
����������
�������

Citation: Zhai, R.; Zou, J.; He, Y.;

Meng, L. IAGC: Interactive Attention

Graph Convolution Network for

Semantic Segmentation of Point

Clouds in Building Indoor

Environment. ISPRS Int. J. Geo-Inf.

2022, 11, 181. https://doi.org/

10.3390/ijgi11030181

Academic Editor: Wolfgang Kainz

Received: 11 January 2022

Accepted: 6 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

IAGC: Interactive Attention Graph Convolution Network for
Semantic Segmentation of Point Clouds in Building
Indoor Environment
Ruoming Zhai 1,2 , Jingui Zou 1,*, Yifeng He 1,2 and Liyuan Meng 3

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China;
ruomingzhai@whu.edu.cn (R.Z.); yifeng.he@tum.de (Y.H.)

2 Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541004, China
3 Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100038, China; lymeng@whu.edu.cn
* Correspondence: jgzou@sgg.whu.edu.cn; Tel.: +86-1338-757-1063

Abstract: Point-based networks have been widely used in the semantic segmentation of point clouds
owing to the powerful 3D convolution neural network (CNN) baseline. Most of the current methods
resort to intermediate regular representations for reorganizing the structure of point clouds for 3D
CNN networks, but they may neglect the inherent contextual information. In our work, we focus
on capturing discriminative features with the interactive attention mechanism and propose a novel
method consisting of the regional simplified dual attention network and global graph convolution
network. Firstly, we cluster homogeneous points into superpoints and construct a superpoint graph
to effectively reduce the computation complexity and greatly maintain spatial topological relations
among superpoints. Secondly, we integrate cross-position attention and cross-channel attention into a
single head attention module and design a novel interactive attention gating (IAG)-based multilayer
perceptron (MLP) network (IAG–MLP), which is utilized for the expansion of the receptive field and
augmentation of discriminative features in local embeddings. Afterwards, the combination of stacked
IAG–MLP blocks and the global graph convolution network, called IAGC, is proposed to learn
high-dimensional local features in superpoints and progressively update these local embeddings
with the recurrent neural network (RNN) network. Our proposed framework is evaluated on three
indoor open benchmarks, and the 6-fold cross-validation results of the S3DIS dataset show that
the local IAG–MLP network brings about 1% and 6.1% improvement in overall accuracy (OA) and
mean class intersection-over-union (mIoU), respectively, compared with the PointNet local network.
Furthermore, our IAGC network outperforms other CNN-based approaches in the ScanNet V2
dataset by at least 7.9% in mIoU. The experimental results indicate that the proposed method can
better capture contextual information and achieve competitive overall performance in the semantic
segmentation task.

Keywords: deep learning; point cloud; semantic segmentation; self-attention mechanism; graph
convolution

1. Introduction

In the reconstruction of indoor environments, laser scanning point clouds have been
generally used, providing high-precision and rich spatial information for the next Building
Information Modeling (BIM) [1]. Nonetheless, effective semantic segmentation should be
conducted before retrieving geometric entities. It can boost better scene understanding and
high-accuracy, entity-based modeling [2,3].

In the past few years, segmenting operations have mainly focused on designing hand-
crafted features [4–6] using empirical knowledge about spatial geometrics or symmetry.
They are relatively limited to specific scenarios with particular geometric primitives. How-
ever, composite indoor entities, such as tables, chairs, bookshelves, etc., show irregular
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geometric structures or different physical information and are difficult to semantically
segment by handcrafted features. In addition, some nonvisual latent information hidden
in high-level features may be neglected, making it difficult to make a distinction between
different categories of objects with marginal differences. Moreover, the complex layout of
indoor environments leads to the occlusion and incompleteness of point clouds. It may
impede artificial feature design and decrease the accuracy of segmentation. Meanwhile,
with the remarkable achievements of deep learning techniques in the fields of natural
language processing [7,8] and computer vision [9,10], much heuristic research attempted to
directly apply the already matured 2D convolution neural network (CNN) to point clouds
to automatically extract high-dimension features for shape classification, segmentation,
and object detection and tracking [11,12]. Due to the irregular, uneven, and unstructured
features of point clouds, most methods tended to reorganize the point cloud into regular
data structures as the intermediate representation for the application of 2D CNN. This data
projection, on the other hand, results in redundant, time-consuming conversion procedures
and a considerable amount of storage space.

Recently, PointNet [13], a pioneering work, carried out pointwise feature extraction
without transformation of input data. It comprises several shared permutation invariant
operations, multilayer perceptron (MLP) layers, and a max-pooling layer. However, the
efficient and concise representation of pointwise feature learning cannot capture local
structures in more complicated scenes. An efficient and robust network, PointNet++ [14],
is proposed to capture geometric structures from multiple scales by recursively applying
PointNet to hierarchical structures. The hierarchical structure consists of a series of set
abstraction levels. At each level, it implements the sampling layer and the grouping layer
to randomly select points from input points and construct their regional neighborhoods,
followed by a PointNet layer to learn the local geometric features. By stacking these set
abstraction levels, the local geometric features are aggregated layer by layer, and finally
the global features are progressively extracted to represent the whole complex scene. Then,
the application of PointNet++ inspired many subsequent state-of-the-art networks. They
perform pointwise operations on local neighborhoods while also hierarchically aggregating
global features across the entire large-scale point cloud. Nonetheless, unlike the natural
spatial connection between the regular adjacent pixels of images, the potential information
of spatial topological relationships between different points cannot be fully learned among
the unordered neighboring points. As a result, graph-based networks [15–18] have been
proposed to treat each point as a vertex within a graph structure and update its feature
based on contextual information between connected edges and vertexes. However, building
a global graph structure among massive point clouds complicates the segmentation process.

Meanwhile, a great variety of Transformer networks [19] originally designed for ma-
chine translation have shown a greater capacity for modeling contextual dependencies than
CNNs and recurrent neural networks (RNNs) by explicitly relating different positions of a
sequence. Many Transformer variants have expanded their applications to the computer vi-
sion field. However, in the case of point clouds, the full attention mechanism demonstrates
its inefficiency in indiscriminately calculating attention scores among massive points.

Overall, the current limitations of CNN-based methods lie in the following directions:

1. The high-dimensional features based on regional points, which can distinguish dif-
ferent objects with similar features but distinctive positions, are not fully utilized in
designed convolution kernels.

2. The contextual information derived from the fully-connected graph structure for all
points not only reduces the efficiency but adversely impacts the generalization of
global interaction.

To balance the requirements for both rich feature information and high efficiency, we
propose a novel interactive-attention-based graph convolution (IAGC) network to selec-
tively pay attention to the notable features in each homogeneous clustering pointset, called
superpoints [20]. And then, according to the global graph constructed by the superpoints,
we progressively update the embedding by attaching features of connected superpoints to
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the input central superpoint. Concretely, inspired by the idea of gMLPs [21], a heuristic and
lightweight interactive-attention gMLP architecture (IAG–MLP) is designed to dynamically
assign proper attentional weights to parts of feature channels for local feature learning
on superpoints, which can be more effective than Transformers. Furthermore, by globally
integrating features from other superpoints, a simplified variation of the Long-Short-Term
Memory (LSTM) architecture [22], known as the Gated Recurrent Unit (GRU) [23], can be
implemented on superpoint-level semantic inference.

Thus, the main contributions of the proposed algorithm are summarized as follows:

1. A dual cross-attention Transformer variant, called IAG–MLP, is proposed to be directly
oriented to superpoints that are reorganized from raw point clouds into geometry-
based and color-based homogeneous segments, and it will enhance the capability of
capturing high-dimensional contextual dependencies in local embeddings by learning
both cross-position attention and cross-channel attention.

2. By propagating contextual messages via nearby superpoints and related super-edges,
an end-to-end graph network is built to gradually update the feature embeddings of
superpoints, finally translating superpoint-level semantic inference into point-level
fine-grained inference.

3. We present theoretical and empirical analyses of the proposed IAGC architecture,
as well as qualitative and quantitative experiments in three indoor benchmarks that
indicate its effectiveness and remarkable performance.

The remainder of the paper is organized as follows. Section 2 gives a brief review of
the related work. Section 3 describes the details of the proposed semantic segmentation
method. Section 4 provides the qualitative and quantitative experimental results to validate
the proposed segmentation approach, and Section 5 shows several concluding remarks.

2. Related Work

The classic approach to semantically label large-scale point clouds is to reorganize
point clouds into a regular structure for a compact convolution function. Meanwhile, many
aggregation functions based on graph structure are currently proposed for capturing the
underlying connections between different points. This section mainly reviews semantic
segmentation methods for point clouds, the data structure of point clouds fed to the deep
learning-based networks, the prevailing Transformer variants, and graph convolutions for
contextual understanding.

2.1. Semantic Segmentation for Point Clouds

In terms of semantic segmentation for better indoor scene understanding, they can
be divided into model-driven, knowledge-driven, and data-driven approaches. Model-
driven approaches first generate potential models of geometric primitives (e.g., lines,
planes, cubes, and cylinders), and then find the largest cluster that best fits the geometric
guesses [24]. They can iteratively implement the hypothesis and verification procedures to
find multiple primitives, but are locally optimal in complex indoor environments due to
the poor segmentation performance on unstructured geometries.

In order to fulfill global optimization solutions for different objects, the knowledge-
driven, namely ontology-driven, approaches boost the optimal selection of algorithms for
particular geometries by building an ontology integrating data characteristics, potential
algorithms, and explicit prior knowledge. Specifically, the external information drives the
ontology model to apply different algorithms according to different point characteristics,
and the segmentation results reversely increase the feature gap among different categories
in the initial acquisition process [25,26]. Therefore, the ontology serves as a meta diagram to
share and reuse external knowledge throughout the whole workflow and finally contributes
to global optimization.

On the other hand, the current state-of-the-art data-driven approaches focus on de-
signing reasonable deep learning networks and improving the quality of training data.
Theoretically, the characteristics of point clouds can be implicitly mapped to multilayer
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neural networks without external knowledge interference and be capable of segmenting
different categories of objects, especially for composite entities and outliers.

2.2. Deep Learning Networks for Semantic Segmentation

Existing deep learning methods for semantic segmentation can be categorized into
two aspects according to the granularity of point clouds on which the feature extraction
is performed: projection-based networks and point-based networks. Most projected-
based networks commonly apply convolution operations, which have achieved excellent
performance on regular and compact 2D images or text sequences, to the unordered and
unstructured point clouds by projecting them into intermediate regular representations,
such as the voxel-based representation [27], the Multiview-based representation [28], or
the higher dimensional lattice representation [29]. Normally, these methods not only result
in unnecessary memory and computational consumption but also disrupt the natural
spatial association among point clouds. In contrast, pointwise methods enable directly
learning features on raw point clouds without introducing extra data transformation. Most
of the later networks improved their capabilities in modeling local structures with the
point-based bedrock network, PointNet. For instance, PointNet++ [14] exploited Furthest
Point Sampling (FPS) to hierarchically downsample point clouds and iteratively extract
features from PointNet in each sampling layer. In order to describe large-scale scenes
from multi-resolutions, MSSCN [30] concatenated point features with different densities,
PointSIFT [31] paid attention to encoding both multi-orientations and multi-scales for local
details, and PointCNN [32] employed a fully convolutional point network with a series
of abstraction layers, feature learners at different scales, and a merging layer. When the
random sampling strategy in large-scale scenes is time-consuming since it works on the
original points, the use of supervoxels [33], which were inspired by superpixels in 2D
image processing, greatly cuts down the number of points and provides a more natural
and compact representation for local operations. Nevertheless, the fixed resolution of
supervoxels may lead to inaccurate segmentation in marginal areas of multiple objects
since their local neighborhood characterizes different classes of points, and it is unnecessary
with respect to objects with large areas, such as walls, ceilings or floors. At the same
time, according to global energy optimization, the superpoint [20] was constructed by
geometrically and even physically partitioning the point clouds without predefining the
number of segments, which minimizes unnecessary segmentation of objects with large
areas but maintains topological relationships among superpoints by building a global
graph. Later, the construction of superpoints was improved by building a label consistency
loss between true labels of points and pseudo labels of the superpoints in an end-to-end
network [34]. Furthermore, the cascaded nonlocal network [35] adopted the superpoints
as basic units and built a nonlocal operation with three granularity levels, including
neighborhood-level, superpoint-level, and global-level. As a result, the contextualization
among different supepoints was hierarchically aggregated through the stacking of a number
of nonlocal modules.

2.3. Attentive-Based Transformer Networks

The Transformer architecture widely adopted in natural language processing focuses
on building contextual relationships in the encoder–decoder sequential structure, which
normally consists of several stacked multihead self-attention modules, a feed-forward
network (FFN), and a residual connection in each encoder or decoder block. As a crucial
element of Transformer, self-attention aims at generating dynamical weights from pair-
wise relations of inputs and learning context-dependent representations for each token in
a sequence.

Since the revolutionary Transformer network has made impressive progress in the
computer vision field, such as the recent Vision Transformer (ViT) [36], it is inevitable to
apply it to deep learning on point clouds. Nonetheless, when it comes to larger scene-level
datasets, the Transformer structure for 3D point clouds is rather expensive as the compu-
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tation cost grows quadratically with the input size. To address these limitations, several
derivative models learn local contextual information utilizing the crucial self-attention
mechanism and build long-range dependencies in the 3D point cloud space. For instance,
instead of a simple MLP layer or max-pooling layer in PointNet, PointTransformer [37]
employed vector-based self-attention coupled with relation subtraction and position encod-
ing addition to hierarchically transit down in feature encoding and transit up in feature
decoding. PointCloudTansformer (PCT) [38] used an offset-attention transformer with only
encoded modules to improve feature learning for shape classification and part segmen-
tation. The Pointformer [39] is proposed to model interactions among points in the local
region with multiscale Local Transformers (LT), and the RandLA-Net [40] executed self-
attention on random sampling points with high efficiency. The research in [41] exploited
gated fusion in regional structures and spatial-wise and channel-wise attention in global
structures. In general, performing the attention mechanism in large-scale scenes may lead
to a considerable computational workload for pairwise attentional weights so integrating
self-attention among regional structures and long-range dependencies in a global graph
can be more effective.

2.4. Graph Convolutions

Due to its increasingly prominent capability in processing unstructured data, the
Graph Convolution Network (GCN) [42–44] is undoubtedly employed in processing point
clouds and is generally classified into two groups: the spectral-based method and the
spatial-based method. Spectral-based approaches perform convolution by converting
vertex representations into the spectral domain with the Fourier Transformation or its
extensions [45,46]. In contrast, spatial-based approaches directly perform convolution
based on graph topology. For example, PyramNet [47] formulated the covariance matrix
within a directed acyclic graph to explore regional connections among points and proposed
a Pyramid Attention Network to extract features with different semantic intensities. In
addition, Graph Attention Convolution (GAC) [18] defined the shape of the convolution
kernel by calculating attention weights among neighboring points in a connected graph
to underpin the importance of relevant parts. In order to expand receptive fields, the
MS-RRFSegNet [48] conducted supervoxel-level feature segmentation to obtain more
descriptive contexts. However, these networks mentioned above constructed local graphs
based on the regional distribution of neighboring points and inherently capture regional
contextual information.

3. Methodology

In this paper, we propose a novel graph network for semantic segmentation for
large-scale point clouds in indoor scenes. To be specific, we first introduce superpoints
obtained from the oversegmentation of point clouds and then demonstrate our stacked
IAG–MLP module for embedding learning of superpoint-level representation. Finally, with
the recurrent convolution module, a global directed graph is presented to iteratively update
previous feature embeddings.

3.1. Oversegmented Superpoint Generation

Considering the computation consumption in processing millions of points in a large-
scale indoor scene, the point clouds are oversegmented into geometrically and physically
homogeneous pointsets, i.e., superpoints can be viewed as basic operation units for deep
learning networks. In this way, the number of superpoints in a scene and the number
of points contained in a superpoint would not be defined in advance, which ensures the
minimum amount and the maximum structural completion of simple segments for local
feature learning. In this case, we assume points from the same superpoint should present
similar features and consequently share the same class label. According to the Princi-
pal Component Analysis (PCA) [49] algorithm, shape features calculated on the optimal
K-nearest neighborhood adjacency graph can be retrieved by constructing a covariance ma-
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trix and decomposing its eigenvalues, which are positive and ordered, i.e., 0 <λ1 < λ2 < λ3.
Then, the PCA describes three principal directions, which reveal the volumetric, planar,
and linear characteristics of the neighborhood.

mS = λ1
λ3

mP = λ2−λ1
λ3

mL = λ3−λ2
λ3

(1)

mV =

3
∑

j=1
λj|[u2]|

‖
3
∑

j=1

3
∑

i=1
λj·|[u2]|‖

(2)

The scattering feature mS refers to the isotropic elliptical shape of the neighborhood,
the planarity mP defines the average distance all around the center of gravity, and the
linearity mL describes how elongated the adjacency is. In addition, the verticality mV can
be also introduced for discriminating objects in different vertical distribution, where u1, u2,
u3 are the three eigenvectors associated with λ1, λ2, λ3, respectively.

In order to cluster homogeneous points with similar features, the geometric features
mentioned above and physical features such as color could all be taken into consideration
for the generalized minimal partition problem, which is studied by a piecewise constant
approximation of the global energy function [20]:

g∗ = arg min
g∈R7×V

∑i∈V ‖gi − fi‖
2
+ µ∑(i,j)∈E δ(gi − gj) (3)

For each point i ∈ V, the shape of its local neighborhood is characterized by the
combined features f ∈ R7×V , which contains 4 geometrical features and 3 physical fea-
tures. The first part of this energy function is the fidelity formulation, ensuring that the
constant segments of g∗ correspond to the homogeneous value of f . The second part is the
regularized function that adds a constraint for each edge connecting two segments with
different values. In addition, δ(· 6= 0) refers to the Iverson bracket and the regularization
strength characterizes the coarseness of the resulting partition as well as the granularity of
the superpoint graph, i.e., the number of total segments. In fact, although the optimization
problem is a non-convex and noncontinuous function, which cannot be straightforwardly
resolved, the l0-cut pursuit algorithm [50] can exploit graph cuts to recursively split the
level-sets of a piecewise-constant candidate solution. In practice, as shown in Figure 1, the
inferring segments corresponding to superpoints are partitioned into different sizes and
shapes owing to their geometric and physical features.

Finally, as long as the point clouds are reconstructed by the superpoint graph with
superpoints along with their connected edges, we concatenate the spatial position features
(spatial position, normalized position, elevation), geometric features (scattering, planarity,
linearity, verticality), and color features (RGB values) of superpoints as input features for
our proposed local feature extraction network. In particular, the elevation is introduced
for discriminating objects at different heights relative to the indoor floor, which is defined
as follows:

E =
∑ z

zmax − zmin
− 0.5 (4)

3.2. IAG–MLP

Local feature extraction is crucial for the later global graphical aggregation operation.
However, automatically capturing local structural features based on the neighboring region
is still challenging. In fact, most of the current state-of-the-art networks resort to the simple
and concise PointNet for implementing convolution functions with permutation invariance
of points in the local region. Nonetheless, the final max-pooling operation in PointNet
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serves as the “max attention” mechanism that only considers the most representative
features such as the contours of pointsets in the feature space and ignores the structural
correlations between the remaining interior points, which may be contributed differently
to the feature learning.
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To deal with the neglected important information in the local convolution operation
induced by the PointNet, the Transformer with a self-attention mechanism that pays
attention to the region with rich information can be adopted as a novel feature learning
algorithm. We first review the self-attention mechanism applied by the most famous vanilla
Transformer [19] (see Figure 2) in the machine translation field. Given an input feature,
self-attention linearly projects the input feature into a query matrix Q, a key matrix K, and
a value matrix V, which can be formulated as:

A(Q, K, V) = so f tmax(
QKT
√

dk
)V (5)

where A is the attention matrix indicating the pairwise affinity among tokens of a sequence
and as a scaling factor, dk is the dimension of matrix K.

However, when it applies to point cloud processing, due to its high computational
burden with dot-product attention calculation among points in each encoder or decoder
layer, it is infeasible to directly implement the stacked encoder-decoder mode on massive
point clouds. Furthermore, since the high dimension is indispensable to better high-
level representation, separately using a linear combination of pairwise values as self-
attentional weights to ameliorate input features in each feature channel may augment
memory consumption in the high dimension. Therefore, inspired by both the vanilla
Transformer and gMLPs [21], we propose a novel IAG–MLP network directly oriented to
superpoints, which can automatically impact and encode the embedding representation of
each superpoint with a lightweight interactive-attention gating architecture.

The overall scheme is shown in Figure 3. Given a superpoint together with per-
point features (e.g., raw RGB, spatial coordinates, normalized location, elevation, and
geometric features mentioned above), this local encoding unit first samples N internal
points and embeds them from these handcrafted features into high-dimensional features,
such that cross-attention can be calculated by two split high-dimensional features for
complex local structure learning. Afterward, our proposed IAG block captures spatial



ISPRS Int. J. Geo-Inf. 2022, 11, 181 8 of 24

interactions with the shared memory unit for cross-position attention and spreads channel
communication in the gating operation for cross-channel attention. In practice, unlike the
self-attention mechanism, which has a high computational complexity O(n2d), the cross-
attention mechanism allows learnable spatial transformation with a lower computational
complexity O( n2d

2 ), where n denotes the number of regional points and d denotes the
dimension of the input feature.
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To be specific, this IAG block includes the following steps:

(1) Contraction Operation. To enable cross-channel interaction, it is necessary to contain
a contraction operation over the entire feature dimension. The succinct way is by
applying a linear projection coupled with an anterior normalization function and a
posterior activation function, which can be formulated as:

fW,b(X) = σ(W(norm(X)) + b) (6)

where the input feature X is normalized in a batchnorm way [51], which is necessary
for the learning to converge. Then a linear projection is implemented by the matrix
multiplication of W ∈ R2d×2d for which the size of 2d is the projected feature dimen-
sions. In addition, b and σ refer to a bias, which can either be a matrix or a scalar and
an activation function such as RELU [52].
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unit and operate the cross-channel attention on the feature channels, constructed as a variant of the
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To compute cross-attention between channel dimensions effectively, we split fW,b(X)
into two independent components, f1(X) and f2(X), along the feature channel and im-
plemented element-wise spatial interaction, which is known as the gating function and
has been demonstrated to be feasible in Gated Linear Units (GLUs) [53,54]. In fact, we
implement cross-position attention and cross-channel attention in f1(X) and f2(X), re-
spectively, and aggregate them in the gating function to alleviate the vanishing gradient
problem. To be noticed, we do not employ the multihead structure for attention calculation
as the dimension of point clouds is rather small compared with the dimension of text
sequences, and it is unnecessary to split the features in the local embedding network for
superpoint-level deep learning.

(2) Cross-position Attention. Self-attention is normally treated as a linear projection
algorithm utilizing self-values of data samples to ameliorate their own features,
but this N × N self-attention matrix can only explain the interrelationship among
points in the same training dataset, and it is not clear whether there is a specific
correlation among data samples in a scene. Additionally, despite the small magnitude
of parameters involved in the self-attention module, pairwise attention calculation
cannot be ignored. Thus, we designed a spatial interactive attention unit, inspired
by the external attention network [55], to calculate cross-position attention between
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high-dimensional features and an external memory unit, which is independent of the
input feature and shares information across the entire training dataset. Specifically,
we construct the spatial interaction unit with the paradigmatic structure of the self-
attention layer of the vanilla Transformer and initially normalize it in a similar way
to PCT [38] with the double normalization method, which empirically improves the
stability of local embedding networks.

x′′i,j = so f tmax(x′i,j) =
exp(x′

i,j
)

∑
n

exp(x′
i,j
)

(7)

xi,j =
x′′i,j

∑
n

x′′i,j
(8)

Then, according to the vanilla Transformer structure, the external memory unit
M_key ∈ RN×N serving on the key matrix K can gradually record the contextual in-
formation among regional points in a matrix multiplication operation ⊗ by multiplying
with the double normalized f1(X1) ∈ RN×d referring to the query matrix Q.

F = Norm( f1(X))⊗M_KeyT (9)

(3) Cross-channel Attention. Unlike the self-attention weights derived from pairwise
attention among points, the cross-channel attention unit can be viewed as a cross-
attention mechanism to modulate individual point representation using spatial signal.
Specifically, the cross-channel attention map is inferred from the dot production of
f2(X) and the cross-position attentional weight matrix F:

A = F� f2(X) (10)

The � denotes the element-wise multiplication, which rapidly tunes the magnitude
of each element in X in a feature pairwise way. Actually, this is a gating mechanism,
i.e., the dot product operation of the output of the convolutional layer without nonlinear
transformation and the output of the convolutional layer with nonlinear transformation in
our IAG–MLP unit, but both cross-position and cross-channel attention are computed and
fused in this gating mechanism in our IAG–MLP unit.

Furthermore, in order to employ a residual connection between the input feature
and the attention map, we project the attention map to a 2d dimensions and add it to the
input feature.

(4) Residual Connection Block. Theoretically, a deep learning network with more vari-
ables should be better able to do challenging tasks, but it is proven that simply
deepening the layers makes it harder to train the network, which is called the degen-
eration problem. Hence, considering the degeneration problem of a deep learning
network with increasing layers as it stacks more IAG–MLP modules, the residual
connection block is put forward to create a concise shortcut where the projected input
is put into the IAG block and passed through several layers to be finally integrated
with the projected attentional map.

Due to the requirement for local feature representation, the max-pooling operation is
carried out to form a feature vector to aggregate the relatively global feature embedding
of a superpoint from sampled points. Eventually, we update the input features based
on the spatial dimension rather than the channel dimension, merely with several simple
MLP layers for higher dimension feature expression and stacked IAG blocks for enhanced
feature signal.
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3.3. Interactive Attention Graph Convolution Network (IAGC)

For a large-scale indoor scene, the spatial topological relations between different types
of objects can be utilized as object-level contextual information to globally ameliorate the
embedding representation. In order to improve the performance of semantic segmentation
with segment-level contextualization aggregation, the graph convolution derived from the
Edge-Condition Convolution (ECC) [56] would fuse superpoint-level embedding features
and contextual information in the global graph for progressively updating semantic seg-
mentation inference. Hence, in this work, we propose an end-to-end superpoint-based
semantic segmentation network that firstly clusters geometrically and physically homo-
geneous points as intermediate representations as well as superpoints for extracting local
features within the IAG–MLP local network, and then constructs the global SuperPoint
Graph (SPG) for hierarchically and globally updating embedding representations with
connected edges.

Specifically, to further explain the whole architecture of our proposed IAGC, Figure 4
illustrates the semantic segmentation inference from a raw point cloud scene to the
superpoint-based graph, G = (V, E), where V denotes the superpoint set and E is the
oriented attributed edge set. Once the local feature is embedded into superpoints, the ECC
iteratively conducts convolution operations on each superpoint without processing on the
entire graph structure.
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Figure 4. Architecture of the proposed interactive-attention-based graph convolution (IAGC) network.
We perform the clustering and oversegmenting on raw point clouds for superpoint set for local feature
extraction with IAG–MLP, which individually embeds each superpoint with N downsampling points.
According to the connected vertexes and edges in the global graph, the embeddings are hierarchically
finetuned in the Gated Recurrent Unit (GRU) and semantically labeled.

For instance, for a superpoint Vi and its connected superpoint Vj, assume that Ej
i is

the connected edge between superpoints i and j with directional attributes regarding the
ratio of geometric features, the ratio of point count, and the spatial relations of centroids.
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Afterward, the global contextual information of each vertex in the SPG can be formulated
by the following mean aggregation function as a global message:

m =
1∣∣Nj
∣∣ ∑

j∈Nj

(W j
i ej

i) · vj (11)

where W refers to dynamically generated parameters of the Dynamical Filter Network [57],
which essentially is a MLP layer without bias, such that the feature dimension of the
edge features is the same as the feature dimension of the superpoint embedding v, which
facilitates the element-wise multiplication (·). In addition, 1

Nj
normalizes and averages the

contributions of other superpoints to the superpoint in the connected global graph.
Next, due to the capability of handling sequential input for contextual information

processing, the GRU, which possesses fewer parameters but is as effective as the LSTM, is
employed to construct and iteratively update a hidden state integrated by the embedding
representation and the global contextual message propagating along the connected edges.
In this case, we define the hidden state hi as initialized with embedding vi and conduct the
global aggregation between the projected h and the global message m by an element-wise
multiplication:

h0
i = v, xt

i = σ
(
Wght

i + bg
)
�mt

i (12)

According to the gating mechanism in the GRU module, we first linearly project the
current input xt

i and the previous hidden state ht−1
i into a higher dimensional embedding

xt
i and the hidden state h

t−1
i in T = t iterations.

xt
i = Wxxt

i + bx, h
t−1
i = Whht−1

i + bh (13)

As shown in Figure 5, xt
i and ht−1

i are concatenated by vector addition and passed
into a sigmoid function to squish their values between 0 and 1, where 0 means irrelevant
features to throw away and 1 means useful features to keep. Thus, this filtering operation
contributes to the update gate ui and reset gate ri.

ut
i = σ(xt

i + h
t−1
i ), rt

i = σ(xt
i + h

t−1
i ) (14)

where ut
i throws away irrelevant features and adds the new information, and rt

i decided
how much past features to forget in the later operation. Then, a new hidden state candidate
→
h

t

i to emphasize strongly correlated dimensions and ignore weakly correlated dimensions

is built by exploiting the tanh function to adjust the concatenated values of rt
i , h

t−1
i , and xt

i
between −1 and 1.

→
h

t

i = tanh
(

rt
i � h

t−1
i + xt

i

)
(15)

Subsequently, the updating hidden state ht
i for current iteration can be constructed by

two components as followed:

ht
i =

(
1− ut

i
)
�
→
h

t

i + ut
i � h

t−1
i (16)

where
(
1− ut

i
)
�
→
h

t

i decides the information flow of the current hidden state ht
i , and

ut
i � h

t−1
i decides the previous one h

t−1
i through the update gate ut

i . Eventually, the global
contextualization is incorporated into the high-dimensional features, which are concate-
nated by the long sequences of hidden states.

y = W(h0
i , h1

i · · · ht
i) (17)
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4. Experiments

In this section, we first introduce the details of the experimental setup. Secondly,
we conduct ablation studies to validate the efficiency of individual components of our
proposed IAGC on three 3D indoor datasets, including the SceneNN dataset, Stanford
Large-Scale 3D Indoor Spaces (S3DIS) dataset, and ScanNet (V2) dataset. Lastly, we
compare our network with several state-of-the-art networks, and end up with qualitative
and quantitative evaluations of their performances.

4.1. Datasets

1. S3DIS [58]

The S3DIS dataset is collected in 6 large-scale indoor areas originating from 3 different
office buildings, covering over 6000 m2 with 271 rooms. Each point with geometric and
physical attributes such as XYZ spatial coordinates and RGB features is categorized into
13 semantic classes. With respect to the dataset deployment and configuration, most state-
of-the-art methods test their models on Area 5 since it comes from a different building but
generally show poor performance in several categories, such as beam, column, and board,
whose features are different from those of corresponding objects in other areas. Hence, in
order to comprehensively verify our model, we provide the Area-4-fold results and the
6-fold cross-validation results.

2. ScanNet (V2) [59]

The ScanNet contains 1613 indoor scenes derived from RGB-D reconstruction, and its
points are annotated into 20 classes, where 1513 scenes are generally divided into 1201 and
312 for training and validation, respectively, and the remaining 100 scenes without labeling
are viewed as testing datasets submitted in its open benchmark challenge competition for
verification. And yet, we split the validation dataset into two datasets for validating and
testing in an ablation study to investigate the optimal voxelization of raw point clouds and
the proper number of superpoints for graph aggregation.

3. SceneNN [60]

The SceneNN dataset is a scene mesh dataset consisting of 76 indoor rooms for se-
mantic and instance segmentation. In particular, their semantic labeling complies with
the NYU-D v2 [61] category standard with 40 semantic classes that range from building
structural entities, such as walls, floors, and ceilings, to various furniture, but approxi-
mately 8 categories are rarely attached to the points, which inherently affect the overall
performance of the whole categories. However, the diversity of semantic classes can verify
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the generalization of our model. Therefore, in our work, we apply them to our ablation
experiments to explore both the effectiveness and generalization of our models by splitting
them into three areas, which approximately follows the 51/15/10 room split for training,
validating, and testing.

4.2. Implementation Details

All designed experiments are implemented with Pytorch on a high-performance server
equipped with a 12-GB NVIDIA Tesla K80 GPU. Since our designed IAGC model aims
at semantic segmentation in building interior scenarios with massive 3D points, in order
to speed up the computation efficiency and improve segmenting performance during
the training process, we preprocess the point clouds by 0.03 m interval voxelization for
S3DIS and SceneNN, and especially 0.02 m for ScanNet due to its intricate environment
and various objects. In addition, for each superpoint, 128 points are subsampled for
spatial distribution learning in a local network, and at most 512 superpoints are randomly
selected for globally contextualization iterations in graph convolutions. We use the ADAM
optimizer during the training process, with an initial rate of 0.01 and a decay rate of 0.7.
Also, since we train the whole superpoint graph of a scene at a time, the batch size is reduced
to 2 for S3DIS, SceneNN, and ScanNet, respectively. Additionally, evaluation metrics such
as mean class intersection-over-union (mIoU), mean class accuracy (mAcc), and overall
accuracy (OA) are expressed in proportional terms and are employed to quantitatively
evaluate segmentation results.

In this case, we employ the preprocessed superpoints as our basic unit for deep
learning such that geometrically and physically similar points belonging to the same
category can be clustered into one superpoint, which boosts the embedding learning
with more homogeneous points. Specifically, we construct our IAGC method with the
architecture illustrated in Figure 6.
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4.3. Ablation Studies and Analyses

We conducted several ablation studies to validate the effectiveness of our proposed
network by replacing the local embedding network and global aggregation work with the
counterparts of current state-of-the-art networks and adjusting the amount of IAG blocks
stacked in the IAG–MLP network. Moreover, we adjusted the granularity of the superpoint
graph by preprocessing point clouds in different subsampling intervals and predefining
the maximum number of superpoints for graph convolution to investigate the optimal
graphical structure for deep learning.
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4.3.1. Ablation Test of Local Embedding Function

To demonstrate the effectiveness of our local feature extraction network, we trained the
models by stacking 1, 2, 3, 4, 5 IAG blocks in IAG–MLP, namely 1-IAG–MLP, 2-IAG–MLP,
3-IAG–MLP, 4-IAG–MLP, and 5-IAG–MLP. Then we compared their performance with that
of two different networks, including the prevailing convolution network PointNet and the
traditional self-attention network vanilla Transformer.

In addition, we adjusted the PointNet to a lightweight architecture adopted in SPG [16],
which consists of a Transformer Network (i.e., T-Net, which is totally different from the
vanilla Transformer Network), several sequential MLPs with a final 256-dimension feature,
and a final max-pool layer with a 32-dimension feature vector. In the vanilla Transformer
network, we used position encodings concatenated with other geometric features instead
of adding them into input features.

Based on the corresponding numerical results in Table 1 (left panel), we can see that
although PointNet achieved the best OA with 64.13%, it presents the lowest IoU compared
with other networks in terms of local embedding blocks. Theoretically, large objects such
as walls or floors commonly take up a great proportion of the building’s interior, and the
OA metric is generally dominated by large objects, containing a large quantity of points,
while the mIoU is closely related to all categories. Consequently, we could conclude that
dual attention-based networks are more sensitive to small targets than PointNet because
most of the stacked IAG–MLP networks show better performance than the other two
methods in mIoU, indicating better capability to distinguish multiple classes, especially
suitable for indoor environments with complex architectural structures and distinctive
equipment. Specifically, Figure 7a presents the semantic segmentation metrics curves in
different stacked IAG–MLP networks, and they indicate that as the stacked IAG block
increments, the IAG–MLP with fewer IAG blocks induced underfitting while the IAG–MLP
with more IAG blocks shows overfitting, which contributes to the optimal 2-IAG–MLP
outperforming the other networks in mIoU. On the other hand, the traditional vanilla
Transformer underperformed stacked IAG–MLPs in both OA and mIoU in that the cross-
attention utilized in IAG–MLP captures high-order relationships across channels other
than self-attention.
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Regarding computational complexity, we used Gflop to measure the number of
floating-point operations 1 billion times per second during the training process. We can
see that although the PointNet model has the largest number of parameters compared to
Transformer and 2-IAG–MLP networks, it has the least computational complexity because
the attention weight calculation in the attention-based network is more complex than the
convolutional operation in PointNet.
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Table 1. Ablation studies on the SceneNN dataset (testing on area 3 and training on the rest).

Method Params Gflops OA mIoU mAcc Method Params Gflops OA mIoU mAcc
PoinNet [13] 189k 10.7 64.13 6.68 7.87 PointNet + GRU 289k 11.6 70.39 12.94 13.74

Transformer [19] 170k 16.6 61.88 6.71 7.29 Transformer + GRU 270k 23.1 69.38 14.16 19.90
1-IAG–MLP 87k 8.5 62.62 6.96 8.82 1-IAG–MLP + GRU 186k 10.2 71.44 12.77 16.73
2-IAG–MLP 153k 16.2 62.94 7.57 8.18 2-IAG–MLP + GRU 253k 17.5 73.03 16.05 17.73
3-IAG–MLP 219k 24.8 61.94 6.94 8.18 3-IAG–MLP + GRU 319k 27.0 71.00 14.14 18.35
4-IAG–MLP 286k 33.8 62.95 6.59 7.94 4-IAG–MLP + GRU 385K 34.1 70.83 14.46 18.60
5-IAG–MLP 352k 41.2 62.42 6.91 8.95 5-IAG–MLP + GRU 451K 43.4 71.55 14.04 16.60

2-IAG–MLP + LSTM 255k 17.6 69.84 13.61 17.66
2-IAG–MLP + GAT 190k 18.9 50.35 7.04 7.83

4.3.2. Ablation Test of Global Aggregation Function

In order to validate the effectiveness of the gating mechanism of RNN in the global
aggregation block, we first integrated the three regional feature extraction networks men-
tioned above into GRU [23] for graph convolution. It can be seen from both the top right
panel of Table 1 that all the local networks integrated with GRU for global aggregation
obtained performance improvements, and in particular, the 2-IAG–MLP integrated with
GRU, i.e., 2-IAG–MLP + GRU, achieved the best mIoU and OA performance, with 16.05%
and 73.03%, respectively. Although Transformer + GRU presents a significant improvement
in mAcc, its poor performance in mIoU makes it the worst in OA, indicating its great
segmenting performance in particular categories but not all categories.

Secondly, we compared the simplified RNN module, namely GRU, with the more
complicated RNN module, namely LSTM, to investigate the optimal graph network for
global aggregation strategy. As we can see, although LSTM is exquisitely constructed
with three gates to update the hidden state, 2-IAG–MLP + GRU with two gates achieved
higher improvement than 2-IAG–MLP + LSTM by 3.19% and 2.44% in OA and mIoU.
We also combined our IAG–MLP with other graphical strategies such as the Graph At-
tention Network (GAT) [62]. As it can be seen, in the original GAT, the concatenation
of pairwise feature embeddings used in attentional weights calculation leads to a huge
computational cost, and as a result, we replaced them with attributed edges in ECC for high
efficiency. We can see that 2-IAG–MLP + GAT performed even worse than 2-IAG–MLP,
mainly because indiscriminately assigning global attention weights of other superpoints to
each superpoint in the superpoint graph may impede the feature representation, which
further proves the necessity of the gating mechanism in LSTM and GRU for iteratively and
selectively dropping irrelevant information and absorbing important information along the
long sequence.

Furthermore, we selected the four best-performing networks in the global aggregation
block to train on the S3DIS dataset to ulteriorly prove the generalization of our network.
The specific training processes of Area 4-fold are depicted in Figure 7, from which we
can indicate that the IAG–MLP-based methods best fit the data distribution, where they
perform slightly better than PointNet + GRU in the first 250 epochs and continue to steadily
grow while PointNet + GRU shows a great downtrend in the last 100 epochs. In addition,
the testing results on Area 4 in Table 2 (left panel) show that as the training dataset increases,
the gap between our IAGC and the other three networks is significantly wider, where the
2-IAG–MLP + GRU possesses the best performance in all metrics, especially more than
10.7% and 13.3% higher than the other three models in mIoU and mAcc, respectively. In
addition, 6-fold cross validation results are also provided in Table 2 (bottom right panel) to
prove that our proposed IAG–MLP-based method can achieve competitive accuracy with
MLP-based methods and even outperform them.
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Table 2. Ablation studies on the S3DIS dataset.

Method
Area 4-fold Miro-Mean over 6-fold

OA mIoU mAcc OA mIoU mAcc
Transformer + GRU 82.8 51.9 61.8 83.4 57.3 69.1

PointNet + GRU 82.5 52.4 63.3 84.6 58.6 70.2
IAGC(2-IAG–MLP + GRU) 85.6 65.2 78.3 85.6 64.7 76.8
IAGC(3-IAG–MLP + GRU) 83.5 54.5 65.0 84.7 58.8 70.8

4.3.3. Ablation Test of Granularity of Superpoint Graph

Due to the huge computation burden of the graph aggregation module with GRU
for superpoints, it is necessary to explore the optimal number of superpoints and optimal
graphical structure to implement the GRU module. Therefore, we analyzed the effect of
the granularity of the superpoint graph on semantic segmentation results in the ScanNet
dataset by implementing 2-IAG–MLP over the different subsampling sizes, partitioning
granularities, and maximum numbers of superpoints for global aggregation. The Scannet
dataset was split into 1201/156/156 scenes for training, validating, and testing. To be
specific, we trained on the labeled point clouds for 50 epochs in different voxelization
widths, regularization strengths, and max superpoints (denoted as v, µ, and max_sp), where
v decides the subsampling interval and the number of points in each superpoint, and µ,
quoted in the global energy function in Equation (3), dominates the number of superpoints
in each superpoint graph, and max_sp describes the maximum number of superpoints
for global aggregation operations. For instance, Figure 8 visualizes the preprocessing
procedures of point clouds in geometric feature calculation, geometry-based and color-
based partitioning, and global graph construction steps, which reorganize the data structure
from the initial disordered point clouds to the final superpoint graphs. We should note that
the geometric features such as scattering, planarity, and linearity are assigned to the red,
green, and blue colors, respectively. The superpoints are randomly colored, and the grey
lines illustrate the attributed edges in superpoint graphs.
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On the other hand, as shown in Table 3, with the increase of the voxelization interval,
the segmentation results with v = 0.03 decreased in comparison with their corresponding
results with v = 0.02, which may underlie the fact that over subsampling may lead to insuffi-
cient points within superpoints for local embedding learning. In addition, partitioning with
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a larger µ increased the size of superpoints and mistakenly clustered points sharing similar
characteristics but different labels into one superpoint, resulting in incorrect segmentation
inference normally happening at the adjacent edge of two objects of different categories.

Table 3. Ablation studies on the ScanNet dataset (testing on 312 labeled scenes) for granularity of
superpoint graphs.

v (m) µ (m) max_sp OA mIoU mAcc

0.02
0.03

512 79.2 51.0 75.4
1024 76.7 44.9 72.0

0.05
512 74.8 39.3 71.7

1024 74.8 37.8 70.1

0.03 0.03
512 77.1 46.9 74.1

1024 69.2 30.0 62.5

0.05 1024 73.8 35.7 70.8

Furthermore, in order to balance the cost of computation efficiency and segmentation
accuracy, we investigated the performance of global aggregation with respect to the maxi-
mum number of superpoints. It should be noted that raw point clouds partitioned with
µ > 0.05 normally consist of less than 512 superpoints, and consequently, we only executed
at most 1024 superpoints for global aggregation in {v = 0.02, µ = 0.03}, {v = 0.02, µ = 0.05},
and {v = 0.03, µ = 0.03}, and at most 512 superpoints for other comparative experiments.

Notably, compared with experiments with W, those with max_sp = 512 achieved
better segmentation results since excessive superpoints participating in global contextual
information updating led to poor capability of validly retrieving available information
during the limited iterations. As seen in Figure 9, we visualize the semantic segmentation
results on the ScanNet dataset, which were trained at different maximum numbers of
superpoints with max_sp = 512 and max_sp = 1024, respectively. As a result, the experiment
with {v = 0.02, µ = 0.03, max_sp = 512} achieved the best on all metrics, and we utilized its
segmentation results to compare with several state-of-the-art methods on ScanNet in the
following experiments.
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4.4. Segmentation Results

In this section, we compared our proposed IAGC with several current state-of-the-art
methods to further investigate and evaluate the segmenting performance of our network
on two different open benchmarks, namely S3DIS and ScanNet.

4.4.1. Results on the S3DIS Dataset

With regard to the S3DIS dataset, we trained them with the same subsampled points
(0.03 m) considering its dense and massive raw point clouds. We performed a 6-fold
cross-validation across areas rather than buildings to prove the capability of our IAGC to
distinguish multiple classes. The evaluation metrics of the miro-average results are average
mIoU and average overall accuracy over 13 classes on raw point clouds.

We compared our IAGC with several existing state-of-the-art point cloud semantic
segmentation methods, including PointNet [13], PointNet++ [14], SPG [16] and GAC [18].
Notably, PointNet and GAC only executed local networks with MLPs and graph attention
convolution, respectively, while both PointNet++ and SPG implemented global aggregation
with local embeddings derived from PointNet. As Table 4 shows, the mIoU of IAGC
was higher by at least 17.9% compared with PointNet and GAC, which is attributed to
the graph interaction among superpoints. Likewise, compared with the other two global
networks, significantly increased mIoU, especially on objects of complex structure such
as beams, bookcases, and sofas, are observed in IAGC with at least 12.3%, 7.2%, and
11.4% improvements. However, the mIoU of the board category is 20.9% and then 30.9%
lower than PointNet’s best performance. This huge performance gap in the board category
probably derives from the initial data organization of point clouds as the PointNet is
implemented in regular 3D voxel grids divided by spatial distribution.

Table 4. Semantic segmentation results of S3DIS (micro-mean over all 6-folds).

Method OA mIoU Ceiling Floor Wall Column Bookcase Beam Wind Door Tab Chair Sofa Board Clutter
PointNet [13] 74.0 44.7 87.2 92.1 61.9 12.9 39.9 28.8 41.1 48.3 47.2 44.3 14.4 28.1 35.2

GAC [18] 79.4 46.8 90.1 86.5 67.4 12.7 34.1 17.2 44.5 51.2 58.5 54.8 16.1 25.9 49.5
PointNet++ [14] 81.1 56.9 91.7 92.4 71.3 15.6 51.5 29.6 56.0 57.5 62.2 65.3 45.1 51.8 50.0

SPG [16] 84.6 58.6 90.9 95.2 74.3 35.7 59.8 41.4 48.6 60.3 66.3 74.9 49.0 12.5 52.9
IAGC(Ours) 85.6 64.7 93.2 95.4 73.3 39.8 67.0 53.7 64.6 61.0 74.2 79.4 60.4 20.9 58.3

We further provided visualization examples of three scenes in different models. As
seen in Figure 10, our proposed IAGC can predict more accurately in all building structures
and most furniture, and shows distinct segmenting edges between different categories,
while PointNet and PointNet++ present irregular shapes of segmented objects and mistak-
enly segmented points in discrete distributions, which results in ambiguous segmenting
edges and low semantic segmentation performance.

4.4.2. Results on the ScanNet Dataset

As for the ScanNet dataset, we trained IAGC on the training dataset and submitted
prediction results on an unlabeled test dataset to the testing server. Generally, those state-of-
the-art methods submitted to the testing server are classified mainly by their convolution
categories and input data types. As shown in Table 5, some of the networks such as
3DMV [63], PFCNN [64], and Tangent Convolution [65] retrieved semantic labels from
2D and 3D information, while the other networks listed below were trained with only
3D input data and can be divided into pointwise convolution and graph convolution.
For convincing comparison, we adjusted the depth of the IAG–MLP network to ensure
comparable capacity of the IAGC model with the point convolution baseline.

Obviously, there are more semantic categories in ScanNet than in S3DIS, which leads
to the decline of the whole mIoU. However, our method merely leveraging 3D input data
still attained a 53.4% mIoU score, achieving a significant performance gain of at least 5%
compared to networks trained with both 2D and 3D information. Similarly, permanent
building structures, which can also be seen in S3DIS, such as walls, floors, and doors,
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still maintained high performance. In addition, most furniture, including beds, cabinets,
chairs, sofas, tables, and toilets, obtained an average IoU of 56.03%, outperforming the
point convolution-based methods by a large margin (7.4%), and the other furniture, such
as bathtubs, bookshelves, counters, and refrigerators, achieved competitive segmenting
results compared with point convolution methods. In terms of graph-based methods, both
our IAGC and SPG implemented global graph convolution with GRU but different local
embedding strategies, and our IAGC was 8.3% higher than SPG in mIoU. In general, the
gating mechanism coupled with channel attention interaction leads to an extra attention
module to capture more spatial relationships than typical pointwise convolution with a
channel-specific filter.
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4.4.3. Results Analysis

Generally speaking, our proposed IAG–MLP presents competitive performance on
the local representation embedding task compared with common pointwise convolution
networks, and the combination of local IAG–MLP and global graph convolution networks
even outperforms other MLP-based or Transformer-based networks on the semantic seg-
mentation task. Accordingly, we attribute these improvements to two underlying factors.
First of all, IAG–MLP executes an interactive-attention mechanism where the embeddings
can be dominated by the augmented features from the combination of multiple feature
channels in the dot-production enhanced procedure, which is beneficial to objects that show
distinctive geometry-based and color-based characteristics (i.e., chairs, sofas, and tables).
Because of the high-order features spread across the high-level feature channel, objects with
similar geometry but different colors from the surrounding objects (i.e., board and window)
and objects with similar color but different geometry (i.e., beam and column) can be clearly



ISPRS Int. J. Geo-Inf. 2022, 11, 181 21 of 24

distinguished. In addition, the distinctive representations derived from the IAG–MLP
network further facilitate interaction of contextual information among superpoints. In
practice, it distinguishes the floor from the ceiling by considering the effect of the adjacent
objects such as indoor furniture and surrounding walls. In contrast, the floor and ceiling
may mutually enhance the segmentation of indoor furniture. Overall, our proposed IAGC
generates more distinctive features for complicated objects and better handles permanent
structures thanks to the interactive attention module.

Table 5. Semantic segmentation results of ScanNet (testing on unlabeled dataset).

Category Method mIoU Bath Bed Shelf Cab Chair Cntr Curt Desk Door Floor Other Pic Fridg Show Sink Sofa Table Toil Wall Wind
2D
+

3D

3DMV [63] 48.4 48.4 53.8 64.3 42.4 60.6 31.0 57.4 43.3 37.8 79.6 30.1 21.4 53.7 20.8 47.2 50.7 41.3 69.3 60.2 53.9
PFCNN [64] 44.2 50.5 62.2 38.0 34.2 65.4 22.7 39.7 36.7 27.6 92.4 24 19.8 35.9 26.2 36.6 58.1 43.5 64 66.8 39.8

Tangent Conv [65] 43.8 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2

Point
Conv

PointNet++ [14] 33.9 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
FCPN [66] 44.7 67.9 60.4 57.8 38.0 68.2 29.1 10.6 48.3 25.8 92.0 25.8 2.5 23.1 32.5 48.0 56 46.3 72.5 66.6 23.1

PointCNN [32] 45.8 57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 16.4 21.6 22.9 48.4 54.5 45.6 75.5 70.9 47.5
ScanNet [59] 30.6 20.3 36.6 50.1 31.1 52.4 21.1 0.2 34.2 18.9 78.6 14.5 10.2 24.5 15.2 31.8 34.8 30 46.0 43.7 18.2

Graph
Conv

SPG [16] 45.5 54.1 60.2 60.1 42.3 74.8 26.9 24.7 44.8 28.3 90.7 32.2 4.1 23.6 41.5 30.9 63.5 48.1 61.0 69.7 29.4
2-IAG–MLP + GRU 53.8 49.5 69.3 64.7 47.1 79.3 30 47.7 50.5 35.8 90.3 32.7 8.1 47.2 52.9 44.8 71.0 50.9 74.6 73.7 55.4
3-IAG–MLP + GRU 50.4 55.6 63.6 61.4 47.7 75.7 23.3 41.9 44 36.5 91.6 31.5 0.1 33.9 50.9 44.3 64.1 49.7 72.7 71.9 46.6

5. Conclusions and Discussion

In this paper, we present a novel 3D deep architecture for semantic segmentation
in door scenes, named Interactive Attention-based Graph Convolution (IAGC). We first
reorganized the raw point clouds into homogeneous superpoints based on geometry-based
and color-based information to effectively reduce the computational complexity while
retaining the characteristics of the objects in each superpoint to the greatest extent. At the
same time, using superpoints as an input data unit may significantly extend the receptive
field to obtain more rich information. Consequently, aiming to address the problem of
insufficient local feature learning by PointNet, which is bedrock for most state-of-the-art
networks, we proposed a dual attention module, Interactive Attention Gating MLP, namely
IAG–MLP, that is oriented to fully capture high-level features in superpoints by both cross-
position and cross-channel attention filters. Furthermore, we implemented another RNN
architecture called GRU, which performs on the entire set of superpoints to extract global
contextual information in order to update the local embedding of superpoints and boost
the final semantically segmented inference. Lastly, extensive experiments on challenging
open benchmarks show that our proposed method could be a potential local network with
strong capability in stronger feature expressiveness for 3D point clouds. We hope that our
work will inspire further investigation into the idea of augmenting the MLP architecture
with an interactive attention mechanism, the design of superpoint-based networks, and
instance or part segmentation. In addition, there are constraint rules about the entities in
indoor environments, such as geometric characteristic intervals, topological relationships
between entities, etc., which allow us to further investigate a smarter system to integrate
deep learning networks with ontology-driven pipelines for adaptive segmentation of
point clouds.
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