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ABSTRACT:

Orthographic images compose an efficient and economic way to represent aerial images. This kind of information allows to measure
two-dimensional objects and relate these to Geographic Information Systems. This paper deals with the computation of a true ortho-
graphic image given a set of overlapping perspective images. These are, together with the internal and external calibration the only
input to our approach. These few requirements form a large advantage to systems where the digital surface model (DSM),e.g. provided
by LIDAR data, is necessary. We used a Bayesian approach and define a generative model of the input images. In this, the input images
are regarded as noisy measurements of an underlying true and hence unknown orthoimage. These measurements are obtained by an
image formation process (generative model) that involves apart from the true orthoimage several additional parameters. Our goal is to
invert the image formation process by estimating those parameters which make our input images most likely. We present results on
aerial images of a complex urban environment.

1 INTRODUCTION

The traditional approach to generate orthoimages from aerial per-
spective images is based on the digital surface model (DSM). The
DSM and the internal and external camera parameters of the input
images are used to compute the geometric transformation of the
input images to the orthographic coordinate system. For the sub-
sequent estimation of the desired orthoimage visibility reasoning
is further needed. More particular, a pixel in the orthoimage could
be occluded in one of the input images. This special case has to
be detected such that the colour of that pixel can be computed
without taking this image into account.

Visibility reasoning itself is based on the DSM. One can distin-
guish between two general approaches for visibility or outlier rea-
soning. Firstly, there is geometric outlier or occlusion detection.
It is achieved by tracing the lines of sight from a given DSM or
depth map to the input images and verifying if there exist cross-
ings with the DSM. If a crossing exist a certain pixel in the or-
thoimage can - for geometric reasons - not be seen in this par-
ticular input image. A second possibility is photometric outlier
detection. Given the current estimate of the pixel colour in the
orthoimage and its depth one can interpolate the corresponding
colour in the input image. Based on the colour difference a deci-
sion can be made on whether a pixel in the orthoimage is visible
in a particular image or not. Photometric outlier detection has
the advantage that also artefacts, like moving objects or specular
reflections can be detected. On the other hand, the DSM forms a
very strong cue to be used for geometric outlier detection. Geo-
metric reasoning does further not require an initial estimate of the
orthoimage. If the outliers have been estimated the computation
of the orthoimage becomes a weighted average of the geometric
transformed input images.

Many formulations for the orthoimage estimation take a DSM
obtained fromLIDAR or from stereo as input to perform the vis-
ibility and orthoimage estimation. The processing pipeline is
thereby splitted into DSM and orthoimage estimation. Where the
last step requires (and does not change) the DSM. Our approach
starts directly from a probabilistic model for the orthorectification
problem and thus integrates both steps. Out probabilistic model
assumes that there exists a true and noiseless orthoimage which
we don’t know. What we are given is only a set of noisy mea-
surements of this true orthoimage. They are provided in form

of perspective images taken by a camera at different locations.
Furthermore, we define how these measurements (the perspective
images) are generated from the true orthoimage,i.e. we define
the generative model. The model depends on several unknowns.
These are the orthoimage itself, the geometric transformation of
the input images,i.e. the depth map or DSM, the image noise and
a possible colour transformation which could appear from differ-
ent aperture settings of the camera. Given the generative model,
our goal is to invert this model by estimating those parameters
that make our input images most likely.

Our generative model based formulation integrates multi-view
stereo and orthoimage estimation into a combined probabilistic
framework. The advantagew.r.t. formulations that split the com-
putation of depth and orthoimage is especially in image areas
with constant colour. For multi-view stereo it is very hard to
estimate depth in uniform image regions. For these, all depth
values give a consisten match in the input images. A decision on
the depth can only be obtained by prior information,i.e. usually
by a smoothness assumption. In our formulation this situation
is trivial. The solution for the pixel colour in the orthoimage is
just given by the uniform colour, which is the same for all possi-
ble depth values. Our formulation is based on our previous work
(Strecha et al., 2006), which we adapted to the case of orthorecti-
fication. It was further necessary to formulate depth and visibility
in a different way to be able to process more input images. Details
are given later in sec. 3.2.

This paper is organised as follows. We first discuss related work
in section 2. Section 3 describes our generative model and its so-
lution strategy. Our approach has been tested on real images. The
tests and implementation issues are presented in sec.4. Section 5
concludes the paper.

2 RELATED WORK

The orthorectification problem is closely related to the field of
novel view generation in computer vision. In this field one is in-
terested in computing the image of a novel view-point given other
images of the scene. Usually the required image is a perspective
projection of the scene onto a novel view-point. Orthorectifica-
tion can equivalently be seen as computing a novel image seen by
a virtualorthographic camera.
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The computation of the3-D model and the computation of the
virtual image is not seen separate in the field if novel view gen-
eration. Given a set ofK calibrated images and a virtual camera
position one seeks for the most likely colour of all virtual image
pixels. This is done by tracing the ray from the virtual camera
centre through an image pixel. The colours of the projected3-D
points along that ray in the input images are collected and their
statistical distribution is analysed to find the most likely colour
of the virtual camera pixel. To get a unique solution to this prob-
lem additional priors are needed. In the literature we can find
mainly two kind of priors. Firstly, there are image based priors.
These favour a solution of the virtual image for which local image
patches have been observed in the input images. This approach
takes local patches of the input images to build a probabilistic
prior model. During inference the orthoimage is pushed to be
made of image patches with high probability. Image based pri-
ors in the context of novel view generation have been introduced
by (Fitzgibbon et al., 2003) and further developed in (Woodford
et al., 2007a). The second type of priors are based on geometry.
They reflect the prior belief that the world is essentially smooth.
These priors are common in multi-view stereo or optical flow
approaches. Solutions are favoured for which two neighbouring
pixels have the same depth along the camera ray. Examples for
novel view generation are by (Strecha et al., 2004, Criminisi et
al., 2007, Strecha et al., 2006). A combination of both priors has
been studied in (Woodford et al., 2007b).

3 ALGORITHM OVERVIEW

We are givenK imagesyk, k ∈ [1, ..., K], which are taken with
a set of cameras of which we know the internal and external cali-
brations. Each image consists of a set of pixel values over a rect-
angular lattice and will be denoted asyk ={yk

i }, wherei indexes
the nodes of the lattice. The objective is to compute the orthoim-
age of the scene in such a way that the information of all images
contributes to the final solution. The (hypothetical) noise-free or-
thoimage that could be observed from a orthographic camera is
referred to as theideal image and will be denoted asy∗ = {y∗i }.
The problem now consists of computing those depth values which
map the pixelsy∗i of the ideal orthoimage onto similarly coloured
pixelsyk

i′ in all input imagesand the visibilities that indicate for
which input images this mapping can be established. This prob-
lem is identical to a novel view generation problem for which the
virtual camera isorthographic.

3.1 Generative Model

We take a generative model based approach for solving the or-
thorectification problem. In this, the input images are considered
to be generated by either one of two processes:

• Inlier process: This process generates the pixelsyk
i which

are visible iny∗ and which obey the constant brightness
assumption up to a global colour transformationC(pk),
which can be different for each input imageyk.

• Outlier process: This process generates all other pixels.

Both processes are illustrated in fig. 1. The left image in this
fig. represents the ideal orthoimagey∗. The two right images
are examples of two possible measurementsy1,2. The inlier pro-
cess generates allmost all pixels iny1,2. The outlier process is
responsable for geometric outliers as the facades (drawn in red).
These are not part of the orthographic representation and the cor-
responding pixels (red) are generated by sampling an (unknown)

Figure 1: Generative model for orthoimage generation: The or-
thoimagey∗ is shown left. Two measurements (perspective im-
ages)y1,2 can be seen in the middle and right view.

outlier distribution. Furthermore, the outlier process is also active
for photometric outliers. These outliers cannot be explained by
geometric reasoning and model all artefacts present in the images,
e.g. moving cars (blue pixels), pedestrians or specular reflections
of the sun (yellow pixels).

The inlier process is modelled as:

yk
i′(r) = C

−1(pk) ◦ y∗i + ǫ , (1)

whereǫ is image noise which is assumed to be normally dis-
tributed with zero mean and covarianceΣ. C−1(pk) models
the global colour transformation between thekth input imageyk

and the ideal imagey∗, i.e. it transforms the colour of they∗i to
the colour of the corresponding observed pixel in thekth input
image depending on the parameter vectorpk. Since the input im-
ages are captured from different camera positions, the pixeli will
map, depending on the depth and the camera parameters, to pixel
positioni′(r).

The outlier process is modelled as a random generator, sampling
fromK unknown distributions characterised by probability den-
sity functions (PDFs)gk. These PDFs are approximated as his-
tograms and are parametrised by the histogram entrieshk.

3.2 Markov Random Field States

Associated with the ideal imagey∗ is a hidden Markov Random
Field (MRF)x={xi}. Again, the indexi labels the nodes of the
MRF lattice, which coincide with the pixel centres of the ideal
orthoimage. This random field represents the unobservable depth
state of each node. Suppose depth is discretised intoR levels,
then each elementxi is defined to be a binary randomR-vector,
i.e., xi =[x1

i . . . x
r
i . . . x

R
i ], of which exactly one element is1 and

all others are0. The index of this element indicates a particular
depth-valuedr of the pixeli.

The visibility is modelled by a hidden variablevk = {vk
i } for

each input imagek, k = 1 . . . N . vk
i has two states,i.e. vk

i =
[inlier, outlier], of which either the first or the second state is
one and the other state is zero. This hidden variable is responsible
for a local and image dependent switch between inlier and outlier
model.

We are now in a position to describe the probabilistic model in
more detail. Letf(.; µ,Σ) denote a normal PDF with meanµ
and covarianceΣ, and letg(.;hk) be the outlier distribution as-
sociated with thekth image. Furthermore, letxr

i be the element
of the state vectorxi which is1 and letyk

i′(r) be the pixel in the

kth image onto whichy∗i is mapped. The mappingi′(r) → i
depends on the depthdr associated with the depth statexr

i . Then
the probability of observingyk

i′ , conditioned on the unknowns
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θ = {y∗,Σ,hk,pk} andthe state of the MRFx and the hidden
variablesvk is given by:

p(yk
i′(r)|x,v, θ)=


f(C(pk) ◦ yk

i′(r); y
∗

i ,Σ) if vk
i = 1

g(yk
i′(r);h

k) if vk
i = 0

ff
.

Note the differencew.r.t. (Strecha et al., 2006). There the MRF
x and the visibilitiesvk are combined into a single MRF state
vector that jointly models all possible combinations of depth and
visibility. Their model is designed for only a small amount of
input images. If more input images are available the number of
visibility states grows combinatorically such that this formulation
is not feasible any more.

3.3 Prior Model

The MRFx represents the unobservable depth-state of each pixel
in the ideal orthoimagey∗, where the state of a pixel describes
its discrete depth value. The prior on the depth is introduced by
a Gibbs distributionp(x) which factorises over the cliques of the
MRF lattice. LetNi represent a4-neighbourhood of theith node,
i.e.Ni is the set of indices of the nodes directly above, below, left
and right of theith node. The Gibbs prior is given by:

p(x) =
1

Z

Y

i

Y

j∈Ni

ψij(xi, xj) , (2)

whereZ is a normalisation constant (the ‘partition function’) and
ψij(xi, xj) is a positive valued function that returns the proba-
bility of two nodesi andj being in statexi andxj . As such, it
embodies the prior beliefs about the random field smoothness.

Suppose nodei is in therth depth state and has discrete depth
d r

i . Furthermore, suppose nodej is in thepth depth state The
distanceDij(r, p) between two depth labelsr, p of neighbouring
nodesi andj is defined by theL1 norm:

Dij(r, p) =
|r − p |

R
. (3)

The norm is scaled by the total number of depth labelsR to be in-
variant to the depth resolution. Furthermore we introduce a con-
stantC which accounts for non-smooth cliques interactions. The
interaction potential has the following form:

ψij(x
r
i , x

p
j ) = exp (−σdDij(r, p)) + C , (4)

whereσd models the width of the depth distributions. When
filled with all possible combinations{r, p}, ψij(x

r
i , x

p
j ) forms

a matrix, which is called interaction, compatibility or correlation
matrix. C is a constant interaction that does not depend on the
depth of two states. It allows to model discontinuities between
two neighbouring nodes. A prior on the visibilitiesp(vk) is ne-
glected in this work and thusp(vk) = 1. The spatial correlation
of the visibilities could be used as prior (Fransens et al., 2006).

3.4 Maximum Likelihood Estimation

We are now facing the hard problem of estimating the unknown
quantities. Letθ = {y∗,Σ,hk,pk} denote all parameters, and
let y = {yk} denote all input data. The Maximum Likelihood
(ML) estimate of the unknowns is given by:

bθML = arg max
θ

˘
log p(y |θ)p(θ)

¯

= arg max
θ

˘
log

X

x,v

p(y |x,v, θ) p(x)p(v)
¯
, (5)

where the random fieldx andv is assumed to be independent
from θ. Conditioned on the state of the hidden variablesx and
v, the data-likelihood factorises as a product over all individual
pixel likelihoods:

p(y |x,v, θ) ≈
Y

i

Y

k

p(yk
i′ |xi, v

k
i , θ)

=
Y

i

Y

k

Y

r

p(yk
i′ |x

r
i , v

k
i , θ)xr

i
vk

i . (6)

In the product overr (the depth states), only the factor for which
xr

i = 1 andvk
i = 1 survives. Each binary indexxr

i corresponds
to a particular discrete depth valued r

i and visibility vk
i = [0, 1].

Based on that, the pixel-likelihood in the right hand side of eq. (6)
can be further expanded as:

p(yk
i′ |x

r
i , v

k
i , θ)=

h
f(C(pk)◦yk

i′ ; y
∗

i ,Σ)
ivk

i
h
g(yk

i′ ;h
k)

i1−vk

i

.

We have now specified the data-likelihoodp(y |x,v, θ) in eq. 5.
However, the sum

P
x,v in the right hand side of eq. (5) ranges

over all possible configurations of the depthx and visibility v

states. Even for modest sized images, the total number of state
configurations is huge: hence, direct optimisation of the log-
likelihood is infeasible. The Expectation-Maximisation (EM) al-
gorithm offers a solution to this problem, essentially by replac-
ing the logarithm of a large sum by the expectation of the log-
likelihood. It was shown by Neal and Hinton (Neal and Hin-
ton, 1999) that the EM algorithm (Dempster et al., 1977) can be
viewed in terms of the minimisation of the ‘variational free en-
ergy’ or similar as a lower bound maximisation (Neal and Hin-
ton, 1999, Minka, 1998, Dellaert, 2002). The variational free
energy is formulated as a function ofb(x), b(v) which model the
expected value ofx,v (see (Yedidia et al., 2000, Yedidia et al.,
2003, Strecha, 2007) for more background):

F (b(x), b(v),θ) = T
X

x

b(x) log
b(x)

p(y,x,v |θ)1/T

+ T
X

v

b(v) log
b(v)

p(y,x,v |θ)1/T
. (7)

Starting from an initial parameter guessθ̂(0), the EM algorithm
generates a sequence of parameter estimatesbθ(t) and distribution
estimatesb(x)(t), b(v)(t) by alternating the so called Expectation
and Maximisation steps.

3.4.1 E-step On the(t+1)th iteration, the conditional expec-
tation of the complete log-likelihoodw.r.t. the posteriorp(x,v |

y, θ(t))1/T is computed in the E-step. We use the Bethe approxi-
mation for the update ofb(x)(t), i.e. the expected value of depth.
The solution can thereby obtained (Yedidia et al., 2000) by the
belief propagation algorithm (Pearl, 1988). The update equation
for b(v)(t) is closed form because of a uniform prior on the visi-
bilities (Fransens et al., 2006).

3.4.2 M-step In the M-step the free energyF is optimised
w.r.t. the parametersθ by setting each parameterθ to the appro-
priate root of the derivative equation∂F/∂θ = 0. The update
equations for the ideal orthoimage, the noise covariance and the
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Figure 2: Top views of the3-D calibration points. All3-D points for the 68 images are shown left. The rectangle in red displays
the zoomed area for the middle images. In the right image we show one input image (located at the red square in the middle image)
together with the projected calibration points (red).

Figure 3: Initial depth map after triangulating the3-D calibration points (left) and the corresponding orthoimagey∗ (right).

colour transformations are:

Σ =

P
i,k

bi(v
k
i )(C(pk) ◦ yk

i′ − y∗i )(C(pk) ◦ yk
i′ − y∗i )T

P
i,k

bi(vk
i )

y∗i =

P
k

bi(v
k
i )C(pk) ◦ yk

i′

P
k

bi(vk
i )

(8)

C(pk)
X

bi(v
k
i )yk

i′(y
k
i′)

T =
X

i

bi(v
k
i )y∗i (yk

i′)
T , (9)

wherebi(vk
i ) are the expected visibilities computed by the E-step.

The result for the ideal orthoimagey∗i and the noise valueΣ are
compatible to our intuition. They are computed by a weighted
average of the input images for the ideal image, and the weighted
average of all covariances for the noise. The colour transfor-
mationsCk can be obtained by solving eq 9 in the least square
sense. For the computation of theK outlier distribution we refer
to (Strecha et al., 2006).

4 IMPLEMENTATION AND EXPERIMENT

The algorithm has been tested on aerial images of the urban part
of Zwolle (The Netherlands). The images are taken by a Vexcel
UltraCam-D digital frame camera out of an aircraft. There is
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Figure 4: The expected value of depth (left) and the orthoimagey∗ (right).

Figure 5: Expected value of depth (left) and the estimated orthoimagey∗ (middle). One of the input images is shown right. Note that
the specular reflection of the sun in the input image. This disappears in the estimated orthoimage.

sufficient overlap between the images in flight direction as well as
between lines of flight. The results in an almost full coverage of
the scene,i.e. nearly every ground point is observed in at least two
images. We had in total 68 images of size11500×7500 captured
along three flight lines. The initial camera parameters are given
and approximate solutions for the camera poses. The images have
been matched using SURF features (Bay et al., 2006) and the
camera pose was refined by sparse bundle adjustment (Lourakis
and Argyros, 2004). The results of this calibration step are the
refined camera poses and a set of3-D points which are shown in
fig. 2.

We defined a virtual orthographic camera that projects all3-D
calibration points into an orthoimage such that the desired pixel
resolution is achieved1. Unfortunately this orthographic camera
would produce an image which is in general to large to be pro-
cessed. In the following we discuss the algorithm as described
in the last section on1000 × 1000 patches of the overall ortho-

1In this experiment the resolution of the orthoimage is approximately
equal to the resolution of the input images.

graphic image. All patches could be processed in parallel and
merged together afterwards. An example of such a patch is indi-
cated by a red square in the middle of fig. 2. By using the3-D
calibration points we estimate the active area in the input images
and clip these. For our data set this leads to8 . . . 12 input images
for each patch (one of them is show right in fig. 2).

For the initialisation of our algorithm we use the Delaunay tri-
angulation of the3-D calibration points. The depth map and the
initial orthoimagey∗ after triangulation for the example in fig. 2
is shown in fig. 3. The reason for using an initialisation is to speed
up the the algorithm,i.e. we use only a limited number of depth
states. This number depends locally on the initial triangulation.
The final result for the example in figs. 2 and fig. 3 is shown in
fig. 4. We can appreciate a good depth map (left) and orthoimage
(right) for a complex urban scene.

Figure 5 shows an example where one of the input images is cor-
rupted with a specular reflection of the sun. This reflection is
detected by the hidden visibilitiesvk and downweighted for the
computation of the other quantities,i.e. depth (E-step),y∗ (eq. 8),
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Figure 6: Expected value of depth (left) and the estimated orthoimagey∗ (middle). One of the input images is shown right. Note that
the cars dissappear in the estimated ortho image.

image noise (eq. 8) and the colour transformation (eq. 9). The
moving cars in the example in figs.6 and 5 are removed from the
orthoimagey∗ by the same mechanism. In this example we could
find moving cars in all input images. Because of their movement,
they are not consistent with the inlier model and correctly as-
signed to the outlier model.

5 CONCLUSIONS

In this paper we presented a novel approach to the generation of
orthoimages, given a set of calibrated perspective views. Typi-
cally these are aerial images that could possibly be contaminated
with moving objects (cars), specularities and colour changes. An
orthographic view is computed, which is most likely given these
input images. To compute this novel image we consider the possi-
ble values of depth and model occlusions and outliers explicitely.
This approach results in the elimination of moving objects and
other image artefacts which cannot be explained by the majority
of input images.

A fully probabilistic model for novel view synthesis in conjunc-
tion with depth estimation has been formulated in (Strecha et al.,
2004, Gargallo and Sturm, 2005, Strecha et al., 2006). Our ap-
proach is most similar to (Strecha et al., 2006), where all possible
configurations of depthand visibilities are modelled by a sin-
gle MRF to ease the computation of a global solution to depth
and visibility. However, this approach has practical limitations
for the case of more input images, since the amount of visibility
states becomes too large. We therefore optimise depth and visi-
bility in turn, which is the common approach in many multi-view
stereo algorithms that deal with explicite outlier modelling.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support by IncGEO, project
AORTA and by the European Communitys Sixth Framework Pro-
gramme through a Marie Curie Research Training Network. Fur-
thermore we would like to thank Lieven Colardyn for the support
and Aerodata for providing the aerial images used in this work.

REFERENCES

Bay, H., Tuytelaars, T. and Van Gool, L., 2006. SURF: Speeded up robust
features. In:Proc. European Conf. on Computer Vision , pp. 404–417.

Criminisi, A., Blake, A., Rother, C., Shotton, J. and Torr, P., 2007. Ef-
ficient dense stereo with occlusions for new view-synthesis by four-state
dynamic programming. Int. J. Comput. Vision 71(1), pp. 89–110.

Dellaert, F., 2002. The expectation maximization algorithm. Technical
Report number GIT-GVU-02-20.

Dempster, A., Laird, N. and Rubin.D.B., 1977. Maximum likelihood
from incomplete data via the EM algorithm. J. R. Statist. Soc. B 39,
pp. 1–38.

Fitzgibbon, A., Wexler, Y. and Zisserman, A., 2003. Image-based ren-
dering using image-based priors.Proc. Int’l Conf. on Computer Vision
pp. 1176–1183.

Fransens, R., Strecha, C. and Van Gool, L., 2006. Robust estimation in
the presence of spatially coherent outliers. In: RANSAC workshop at
CVPR.

Gargallo, P. and Sturm, P., 2005. Bayesian 3D modeling from images
using multiple depth maps.Proc. Int’l Conf. on Computer Vision and
Pattern Recognition 2, pp. 885–891.

Lourakis, M. and Argyros, A., 2004. The design and implementation
of a generic sparse bundle adjustment software package based on the
levenberg-marquardt algorithm. Technical Report 340, Institute of Com-
puter Science - FORTH, Heraklion, Greece.

Minka, T., 1998. Expectation-maximization as lower bound maximiza-
tion. Tutorial published on the web.

Neal, R. M. and Hinton, G. E., 1999. A view of the EM algorithm that
justifies incremental, sparse, and other variants. MIT Press, Cambridge,
MA, USA, pp. 355–368.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Strecha, C., 2007. Multi-view stereo as an inverse inverence problem.
PhD thesis, PSI-Visics, KU-Leuven.

Strecha, C., Fransens, R. and Van Gool, L., 2004. Wide-baseline stereo
from multiple views: a probabilistic account.Proc. Int’l Conf. on Com-
puter Vision and Pattern Recognition 1, pp. 552–559.

Strecha, C., Fransens, R. and Van Gool, L., 2006. Combined depth and
outlier estimation in multi-view stereo.Proc. Int’l Conf. on Computer
Vision and Pattern Recognition pp. 2394–2401.

Woodford, O., Reid, I. and Fitzgibbon, A., 2007a. Efficient new-view
synthesis using pairwise dictionary priors. In:Proc. Int’l Conf. on Com-
puter Vision and Pattern Recognition .

Woodford, O., Reid, I., Torr, P. and Fitzgibbon, A., 2007b. On new view
synthesis using multiview stereo. In:Proc. British Machine Vision Conf.
.

Yedidia, J., Freeman, W. and Weiss, Y., 2000. Generalized belief propa-
gation. Neural Information Processing Systems (NIPS) 13, pp. 689–695.

Yedidia, J., Freeman, W. and Weiss, Y., 2003. Understanding belief
propagation and its generalizations. Morgan Kaufmann Publishers Inc.,
pp. 239–269.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008

308


