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Figure 1. Our deep implicit 3D morphable model (i3DMM) of human heads includes semantically disentangled spaces for color (identity

and hairstyle), and geometry (identity, expression, and hairstyle). We can fit i3DMM to head scans, and edit the different components.

Abstract

We present the first deep implicit 3D morphable model

(i3DMM) of full heads. Unlike earlier morphable face mod-

els it not only captures identity-specific geometry, texture,

and expressions of the frontal face, but also models the en-

tire head, including hair. We collect a new dataset consist-

ing of 64 people with different expressions and hairstyles

to train i3DMM. Our approach has the following favorable

properties: (i) It is the first full head morphable model that

includes hair. (ii) In contrast to mesh-based models it can

be trained on merely rigidly aligned scans, without requir-

ing difficult non-rigid registration. (iii) We design a novel

architecture to decouple the shape model into an implicit

reference shape and a deformation of this reference shape.

With that, dense correspondences between shapes can be

learned implicitly. (iv) This architecture allows us to se-

mantically disentangle the geometry and color components,

as color is learned in the reference space. Geometry is

further disentangled as identity, expressions, and hairstyle,

while color is disentangled as identity and hairstyle com-

ponents. We show the merits of i3DMM using ablation

studies, comparisons to state-of-the-art models, and appli-

cations such as semantic head editing and texture transfer.

We will make our model publicly available1.

1http://gvv.mpi-inf.mpg.de/projects/i3DMM/

1. Introduction

3D morphable models (3DMMs) are parametric mod-

els of geometry and appearance of human faces, with

widespread use in applications such as image and video

editing, face recognition and cognitive science [20]. These

models are trained using 3D scans of humans, e.g., laser

scans [4], depth sensor-based scans [9], or photometric

multi-view scans [28]. As 3DMMs usually learn a defor-

mation space of a fixed template mesh, the training shapes

commonly need to be brought into dense surface correspon-

dence with each other. Computing such correspondence for

the face region alone is already hard and often requires a

challenging non-convex optimizaton problem [20]; comput-

ing dense correspondence for the rest of the head and the

hair is close to impossible. Therefore, as well as due to the

lack of large 3D scan datasets with hair, most 3DMMs only

capture the face region. While some recent approaches aim

to model the complete head [15, 28, 41, 40], they do not

capture the hair region, and the appearance in the head re-

gion (if captured) is very limited.

In this work, we present i3DMM, the first implicit 3D

morphable model which captures the full head region, in-

cluding hair deformations and appearance. We capture a

new dataset of full photogrammetric head scans of 64 peo-

ple for training. Each subject performs several expres-

sions and natural hair is captured. Since such scans are
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noisy, especially in the hair region, our training algorithm

uses an adaptive sampling strategy based on the quality of

reconstructions in different regions of the head, allowing

us to effectively handle noise without smoothing out de-

tails. In contrast to existing 3DMMs, which use a mesh-

representation with a fixed template, we implicitly repre-

sent surfaces using signed distance functions. This allows

us to capture large deformations easily, which is particularly

convenient for the hair region. The implicit representation

also allows us to avoid computing dense correspondence

between training scans. Our method is inspired by recent

works on deep implicit surface modeling [36, 31, 32], which

demonstrate the advantages of using an implicit representa-

tion compared to voxel grids, point clouds or meshes. Our

main technical innovation compared to these works is that

we use a novel neural network architecture which decou-

ples the learning process, separating it into learning a refer-

ence shape, learning geometry deformations with respect to

this reference, and learning a color network. This allows us

to automatically compute dense correspondences between

any two shapes with only sparse supervision on salient face

landmarks. This decoupling is also essential for disentan-

gling the learned space into semantically meaningful para-

metric components, an important feature of 3DMMs.

Most classical models disentangle identity geometry, ex-

pression geometry, and appearance of the face. This is suf-

ficient for several applications in face editing [52, 51, 48],

but does not allow the explicit control of head parts other

than the facial region. Our model allows for unprecedented

control over the different semantic modes of full heads. To

this end, we learn to disentangle the geometry and color,

where geometry is further separated into identity, expres-

sion, and hairstyle components, and color is further sepa-

rated into identity and hairstyle components.

In summary, our main contributions are:

1. A method for learning full head 3D morphable models

directly from rigidly aligned real-world noisy 3D scans

without dense ground truth correspondences.

2. A novel network architecture which can compute

dense correspondences between 3D shapes repre-

sented using implicit functions. This network is

trained only with sparse supervision.

3. A training method for disentangling

(a) the color and geometry components, and

(b) the identity, expression, and hairstyle compo-

nents of the geometry; and the identity and

hairstyle components of the color.

We compare our model to several state-of-the-art 3DMMs

by fitting to 3D scans. We also demonstrate the quality

of our learned dense correspondences by showing texture

transfer between scans, and show that i3DMM benefits ap-

plications such as semantic head editing, and one-shot com-

putation of segmentation masks and landmarks on 3D scans.

2. Related Work

Most approaches for face and head modeling are mesh-

based. We summarize them here and refer the reader to

Egger et al. [20] for a more comprehensive report. As our

model is based on implicit representations, we also discuss

methods which learn implicit shape and color.

Face and Head Morphable Models. The work of

Blanz and Vetter [5] showed the possibility of representing

faces using a 3D Morphable Model (3DMM). The model

is learned by transforming the shape and texture of exam-

ples into low-dimensional vector representations using prin-

cipal components analysis (PCA). Further improvements

were proposed [23, 38, 8, 6] by using better registration

and higher quality scans. Multilinear models have also been

proposed to model identity-dependent expressions [10, 21].

Li et al. [29] presented FLAME, a head model that com-

bines a linear shape space with an articulated jaw, neck

and eyeballs, pose-dependent corrective expression blend-

shapes, and global expressions. The model is learned from a

large 3D dataset, including data from D3DFACS [12]. Ran-

jan et al. [42] learned a head model using an autoencoder

based on spectral graph convolutions [17]. The LYHM

head model [16, 14] uses a hierarchical parts-based tem-

plate morphing framework to process the head shape, and

uses optical flow to refine the texture. The model is built us-

ing 1,200 different identities. Ploumpis et al. [40, 39] com-

bined the LYHM and LSFM [7] models as the Universal

Head model (UHM), with a focus on face geometry. Note

that all existing full head models only model the cranium

geometry without hair.

Implicit Representation. Implicit representations have

a long history in computer vision for inferring 3D shape

[27], temporally evolving shape [13, 26] and textured shape

[47]. Park et al. [36] presented DeepSDF to represent a

class of shapes using signed distance fields with an autode-

coder. Chen et al. [11] and Mescheder et al. [31] learned

a generative model of a class of shapes by classifying a

point in space as inside or outside a shape. Recent ap-

proaches [53, 18, 22] have proposed to represent shapes

using a collection of local implicit patches for higher qual-

ity. Oechsle et al. [35] extended OccupancyNets [31] to

represent texture along with the geometry using monocu-

lar inputs. Niemeyer et al. [34] presented an approach for

handling time-varying shapes by learning to predict mo-

tion vectors for each point in 3D space using Occupan-

cyNets. PIFu [44, 45] allows for 3D reconstruction of hu-

mans from monocular inputs. Pixel-aligned implicit func-

tions estimate a continuous field that determines whether a

pixel is inside or outside the surface of the human subject,

as well as the color on the surface. Several recent meth-

ods [46, 32, 49] have presented ways to achieve higher-

quality implicit representations by using periodic functions

as activations. Saito et al. [43] presented an approach for
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3D hair modeling. Their technique learns a manifold for 3D

hairstyles represented as implicit surfaces using a volumet-

ric variational autoencoder. Concurrent to us, some meth-

ods [30, 19, 54] also learn dense correspondences between

shapes represented using implicit functions.

3. Method

In this section, we describe how we obtain our deep im-

plicit 3D morphable model (i3DMM). Our overall process-

ing pipeline is illustrated in Fig. 2. In the following we will

describe our data acquisition, the training data preparation,

and the neural network architecture.

3.1. Data Acquisition

For training, we have scanned 64 subjects (46 male, 18
female; 22 Caucasian, 9 Asian, 25 Indian Sub-continent,

3 Hispanic, 3 Middle Eastern, 2 undisclosed; with an age

ranging from 19 to 69 with average 26). For each subject we

have recorded 10 facial expressions (a subset of which are

chosen from paGAN [33]), including neutral expressions

with 3-4 different “hairstyles” (open hair, tied hair for sub-

jects with long hair, and two different caps), as shown in

Fig. 3. Our data was acquired with the Treedys2 multi-view

scanning system, that comprises of 137 calibrated cameras,

see Fig. 4. The total capture time per person amounts to

about 20 minutes. Photogrammetry-based 3D reconstruc-

tion on the multi-view data was applied to obtain the final

textured meshes (see Fig. 4), where each mesh comprises of

around 50,000 vertices.

3.2. Training Data

Given our recorded textured mesh data, we apply several

preprocessing steps. This includes a semi-automated land-

mark annotation, cropping of the head area to discard the

shoulders and parts of the upper body, rigidly aligning the

meshes, and closing the hole at the neck to make the mesh

watertight. In the following we elaborate on these steps.

Landmark Annotation. First, we apply the automated

face landmark detector from dlib [24] on the front-facing

image obtained from the multi-view camera acquisition

setup, which produces a total of 66 face landmarks. We

select a subset of 8 landmarks, i.e. the four corner points

of the eyes, the tip of the nose, the two corner points of the

mouth, and the chin, and then transfer these 2D landmarks

to the 3D mesh. We manually correct the inaccurately de-

tected landmarks, and additionally annotate 8 landmarks for

the corners of ears (top, bottom, left, and right) directly in

3D.

Head Cropping. In order to remove the shoulders and

parts of the upper body, we crop the head meshes based on

the 3D landmarks. To this end, we first compute the vector

2https://www.treedys.com/

v from the centroid of the four eye cornerpoints to the tip of

the nose. Then, for p being the chin landmark in 3D space,

we define a virtual plane that goes through the point p+ 1

2
v

and has the normal v. We only keep the side of the plane

that contains the facial landmarks.

Rigid Alignment. Based on the 3D facial landmarks,

we perform a rigid alignment of all head scans in order

to ensure that they are oriented consistently in 3D space.

We use a numerically stable implementation [3] of the

transformation synchronization method [2], which solves

the generalized Procrustes problem in an initialization-free

and unbiased way. To this end, we first rigidly align all

pairs of heads based on Singular Value Decomposition

(SVD), i.e. we solve all pairwise Procrustes problems, and

subsequently use transformation synchronization to estab-

lish cycle-consistency in the set of pairwise transformations.

Hole Closing. Since our full head model is based on a

signed distance representation, we require that the meshes

are watertight. After rigid alignment, we assume that the

longitudinal axis of the head aligns with the y-axis. With

that, we use a flat patch to close the hole at the neck by

extruding the respective boundary vertices to coincide with

the smallest y-coordinate. Finally, we scale all meshes with

the same value such that all of them fit in the unit cube.

3.3. Training

We learn a vector-valued function fθ(x, z), where θ are

the neural network weights, x ∈ R
3 is the query point, and

z is a code vector that encodes the head instance. The out-

put fθ(x, z) = (s, c) includes a scalar s that represents the

signed distance to the surface, as well as the color c ∈ R
3 at

the closest surface point from x. The shape boundary is rep-

resented as the zero level-set of the signed distance function

(SDF), while the interior parts of the shapes have a negative

signed distance value, and the exterior parts a positive value.

We use an autodecoder network architecture [36], where the

weights of the network θ and the input latent codes z for all

shapes are learned jointly.

Mesh Sampling. We require (x, s, c)-triplets (query

point, signed distance value, color) for training. We use

a combination of two strategies for sampling these triplets.

First, we sample points on the mesh surface based on uni-

form random sampling. However, in order to also account

for higher accuracy in high-detail facial regions, i.e. the

eyes, nose and mouth, we additionally sample more points

in these areas. We take the center of each eye, the tip of the

nose, and the center of the mouth, and place a sphere around

them that covers the respective region of interest. Then,

we sample points on the mesh surface that lie within each

sphere. Eventually we mix the uniformly sampled points

with the landmark-based sampled points in a 1 to 3 ratio.

After sampling, the points are perturbed by a uniform

3D Gaussian with standard deviation 0.005 times the length
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Figure 2. Overview of our approach.

Figure 3. Overview of the captured expressions (red box: test set;

blue box: hairstyles) for each subject.

Multi-view scanning system

Sample view

3D reconstruction

Figure 4. Multi-view scanning system with 135 cameras around

the person (green), and 2 cameras (blue) on top. Right: front view

image, and reconstruction.

of the bounding box, such that not only surface points but

also points in the interior and exterior are used, see [36].

The color value for each sample is obtained by finding the

closest point on the mesh surface, and then looking up its

color in the texture map.

Latent Codes and Disentanglement. As mentioned

earlier, latent codes for each object (head scan) are also

learned during training. Existing approaches use a single

object latent code to describe the shape. In contrast, we de-

sign several separate latent spaces for our objects in order to

learn a semantically disentangled model. We use two sep-

arate latent vector spaces for geometry and color, zgeo and

zcol, respectively. The geometry space includes three code

vectors for identity, expression, and hairstyle, and the color

space includes two code vectors for identity and hairstyle.

Thus, zgeo = (zgeoId, zgeoEx, zgeoH) and zcol = (zcolId, zcolH).
During training, the number of different identity code vec-

tors is equal to the number of training identities, 58. The

number of different expression vectors is fixed to 10 (cf.

Fig. 3 for the training expressions) and hairstyle to 4 (short,

long, cap1 or cap2) for geometry, and to 3 (nocap, cap1

or cap2) for color. For all scans of the i-th subject we use

the same latent variables for the geometry identity and color

identity, zigeoId and z
i
colId. Similarly, for each expression and

hairstyle, the same variables zgeoEx, zgeoH and zcolH are used

across all identities. By doing so, we are able to learn disen-

tangled latent variables without imposing any explicit con-

straints. At test time, we can control each latent space indi-

vidually, leading to semantically meaningful editing.

Network Architecture. Our network comprises three

components, the Reference Shape Network (RefNet), the

Shape Deformation Network (DeformNet) and the Color

Network (ColorNet), see Fig. 5. All networks are com-

posed of fully-connected layers with a ReLU non-linearity

after every layer, except the output layer. The inputs to all

our networks are encoded using sinusoidal positional en-

coding [32].

Our Reference Shape Network encodes a single reference

shape, such that all individual head shapes can be obtained

by deforming this shape. The output at a query point x is

the signed distance value fr
θ (x) ∈ R. Note that for the ref-

erence shape there is no latent code input since only a single

reference shape is learned. This can be seen analogously to

the mean (or neutral) shape used in classical 3DMMs [5].

We use 3 fully connected layers for this network, where

each hidden layer has dimensionality 512.

The Shape Deformation Network deforms the reference

shape to represent the shape of an individual head. The net-

work takes the geometry latent code zigeo for an object i, and

a query point x as input, and produces the output,

fs
θ (x, z

i
geo) = δ ∈ R

3 , (1)

which is a displacement vector that deforms the query point

to the reference shape. Thus, the signed distance value at

any point x of the object i with geometry latent zigeo is

s(x, zigeo) = fr
θ (x+ δ) , (2)

where s(·) is the scalar signed distance value, and δ is the

deformation from Eq. (1). This formulation allows us to

compute dense correspondences between any input head

scan and the reference head shape. The separation between

a reference shape and deformations with respect to this ref-

erence shape is also common in classic morphable mod-

els [20]. However, these models require dense correspon-

dences before training, which is not necessary in our ap-

proach. We use 8 fully connected layers for this network,

where each hidden layer has dimensionality 1024.
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Figure 5. Overview of our network architecture. We learn weights of three network components, a Shape Deformation component, a

Reference Shape component, and a Color component. Moreover, the latent codes for each object are also optimized for. The input of the

network is a 3D query point, and the output is a signed distance value along with the corresponding color.

The introduction of the reference shape makes it possi-

ble to disentangle the geometry and color components. The

Color Network learns the color of the query point in the ref-

erence space. Given a query point x, deformation δ from

Eq. (1), and color latent vector zicol for the object i, the out-

put is represented as f c
θ (x+δ, zicol) ∈ R

3, which is the color

at point x. Note that without this separation of a reference

space, the ColorNet would also have to take into account

information about object geometry, thus not being able to

disentangle shape and color. Note that the latent code for

ColorNet, for a given identity and hairstyle, does not change

with expressions. DeformNet finds the right colors and ge-

ometry for different expressions by achieving dense corre-

spondences. We use 9 fully connected layers for this net-

work, where each hidden layer has dimensionality 1024.

Loss Functions. We define the loss function to train our

network as

Lθ(x, zgeo, zcol) =
K
∑

i=1

(Lgeo

θ (x, zigeo) + Ldef
θ (x, zigeo)

+ Lcol
θ (x, zicol) + Lreg(zigeo, z

i
col))

+
∑

i 6=j

Llm
θ (zigeo, z

j
geo) , (3)

where, i, j = {1, . . . ,K}, K is the number of scans in the

batch, zgeo = {z1geo, . . . , z
K
geo}, and zcol = {z1col, . . . , z

K
col}.

The latent vectors of head i are represented as z
i
geo and

z
i
col. Here, Lgeo

θ (·) enforces good geometry reconstructions,

Ldef
θ (·) regularizes the deformation field, Lcol

θ (·) is used to

train the ColorNet, Lreg(·) is a regularizer on the latent vec-

tors, and Llm
θ (·) is a sparse pairwise landmark supervision

loss. For the geometry term that we impose upon the signed

distance values, we use the ℓ1-loss

Lgeo

θ (x, zigeo) = wg

∥

∥cl(s(x, zigeo), t)− cl(sgt(x), t)
∥

∥

1
,

(4)

where sgt(x) is the ground truth signed distance value at

x, and s(.) is from Eq. (2). These values are (symmetri-

cally) clamped at t=0.1, for which we define cl(x, t) :=

min(t,max(x,−t)). We use a similar ℓ1-loss for the color

component, i.e.

Lcol
θ (x, zicol) = wc

∥

∥f c
θ (x+ δ, zicol)− cgt(x)

∥

∥

1
, (5)

where cgt(x) is the ground truth color at x. We also enforce

that the 16 landmarks {xℓ
i}, as described in Sec. 3.2, of each

shape i, deform to the same points in the reference space

using the pairwise loss

Llm
θ (zigeo, z

j
geo) = wlm

16
∑

ℓ=1

∥

∥(xℓ
i + δℓi )− (xℓ

j + δℓj)
∥

∥

2
,

(6)

where, δℓi = fs
θ (x

ℓ
i , z

i
geo) as in Eq. (1). For scans with the

ears covered by hair, we do not have any ear annotations.

We would like to compress the ear region in the reference

shape to a single point in the reconstruction for these shapes.

Thus, we additionally optimize for one point for each ear.

We enforce pairwise constraints between the learnable ear

points and the annotated ear points for the other shapes in

the batch using Eq. (6).

Further, to ensure regularized deformations to the refer-

ence shape, we impose a loss on the amount of deformation.

We use Ldef
θ (x, zigeo) = ws||f

s
θ (x, z

i
geo)||2. Finally, we use

an ℓ2-regularizer on the latent vectors assuming a Gaussian

prior distribution, Lreg(zigeo, z
i
col) = wr(||z

i
geo||2+ ||zicol||2).

Optimization. Given N batches with K objects per

batch, we optimize for the network weights and the latent

vectors by solving the optimization problem

argmin
θ,{zb

geo,z
b

col
}N

b=1

N
∑

b=1

∑

x

Lθ(x, z
b
geo, z

b
col) , (7)

where, the inner sum takes into account all sampled points,

as explained above, and we abuse the notation z
b
geo, z

b
col to

now represent latent codes of all the scans in batch b.

4. Experiments

In this section, we present an experimental evaluation of

our head model. We demonstrate that the model can be used
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for reconstructing scan data. We present an ablation study to

carefully analyze our design choices, and compare i3DMM

to state-of-the-art head models. We also show dense corre-

spondence results and applications of our model. Before we

present these results, we provide additional information on

the neural network training and testing.

Training Details. We train our networks using Py-

Torch [37], where we use the Adam [25] solver with

mini-batches of size 64. We train for 1000 epochs with a

learning rate of 0.0005, which decays by a factor of 2 every

250 epochs. We initialize RefNet by pretraining it using

only one mouth-open (top row, third from left in Fig. 3)

training scan. Our network takes about 2 days to train on 2
NVIDIA RTX8000 GPUs.

Test Data. We collect a separate test set consisting of

scans of 6 identities, which are not part of the training data.

We capture each identity in 5 novel expressions that are not

part of the training expressions, see Fig. 3. Each scan is

preprocessed analogously to the training scans.

4.1. Reconstruction

For a given test scan, we fit our learned model to it. This

is done by optimizing for the latent vector that can best re-

produce the scan, i.e. by finding the latent variables that

minimize the problem

argmin
z
i
geo,z

i

col

∑

x

(Lgeo

θ (x, zigeo) + Ldef
θ (x, zigeo)

+Lcol
θ (x, zicol) + Lreg(zigeo, z

i
col)) , (8)

where, zigeo, z
i
col is the latent code for test scan i. This equa-

tion is similar to Eq. (7), with the difference that the network

weights are fixed here and the pairwise landmark supervi-

sion loss in Eq. (6) is not enforced. We use Adam [25] with

a step size of 0.0005 to solve this problem. We show sev-

eral reconstruction results on the test data in Fig. 6. We

can generalize to unseen identities and expressions, even

though our training data only consists of 58 people with 10
expressions. Note that while we can generally preserve the

detailed face region of the scans, we also smooth the scans

in the noisy hair area.

4.2. Correspondences

As mentioned in Sec. 3.3, due to the particular design

of our network, where the reference shape and the deforma-

tions are separated, our approach also establishes dense cor-

respondences between shapes, with extremely sparse land-

mark supervision. We demonstrate these correspondences

in Fig. 6, where the color is transferred from one scan to

the other. The correspondences are also used in the appli-

cations of segmentation and landmark transfer in Sec. 4.6.

Our model can reliably find correspondences across differ-

ent subjects, expressions and hairstyles, including long and

short hair. Please refer to the supplementary material for

more evaluations.

4.3. Ablative Analysis

We design several experiments to evaluate the most im-

portant design choices for our approach: landmark-based

sampling described in Sec. 3.3, sparse pairwise landmarks

loss in Eq. (6), and jointly training ColorNet, DeformNet,

and RefNet. We evaluate the qualitative impact of these

choices by excluding them one at a time while training our

model, see Fig. 7. Without landmarks-based sampling, the

model focuses more on the noisy hair region and ignores the

details in the face region (first column in Fig. 7). Without

landmark supervision, the network creates small (fake) ear

regions in the hair for the long-haired scans (second column

in Fig. 7). It also leads to poor texture transfer around the

ear. Finally, for evaluating the importance of joint training

of the color and geometry networks, we first train RefNet

and DeformNet. After convergence, we train ColorNet. The

correspondences in this case are learned only from geome-

try reconstructions, which leads to artifacts as shown in the

third column of Fig. 7.

4.4. Comparisons to Existing Models

We compare our model with the full head FLAME [29],

face only FLAME, and Basel Face Model (BFM) [38]

which only models the frontal face. We fit each model to

the test set by optimizing for their model parameters. Please

refer to the supplemental for more details on the fitting.

We show qualitative results in Fig. 8. FLAME only mod-

els the cranium without hair, thus fitting to the full head

region results in incorrect head shapes. We also evaluate

FLAME by only using the the face region for fitting. This

leads to higher quality results. We obtain higher quality ge-

ometry both for the face and head regions. In addition, we

can also reconstruct the color of the head, while FLAME

can only model the geometry. We combine the BFM [38]

identity geometry and appearance models with the expres-

sion model used in Tewari et al. [50], and use this to fit to

our test scans. The expression model is a combination of

two blendshape models [1, 9]. Since BFM also includes

color, we jointly optimize to minimize the geometry as well

as color alignment errors. As can be seen in Fig. 8 (mid-

dle), this model can fit to the expression as well as color

of the scans. However, it is limited to only the face region,

while i3DMM can reconstruct the full head. In addition, our

reconstructions are more personalized, with higher quality

nose geometry and face colors.

We show the quantitative evaluations of the different

models in terms of the symmetric Chamfer distance and

F-score metrics in Table 1. Chamfer distance is the mean

distance of points from one shape to their closest points in

another. We compute the symmetric Chamfer distance as
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Figure 6. Reconstruction quality of i3DMM on test data. The top part shows texture and geometry of ground truth scans. The middle part

shows texture and geometry of i3DMM fits. The last part shows texture transfer from the scan on right to the scan on left of the image. In

column 3, noise in ground truth does not transfer to the i3DMM fit, showing the robustness of our method.
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Figure 7. Ablation study. Top and middle row show reconstruc-

tions of two different test scans. Last row shows texture transfer

from the scans in the top row to those in the middle row.

the mean of Chamfer distance from the ground truth to the

fits and the Chamfer distance in the opposite direction. F-

score is (100x) the harmonic mean of these two distances

after applying a threshold. We use a similar metric for color.

First, the mean error in color at points in the ground truth

and the color at their nearest points in the fits is computed,

along with the mean error in the opposite direction Finally,

the color error is reported as their average. Please refer to

Region Full Head Face

Metric Ours FLAME Ours BFM FLAME

Chamfer ↓ 3.31 7.83 1.02 0.96 0.88

(mm)

F-score ↑ 63.38 45.96 99.31 97.66 99.6

Color ↓ 0.11 – 0.07 0.09 –

Table 1. Quantitative comparison of head models. Symmetric

Chamfer distance is reported here. F-score is computed with a

threshold of 0.01.

the supplemental for details on the metrics used. We sample

150,000 points for computing the metrics. We achieve sim-

ilar geometric quality as FLAME and BFM in the face re-

gion, but significantly outperform FLAME for the full head

reconstructions, see Table 1. Moreover, in terms of color,

our reconstructions are more realistic than BFM and also

outperform it quantitatively.

4.5. Application: Semantic Head Editing

Due to the semantic disentanglement in our model, we

can selectively change semantic components of a head.

In Fig. 1, we edit one feature of a test scan while keep-

ing the other features fixed. To obtain the edited latent

codes, we first find the principle components of variation

in each latent-subspace by running PCA on the training la-
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Figure 8. Comparison of fitting various models to scan data (left). The three considered models are our i3DMM (middle-left), BFM [38]

(middle), and FLAME [29] (middle-right and right). FLAME does not provide color, and is evaluated in two settings, face-only (middle-

right) and full head (right). We visualize both color and geometry for BFM and our results, and only geometry for FLAME. The masks

used for fitting are also visualized.

Manual 
annotation

Transferred annotations

Figure 9. Application: One-shot annotations on real-world scans.

Coarsely drawn annotations (top row: semantic segmentation, bot-

tom row: landmarks, not used during training) on one scan (left)

can be automatically transferred to other real-world head scans

(right).

tent spaces. We move along the principal components to

pick the latent codes to edit the identity, and we pick others

from the trained latent codes. Unlike existing models, we

can also edit hairstyles and add caps while keeping other

components fixed. We also model the mouth interior. These

features allow for semantic head editing applications much

beyond the capabilities of the existing methods.

4.6. Application: One-shot Annotation Transfer

As i3DMM can predict dense correspondences among

head scans, it also enables us to transfer annotations across

different reconstructions. As our model has low reconstruc-

tion errors, it can also be used to annotate real-world 3D

scans, see Fig. 9. We first transfer the annotations from one

manually annotated scan to the reference shape. We can

then transfer them to different i3DMM fits, and also to the

real-world scans using nearest neighbors from the fits to the

scans. As i3DMM can be used to even annotate the hair re-

gion, it can be useful to curate scan datasets. Please refer to

the supplemental for more results.

5. Discussion and Future Work

Although i3DMM disentangles and models an unprece-

dented amount of variety in head features, and enables re-

constructions with very high quality, it still has some lim-

itations. The hair geometry is a coarse approximation of

the physical nature of hair comprising of individual hair

strands. One challenge here is that our scans are noisy in the

hair region, partly due to the photometric multi-view recon-

struction techniques used. In addition, the learned space of

hairstyles is a smooth approximation for discrete hairstyles

such as caps. There is room for extending i3DMM for

more fine-grained control over hairstyles. Finally, we model

hairstyles that cover the ear by trying to collapse the ear to a

single point (Eq. (6)). Ideally, the layered geometry of ears

behind the hair should be correctly represented.

6. Conclusion

We have presented the first unified 3D morphable model

of geometry and appearance of full heads, which includes

different identities, expressions and hairstyles. The head

geometry and color is represented using implicit functions

parameterized with neural networks. By explicitly separat-

ing the network into a reference shape, and shape and color

deformations, our model can disentangle the different se-

mantic components. It also allows us to obtain dense cor-

respondences between different scans represented using our

model, enabling several interesting applications.
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