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As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) plays a crucial role in controlling gene replication,
expression, cell cycle, DNA replication, and differentiation. The accurate identification of 4mC sites is necessary to understand
biological functions. In the paper, we use ensemble learning to develop a model named i4mC-EL to identify 4mC sites in the
mouse genome. Firstly, a multifeature encoding scheme consisting of Kmer and EIIP was adopted to describe the DNA
sequences. Secondly, on the basis of the multifeature encoding scheme, we developed a stacked ensemble model, in which four
machine learning algorithms, namely, BayesNet, NaiveBayes, LibSVM, and Voted Perceptron, were utilized to implement an
ensemble of base classifiers that produce intermediate results as input of the metaclassifier, Logistic. The experimental results on
the independent test dataset demonstrate that the overall rate of predictive accurate of i4mC-EL is 82.19%, which is better than
the existing methods. The user-friendly website implementing i4mC-EL can be accessed freely at the following.

1. Introduction

As a chemical modification occurring on DNA sequences,
DNA methylation can change genetic properties under the
condition that the order of DNA sequences remains
unchanged. DNA methylation has many manifestations,
such as 5-methylcytosine (5mC for short), N6-
methyladenine (6mA for short), and N4-methylcytosine
(4mC for short) [1]. Among them, the 5mCs are widely pres-
ent in prokaryotes and eukaryotes and are of great signifi-
cance for controlling gene differentiation and gene
expression, maintaining chromosome stability and cell struc-
ture [2, 3]. They also can cause some diseases such as cancer
[4–6]. The 6mAs are also widely distributed in prokaryotes
and eukaryotes, which play a crucial role in replication,
expression, and transcription of gene [7]. The 4mCs which
were found in 1983 mainly exist in prokaryotes, and they
can control DNA replication, gene expression, and cell cycle
[8]. However, compared with 5mCs and 6mAs, the current
research on 4mCs is still insufficient. To make up for this
defect and further understand 4mCs’ biological properties
and functions, the first thing we need to do is to identify

4mCs from various DNA sequences, which is still a hot
research topic so far.

In order to identify 4mCs, many biology-based
approaches have been explored. Single molecule real-time
sequencing technology (SMRT for short) [9, 10] detects opti-
cal signals of bases matching the template at the single-
molecule level to identify 4mCs. 4mC-Tet-assisted-bisulfite-
sequencing technology (4mC-Tet for short) [11] identifies
4mCs by using bisulfite to convert unmethylated cytosine
in the DNA sequences into uracil while to keep methylated
cytosine unchanged. However, this kind of technologies is
time-consuming and resource-intensive. Moreover, the
explosive growth of DNA sequences also makes it more diffi-
cult to achieve whole-genome sequencing through these
technologies. Therefore, using machine learning (ML for
short) to identify 4mCs shows more advantages. Up to
now, there are many models using machine learning to iden-
tify 4mCs. iDNA4mC [12], the earliest model for 4mC iden-
tification, is primarily used to identify 4mCs from the
genomes of six species, A.thaliana, C.elegans, D.melanoga-
ster, E.coli, G.pickeringii, and G.subterraneus, and its posi-
tive data containing 4mCs were obtained from a reliable
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database called MethSMRT [13]. Soon afterwards, several
other models, 4mcPred [14], 4mcPred-SVM [15],
4mcPred-IFL [16], and Meta-4mcPred [17], were proposed
successively, which used the same dataset as iDNA4mC
[12] for 4mCs identification of the genomes of these six
species. i4mC-Rose [18] is the first and the only model
for 4mCs identification in the genome of Rosaceae, and
it derived positive dataset from the MDR [19] and the
other reliable database for storing 4mC data. For the
mouse genome we wanted to study, there have been cur-
rently two models, 4mCpred-EL [20] and i4mC-Mouse
[21]. Among them, their samples containing 4mCs were
also obtained from the MethSMRT database. In addition,
4mCpred-EL selected 4 ML algorithms and 7 feature
encoding schemes to generate 28 sets of results as the final
coding. Subsequently, 4mCpred-EL trained 4 submodels
through the final coding and these 4 ML algorithms and
then combined the 4 submodels into the final model by
majority voting. i4mC-Mouse trained 6 submodels using
6 feature encoding schemes and random forest (RF for
short) algorithm, and then the 6 submodels were com-
bined into the final model by weighted voting. Compared
with 4mCpred-EL, i4mC-mouse has better performance
according to the indicators, ACC and MCC. Although
exciting results have been achieved in 4mCpred-EL and
i4mC-Mouse, the performance is able to be further
increased. In this paper, to further improve the prediction
capability, we propose a new mouse’s 4mCs predictor,
i4mC-EL.

2. Materials and Methods

2.1. Framework of i4mC-EL. In the present study, a novel
model named i4mC-EL is proposed to indentify mouse’s
4mCs, and we can see the framework of it in Figure 1.
First, using two different feature encoding schemes, Kmer
and EIIP, each DNA sequence was encoded into a 1364-
dimensional vector and a 41-dimensional vector, respec-
tively. Next, the 1364-dimensional vector and the 41-
dimensional vector of each DNA sequence were combined
to form a 1405-dimensional multifeature vector. Finally, a
two-stage stacked ensemble learning classifier with these
multifeature vectors as input was constructed. The ensem-
ble classifier used BayesNet, NavieBayes Multinomial,
LibSVM, and Voted Perceptron as base classifiers and
used Logistic as metaclassifier. i4mC-EL’s datasets and fea-
ture encoding schemes and classifiers will be described
detailly below.

2.2. Dataset. This paper adopted the benchmark dataset
constructed by Hasan’steam [21]. In this dataset, the pos-
itive samples containing mouse’s 4mCs were obtained
from the MethSMRT [17] database, and the negative sam-
ples were taken from chromosome DNA sequences. They
were all fragments of DNA sequences consisting of 41
nucleotides with a “C” in the middle. Only the sequences
whose modQV value greater than or equal to 20 were con-
sidered to obtain the high-quality dataset. To prevent the
predictor from overfitting, the threshold of CD-HIT [22]

was set to 70% to remove redundant sequences [23]. The
dataset contained 1,812 DNA sequences, 906 of which
were 4mCs and 906 were non-4mCs. About 80% of the
dataset was randomly selected as the training dataset,
and the remaining about 20% was used as the independent
test dataset. The training dataset (train-1492) consisted of
746 4mCs and 746 non-4mCs. And the independent test
dataset (test-320) included 160 4mCs and 160 non-4mCs.

2.3. Feature Encoding. Transforming DNA sequences into
vectors that can make a distinction between 4mCs and
non-4mCs availably is the first step to build an ensemble
learning-based predictor to identify 4mCs [24–29]. Here,
a multifeature encoding scheme composed of Kmer [30–
33] and EIIP [34] was used to encode DNA sequences.
Kmer represented the DNA sequences as the occurrence
frequencies of k adjacent nucleotides. EIIP encoded each
nucleotide in DNA sequences with its corresponding
electron-ion energy. In the experiment of Section 3, we
will find that this multifeature is able to encode DNA
sequences availably. The following parts are detailed
descriptions of Kmer and EIIP.

2.3.1. Kmer. This encoding scheme refers to the frequency of
k-nucleotides composed of k continuous nucleotides in each
sequence. For sequence D = d1d2d3 ⋯ dL−2dL−1dL, each ele-
ment of each feature vector is calculated by Equation (1):

f Xð Þ =
F Xð Þ

L − k + 1
, ð1Þ

where X is one of the k-nucleotide, FðXÞand f ðXÞ are the
count and frequency of X in D, respectively, and L is D’s

length. After Kmer, sequences are transformed into 4k

-dimensional vectors. For example, when the k-mer para-
meter k = 2, the value of AA in the 16-dimensional (42) fea-
ture vector of sequence D1 = AAACTAGTC is 0.25.

In the present study, we choose the values of the param-
eter k to be 1, 2, 3, 4, and 5, generating 1364-dimensional
(41 + 42 + 43 + 44 + 45) feature vectors.

2.3.2. EIIP. EIIP is the short name of electron-ion interaction
pseudopotential. The encoding scheme based on EIIP was
proposed by Nair and Sreenadhan in 2006. Through it, each
nucleotide in each sequence is replaced by its corresponding
electron-ion interaction pseud potential value (Table 1). For
example, the result of sequence D2 = AACTG after EIIP
encoding is (0.1260, 0.1260, 0.1340, 0.1335, 0.0806). In the
present study, each sequence is transformed into a 41-
dimensional feature vector.

2.4. Classifier. As an open data mining platform, Weka has
assembled a large number of machine learning algorithms
that can undertake data mining tasks. In the present paper,
the classifiers we used were all implemented by Weka, such
as BayesNet, NaiveBayes, SGD, SimpleLogistic, SMO, IBk,
JRip, J48, and ensemble learning. Finally, we chose the
ensemble learning, and the results of related experiment will
be presented in section 3.

2 BioMed Research International



According to different combination strategies, bagging,
boosting, and stacking are the three main types of
ensemble learning. Ensemble learning is widely used in
bioinformatics because it can improve the prediction per-
formance of classifiers, such as protein-protein interaction
[35], disease prediction [36], type III secreted effectors
prediction [37], and protein subcellular location predic-
tion [38]. In detail, we used two-stage stacked ensemble
learning.

In the two-stage stacked ensemble learning, the base
classifiers used in this paper include BayesNet [39], Voted
Perceptron [40], Naive Bayes Multinomial [41], and
LibSVM [42], and the metaclassifier was Logistic. At the
first stage of the ensemble learning classifier, based on
the multifeature vectors proposed in this paper, four base
classifiers are, respectively, trained to relabel the training
dataset and the independent test dataset. At the second
stage, the outputs of base classifiers are utilized as input
for the metaclassifier.

Figure 2 gives the detailed process of model generation
and result output, the steps are as follows.

Step 1. Partition dataset. Divide the training dataset into ten
parts and mark them as train 1, train 2,…, train 10. The inde-
pendent test dataset remains unchanged.

Final
training set

&
Independent test set

feature vectors

Training set
&

independent test set

Feature Extraction By k-mer+EIIP

MethSMRT Chromosomal
DNA sequence

4mC
samples

non-4mC
samples

Final
dataset

Original
dataset

Independent test set
4mCs = 160

Non-4mCs = 160

Training set
4mCs = 746

Non-4mCs = 746

41bp DNA sequences 41bp DNA sequence

Reduce Redundancy by CD-HIT

Randomly select 80 Remaining 20

BayesNet

LibSVM

NaiveBayesMultinomial

Votedperceptron

Results1

Results2

Results3

Results4

New Set of
feature
vectors

Final model Logistic

Independent test set
feature vectors

Final model

ACC 0.822
MCC 0.644

Sn 0.806
SP 0.838

Input

Performance Evaluation

Training set
feature
vectors

Figure 1: The framework of i4mC-EL.

Table 1: The electron-ion interaction pseudopotential values for
DNA nucleotides.

NT A C G T

EIIP 0.1260 0.1340 0.0806 0.1335
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Step 2. Train base classifiers. In the present paper, we chose
BayesNet, Voted Perceptron, Naive Bayes Multinomial,
and LibSVM as base classifiers. For one base classifier such
as BayesNet, 10-fold crossvalidation is performed. In
detail, train 1, train 2, …, train 10 are used as validation
dataset in turn, the other nine parts are used as the train-
ing dataset, and prediction is made on the independent
test dataset. This would get 10 predictions from the train-
ing dataset together with another 10 predictions on the
independent test dataset. Combine the 10 predictions on
the training dataset vertically to get A1 and take the aver-
age of the 10 predictions on the independent test dataset
to get B1. Similarly, we could get A2, B2 from NavieBayes
Multinomial, A3, B3 from LibSVM, and A4, B4 from
Voted Perceptron.

Step 3. Train metaclassifiers. Use the predictive values of the 4
base classifiers on the training dataset, A1, A2, A3, and A4, as
4 features to train the logistic classifier.

Step 4. Predict new data. Use the trained model to make pre-
dictions on the 4 features, B1, B2, B3, and B4, constructed
from the predicted values of the independent test dataset of

the 4 base classifiers, and then the final prediction results
are obtained.

2.5. Performance Evaluation. For the sake of validating the
quality of our classification predictor, we used four indicators
widely adopted in the field of bioinformatics for evaluation
[43–53]. These indicators can be calculated using the

Figure 2: Working diagram of ensemble learning.

Table 2: The contrast of performance for dissimilar feature
encoding schemes under 10-fold crossvalidation.

Schemes ACC MCC Sn Sp

BPF 0.668 0.335 0.665 0.670

DPE 0.614 0.228 0.619 0.609

RFHC 0.658 0.316 0.669 0.647

RevKmer 0.755 0.511 0.745 0.765

PseKNC 0.794 0.589 0.786 0.803

k-mer + BPF 0.724 0.448 0.729 0.718

k-mer + RFHC 0.747 0.493 0.744 0.749

RevKmer+DBE 0.738 0.476 0.723 0.753

RevKmer+EIIP 0.779 0.558 0.764 0.794

k-mer + BPF +DPE 0.732 0.464 0.741 0.723

Our method 0.803 0.606 0.784 0.822
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formulas below:

ACC =
TN + TP

TN + FN + FP + TP
,

MCC =
TN × TP − FN × FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × FN + TPð Þ × TP + FPð Þ × FP + TNð Þ
p ,

Sn =
TP

FN + TP
,

Sp =
TN

FP + TN
,

ð2Þ

where TP indicates the number of the sequences that they are
actually 4mCs, and that they are identified as 4mCs by the
model, FP indicates the number of the sequences that they
are actually non-4mCs but that they are identified as
4mCs by the model, TN indicates the number of the
sequences that they are actually non-4mCs, and that they
are identified as non-4mCs by the model, FN indicates
the number of the sequences that they are actually 4mCs
but that they are identified as non-4mCs by the model.
The Sn refers to the prediction accuracy of 4mCs. The
Sp refers to the prediction accuracy of non-4mCs. ACC

refers to the prediction accuracy of both 4mCs and non-
4mCs. MCC represents the reliability of the prediction
results. The higher the values of the above four indicators
have, the more superior the capability of the predictor
would be.
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Figure 3: ROC curves for dissimilar feature encoding schemes under 10-fold crossvalidation.

Table 3: The contrast of performance for dissimilar classifiers
under 10-fold crossvalidation.

Classifiers ACC MCC Sn Sp

BayesNet 0.727 0.453 0.739 0.714

NaiveBayes 0.752 0.504 0.751 0.753

SGD 0.712 0.424 0.710 0.713

SimpleLogistic 0.761 0.522 0.753 0.768

SMO 0.702 0.405 0.706 0.698

IBk 0.637 0.276 0.584 0.690

JRip 0.707 0.414 0.692 0.723

J48 0.665 0.330 0.674 0.655

RandomForest 0.770 0.541 0.753 0.787

AdaBoostM1 0.713 0.427 0.739 0.688

Bagging 0.729 0.459 0.744 0.714

Our method 0.803 0.606 0.784 0.822
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3. Results and Discussion

3.1. Crossvalidation Results of TRAIN-1492. To find the fea-
tures that can adequately represent the structure and func-
tion of the DNA sequences, we attempted to contrast
numerous feature encoding schemes. And to achieve the
optimal accuracy, we also tried to train the model using sev-
eral different classification algorithms. The results of relevant
comparative experiments are as below.

3.1.1. Feature Encoding Comparison on Crossvalidation. AS
shown in section of “feature encoding,” we encode the
DNA sequences with a multifeature, which combines k-mer
and EIIP feature encoding method. To verify the validity of
the proposed multifeature, we compare the proposed multi-
feature with BPF, DPE, RFHC, RevKmer, and PseKNC fea-
ture encoding schemes and their combinations using
ensemble learning classification. Among them, BPF and
DPE are encoding schemes based on nucleotide positions,
in which BPF takes mononucleotides as its encoding targets,
while DPE takes dinucleotides as its encoding targets. RFHC
is an encoding scheme based on the physicochemical proper-
ties of nucleotides. RevKmer is a variant of Kmer that con-
siders not only the current k-nucleotides themselves, but
also their reverse complementary nucleotides. PseKNC is a

method to integrate continuous local and global k-tuple
nucleotide information into the feature vectors of DNA
sequences.

Table 2 displays experimental results, in which “our
method” denotes the multifeature mentioned in the section
“feature encoding.” As shown in Table 2, from the perspec-
tive of ACC and MCC, the index values of our method are
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Figure 4: ROC curves for dissimilar classifiers under 10-fold crossvalidation.

Table 4: The contrast of performance for dissimilar feature
encoding schemes on TEST-320.

Schemes ACC MCC Sn Sp

BPF 0.753 0.530 0.606 0.900

DPE 0.697 0.401 0.600 0.794

RFHC 0.716 0.438 0.631 0.800

RevKmer 0.666 0.335 0.744 0.588

PseKNC 0.781 0.563 0.788 0.775

k-mer + BPF 0.772 0.553 0.681 0.863

k-mer + RFHC 0.800 0.614 0.694 0.906

RevKmer+DBE 0.756 0.516 0.700 0.813

RevKmer+EIIP 0.713 0.427 0.763 0.663

k-mer + BPF +DPE 0.772 0.553 0.681 0.863

Ourmethod 0.822 0.644 0.806 0.838
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higher than those of all other feature encoding schemes,
which indicates that our method has a better overall perfor-
mance. From the perspective of Sp, the index value of our
method is still the highest, which indicates that it is more
dominant to identify non-4mC from negative samples. These
conclusions demonstrate that our method has good validity.

To further illustrate the prediction capability of our
selected multifeature encoding scheme, the ROC curves for
dissimilar feature encoding schemes under 10-fold crossvali-
dation are displayed in Figure 3. From Figure 3, we can see
that our method has the largest area under ROC curve
(AUC), which demonstrates that our method can represent
mouse’s DNA sequences better than others.

3.1.2. Classifier Comparison on Crossvalidation. As shown in
the section “classifier,” we inputted the multifeature com-
posed of k-mer and EIIP into an ensemble learning classifier
called stacking, then obtained a predictor which is used for
identifying mouse’s 4mCs. To verify the validity of stacking
used in this paper, on the basis of the multifeature used in
this paper, we compared stacking with eleven commonly
used classifiers, BayesNet, Naive Bayes, SGD, Simple Logistic,
SMO, IBK, JRip, J48, Random Forest, AdaBoostM1, and Bag-
ging. Among them, BayesNet characterizes the dependencies
among attributes with the aid of directed acyclic graphs and

uses conditional probability tables to describe the joint prob-
ability distribution of attributes. NaiveBayes is a simple prob-
abilistic classifier based on Bayes’ theorem under the
assumption that each attribute is independent of each other.
SGD implements a regularized linear support vector machine
classifier with stochastic gradient descent learning. Simple
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Figure 5: ROC curves for dissimilar feature encoding schemes on TEST-320.

Table 5: The contrast of performance for dissimilar classifiers on
TEST-320.

Classifiers ACC MCC Sn Sp

BayesNet 0.769 0.547 0.675 0.863

NaiveBayes 0.788 0.577 0.744 0.831

SGD 0.688 0.379 0.756 0.619

Simple Logistic 0.728 0.456 0.738 0.719

SMO 0.675 0.353 0.744 0.606

IBk 0.600 0.201 0.563 0.638

JRip 0.769 0.541 0.713 0.825

J48 0.663 0.325 0.656 0.669

Random Forest 0.778 0.558 0.738 0.819

AdaBoostM1 0.791 0.581 0.794 0.788

Bagging 0.781 0.564 0.744 0.819

Our method 0.822 0.644 0.806 0.838
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Logistic is a linear logistic regression classifier with only one
independent variable. SMO is a support vector machine clas-
sifier using a continuous minimum optimization algorithm.
IBk classifies the data point by determining the category of
k data points closest to it. JRip is a classifier based on rule
induction. J48 is a decision tree classifier that uses informa-
tion gain rate to select attributes for partitioning. Random
Forest refers to a classifier that utilizes multiple trees to train
and predict a sample. AdaBoostM1 is a classifier that enables
the previously incorrectly predicted training samples to
receive more attention at follow-up by adjusting their distri-
bution. Bagging uses bootstrap sampling to obtain m (m is
the predetermined number of base classifiers) sample data-
sets from the original dataset, which are used to train m base
classifiers that are then integrated by voting.

The results of these comparative experiments are dis-
played in Table 3, where “our method” refers to the stacking
classifier. From Table 3, we can see that our method outper-
forms the other classifiers in all indicators.

To further illustrate the classification capability of our
selected stacking classifier, the ROC curves for dissimilar
classifiers under 10-fold crossvalidation are displayed in
Figure 4. From Figure 4, we can see that the area under
ROC curve (AUC) of our method is the largest, which proves
that our proposed method has better prediction performance

for identifying 4mCs in the mouse genome than other
methods.

3.2. Independent Validation Results of TEST-320. In this sec-
tion, a comparative experiment on the independent test data-
set (TEST-320) will be conducted to show the generalization
capability of our selected multifeature and stacking classifier.
The rationale for this is that this model is trained and tested
on two different datasets, which is the equivalent of perform-
ing a real prediction task with the generated model.

3.2.1. Feature Encoding Comparison on Independent
Validation. Using the stacking classifier, we, respectively,
evaluate the generalization capability of various feature
encoding schemes described in Section 3.1.1 on TEST-320.
Table 4 displays these comparison experimental results.
From Table 4, among the compared feature encoding
schemes, our method performed best in ACC, Sn, and
MCC, which were 82.19%, 0.806, and 0.644, respectively.
Although the Sp of our method is lower than that of BPF, k
-mer +BPF, k-mer +RFHC, k-mer +BPF+DPE, and
PseKNC+EIIP+RFHC, the other three indicators of our
method are higher than theirs.

For the sake of further describing the generalization capa-
bility of our selected multifeature encoding scheme, Figure 5
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Figure 6: ROC curves for dissimilar classifiers on TEST-320.
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displays the ROC curves for dissimilar feature encoding
schemes on TEST-320. From Figure 5, we can see that the
AUC of our method is the largest, and the ROC curve of
our method is closer to the upper left, which demonstrates
that our selected multifeature is more suitable than other
schemes to encode the DNA sequences used to recognize
mouse’s 4mC.

3.2.2. Classifier Comparison on Independent Validation. We
compared stacking classifier used in this paper with other
eleven classifiers on TEST-320 under the condition of using
the multifeature combing k-mer and EIIP as the input of
the stacking. The results of these comparative experiments
are displayed in Table 5, from which we can see that although
the Sp of BayesNet is a little higher than that of our method,
our method outperforms other classifiers in ACC, Sn, and
MCC. Overall, our selected stacking classifier performs better
than the others, indicating that it is effective for identifying
mouse’s 4mC.

For the sake of further describing the generalization capa-
bility of our selected stacking classifier, the ROC curves for
dissimilar classifiers on TEST-320 are displayed in Figure 6,
where we can get the conclusion that the AUC of our method
is the largest too, which proves that our proposed stacking-
based ensemble classifier method is more suitable for the
identification of mouse’s 4mCs than other classifiers.

3.3. Contrast with Extant Models on TEST-320.Here, we con-
trasted i4mC-EL with 4mCpred-EL and i4mC-Mouse on
TEST-320 for the sake of further evaluating its performance.
Table 6 displays these contrast experimental results, in which
the data of 4mCpred-EL and i4mC-Mouse are from refer-
ence. From Table 6, we can see that i4mC-EL is superior to
4mcPred-EL and i4mC-Mouse in three indexes which are
ACC, Sp, and MCC. Although the Sn of i4mC-Mouse is a lit-
tle higher than that of our method, our method outperforms
i4mC-Mouse in the other three indexes. All in all, i4mC-EL
performs better than extant methods.

4. Conclusions

In the present paper, an ensemble learning model called
i4mC-EL which was able to identify mouse’s 4mC sites was
designed. In the process of constructing i4mC-EL, to deter-
mine the optimal combination of feature encoding schemes
and classifiers, we conducted abundant comparative experi-
ments on dissimilar features and classifiers. Finally, we
encoded DNA sequences with multifeatures combing k-mer
and EIIP, then used two-stage stacked ensemble learning as
classifier. We used BayesNet, NavieBayes Multinomial,

LibSVM, and VotedPerceptron as base classifiers and Logis-
tic as metaclassifier.

In addition, we contrasted i4mC-EL with existing models
for the sake of proving its effectiveness. The results show that
i4mC-EL is better than the existing models and has better
generalization capability. In summary, i4mC-EL is effective
in predicting the 4mC sites in the mouse genome, which
helps us to understand the biochemical properties of 4mC.

We will use adaptive feature vectors to donate DNA
sequences to optimize the feature encoding scheme [54, 55]
in the future work. Furthermore, other improvements,
encoding schemes, classifier algorithms, and intelligent com-
puting models to identify 4mC sites will also be considered.
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