have the sensor cables
within the robot arm itself. Discounting these, we had 56 algorithmic failures.
Inaccurate gross motion movement accounted for 34% of the failures (19 of 56).

One of the nineteen failures was due to a protocol failure in which the gross motion
was triggered before the user selection was complete. We compute the 3D position
of the desired object, and the robot arm moves in Cartesian coordinates to this
location. The robot arm is cable driven, and the resulting position of the gross
motion may not be exactly the correct physical location. The further the robot
arm had to move, the greater the error was accumulated in the encoder positions.
Nine of the remaining 18 gross motion failures (50%) occurred when the robot
arm moved to the top shelf; the robot arm positioned the gripper too low and
the objects were not sufficiently within the gripper camera’s view. Interestingly in
one of these runs where the desired object was on the top shelf, the robot arm
instead identified the object on the shelf below and “successfully” returned the
wrong object to the participant. Similarly, in 7 runs (39%), the desired object was
located on the left-hand side of the shelf and the robot arm positioned the gripper
too far to the left of the object.
Three errors (5%) occurred during visual alignment and five (9%) during object

recognition. In 13 of the 56 failures (23%), the robot arm timed out during the fine
motion algorithm. When the robot arm has exceeded 90 seconds attempting to align
to the template, it returns to the lowered home position for another selection. The
desired object in 6 of these 13 runs was the root beer. It should be noted that the
template for the root beer was generated with a lower contrast camera than the
other objects that the robot arm can recognize (Figure 6).
In 7 runs (13%), the robot arm did not successfully grasp the object because it

pushed the object out of its grasp (3 of 7), pinched the object out of its grasp (1
of 7), did not close the gripper (1 of 7), reached its maximum extension (1 of 7),
or the system froze (1 of 7). In 2 runs (4%), the robot arm dropped the object
while returning to the user because the objects slipped out of a weak grasp. In 6
runs (11%), the robot arm froze while returning the object to the user. There was
1 unknown failure (2%).

5.3.2. System Usability

All participants were able to use the robot arm system and performed a total
of 198 selections with their various access methods. The participants selected the
correct object in 91.4% of the trials (181 of 198). Tables 2 and 3 show the aver-
age perception and motor times for user selection of all 198 trials categorized by



Table 2.: User Selection: Perception Times for 198 Trials

Cognition No. of Participants No. of Samples x̄ (s) SD (s)

High 4 67 2.94 1.40
Medium-high 4 62 7.48 7.88
Medium 3 49 7.10 9.83
Medium-low 1 20 19.76 21.37

Table 3.: User Selection: Motor Times for 198 Trials

Cognition No. of Access No. of x̄ (s) SD (s)
Participants Method Samples

High 4 Touch screen 67 2.70 2.72
Medium-high 2 Touch screen 29 5.00 3.97
Medium-high 2 Touch screen

with key
guard; single
switch scan-
ning

33 57.69 103.49

Medium 3 Touch Screen 49 3.82 3.97
Medium-low 1 Touch screen

with key guard
and head
pointer

20 20.55 19.65

cognition.
Levels of Cognition. Because we were exploring the range of cognitive ability

needed to operate the robot arm, we separated “user selection” into a perceptual
portion and a motor portion. The perceptual portion included recognizing the
desired object on the flash card, finding the object on the shelf and finding the
object on the display. The motor portion was how long it took for the participant
to activate the desired target.
We hypothesized that the participants with lower cognitive ability would take

longer for the perception time than the participants with higher cognitive ability.
We computed unpaired, one-tailed t-tests on the perception times. We found that
the participants with high cognition were able to perceive the desired object signifi-
cantly faster than the other participants (p<0.01 for high cognition versus medium-
high (t(127)=4.64), medium (t(114)=3.42), and medium-low (t(85)=6.49)). We
also found that the participants with medium-high or medium cognition were
able to perceive the desired object significantly faster than the participant with
medium-low cognition (p<0.01 for medium-high versus medium-low (t(80)=3.82)
and medium versus medium-low (t(67)=3.38)).
We found that 9 of our 12 participants selected the object before being told (i.e.,

during the perception portion) to do so at least once. The other three participants,
P5, P7, and P12, did not because the display had to be moved into position before
they could select.
We also computed unpaired, one-tailed t-tests on the motor time (i.e., the time of

physical selection) for the participants who directly manipulated the touch screen
with only their finger.9 We found that the participants with high cognition were

9We excluded P5, P7, and P12 from the motor time (i.e., time to physically select the target) analysis.
P5 used single switch scanning. P7 and P12 used a key guard over the touch screen; P7 selected with his



able to select the desired object significantly faster than the participants with
medium-high cognition (p<0.01 with t(93)=3.50) and slightly faster than the par-
ticipants with medium cognition (p=0.07 with t(114)=1.80).
For the perception time, there was no significant difference in performance be-

tween the participants with medium-high cognition and the participants with
medium cognition. For the motor time, there also was no significant difference
in performance between the participants with medium-high cognition who used
their finger to point to the touch screen directly and the participants with medium
cognitions. We believe that this is due to our broad definition of cognition used in
this paper, which was comprised of several factors.
Incorrect User Selections. Overall, there were only 17 incorrect selections

(91.4% correct). P5 made four incorrect selections, all in the first two sessions.
In the first session, P5 made two incorrect selections because he was not wearing
his glasses. With his glasses, P5 correctly selected the remaining two objects. In
the second session, P5 incorrectly selected the first two objects. The experimenter
reminded P5 that he should not rush and should take his time to select the objects
correctly. P5 correctly selected the remaining two objects.
P7 made two incorrect selections due to his left side visual neglect. P7 had not

yet learned to use head movements to extend his visual field, which was a skill that
he was actively working on with his physical therapist. In both cases, the incorrect
selection occurred at the end of a session as the difficulty increased. For the first
incorrect selection, P7 knew what the object was and could see it on the shelf but
not on the display. He selected incorrect objects twice and asked to select again.
P7 selected the furthest left position on the key guard that he could see, which was
actually only the middle of the key guard. For the second incorrect selection, P7
could not see the object on the left side of the shelf nor the display.
P12 made the most incorrect selections (ten out of twenty runs) due to his

cognitive level, which was medium-low as described for this experiment. He did
not always seem to understand that a specific target on the key guard was desired.
Even with heavy prompting, P12 often merely chose the one that was closest and
easiest for him to activate. We regard P12 as having the minimum level of cognition
to use the robot arm.
Competence and Self-Esteem. We collected Likert scale ratings for a subset

of the Psychological Impact of Assistive Devices Scale (PIADS) survey (37). We
analyzed the participants’ perceived competence (i.e., usefulness, independence,
and confusion), adaptability (i.e., ability to participate, and eagerness to try new
things), and self-esteem (i.e., happiness, sense or power, sense of control, and frus-
tration). For each of these nine items, the participant rated from “strongly disagree”
(-3) to “neither agree nor disagree” (0) to “strongly agree” (+3). Over all the ses-
sions, participants rated their average competence as 1.74 (SD=1.00), adaptability
1.81 (SD=0.95), and self-esteem 1.36 (SD=1.00) which indicates an overall pos-
itive experience with using the robot. There was no statistical significance of the
three ratings between the practice, first, and last sessions.
We looked at how the levels of cognition affects the participants’ PIADS self-

report. We computed one-tailed unpaired t-tests for competence, adaptability, and
self-esteem. Due to the small number of participants, we do not wish to overstate
the trends discovered in this fifteen week study. We found that participants with
high cognition rated themselves to have higher competence than the participants
with medium-high and medium cognition (p<0.03 with t(19)=2.40 and t(17)=2.46,
respectively). Participants with medium-high cognition also rated themselves as

finger and P12 selected with his head pointer.



having higher self-esteem than the participants with medium cognition (p<0.02
with t(16)=2.75). We believe that one major factor in these results was the level of
language ability. Participants with high and medium-high cognition were described
as having good language ability and the students were fully or partially engaged
in academic education.

6. Conclusions and Future Work

Our research has focused on replacing the default Manus ARM interface with a
vision-based system while adding autonomy so that the robotic arm can execute
a “pick-and-place” ADL. To this end, we have developed a simple image-based
interface on which a person can touch or use a joystick to select an object. Further,
we have developed a complete and autonomous object retrieval system.
We conducted a fifteen week study with twelve participants who had cognition

ranging from high to medium-low. All participants were able to use the system
and executed the 198 selections using their various access methods with only 17
incorrect selections (91.4% correct). We found that participants with higher levels
of cognition were able to perceive the desired object faster than those with lower
levels of cognition. Overall, the participants reported positive experiences using the
system with respect to competence, adaptability, and self-esteem.
Our system was able to successfully retrieve an object from the bookshelf in 129

of the 198 trials (65% overall). Of the 69 unsuccessful retrievals, 56 (81%) were
due to algorithmic failures, and the remaining 13 (19%) were due to the camera
cables being disconnected as the robot arm moved during the trials. It should be
noted that an unsuccessful retrieval does not mean the the robot system will never
retrieve the object. User may repeat his/her selection.
We believe that the number of successful retrievals could be increased to 89% by

integrating the cables into the robot arm, increasing the number of image views
around each object, and using closed-loop feedback during gross motion of the
cable-driven robot arm. To improve the gross motion (Algorithm 1), we believe that
we can use color histogram analysis of the selected object for tracking as the end
effector approaches the object which was used in a previous iteration of the robot
system (1). We could also improve the alignment of the end effector on the object
by continuously executing the visual alignment algorithms (Algorithms 2 and 3)
while moving towards the object. To increase the success of object identification
(Algorithm 4) and visual servoing (Algorithm 5), we could increase images views
around each of the objects from three to five images like cardinal (north, east, south,
and west) and ordinal directions (northeast, southeast, southwest, and northwest).
This system has not yet been optimized for speed or robustness. We are currently

investigating online probabilistic estimation of depth information to limit the search
region of local feature descriptors to make the fine motion visual servoing more
robust. We will also design and analyze the stability of the region-based switched-
control schemes (Algorithm 5) to reduce the time for the fine motion algorithm.
Lastly, we need to investigate obstacle avoidance for when the desired object is
occluded during gross motion.
We believe that this system can be used by people who use wheelchairs and have

a limited area of reach and/or have limited upper limb strength. Our work has
shown that the robot can be used by people have high to medium-high cognitive
ability. The manufacturer’s interface should only be used by people with typical
cognition as per (8). Although our robot system is slow, we have shown that it can
open up the range of people who can use the robot arm which will allow our target
population to accomplish things they could not previously do independently.



We have shown that is it possible for a person with medium-low cognition to
also use the system given the once per week interaction. With only once per week
interaction, it may be difficult for people with lower cognition to remember how to
use our system. We believe that as cognition decreases, the frequency of using the
system must increase until the skill is mastered. We would like to conduct a long
term case study in which the robot arm is used every day and perhaps multiple
times per day by people with medium-low and low cognition.
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