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Abstract We describe the strategy used by our agent, IAMhaggler, which
finished in third place in the 2010 Automated Negotiating Agent Compe-
tition. It uses a concession strategy to determine the utility level at which
to make offers. This concession strategy uses a principled approach which
considers the offers made by the opponent. It then uses a Pareto-search al-
gorithm combined with Bayesian learning in order to generate a multi-issue
offer with a specific utility as given by its concession strategy.

1 Introduction

We present the negotiation strategy, called IAMhaggler, which we developed
and entered into the first Automated Negotiating Agent Competition [1].
The competition is a tournament between a set of agents which each perform
bilateral negotiation using the alternating offers protocol. The negotiation
environment consists of multiple issues (which may take continuous or dis-
crete values), where there is uncertainty about the opponent’s preferences.
The environment also uses a real-time discounting factor and deadline.

Our negotiation strategy consists of two parts. First, it uses a principled
approach to choose a concession rate based on the concession of the opponent,
the real-time discounting factor and the negotiation deadline. Then, using the
utility level chosen according to this concession strategy, it generates a multi-
issue offer at that utility level, whilst attempting to maximise the likelihood
that the opponent will form an agreement by accepting the offer.

Our strategy makes two main contributions to the literature on multi-issue
negotiation with uncertainty about the opponent’s preferences. Specifically,
we propose a novel approach to determining our agent’s concession rate by
taking into account the real-time discounting factor and deadline in order to
choose a concession rate which is a best response to that of the opponent (see
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Section 2). Furthermore, we combine two existing approaches (Pareto-search
and Bayesian learning) which represent the state of the art in continuous
and discrete domains respectively, to generate a multi-issue offer in domains
containing both discrete and continuous issues (see Section 3).

2 Setting the Concession Rate

Our concession strategy is composed of two parts. The first tries to estimate
the opponent’s future concession based on observations of the opponent’s
offers. This estimate is then used to set an appropriate rate of concession.
We discuss both parts in turn in Sections 2.1 and 2.2.

2.1 Learning the Opponent’s Concession

Our agent’s approach is to set its concession as a best response to the op-
ponent’s concession throughout the negotiation. Therefore, the first stage of
our agent’s concession strategy is to build an estimate of the opponent’s fu-
ture concession. To this end, our agent observes the offers that the opponent
makes, recording the time that the offer was made, along with the utility of
that offer according to our own agent’s utility function. We assume that the
opponent is concessive over time, and therefore, for any offer which gives us
a lower utility than that of a previous offer from the opponent, we instead
record the highest utility that we have observed so far. A further motiva-
tion for this behaviour is that we make the assumption that our opponent is
likely to accept any offer that it has previously made. Therefore, if we were
to propose the best offer that we have seen so far again, we assume that the
opponent will accept. We believe this to be a reasonable assumption and one
which holds for our agent. This gives us a function over time of the opponent’s
concession in terms of our own utility. At this stage we ignore the effect of
the discounting factor on our utility.

Now, in order to predict the opponent’s concession at any future point
in time during the game, we apply non-linear regression to the opponent’s
concession curve, and in doing so assume that the observed points will roughly
fit to a curve of the form:

Uo(t) = U0 + eatb, (1)

where Uo(t) is the utility of the offer made by the opponent at time t and
U0 is the utility of the opponent’s first offer. The constants a and b are the
parameters which we find using a least mean squares curve fitting algorithm.
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Once the constants a and b have been found, we use Equation 1 to estimate
the utility of the opponent’s offers at any time during the negotiation session.
After every offer from the opponent, we update our estimation, by repeating
the process described in this section.

2.2 Choosing the Concession Rate

Once we have an approximation of our opponent’s concession in terms of our
utility, we are able to use this information to set our own rate of concession.

Our approach to this is to use standard time dependent concession, as
described by [2]. Specifically, we use the polynomial time concession function:

Up(t) = U0 − (Umin − U0)
t

tmax

1/β

, (2)

where U0 is the initial utility, Umin is the reservation utility (which the agent
will not concede beyond), tmax is the negotiation deadline and β is the pa-
rameter that affects the rate of concession. The β value can be partitioned
into three types: tough (β < 1), linear (β = 1) or weak (β > 1). Our ap-
proach to finding an appropriate value for β proceeds as follows, and we give
a graphical example of this approach in Fig. 1. We firstly apply our discount-
ing factor to our model of the opponent’s concession function (Equation 1),
to create a function which gives us an estimate of the discounted utility of
our opponent’s offers at any point in the negotiation session. Therefore, the
discounted utility function is given by:

Ud(t) = (U0 + eatb)e−δt, (3)

where δ is the discounting factor.
If the opponent’s future concession is as predicted, then our agent can-

not achieve a utility higher than the maximum on the discounted opponent
concession curve (given by Equation 3) for the time period at which an agree-
ment can be reached. By this we mean that parts of the curve that represent
times in the past, or times which are beyond the negotiation deadline should
be ignored. Therefore, the next step is to solve:

t∗ = argmax
tnow≤t≤tmax

((U0 + eatb)e−δt), (4)

where tnow is the current time.
By solving Equation 4, our agent has identified the time t∗ at which the

discounted utility to our agent of our opponent’s offers is likely to be max-
imised. Given this, our agent chooses a target utility level, which matches the
estimated utility of the opponent’s offer (without any discounting) at that
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Fig. 1 Setting our Concession Rate. The crosses represent the best offers made by the
opponent. The estimated future concession of the opponent is shown by the dashed (undis-

counted) and dot-dashed (discounted) lines. The maxima on the dot-dashed line, indicated
by the vertical line, represents the time (t∗) at which the expected discounted utility of the
opponent’s offers is maximised. The horizontal line shows the expected undiscounted utility
of the opponent’s offer (Ud,max) at that time. The solid curve is our planned concession

time. This is given by:
Uo,max = Uo(t

∗) (5)

We now have a point in time t∗ at which we expect to reach agreement,
and a target utility level Uo,max that we should use at that time. We then
choose the value of β such that the concession curve (Equation 2) passes
through [t∗, Uo,max]. By rearranging Equation 2, we find β as follows:

β =
log(t∗)

log

(

1− Uo,max

1− Umin

) (6)

A limitation of this strategy is that, at the beginning of a negotiation, the
curve fitting is performed using a small number of points, and therefore the
curve may not accurately reflect the future concession of the opponent. Thus,
we set upper and lower bounds on our actual concession parameter (β) so
that the agent does not use a concession strategy that is too extreme, either
by conceding too quickly at the beginning of the session (thereby forming a
low utility agreement), or by playing too tough (thereby conceding too little).

Having shown our concession strategy, we now discuss how the strategy
produces a multi-issue offer at the utility level selected by the concession
strategy.
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3 Negotiating over Multiple Issues

In the previous section we showed how our agent can choose its desired utility
level at any point during the negotiation session. However, in a multi-issue
negotiation, there are likely to be a number of different offers at any given
utility level. Our agent is indifferent between these offers, since they all result
in the same utility. However, the opponent has a different utility function to
ours. Therefore, our aim, and the basis of our negotiation strategy, is to select
the offer which maximises the utility to the opponent whilst maintaining our
desired utility level. The reason for this is that the opponent is more likely
to accept offers with a higher utility, and, from a performance perspective,
such outcomes are more Pareto-efficient. The challenge here is to try to do
so without knowing the opponent’s utility function.

In this section, we consider issues to belong to one of two classes: ordered,
and unordered. Ordered issues have an ordering that is common to and known
by both agents, though the agents may have different preferences over the
issue values. Conversely, unordered issues do not have a common ordering.

In domains which consist solely of ordered issues, our agent does not at-
tempt to learn the opponent’s utility function. Instead, we use a Pareto-search
approach to selecting an offer. In domains with unordered issues, we extend
this approach by using Bayesian learning to learn the opponent’s utility func-
tions for the unordered issues.

To this end, in Section 3.1, we describe our approach in a domain without
unordered issues, and in Section 3.2, we consider domains with such issues.

3.1 Domains without Unordered Issues

In this section, we present our approach to selecting the package with a given
utility that we consider to be closest to the best offer that we have seen from
our opponent. At this point, we only consider ordered issues.

Our strategy is based on the Pareto-search approach developed in [3, 5]. We
consider our agent’s utility function to be a mapping from a multi-dimensional
space (in which there is a dimension representing each ordered issue) to a
real value which represents the utility of the outcome. Our strategy treats
integer based issues in the same way as continuous issues. For example, for
a domain which consists of only one linear and one triangular issue, this
multi-dimensional space is shown graphically in Fig. 2.

Now, by taking a cross-section of the utility space, we can construct an
iso-utility space, which is a multi-dimensional space, with the number of
dimensions equal to the number of ordered issues. This space represents all
packages which result in a particular utility for our agent.

Moreover, the iso-utility space that is chosen at a particular time is the one
which represents our current desired utility level (as decided by our concession
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Fig. 2 Multi-dimensional space representing the utility of outcomes in a domain with one
linear issue and one triangular issue. Values v1 and v2 are the values of the two issues.

U([v1, v2]) is the utility of the offer represented by those values

strategy, which we detailed in Section 2). Based on the work of [5], we use
projection to find the point on our iso-utility space which is closest to the
best offer our agent has received from its opponent.

Specifically, in terms of closeness between two offers [v1, v2, ..., vn] and
[y1, y2, ..., yn], we use the Euclidean distance, that is:

√

√

√

√

n
∑

i=1

(

(

vi − yi

rangei

)2
)

, (7)

where rangei is the range of values allowed for issue i. The reason that we
divide by the range is to ensure that the scale of the issue’s values does not
affect the distance measurement. In doing so, all of the issues are consid-
ered to have equal weightings. Otherwise, the distance calculation could be
excessively biased by an issue with a large range relative to the other issues.

3.2 Domains with Unordered Issues

In order for our strategy to negotiate in domains with unordered issues, we
need to make some modifications to it. In particular, we cannot treat the
unordered issues as further dimensions in our space, since they cannot be
ordered based on their similarity. To address this problem, we continue to
create an iso-utility space to represent the ordered issues. However, to handle
the additional complexity of unordered issues, we create an iso-utility space
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Fig. 3 Projection of a point representing an opponent’s offer (at [1.35, 7.0, v3], marked with
a cross) onto an iso-utility space for a domain with one linear, one triangular and a discrete
unordered issue. The projections are shown for each of the three discrete combinations

for each combination of the unordered issues. As an example, consider a
domain with one linear, one triangular and one discrete issue. The discrete
issue can take the values ‘red’, ‘green’ or ‘blue’.

For each combination of the unordered issues, we create a multi-dimensional
space, and use the iso-utility projection method (described in Section 3) to
find a solution for each of those combinations. We demonstrate this pro-
jection in Fig. 3, where the opponent’s offer [1.35, 7.0, v3] (we write v3 to
represent the value of the unordered issue 3, since it does not affect the pro-
jection) is projected to give the solutions [1.17, 15.0, red], [1.25, 14.8, green]
and [1.26, 14.3, blue]. For some combinations, the maximum overall utility
available from the package with the best values for the ordered issues may be
lower than our current utility level. In this case, there will not be a solution
which contains this combination.

Once a solution has been found for each combination of the unordered
issues, it is necessary for our agent to choose one of these solutions as its
offer. Our agent is indifferent between each of them, as they all belong to the
same iso-utility space, resulting in them having an identical utility. However,
their utility to the opponent may vary, and in order to negotiate efficiently,
we should choose the one which maximises the utility to the opponent.

Now, since we assume that the opponent’s utility function is unknown,
we need a way to estimate the utility of the opponent. In our work, this is
done using the approach taken by [4], using Bayesian updating to learn the
preferences of the opponent in a scalable manner.

As the agent receives offers from the opponent, it uses Bayes’ rule to update
the probability of each hypothesis. It then evaluates the solution for each
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unordered combination using our model of the opponent’s utility function, in
order to obtain an estimate of the utility of the offer to the opponent. The
overall solution that is chosen is then the one which maximises the opponent’s
utility according to our model of its utility function.

In order to ensure that our approach remains computationally tractable
even in domains with large outcome spaces, we limit the number of combina-
tions of unordered issues that we perform the iso-utility projection method
for. Specifically, we choose a maximum of 1000 such combinations, by identi-
fying those which maximise the sum of our utility and our opponent’s utility
(according to our model of the opponent’s utility function).

4 Results and Conclusions

In this work, we have described our negotiating agent, IAMhaggler, covering
both the process that our agent uses to set its concession rate, and the way in
which it selects an offer with a given utility. In doing so, we have combined and
extended several existing approaches, and designed a new adaptive strategy.

Our agent finished in 3rd place in the 2010 competition (according to the
official results1). After the competition, we identified some minor implemen-
tation problems with our agent. By fixing these problems and then re-running
the competition setup, our agent was able to finish in 2nd place. Since the
competition domains did not include a discounting factor, we performed a fur-
ther re-run in which we used the competition domains but with a discounting
factor (δ = 1). In this re-run, our agent finishes in 1st place.

We plan to extend our work by investigating how the agent can better
adjust its parameters (such as the reservation value) based on its knowledge
of the domain.
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