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ABSTRACT Recent developments in Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehi-

cles (UGVs) have made them highly useful for various tasks. However, they both have their respective

constraints that make them incapable of completing intricate tasks alone in many scenarios. For example,

a UGV is unable to reach high places, while a UAV is limited by its power supply and payload capacity. In this

paper, we propose an Imitation Augmented Deep Reinforcement Learning (IADRL) model that enables a

UGV and UAV to form a coalition that is complementary and cooperative for completing tasks that they are

incapable of achieving alone. IADRL learns the underlying complementary behaviors of UGVs and UAVs

from a demonstration dataset that is collected from some simple scenarios with non-optimized strategies.

Based on observations from the UGV and UAV, IADRL provides an optimized policy for the UGV-UAV

coalition to work in an complementary way while minimizing the cost. We evaluate the IADRL approach

in an visual game-based simulation platform, and conduct experiments that show how it effectively enables

the coalition to cooperatively and cost-effectively accomplish tasks.

INDEX TERMS Unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), coalition, deep

reinforcement learning (DRL), imitation learning.

I. INTRODUCTION

The last decade has witnessed significant developments

in unmanned aerial vehicle (UAV) and unmanned ground

vehicle (UGV) technologies, which have enabled their

wide deployment for various applications, such as surveil-

lance, search and rescue, inspection [1], inventory count-

ing [2], [3], and more [4]–[7]. Recently, researchers have

shown a growing interest to deploy them for more com-

plex tasks that require multiple UAVs or UGVs to coop-

eratively work together to improve efficiency [8]. Most

of the existing research focuses on the cooperation in a

multi-agent (or multi-robot) system that consists of a group

of UAVs or UGVs. For example, Koubâa et al. intro-

duced COROS [9], a high-level conceptual architecture for

The associate editor coordinating the review of this manuscript and
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multi-agent UGV/robotic systems that represents a generic

architecture for cooperativemulti-agent applications. A coop-

erative architecture for the navigation of a swarm of robots

based on Dynamic Fuzzy Cognitive Maps was introduced

in [10]–[12], which allows for the development of homo-

geneous autonomous robot navigation without a global con-

troller. Amulti-UAV systemwas introduced in [8] to optimize

target assignment and path planning. In addition to these

homogeneous systems, some works went further to create

a system that consists of heterogeneous agents/robots with

different capabilities. For example, Das et al. in [13] intro-

duced a distributed algorithm for task allocation in a system

of multiple heterogeneous, autonomous robots deployed in a

healthcare facility.

There are some essential limitations for both UGVs and

UAVs. For example, a UGV has limited vertical detec-

tive/access capability, and a UAV is restrained by inadequate
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operation range and time due to its limited power supply

capacity. These limitations impede them in many applica-

tions. For instance, a ground robot proposed in [2] failed to

perform inventory counting of items stored on high racks.

Recently, UAVs have been expected to bewidely deployed for

disaster relief (e.g., survey, search and rescue, and providing

network access). However, the authors of [14] found that

a UAV’s limited fight time (usually 20-30 minutes) greatly

reduces their operating range. Obviously, for the above sce-

narios, we cannot solve the problem by simply deploying a

swarm of UGVs or a swarm of UAVs alone. Alternatively,

to pair them as a complementary team would help to over-

come these constraints for tasks that UGVs or UAVs would

be incapable of completing alone. However, an effective

and low-cost strategy for implementing such complementary

UGV-UAV coalition is lacking.

To remedy these limitations, this paper presents an inno-

vative method, named Imitation Augmented Deep Rein-

forcement Learning (IADRL), that enables a UGV and a

UAV to form a coalition that can complement each other

for complex tasks. The complementary UGV-UAV coalition

can be deployed for applications that are usually incapable

of being completed by a UGV or UAV alone. Using the

disaster relief scenario as an example, an IADRL-enabled

coalition can be deployed for autonomous search-and-rescue

tasks. In the chaotic and hazardous environment follow-

ing a disaster, a powerful UGV can autonomously carry a

UAV to remote destinations usually out of the UAV’s flight

range. Additionally, the UGV provides communication and a

power supply that greatly extends the operational range of

a resource-constrained UAV, and the UAV helps the UGV

with finding the best route and with navigating through

complex terrains that are out of the UGV’s navigational

capability (e.g., vertically unreachable or invisible to the

UGV). To ensure that the coalition can successfully and

effectively accomplish tasks, the cooperation of its agents

(i.e., the UGV and UAV) must follow an underlying and

complex model that varies depending on the task or operating

environment.

The proposed IADRL model can learn the complementary

features of UGV-UAV from a demonstration dataset that is

collected from a simple and imperfect scenario. The model

also learns a policy that responds to the environment, such as

collision avoidance when around obstacles and other agents.

Based on observations of the UAV and UGV, the IADRL

model provides a series of actions for the UGV and UAV

that ensures an optimized and complimentary strategy for a

given task. Additionally, we extend the IADRL to support

multiple UGV-UAV coalitions working together within the

same space. To the best of our knowledge, this is the first

work to focus on creating such a coalition of robots with com-

plementary capabilities for task completion, where a single

agent in the team alone is incapable of completing. In a com-

plex scenario, a task is executed by the first agent, and then

another agent must continue the task based on the previous

agent’s success. Thus, the actions of all agents in the coalition

are dependent upon each other, and agents must work as a

complementary, cooperative team. The main contributions of

this work are summarized as follows:

1) The proposed network enables a UGV and UAV to

form a coalition to complement and enhance each other

to accomplish complex tasks that either agent alone

could not complete. It also optimizes the complemen-

tary coordination strategy among the agents to accom-

plish various tasks with the lowest cost (e.g., minimum

power consumption, optimized navigational trajectory

with the minimum number of steps, etc.).

2) We develop an imitation learning model to learn the

intricate complementary features of UGVs and UAVs

in the coalition using demonstration data that was

collected from simple scenarios with non-optimized

strategies. This will greatly reduce the effort of mod-

eling the complementary behaviors of agents in the

coalition.

3) We test IADRL in a visual game-based simulated envi-

ronment, and show that the proposed IADRL approach

exploits the complementary behaviors of UGVs and

UAVs during search-related tasks and over-performs in

several baseline schemes.

In the remainder of this paper, we discuss related work in

Section II, introduce and analyze the proposed IADRLmodel

in Section III, present our experimental study in Section IV,

and conclude our work in Section V.

II. RELATED WORKS

A. IMITATION LEARNING

Imitation learning methods focus on the problem of learning

and perform a task by learning from demonstration data.

These methods can be roughly divided into three categories:

Behavior Cloning (BC; or supervised learning) [15], [16],

Inverse reinforcement learning (IRL) [17], and Generative

Adversarial Network (GAN) imitation learning [18].

1) BEHAVIOR CLONING (BC)

This type of imitation learning was motivated by humans’

tendency to learn skills by imitating the behaviors of

others, and has been widely used in autonomous driv-

ing [19], [20], wireless communication [21], [22], and smart

grids [23], [24]. In BC, agents receive instructions from a

hand-crafted demonstrator (which serves as training data),

and then replicate actions from the expert policy. BC is able

to imitate the demonstrator immediately without any inter-

action with the environment. However, these agents cannot

handle situations that are not included in the demonstrator.

Furthermore, when the agents are limited in capacity, wrong

or unnecessary behavior may be replicated. The method is

simple, but is useful only with large amounts of high qual-

ity training data. Additionally, because agents merely learn

single-step decisions, the compounding error accumulation

caused by the covariate shift problem could lead to a large

learning deviation.
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2) INVERSE REINFORCEMENT LEARNING (IRL)

In a classic Reinforcement Learning (RL) setting, the ultimate

goal is for an agent to learn a decision process to generate

behaviors that could maximize accumulated rewards by some

predefined reward functions. As demonstrated by Ng et al.

in [25], IRL is given the observed agent’s behaviors and

observations of the environment to infer the optimal reward

function. IRL generally has a reward function that is difficult

to accurately quantify, and another system has to be able to

complete the tasks well to offer instructions for the model.

The difference between IRL and BC is that IRL generates a

reward function to infer an optimal policy instead of using a

fixed replication policy.

3) GAN FOR IMITATION LEARNING

Ho and Ermon proposed Generative Adversarial Imitation

Learning (GAIL) in 2016 [18]. They introduced the idea of a

GAN combined with imitation learning. Unlike GAN, GAIL

does not have an explicit Generator that acts as the policy

of agents. Learning in GAIL is divided into two steps. First,

to train the Discriminator adversarially with the data obtained

from the current policy sampling and expert data. Second,

the Discriminator serves as the replaced reward function to

train the policy. GAIL is superior for large-planning and high-

dimensional problems as compared to BC and IRL.

B. MULTI-AGENT SYSTEM PLANNING AND CONTROL

This is a hot topic that has attracted considerable research

interest in recent years. The existing studies have mainly

focused on operating multiple UGVs/robots and UAVs in

the same environment. For example, Sariel-Talay et al. pro-

posed a multi-robot cooperation framework to solve complex

tasks in a cost-efficient manner [26]. Swarm intelligence is

inspired by social animals and aims to form the behavior

of many decentralized autonomous cooperative agents. For

example, Wang et al. solved the multi-robot task allocation

problem using an ant colony algorithm [27]. In recent years,

RL has become extremely trendy in the field of multi-agent

systems. In [8], the author presented an innovative artifi-

cial intelligence method combined with a well-known RL

method, the Multi-Agent Deep Deterministic Policy Gradi-

ent Algorithm, to solve path planning and task allocation

problems in dynamic environments. However, these existing

methods have never been applied to a coalition of multiple

UGVs/robots and UAVs before.

Few studies have considered the use of multiple UGVs

and UAVs simultaneously to solve complex tasks in dynamic

environments. For example, Ghamry et al. proposed an algo-

rithm that controls UAV’s autonomous take-off, tracking, and

landing with a UGV [28]. They also presented an interesting

study on forming a team of cooperating UAVs-UGVs for

forest monitoring and fire detection [29]. Khaleghi et al.

studied the team formation approach of multiple UGVs and

UAVs [30]. The author in [31] introduced an auction-based

approach for applying an estimated utility to task assignment

for heterogeneous, multi-agent teams. But these studies only

focus on one area (i.e., team formation or task allocation)

because of the huge computational cost and the communica-

tion difficulties between agents.Meanwhile, some companies

(e.g., Quanser Inc.) provide a variety of mobile robots and

UAV swarm systems, but none of them focus on creating a

UGV-UAV coalition for complex tasks. Unlike these exist-

ing methods, our proposed approach creates a coalition that

enables a UGV and a UAV to complement each other during

complex tasks that are incapable of being completed by a

single UGV or UAV or by a swarm of UGVs or UAVs alone.

This approach not only concerns the optimization of path

planning, but also learns an underlying complementarymodel

for the agents from a set of non-optimized demonstration

data.

III. THE PROPOSED APPROACH

Our proposed IADRL approach enables a coalition consisting

of a UGV and UAV to complement each other for complex

tasks. Additionally, we extend IADRL to include a system of

multiple UGV-UAV coalitions working together.

A. IADRL ENABLED UGV-UAV COALITION

1) PROBLEM DEFINITION AND CHALLENGES

There are several essential limitations of UGVs and UAVs

that prevent them from being deployed for some tasks. Fig. 1

illustrates a motivating scenario where rescue teams must

reach a high-altitude position. The UAV is capable of reach-

ing that position; however, the destination is too far for it to

fly from the starting point with its limited battery capacity.

Alternatively, the UGV can move closer to the destination,

but is incapable of climbing up the high altitude. An intuitive

idea to reach the destination is to pair the UGV and UAV

together as a coalition that complements each other: the UGV

can carry the UAV closer to the destination, and then the UAV

launches from the UGV and flies to the target.

Motivated by the Decentralized Partially Observable

Markov Decision Processes (Dec-POMDPs) [32], this

FIGURE 1. An example of a UGV-UAV complementary coalition for task
completion: (a) the target destination is too far for the UAV to reach,
while too high for the UGV alone, (b) the UGV carries the UAV closer to the
destination, and, finally, (c) the UAV flies to the high-altitude destination.

VOLUME 8, 2020 102337



J. Zhang et al.: IADRL: Imitation Augmented DRL Enabled UGV-UAV Coalition

UGV-UAV complementary coalition for task completion

with minimum cost can be described by the tuple <

ε, o, a, r, γ,M >, where ε denotes the environment the

coalition will interact with; o = (o1, o2) is the joint observa-

tions of the coalition, and consists of the UGV’s observation,

o1, and the UAV’s observation, o2; a = (a1, a2) denotes the

joint actions of the UGV, a1, and UAV, a2, in the coalition;

r is the reward function of the coalition while joint actions a

impose ε with joint observations o; γ ∈ [0, 1) is a discount

factor for future rewards; andM defines the complementary

cooperation model of the UGV and UAV. To achieve success-

ful task completion, the UGV and UAVmust collaborate with

and complement each other; thus, their joint actions satisfy

a = (a1, a2) ∼ M.

The goal of IADRL is to learn a joint value-action function

Qπ
c (o, a; θ) that enables a complementary UGV and UAV

coalition to achieve maximum overall rewards (or minimal

overall costs) while accomplishing various tasks. The equa-

tion for this complementary coalition is formulated as (1):

argmax
a∼π

Qπ
c (o, a; θ ) (1)

s.t. a = (a1, a2) ∼ M, (2)

where θ is the parameter of the value-action function Qπ
c .

Note that o and a represent the joint observations and

actions in the coalition, and the joint actions follow an

underlying model, M, that complements each action during

tasks. To explicitly model the underlying complementary

cooperation model, M, of the UGV-UAV coalition during

tasks is difficult and, at least, requires significant effort and

expertise.

We faced several challenges when creating the IADRL

model under these requirements. For our method to suc-

cessfully complete generic and complex tasks, we have to

develop a straightforward way to represent the coalition’s

complementary cooperation model. Equation (1) shows that

the proposed network has to learn an optimized policy, π ,

for UGV-UAV joint actions. Reference [33] suggests that the

joint-action space increases exponentially with the number

of agents. Consequently, it is difficult for deep reinforcement

learning (DRL) methods to reach the optimized policy, π ,

in such huge searching space. Furthermore, the trained pol-

icy, π , not only needs to provide optimized actions for task

execution, but also needs to follow the underlying model M

to enable the UGV-UAV coalition to successfully complete

tasks. State-of-the-art methods such as Value-Decomposition

Networks (VDN) [34] and QMIX [33] require that the actions

of agents at the same time step are independent so they

can be factorized. Obviously, this assumption does not hold

true for the UGV-UAV coalition. Additionally, it is nec-

essary to train the proposed model in a continuous-action

space that empowers the UGV-UAV coalition’s operation

in complex environments. This further increases the size

of the joint-action space and challenges the training of the

IADRL model.

2) THE IADRL MODEL

To tackle the above challenges, first, instead of explicitly

modeling the collaboration between the UGV and UAV,

we captured their complementary cooperation using a set of

demonstration data. The dataset was collected by manually

controlling the UGV-UAV coalition to complete several sim-

ple tasks. The demonstration data do not need optimization,

but only a set of the most basic and important rules of the col-

laborative and complementary actions. As such, our method

needs to teach the coalition just as one would teach a new

sports skill to a team of kids, by showing them how to play

through imitation.

Therefore, we design IADRL by combining an imita-

tion model with a DRL model. The architecture of IADRL

is presented in Fig. 2. The imitation model and the DRL

model are contained in a pink block and green block, respec-

tively. The imitation model learns the cooperative features,

M, of complementary cooperation from the non-optimized

demonstration dataset and augments the DRL model’s train-

ing to develop an optimized strategy. As such, we learn

the optimized policy, π , while following the complementary

cooperation model. Meanwhile, the DRL model also learns a

strategy to respond to dynamic environments, such as avoid-

ing collisions with obstacles and other UGVs and UAVs.

FIGURE 2. The architecture of the IADRL model.

a: THE IMITATION MODEL

The imitation model is inspired by the study of GAIL [18],

and it is based on a GAN [35] architecture that comprises two

basic entities: a discriminator,D, and a generator, G. Discrim-

inator D is created to distinguish between the ‘‘expert’’ data

and the data produced by generator G. Additionally, D and G

are simultaneously trained in an adversarial way: G is updated

to produce ‘‘counterfeited’’ data that could pass the detection

ofD, whileD is improved to distinguish the ‘‘counterfeited’’

data from the true ‘‘expert’’ data. The resulting competition

drives both entities to improve their capabilities. Thus, a well-

trained imitation model not only generates data with almost
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the same distribution of the ‘‘expert’’ data, but also precisely

measures the similarity of any given data with the ‘‘expert’’

data.

Different from the original GAIL model, we replaced the

Trust Region Policy Optimization-based [36] generator with

the latest Proximal Policy Optimization (PPO)-based [37]

generator, which also serves as the policy, π , of the DRL

model. Thereby, the term generator G and policy π will be

used interchangeably in the rest of this paper. Policy π has

two roles in our IADRL, as it not only generates actions

following the distribution of the ‘‘expert’’ data, but also reacts

to the environment with an optimized strategy. The details

of policy π will be introduced when we discuss the DRL

model. Here, we focus on the discriminator,D(o, a; ω), of the

imitation model.

In our imitation model, D : O × A 7→ (0, 1) is a discrimi-

nator functionwith weightω, andO andA are the observation

and action space, respectively, of theUGV-UAV coalition.We

implement the discriminator D with a deep neural network,

which is a fully connected neural network with MD hidden

layers. Each hidden layer has the same number of ND units.

The size of the input layer is determined by the size of the

concatenated input (o, a). The size of D can be configured

using ND andMD. Usually, a larger-sized network is required

if the UGV-UAV coalition is deployed for more complex

environments and tasks.

During the training process, we can improve the discrimi-

nator D by maximizing the following value function:

V(ω) = Eπ [log(D(o, a; ω))]

+EτE [log(1 − D(o, a; ω))] − λH (π ), (3)

where H (π ) represents the causal entropy [38] of π defined

as H (π ) ≡ Eπ [− logπ(a|o)], and it severs as a policy

regulator to make the distribution of policy as evenly as

possible; λ > 0 is the discount factor of H ; and τE refers

to the ‘‘expert’’ policy provided by a demonstrated dataset

with length N , i.e., τE = [η1, η2, . . . ηN ]. Here ηn =

[(o0, a0), (o1, a1), . . . , (oT , aT )] is the record of an episode

with T steps. It represents the model of the complementary

cooperation between the UGV and UAV; thus, τE ∼ M.

Again, τE is not a perfect policy, but is collected from a few

sample scenarios in controlled settings navigated by manual

control and is, therefore, considered to be the ‘‘expert.’’

Equation (3) is derived from the objective function of

GAIL [18]. It shows that during the training process, as dis-

criminator D is updated to increase V(ω), its ability to detect

the similarity of a policy and the ‘‘expert’’ data is improved.

When it produces a lower value for a given action, a, it indi-

cates that the chance of action a is higher from the ‘‘expert’’

data, and thus, shows with higher confidence that it is follow-

ing the underlying complementary model, a ∼ M.

b: THE DRL MODEL

The proposed IADRL model must not only learn the com-

plementary cooperation model, but must also react to the

dynamics of an environment and provide an optimized nav-

igation strategy for the UGV-UAV coalition. To this end,

we created the DRL model based on a PPO network [37]

with an actor-critic architecture, which enables the model

to produce continuous actions for the UGV-UAV coalition

during task completion in complex environments. The pro-

posed DRL model consists of two separate components: an

actor (i.e., policy π ) and a critic (i.e., value function Qπ
c ).

Policy π is responsible for generating action a based on the

given observation o. Additionally, policy π is learnt by a

neural network from the training and history data. The value

function, Qπ
c , processes the received rewards and evaluates

the current action prescribed by policy π .

We implement Qπ
c and π using two deep neural networks

that are both fully connected networks withMπ hidden layers

for π andMQ hidden layers forQπ
c . Each hidden layer has the

same number of Nπ and NQ units for the π and Qπ
c networks,

respectively. The size of the input layers is determined by

the size of the input vectors. The size of the output layer

of π is determined by the size of the joint action, a, of the

coalition. As in the case of discriminator network D, usually

larger-sized networks are required for π and Qπ
c if the UGV-

UAV coalition is deployed for more complex environments

and tasks.

Ultimately, the goal of training the DRL model is to maxi-

mize the UGV-UAV coalition’s state-value function Qπ
c for a

given policy π , given by

Qπ
c (o, a; θ ) = E[rau(o, a) + γEa′∼π [Q

π
c (o

′, a′)]], (4)

where θ is the parameter of function Qπ
c ; γ ∈ (0, 1] is

the discount factor for future rewards; rau is the augmented

reward function, given by

rau(o, a) = β · rim(o, a) + (1 − β) · rex(o, a), (5)

where β ∈ (0, 1) represents the confidence weight of the

‘‘expert’’ demonstration data, and a larger β can be deployed

if τE is closer to the optimized policy; rex is the reward func-

tion that comes from the environment, which is the same as a

traditional Markov Decision Processes (MDPs) environment;

additionally, rim is the reward function of the imitation model

and measures how similar the coalition’s joint actions a are

with the ‘‘expert policy,’’ as

rim(o, a) = log(1 − D(o, a; ω)). (6)

During the training, we aim to increase Qπ
c . Equa-

tions (3), (4), and (6) show that as we increase Qπ
c ,

we decrease the value of V (ω). Thus, from the results of [18],

we increase the similarity of the policy, π , and the ‘‘expert’’

dataset, τE , as we increase Qπ
c . Note that our goal is not to

train the policy, π , to copy τE , but to learn the complementary

cooperative model that underlays τE while maximizing the

extrinsic reward. Therefore, we introduced the confidence

parameter β to augment the learning process by trading-

off between learning from expert data and the environment.

Alternatively, rex guides the IADRL to learn a strategy that

VOLUME 8, 2020 102339



J. Zhang et al.: IADRL: Imitation Augmented DRL Enabled UGV-UAV Coalition

reacts to the environment. Its configuration is straightforward

and lists several rules for the coalition when interacting with

the extrinsic environment. Usually, we can assign a penalty

for the coalition if any agent collides with either an obstacle

or other agent. This way, a trained Qπ
c enables the UGV and

UAV to choose the action that does not cause a collision.

We can also assign a small penalty for every step taken by

each agent, and this enablesQπ
c to provide the coalition’s best

navigational route for reaching a target. Here, the best route is

the one with the lowest sum of navigational costs of the UGV

and UAV. Note that the cost of operating a UAV is usually

higher than that of the UGV. Additionally, an example of rex
will be provided in the later experimental section. The value

functionQπ
c of the proposedDRL network can be trained end-

to-end by minimizing the following loss function:

L(θ ) = Ea∼π [y− Qπ
c (o, a; θ )]2, (7)

where y = rau+γ ·maxa′ [Qπ
c (o

′, a′; θ−)] and θ− are param-

eters trained by the previous iteration. During the training,

we try to decrease the stochastic gradient of (7) with respect

to θ . Then, a trained state-value function Qπ
c precisely evalu-

ates action a of the UGV-UAV coalition.

From (4) and (5), we know that as long as a policy, π ,

is found that guides the UGV-UAV coalition to achieve a

higher cumulativeQ value, the proposed IDARL networkwill

enable the complementary cooperation between agents and

find the best strategy to accomplish a given task. To better

explain the process of updating the policy in our PPO-based

DRL model, we introduce an additional objective function

with respect to the ϕ weighted policy, πϕ , as:

J (ϕ) = Et

[

min

(

πϕ(o)

πϕold (o)
Q

πϕold
c , f (ǫ,Q

πϕold
c )

)]

, (8)

where ǫ is a hyper-parameter set to 0.1 or 0.2; πϕold and

πϕ denote the policy before and after the training update,

respectively; and f (·) is a clip function defined as:
{

f (ǫ,Q) = (1 + ǫ)Q, if Q > 0

f (ǫ,Q) = (1 − ǫ)Q, if Q < 0.
(9)

The training process aims to maximize J (ϕ) by ascending

the stochastic gradient of (8) with respect to ϕ. Thus, policy

π tends to provide actions that can impose higher Q values.

During the training, (9) limits the updated range of πϕ so that

it remains close to the last policy, πϕold . This greatly improves

training stability by avoiding too much of a policy update in

one step.

We summarize the training process of IADRL in

Algorithm 1. During the training process, we recursively

update discriminator D of the imitation model to provide a

more accurate evaluation of how good the complementary

cooperation is between the UGV and UAV. Then, the value

function, Qπ
c , is updated to enable the model to precisely

assess the joint-action, o, of the coalition as compared to the

extrinsic environment and the intrinsic complementary coop-

eration model. Last, IADRL updates policy π that provides

Algorithm 1: The Training Procedure of IADRL

1 Input: ‘‘Expert’’ dataset τE , and initial parameters ω0

and θ0;

2 for episode i = 1 to M do

3 Sample training dataset πi;

4 Update discriminator D by ascending the stochastic

gradient of (3) with respect to ω;

5 Update value function Qπ
c of the DRL by decreasing

the stochastic gradient of (7) with respect to θ ;

6 Update policy πϕ of the DRL by ascending the

stochastic gradient of (8) with respect to ϕ;
7 end

a series of actions to accomplish given tasks and to receive

higher cumulative Q values. Thus, a well-trained IADRL

model enables the UGV-UAV coalition to follow the comple-

mentary model,M, and provides an optimized strategy when

the coalition is deployed for various tasks.

B. MULTI-COALITION SYSTEMS

Our IADRL model can be easily extended to support a sys-

tem with multiple UGV-UAV coalitions. This system follows

the traditional Dec-POMDPs, and the coordination among

the coalitions is loose and satisfy the model of VDN [34].

Therefore, the global joint-action value function, denoted by

Qg, of a system with N coalitions can be represented as:

Qg(s,u) =

N
∑

i=1

Qπ
c i(oi, ai; θi), (10)

where oi = (o1i, o2i) and ai = (a1i, a2i) denote the joint

observations and actions, respectively, of the UGV and UAV

in coalition i. Additionally, s = (o1, o2, . . . , oN ) and u =

(a1, a2, . . . , aN ) refer to the joint observations and actions,

respectively, for all N coalitions in the system. A joint obser-

vation, s, is created by concatenating all observations, oi, from

all the coalitions. Equation (10) indicates that based on the

current joint observation, s, we find a best joint-action for the

system, u, by decomposing the problem and finding all of the

best joint-action, ai, for each coalition, which is determined

by the trained IADRL model based on its observation oi.

The UGV-UAV coalition requires wireless communica-

tions to function well. From (1), the optimized policy, π ,

of the coalition requires joint observation and joint action

data, which are created by the observations and actions from

both the UGV and the UAV. Thus, wireless communications

within the coalition is essential for sharing this information.

On the other hand, communications among UGV-UAV coali-

tions is not mandatory. In (10), it is shown that the global

joint-action value function,Qg, is the sum of individual coali-

tion value functions, Qπ
c , which is conditional on the coali-

tion’s observations and actions. Therefore, a decentralized

optimized policy for a system with multiple coalitions can

be achieved when each coalition selects its own optimized

102340 VOLUME 8, 2020



J. Zhang et al.: IADRL: Imitation Augmented DRL Enabled UGV-UAV Coalition

policy, π , from a trained IADRL model without sharing

information among coalitions.

IV. EXPERIMENTAL STUDY AND DISCUSSIONS

A. EXPERIMENT CONFIGURATION

1) SIMULATION PLATFORM

Wedesigned a simulation training and evaluation platform for

the IADRL system based on the Unity3D ML-Agents plat-

form [39]. The platform is illustrated in Fig. 3. It is designed

to simulate the scenario of deploying UGV-UAV coalitions

in a giant, high-bay warehouse crowded with high racks and

shelves. The coalitions are tasked with reaching given targets

tomimic item scanning applications (i.e., RFID or barcode) in

indoor spaces. The platform’s dimension is 50 × 50 × 7 m3,

and is divided into 4 sub-zones by cross shaped obstacles.

As Fig. 3 depicts, orange agents represent UGVs, blue agents

represent UAVs, and the green spheres suspended in air (they

are actually on different levels of racks in this space) represent

given targets.

FIGURE 3. Basic simulation experimental setup for five UGV-UAV
coalitions performing tasks cooperatively using the IADRL system. The
UGV-UAV coalitions are marked as orange (UGV) and blue (UAV) block
pairs; the tasks are marked as green balls.

We implemented our IADRL model using Tensorflow

on a computer with an Intel 9900K CPU and two Nvidia

2080 GPUs. We conducted each experiment with the same

IADRL configuration: the discriminator, D, has MD = 2

hidden layers and ND = 128 units per layer; the coalition

value function,Qπ
c , hasMQ = 3 hidden layers and NQ = 512

units per layer; the policy, π , has Mπ = 3 hidden layers

and Nπ = 512 units per layer. In the following experiments,

we deployed 5 UGV-UAV coalitions. Their initial positions

and the positions of all targets were randomly generated.

The observations (or states of the environment) are col-

lected by each agent’s Ray-cast sensor, which is provided

by Unity3D. Similar to a Lidar sensor (e.g., the RPLidar

laser scanner), the Ray-cast sensor casts rays into the sur-

rounding environment, and the feedback is a vector that pro-

vides the position of all detected objects and their distances.

A UGV’s Ray-cast sensor detects only in the horizontal

direction (to identify obstacles on the floor), while a UAV

casts rays towards the horizon, and upward and downward

within 45 vertical degrees. The maximum detection range

of all Ray-cast sensors is set to 20 meters with a 20-Hz

refresh rate. A UGV-UAV coalition’s observation, o, is cre-

ated by concatenating all of the observation vectors of its

UGV and UAV agents to form a new vector. The UGV’s

action is represented by a1 = [ax , ay], and the UAV’s action

is represented by a2 = [ax , ay, az], where ax , ay, and az are

accelerations in the x, y, and z direction, respectively. The

UGV-UAV coalition’s action, a = (a1, a2), is also created by

concatenating a1 and a2 to form a new vector.

2) EXTRINSIC REWARDS

The extrinsic rewards configuration is summarized in Table 1.

They are designed to capture basically every condition that

could be experienced when deploying UGV-UAV coalitions

for item scanning tasks. Considering that the average battery

life of a UGV is 5 to 10 times that of a UAV, we set the

UAV’s cost of each step to be 6 times that of the UGV. Thus,

the UAV tends to ride on the UGV when transiting between

positions, while simultaneously finding the best trajectory to

reach the destination by trading-off from the ride-on to fly

state. To encourage coalitions to complete tasks, we set the

reward of reaching each target to 100 times that of the step

cost for UAVs. Our intention is for the UGV to successfully

scan all the targets within its reachable vertical height and

define them as bad targets for the UAV. If the UAVmistakenly

reaches a bad target, a penalty as big as the reward (i.e., 60)

will be issued. Targets that are too high and out of the UGV’s

reach are considered good targets for the UAV.

TABLE 1. Extrinsic rewards configuration.

To ensure that the UGV and UAV avoid colliding into

obstacles and other agents, the penalty for a collision is equal

to the target reward (i.e., 60) for the UAV and half of that

for the UGV. The reason for setting a lower penalty for the

UGV is that UGVs are usually protected with anti-collision

sensors or bumpers. When the coalition reaches all targets

(or the given number of targets), it has completed the task and

wins a final reward. We set the confidence weight β in (5) to

0.1 for the remaining experiments.

3) DEMONSTRATION DATA COLLECTION

The demonstration dataset τE is collected by manually con-

trolling a UGV-UAV coalition through several simple sce-

narios that are displayed in Fig. 4. The dataset τE consists

of 40 total episodes of completed tasks (10 tasks per scenario)
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FIGURE 4. The scenarios that allow for collection of demonstration data
τE : (a) a target (green ball) within reachable height of the UGV, (b) a
target reachable only by the UAV, (c) one target each for the UAV and UGV
to reach within the same sub-zone, (d) one target each for the UAV and
UGV to reach, but within different sub-zones.

according to the scenarios described in Fig. 4 (10 for each

scenario). For the scenario shown in Fig. 4(a), a target is

created within the reachable height of the UGV, and we

controlled the coalition in a way that allowed the UGV to

reach the target. In Fig. 4(b), a target at a higher place is

generated for the UAV to reach. The UAV first rides on the

UGV to move closer to the target, and then flies to the target

to scan it. In Fig. 4(c), we create two targets, one for the

UAV and the other for the UGV, in the same sub-zone. Again,

we navigated the coalition so the UGV and UAV could reach

their targets cooperatively. Fig. 4(d) is a scenario similar to the

scenario in Fig. 4(c), but we place the two targets in different

sub-zones. Note that the targets in each scenario are generated

randomly.

During this process, we manually controlled the coalition

with some non-optimized strategies. For example, we do not

optimize the route when moving towards any target. For the

scenarios in Figs. 4(c) and 4(d), we do not consider the

order of targets for optimizing the moving trajectory. Thus,

τE serves as an instructor that guides all agents to learn

complimentary behavior patterns rather than only copying the

sample actions provided in the training stage.

B. EXPERIMENTAL RESULTS

1) TRAINING PROCESS RESULTS

In the training process, the maximum number of steps, stmax ,

for one episode is 1 × 105, which includes the steps of

the UGV-UAV coalition. If the coalitions reach all of the

targets, the training episode is terminated immediately and

the final reward is received. Otherwise, it will keep task-

ing until stmax is reached. As a baseline scheme for perfor-

mance comparison, we implemented three existing models,

including:

• the original GAIL model, termed GAIL, introduced

in [18];

• the PPO model, termed PPO, presented in [37]; and

• a supervised learning method, termed BC (Behavior

Cloning) from [16].

FIGURE 5. Accumulated training rewards values for PPO, GAIL, IADRL,
and BC methods.

Moreover, to guarantee a fair comparison, we used the same

training parameter (i.e., number of targets achieved, learn-

ing rate, maximum number of steps, etc.) for the three

approaches.

First, we conducted several experiments with five coali-

tions using the four models. As shown in Fig. 5, the accumu-

lated rewards of IADRL and PPO are convergent, while the

GAIL and BC curves do not converge. Obviously, compared

to the other three algorithms, the cumulative reward value of

the IADRL approach is the highest and it is the most stable

given the same reward settings. This result is consistent with

our preliminary theoretical conjecture that GAIL only repli-

cates the behaviors and policy offered by the demonstration

dataset τE , rather than by the optimal policy for achieving

higher rewards. Although the cumulative reward obtained by

the PPO model is high and convergent, it cannot successfully

complete all the cooperative tasks. This is because PPO is

incapable of learning the complementary model between the

UGV and UAV. Fig. 6 shows that all episodes of the PPO

model are terminated when they reach the maximum number

of steps, stmax = 105, and, thus, are incapable of successfully

reaching all the targets. The task completion rate for the

PPO model is consistently zero, indicating that the model

is not able to provide an optimized policy that enables the

UGV-UAV coalition to complete tasks exploiting comple-

mentary cooperation. Therefore, in the following section,

we will not discuss the performance of PPO. Furthermore,

Fig. 7 shows the training loss values during the training

process. It is clear that the loss values of IADRL, GAIL, and

BC are significantly minimized after stmax = 105 steps are

completed.

Note that every training episode will be terminated if all

targets are reached before the maximum number of steps are

taken. Thus, the average steps to complete an episode varies

for each models. To compare the models and better present

the training process, the results in Figs. 5 and 7 are obtained

with different numbers of steps for the models.
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FIGURE 6. The number of steps taken before episodes are terminated for
the PPO model.

FIGURE 7. Training loss values of GAIL, BC, and IADRL methods.

2) PERFORMANCE ANALYSIS

To further prove the superiority of IADRL, we evaluate three

additional indicators: (i) number of collisions in one episode,

(ii) steps needed for completing one episode, and (iii) the

overall task completion rate. Fig. 8 describes the task com-

pletion rate, denoted by ℜtask , for IADRL, GAIL, and BC.

We defined the task completion rate as:

ℜtask =
Nfailed

Ntotal
, (11)

where Nfailed is the number of episodes that the UGV-UAV

coalitions fail to reach all targets, and Ntotal is the total

number of completed episodes. For our task setting, the key

point towards completing a mission is the complementary

cooperation between UGVs and UAVs. Fig. 8 shows that

the task completion rate ℜtask of IADRL quickly converges

to 1, which indicates that after it fails in the first several

episodes, IADRL quickly learns the complementary model

from τE and succeeds in all the subsequent episodes. The

three curves close to each other illustrates that IADRL has

FIGURE 8. Task completion rate, ℜtask , for GAIL, BC, and IADRL methods.

FIGURE 9. Number of steps needed to complete each training episode
using IADRL, GAIL, and BC methods.

a similar capability of learning a model from τE to that of

GAIL and BC, which are designed to directly replicate the

policy from demonstration data.

To evaluate the efficiency of tasking, we compare the

number of steps taken to reach all the targets with these three

schemes, and the results are presented in Fig. 9. Obviously,

IADRL achieves the given tasks within 600 steps for each

episode, which is far less than the number of steps GAIL and

BC take given the same mission. Furthermore, the number of

steps required for IADRL training is much more sustainable

than that of GAIL and BC, as it reaches the optimized policy

within fewer episodes (around 200 training episodes). Fur-

thermore, the BCmethod not only uses the most steps to com-

plete tasks, but even at the end of the training, no convincing

task completion strategies have been determined, as shown

by the large fluctuations at the tail end of the BC curve.

Collision avoidance is a key factor when deploying

UGV-UAV coalitions for many applications, and, therefore,

the number of collisions for all agents is a critical gauge for

measuring the quality of our work. According to Fig. 10,
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FIGURE 10. Total number of agent collisions with GAIL, BC, and IADRL
methods.

GAIL and BC perform poorly when avoiding collisions. To

better present results, we limited the range of the y-axis

to [0,1500]. In the early training stages of GAIL and BC,

there are many poor performance results, and some even

exceed 4000 times that of IADRL. After training conver-

gence, the number of collisions of IADRL for all agents in

each episode is reduced to very low levels compared to that

of GAIL and BC.

Additionally, we plotted the total number of collisions,

the number of UGV collisions, and the number of UAV

collisions in Fig. 12. As shown, UGVs experience the most

collisions, and the more vulnerable UAVs work safely in a

majority of cases. This is consistent with our initial design

that the penalty for UGV collision is only half of that of a

UAV’s, as established in Table 1. Note that in real deployment

scenarios, UGVs are more robust to collisions than UAVs,

as most UGVs are equipped with bumpers and bumper sen-

sors that help them protect against and avoid collision. Fur-

thermore, UGVs utilize collisions to detect and navigate

around the surrounding environment (e.g., iRobot Roomba

Vacuums).

After a further analysis, we find that the collisions are

mainly caused by the sparse observation of UGV and UAV,

as agents in IADRL are not able to detect obstacles and

other agents. Although this result is already acceptable for

many real-world robotic applications, we are confident that

the addition of more sensory information to our systemwould

allow for a much better performance on avoiding collisions.

To illustrate the path planning performance of each

scheme, we designed a simple test with two targets, one

located at (−5, −5, 5) and the other at (−5, −5, 1)1. The

planned paths for the three schemes obtained in five trials

are plotted in Fig. 12. An optimized strategy for the coalition

would have the lowest cost associated with reaching both

targets. The UAV should ride on the UGV as close to the

1Otherwise, the planned paths would be hard to plot and see.

FIGURE 11. A composition of the number of collisions by UAVs and UGVs
using the IADRL model, where the UGV collisions are dominant and UAV
collisions are minimal.

FIGURE 12. Planned paths for the UGV and UAV to reach two objects in
five trials as computed by IADRL, GAIL, and BC schemes.

first target as possible, and then fly to reach the first target.

The UGV should then continue on to reach the second target.

Due to the physical size differences of UAVs and UGVs,

we ploted their trajectories individually. For the trajectories

generated by IADRL, we can see that the initial parts of the

red lines (UAV) are parallel to the blue lines (UGV) because

the UGV carries the UAV during this interval. The five lines

for the UAV and UGV are for each of the five trials. Obvi-

ously, the path planning of our proposed algorithm enables

the UGV-UAV coalition to reach targets with an optimized

route at a greatly reduced cost than that of GAIL or BC

methods. Additionally, each IADRL planned route is almost

identical in every trial, further proof of its stable performance.

3) ROBUSTNESS IN DIFFERENT ENVIRONMENTS

The proposed IADRL scheme is robust to changes in the

environment and can be directly deployed in an environment

different from where it was trained. As such, we train the

model in an environment similar to Fig. 3 and deploy it in

a more complex environment shown in Fig. 13. We add more

obstacles, marked in red in Fig. 13, to simulate a warehouse

with higher obstacle density. The same UGV-UAV coalitions

with the well-trained IADRL model are deployed in this

new environment to complete the same missions. We then

compare the previous results with that in Fig. 3 using the three
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FIGURE 13. A complex simulation environment representing a
high-density warehouse.

FIGURE 14. Number of collisions in the simple and complex
environments.

measurements introduced in the section IV-B2. To guarantee

the credibility of comparison results, all parameters, includ-

ing reward settings, materials, and shape of agents, are kept

identical in these two environments. In the rest of this section,

we will refer to the results of experiments in Fig. 13 as the

‘‘Complex Environment,’’ whereas the result in Fig. 3 will be

referred to as the ‘‘Simple Environment.’’

Fig. 14 depicts the number of collisions during the testing

process. Even challenged by higher environmental complex-

ity, the number of collisions for each episode is only slightly

increased due to the increased complexity of the environ-

ment. We also note that there is only a slight decrease in the

accumulated reward values in the complex environment as

compared to the simple environment, as illustrated in Fig. 15.

Additionally, we investigate the amount of steps needed to

complete the tasks in each episode. The results displayed

in Fig. 16 show that it takes about 200 more steps for the

coalitions to accomplish all tasks in the complex environ-

ment. These observations meet our expectations, as coalitions

require more steps to bypass extra obstacles in the complex

environment, and, thus, have a higher step cost and a decrease

in accumulated rewards.

FIGURE 15. Accumulated rewards in the simple and complex
environments.

FIGURE 16. Number of steps needed to complete one episode in the
simple and complex environments.

V. CONCLUSIONS

This paper presented IADRL, a novel method that enables

UGVs and UAVs to form a coalition for the complementary

accomplishment of tasks that neither the UAV or UGV could

not complete independently. IADRL learns the complemen-

tary behavior features of the UGV-UAV coalition from a

demonstration dataset that can be readily collected from some

simple and imperfect settings alike. It also optimizes the

strategy to achieve given goals with minimum overall costs

required to complete task in dynamic environments. We also

extended the IADRL model to facilitate the cooperation of

multiple UGV-UAV coalitions deployed together for complex

tasks. The experimental results proved that the proposed

IADRL approach was effective for solving intricate tasks

requiring heterogeneous agents to complement each other in

dynamic environments.
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