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Abstract. This work presents observations of a series

of short-lived species in biomass burning plumes from

the Infrared Atmospheric Sounding Interferometer (IASI),

launched onboard the MetOp-A platform in October 2006.

The strong fires that have occurred in the Mediterranean

Basin – and particularly Greece – in August 2007, and those

in Southern Siberia and Eastern Mongolia in the early spring

of 2008 are selected to support the analyses. We show

that the IASI infrared spectra in these fire plumes contain

distinctive signatures of ammonia (NH3), ethene (C2H4),

methanol (CH3OH) and formic acid (HCOOH) in the atmo-

spheric window between 800 and 1200 cm−1, with some no-

ticeable differences between the plumes. Peroxyacetyl ni-

trate (CH3COOONO2, abbreviated as PAN) was also ob-

served with good confidence in some plumes and a tenta-

tive assignment of a broadband absorption spectral feature to

acetic acid (CH3COOH) is made. For several of these species

these are the first reported measurements made from space

in nadir geometry. The IASI measurements are analyzed for

plume height and concentration distributions of NH3, C2H4

and CH3OH. The Greek fires are studied in greater detail for

the days associated with the largest emissions. In addition

to providing information on the spatial extent of the plume,

the IASI retrievals allow an estimate of the total mass emis-

sions for NH3, C2H4 and CH3OH. Enhancement ratios are

calculated for the latter relative to carbon monoxide (CO),

giving insight in the chemical processes occurring during the

transport, the first day after the emission.

Correspondence to: P.-F. Coheur

(pfcoheur@ulb.ac.be)

1 Introduction

Most of the processes driving atmospheric chemistry occur

on time scales of seconds to days. The species involved,

highly reactive, are present in the atmosphere in small con-

centrations and are mostly hard to track in space and time.

When released at the surface as primary pollutants, they react

rapidly close to the source region, except for a small fraction

that survives boundary layer chemistry, escapes to the free

troposphere and is transported to regions downwind. The

distance travelled strongly depends upon the species chem-

ical lifetime, the latter being in turn strongly influenced by

the local chemical and thermodynamic conditions.

Of particular interest is the monitoring close to the surface

of constituents which impact, directly or not, human health

and ecosystems. These species are controlled in industrial-

ized countries by air quality standards, which are defined in

terms of the ambient abundance of ozone (O3), nitrogen ox-

ides (NOx), sulfur dioxide (SO2), carbon monoxide (CO) and

particulate matter (PM2.5 and PM10). Ozone itself is a sec-

ondary pollutant which is formed by complex reaction mech-

anisms involving NOx, methane (CH4), CO and a large series

of volatile organic compounds (VOCs).

Ground-based instruments located nearby source regions,

such as urban areas, are obviously best suited for measur-

ing reactive species in the boundary layer, as they offer at

the same time a high sensitivity (down to a few parts per

trillion – 10−12 – in fractional concentration), accuracy and

repetitiveness. They are therefore important for the local air

quality surveillance and forecast systems. However, they are

unable to resolve and track pollution plumes in space and

time and can only partly contribute, for instance, to the study

of transboundary transport of pollution. In recent years,
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nadir-looking satellite instruments have greatly helped draw-

ing the grand picture of tropospheric pollution by measuring

a series of primary and secondary reactive gaseous pollutants

down to the surface, from the local to the global scale (Mar-

tin, 2008 and references therein). Routine observations in-

clude NO2, SO2, H2CO, C2H2O2 and halogen compounds

from UV-visible sounders (Wagner et al., 2008 and refer-

ences therein), and principally O3, CO and CH4 from in-

frared sounders (e.g. Clerbaux et al., 2003, 2009). Recently

the possibility of probing NH3 and methanol (CH3OH) from

TIR radiances was demonstrated (Beer et al., 2008), adding

to the potential of TIR sounding missions in contributing to

monitor the fast chemistry of the lower troposphere. Con-

sidering this, the recently launched Infrared Atmospheric

Sounding Interferometer (IASI) onboard MetOp-A, which

has unique spatial resolution and sampling, is expected to

benefit the surveillance of the atmospheric system, opera-

tionally, and from a local to a global scale (Clerbaux et al.,

2007).

In this work, we intend to go a step further by showing that

TIR sounders can be used to identify and quantify a range of

short-lived chemical species that are not observed in back-

ground atmospheric situations. For this purpose, we focus

our study on IASI measurements above fire plumes from the

2007 wildfires in the Mediterranean basin (Boschetti et al.,

2008; Turquety et al., 2009) and the spring 2008 boreal fires

in Southern Siberia – Baikal Lake area (Warneke et al., 2009)

– and Eastern Mongolia. Fire plumes are chosen because of

the expected elevated concentrations of gases and particles

released simultaneously in the boundary layer and because

of the usual high reactivity of these extreme environments

(e.g. Andreae and Merlet, 2001). Large biomass fires are fur-

thermore known to significantly affect air quality conditions

prevailing locally, especially when the plume is confined in

the boundary layer, but also regionally when the plume is

emitted in the free troposphere and transported downwind

over long distances (Langmann et al., 2009 and references

therein). The local impact is mostly due to the release of par-

ticles which remain close to the emission point, whereas the

regional impact is mostly related to the emission and trans-

port of ozone precursors, such as CO, NO2, and VOCs, the

chemistry of which can induce large surface ozone concen-

trations farther away (Langmann et al., 2009; Pfister et al.,

2008; Morris et al., 2006).

The next section provides an overview of the measure-

ments and the relevant theoretical elements. These include

a brief description of IASI, of the two fire events examined

here, and of the inverse method used to retrieve trace gas

abundances from the spectra. Section 3 reports on the de-

tailed spectroscopic analysis of different fire plumes, focus-

ing on the assignment of spectral features to species rarely

measured before from satellite observations. This section

includes a focused discussion of the Greek fires, giving in-

sights on the chemistry processes occurring during the first

24 h after the plume’s emission. We then draw conclusions

and open perspectives for further research, notably in regard

to the possibility to obtain global distributions for some of

the newly species observed.

2 Measurements

2.1 IASI

A detailed description of IASI is provided by Clerbaux et

al. (2009) in this special issue. As compared to other ther-

mal infrared sounders in orbit, the IASI advanced Fourier

transform spectrometer, offers a large and continuous spec-

tral coverage of the infrared region (645–2760 cm−1), at a

medium spectral resolution (0.5 cm−1 apodized). The IASI

spectra are dominated by rotation-vibration transition lines

of H2O, CO2, CH4, N2O, O3 and CO, and also allow provid-

ing key information on surface properties using atmospheric

windows. Given the high radiometric performances, weak

absorption features such as for instance HNO3 (Wespes et

al., 2009) and CFCs (Coheur et al., 2003) are seen on each

individual observations. The spectral information contained

in the measurements are used to tackle the primary objective

of IASI, which is to support operational numerical weather

predictions by providing accurate and highly resolved verti-

cal profiles of temperature (from the CO2 lines) and humidity

(from the H2O lines) (Schlüssel et al., 2005). The observa-

tions of greenhouse gases and reactive species in the IASI

spectra, and in particular O3 and CO allow climate and at-

mospheric chemistry issues to be tackled as well, also open-

ing perspectives for operational applications (Clerbaux et al.,

2007).

The IASI sounder currently in orbit is the first of a series

of three successive instruments that are part of Europe’s po-

lar orbiting meteorological satellites (MetOp), dedicated for

operations in the 2006–2020 timeframe. Being designed pri-

marily to meet the needs of meteorology, it provides a global

coverage of the Earth surface twice daily with a relatively

small pixel size on the ground (12 km at nadir). This high

spatial and temporal sampling capability along with the spec-

tral and radiometric performances of the FTS, offer a unique

support for identifying local and sudden emissions at the sur-

face and for following the fate and transport of the resulting

pollution plumes. Typical applications are for instance found

in the monitoring of volcanic eruptions (Clarisse et al., 2008)

and fires (Turquety et al., 2009), using signatures of SO2 and

CO, respectively.

2.2 Radiance and brightness temperature spectra

Thermal infrared nadir sounders measure the radiation emit-

ted by the Earth, modified by atmospheric extinctions (ab-

sorption and scattering) and emissions along the path. The

spectra measured at the top of the atmosphere are expressed

as radiance (W/cm2 sr cm−1), which represent the outgoing

flux collected within a solid angle at a given wavenumber,
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per unit of surface. The radiance spectra can be conveniently

transformed to brightness temperature spectra, by invert-

ing the source function, usually represented by a grey body

(Planck blackbody function multiplied by the surface emis-

sivity). In a so-called window channel without atmospheric

absorption, the brightness temperature associated to a scene

with unitary emissivity would be equal to the Earth’s surface

temperature. Extinction and emission processes occurring in

the atmosphere at a given wavenumber ν̃ cause the brightness

temperature to be respectively lower and higher than the sur-

face temperature in a nearby window channel. Accordingly,

the difference in brightness temperature between a perturbed

and a reference window channel, hereafter BTD, can be used

as a probe for the presence of absorption or emission features

in the spectra. The use of BTDs is common for multispec-

tral sounding and represents a fast and robust method for the

identification and tracking of sudden events such as volcanic

plumes (Clarisse et al., 2008).

2.3 Concentration measurements

Retrieving trace gas abundances from IASI spectra is done by

adjusting onto the measurement a simulated radiance spec-

trum, computed from the radiative transfer equations using

our best knowledge of the atmospheric state at the time and

place of the observation. In the forward model, a particu-

lar care has to be given to the local meteorological condi-

tions, characterized by pressure, temperature and humidity

profiles, as well as to the surface type and emissivity. For

this work we use pressure, temperature and humidity verti-

cal profile (Level 2) products disseminated operationally by

EUMETSAT (Schlüssel et al., 2005). The preliminary vali-

dation of these level2 meteorological products reports an ac-

curacy close to the mission objectives: for temperature the

error is 0.6 K in the free troposphere, increasing to 1.5–2 K

at the surface and in the upper troposphere with a bias of

±0.5 K, while for the relative humidity the error is 10% with

a bias within ±10% (Pougatchev et al., 2009). These pa-

rameters are kept fixed in the inversion process, except for

the surface temperature and the humidity profiles which are

adjusted to provide the best possible fits in the spectral re-

gions of interest. For the Greek fires in 2007, the Level 2

data were not available and the pressure and temperature data

for the corresponding scenes were therefore taken from the

European Center for Medium Weather Forecast (ECMWF),

interpolated to match the time and place of the measure-

ments. For the emissivity, an average value from the 12 chan-

nels from MODIS/Terra climatology are used (Wan, 2008).

The spectroscopic parameters, including line parameters and

absorption cross sections for CFCs, are from the HITRAN

database (Rothman et al., 2005). For CH3COOH, missing

in HITRAN, the cross sections from the PNNL-Vapor phase

infrared spectral library (Sharpe et al., 2004) are used. Also

the water vapour and carbon dioxide are taken into account

using the MT-CKD formulations (Clough et al., 2005).

As nadir measurements integrate all photophysical pro-

cesses occurring over the vertical altitude range of the at-

mosphere, one can typically hope to extract total column

amounts. For a given species, this is usually done by scaling

a reference profile iteratively such as to reproduce the am-

plitude of the observed spectral features as close as possible.

For some gases, however, weakly resolved vertical profiles

can be derived as well, considering the pressure and temper-

ature dependences of their spectra. The problem becomes

unfortunately ill-conditioned and can only be solved by us-

ing constrained retrieval approaches. The Optimal Estima-

tion (Rodgers, 2000) is the most widely used method for re-

mote sensing purposes. It is implemented in the Atmosphit

software, which includes a full line-by-line radiative transfer

model, as well as in the FORLI (Fast Operational/Optimal

Retrieval on Layers for IASI) dedicated software for near-

real time and large scale processing of IASI since 2007.

In this work, we have used the Atmosphit software for all

species except CO, which is routinely processed by FORLI-

CO in the group (George et al., 2009). The theoretical ap-

proaches of both algorithms are extensively described else-

where (Clarisse et al., 2008; Coheur et al., 2005; Turquety et

al., 2009; Wespes et al., 2009).

The trace gases profiles used for the forward model and

the retrievals with Atmosphit in the atmospheric window are

from the US standard atmospheres (US Government Print-

ing Office, 1976), scaled in the case of CO2 to a vmr of

385 ppmv. Exceptions are O3, CH4 and HNO3, for which

the prior are global averaged yearly profiles from climatol-

ogy, used along with the associated covariance matrices (Tur-

quety et al., 2004; Wespes et al., 2009) and for CH3OH

and C2H4 for which we use global averaged profiles from

the LMDz model (Hauglustaine et al., 2004). For these two

species and for NH3, which are central to this paper, we al-

low a large variability in the retrieval of vertical profiles (6

layers of 3 km thickness are retrieved although the objective

is not to deduce vertically resolved information due to the

weak signals). This is done by using an ad-hoc covariance

matrix with very large variability (diagonal elements) and

by considering for the off-diagonal elements a simple expo-

nential decay with 7 km correlation length. These assump-

tions on the variance-covariance matrix, which are required

to capture the large values of concentrations in the plume are

unrealistic in the geophysical sense, and do accordingly not

allow for a comprehensive posterior characterization of the

retrieved products in terms of vertical sensitivity and errors.

Hence averaging kernels will not be shown in the follow-

ing and the reported retrieval errors, which do not properly

represent the vertical smoothing and do not account for the

possible impact of e.g. aerosols, should be taken with cau-

tion. As a result of this also, some of the retrieved quantities

which will be discussed next, in particular the total emitted

mass, should mainly be considered as indicative.
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2.4 Selected fire events

This paper concentrates on two large fire events that occurred

in the Northern Hemisphere since the IASI launch in October

2006: the August 2007 wildfires in the Mediterranean basin

and the April–May 2008 boreal fires in Southern Siberia and

Eastern Mongolia, in the vicinity of the Baikal Lake.

The wildfires in the Mediterranean basin are relatively

well documented (Boschetti et al., 2008; EFFIS, 2008) and

also discussed more thoroughly by Turquety et al. (2009).

They lasted for several days and burned close to 900 thou-

sands hectares, with about one third in Greece (EFFIS,

2008), which experienced that year the worst fire situation on

record. In Greece the fires have been extremely severe due

to combination of persistent high temperatures (3 consecu-

tive heat waves), drought and strong winds. The fires were

particularly intense in the last week of August 2007 in the

Peloponnese (22 to 30 August), with five major fires burning

170 000 hectares (ha) and releasing a large quantity of gases

and particles in the atmosphere. Unusually elevated CO, well

above several parts per million by volume mixing ratios in

the boundary layer, have for instance been reported close to

the fire source (Turquety et al., 2009). Rapid transport at

relatively low altitude (estimated around 3–5 km) caused in-

creased CO level above most part of the Mediterranean basin

during these days.

The wildfires in Kazakhstan and Southern Siberia in April

2008 were also exceptional, starting earlier than usual due

to relative high temperatures and low levels of precipitation.

Before the end of April, more than 900 large-scale fires were

reported, with 36 000 ha of forest being devastated, likely re-

sulting from human negligence. This event was amongst the

worst that Russia experienced in the last 30 years. Large fires

were in particular reported in the area between the Baikal

Lake and the Amur River between 17 and 24 April. Un-

like the ones in Kazakhstan Southern-Siberia region, which

were attributed to agricultural practices, those in the Baikal

area are likely due to forest fires (Warneke et al., 2009). An-

other relatively important burning episode occurred later in

mid May in a nearby region in Eastern Mongolia, lasting a

few days only. Besides their importance for local air quality,

pollutants emitted by these high latitude fires in the North-

ern Hemisphere are also important due to rapid transport to

the remote Arctic (Stohl, 2006), playing a role in the devel-

opment of the so-called Arctic haze and the lowering of the

surface albedo (Law and Stohl, 2007; Generoso et al., 2007).

This has been the case for the Baikal fires of April, which

have been monitored by the NOAA WP-3D aircraft during

the airborne field experiment ARCPAC (Aerosol, Radiation

and Cloud Processes affecting Arctic Climate), over North-

ern Alaska and the Arctic sea ice (Warneke et al., 2009).

The transported plumes were sampled by a suite of airborne

instruments at relatively low altitude, from the surface to

6.5 km in the free troposphere, which corresponds to the

highest flight altitude for the WP-3D (Warneke et al., 2009).

3 Results

3.1 Spectroscopic analyses

Figure 1 presents IASI observations of a fire plume origi-

nating from the Baikal region (49.50◦ N, 110.32◦ E), on 18

April 2008, around 20:50 local time. Two brightness temper-

ature spectra are highlighted (red and blue curves), covering

the atmospheric window from 800 to 1200 cm−1 and the CO

1-0 rotation-vibration band from 2050 to 2220 cm−1. Resid-

ual spectra are also shown. These were calculated by sub-

tracting from the two target spectra within the plume a spec-

trum recorded nearby in background conditions (grey lines

in Fig. 1), which was chosen to have similar surface temper-

atures and ozone and humidity concentrations. This allows

the removal of all major background lines in these spectral

regions. The residual spectrum in red shows strong features

emerging from the background, all with negative BTD val-

ues, which indicate the occurrence of additional absorptions

in the fire plumes. On the shortwave end these spectral fea-

tures are rotational lines of the CO fundamental band. Their

large negative BTD values of −10 K and below indicate

strong concentration enhancements of that species in the fire

plume. In the atmospheric window, the residual features are

principally due, as will be shown next, to ammonia and sev-

eral volatile organic compounds, not observed in the back-

ground spectra. Interestingly, the spectrum plotted in blue in

Fig. 1 shows the same features but with positive BTD values,

suggesting the presence of an emitting layer of gases and/or

particles in the path, at a temperature higher than that of the

source. This would be consistent with the IASI temperature

profiles provided by EUMETCast, which shows an inversion

layer at about 2.2 km (Fig. 1, right panel), and may give in-

dication, as extensively discussed in Clarisse et al. (2009b),

of the altitude of the plume at this location, i.e. within or just

above the boundary layer. More generally, the temperature

variations in the lowest layer of the troposphere and in par-

ticular the difference in temperature between the surface and

the air just above it (the thermal contrast) is well known to

strongly regulate the sensitivity of infrared sounders in the

low troposphere. The spectrum with strong absorption lines

in Fig. 1 (shown in red with negative BTD values) has for

instance a surface temperature of 296 K and a much lower

air temperature of 272 K (right panel of Fig. 1); the resulting

high positive thermal contrast greatly enhances the sensitiv-

ity of the sounder to the surface. If the emitted fire plume

was in the boundary layer, this higher sensitivity would be

a good demonstration of IASI probing the lowermost at-

mospheric layers. The observation of South Siberian fire

plumes made later above Alaska and the Arctic Sea below

6.5 km (Warneke et al., 2009) tend to confirm that the plume

was emitted and transported at relatively low altitude. It is

worth pointing out that the situation described here, where

we would have observed for an evening scene both emission

and absorption spectra with contribution from the boundary
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Δ

Fig. 1. Left: example of IASI observations of ammonia in a fire

plume in the vicinity of the Baikal Lake (see Fig. 2), on 18 April

2008, around 20:50 local time. Two example spectra within the

plume are shown, with focus on the spectral regions from 800 to

1200 cm−1 and 2050 to 2220 cm−1. The residual spectra in the Fig-

ure are obtained by subtracting nearby background spectra, shown

in grey line, with similar temperature, humidity and ozone (note

the weak presence of the latter in the residual between 1000 and

1100 cm−1). The residuals show both positive (blue) and nega-

tive values (red), corresponding to unusual emission and absorp-

tion features from the fire plumes. Above 2100 cm−1, these clearly

show the enhancements of CO concentrations as compared to back-

ground situations. In the atmospheric window, these features are

attributable to NH3 and a series of VOCs. Right: temperature pro-

file corresponding to the two fire spectra, with the thermal contrast

(1T ) values indicated. The temperatures are those disseminated

operationally by EUMETCast.

layer is uncommon, as IASI shows in general greater sensi-

tivity to the surface during its morning orbit, when the ther-

mal contrast can reach high positive value (Clarisse et al.,

2009b). On 18 April the observations of remarkable emis-

sion/absorption features in the IASI spectra extend over a

wide area, located between the Baikal Lake and River Amur,

as displayed in Fig. 2 using BTDs between a channel sen-

sitive to NH3 at 867.75 cm−1 and two window channels lo-

cated on each side of it (at 861.25 cm−1 and 873.50 cm−1).

Figure 3 shows spectral fits in the region 800–1200 cm−1,

for the spectrum plotted in Fig. 1. The fitted spectrum

was obtained by adjusting the columns or profiles for all

species absorbing in that spectral region (O3, H2O, CO2,

HNO3, CFC11 and CFC12) along with surface tempera-

ture, but excluding ammonia (NH3), ethene (C2H4) and

methanol (CH3OH). The assignment of the enhanced fea-

tures in the plume spectra seen in Fig. 1 to these three com-

pounds becomes unambiguous when comparing the resid-

ual spectrum (observed-fitted, middle panels of Fig. 3), to

the calculated transmittance of the missing species (bottom

panels of Fig. 3). The NH3 spectrum is particularly visi-

ble, extending over almost 400 cm−1, with two noticeable

Q-branches and several strong lines, all belonging to the ν3

Fig. 2. IASI observations of ammonia in a fire plume in the vicinity

of the Baikal Lake, on 18 April 2008 (20:50 local time). The fig-

ure shows the spatial distribution of the plume, using the NH3 sig-

nal, expressed in brightness temperature difference between a chan-

nel sensitive to NH3 at 867.75 cm−1 and two window channels at

861.25 cm−1 and 873.50 cm−1. Note the positive and negative val-

ues, representing features in emission and absorption, respectively.

The spatial extension of the plume is revealed by the high values,

above +0.8 K and below −0.8 K; the values lying in between these

thresholds are mostly representative of the noise level. Two typical

spectra from these plumes are displayed in Fig. 1.

Fig. 3. Top: observed and fitted IASI radiance spectra from the

fires in the Baikal area (observation made on 18 April at 49.50◦ N,

110.32◦ E; see Fig. 1 red curve), with all species included in the

retrieval except NH3, C2H4 and CH3OH. Middle: spectral residu-

als (observed-fitted spectrum) with all species in the retrieval (dark

cyan), without NH3 (dark blue), without C2H4 (blue) and without

CH3OH (red). Bottom: simulated transmittance for NH3, C2H4

and CH3OH alone, with arbitrary concentrations. See text for de-

tails.
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band. For C2H4 and CH3OH, it is essentially the Q-branch,

of respectively the ν7 and ν8 bands, that show up. One should

point out that the CH3OH spectrum is strongly overlapped by

that of ozone.

Figure 4 provides a similar comparison in the region from

1070 to 1250 cm−1, which is a relatively transparent win-

dow, containing several water lines of medium intensity and

additional weaker contribution of O3, N2O and CFC12. In

the plume, however, this portion of the spectrum is signif-

icantly affected by broadband extinctions. In Fig. 4 this

is shown for two spectra, one which is the same as that

of Figs. 1 and 3, the other corresponding to a fire plume

from 17 May in Eastern Mongolia (46.09◦ N, 118.99◦ E,

11:07 local time), also revealing signatures of NH3, CH3OH

and C2H4. Among these broadband features, one, which

is mostly visible in the 17 May spectrum, is unambigu-

ously attributable to formic acid (HCOOH) in its ν6 band,

with a marked Q-branch at 1105 cm−1. Further extinc-

tion, on the shortwave end of this spectral portion, is ten-

tatively assigned here to acetic acid (CH3COOH), possibly

amplified by peroxyacetyl nitrate (PAN), both with absorp-

tions in the CO stretching mode. The assignment to PAN

is in fact more certain for the 17 May plume, considering

that an additional spectral band of that species (NO2 bend-

ing mode) is well visible between 760 and 830 cm−1 (mid-

dle vertical panel in Fig. 4). For this spectrally rich plume

the following total columns are retrieved: [NH3] = 5.7±0.1,

[C2H4] = 2.2±0.3, [CH3OH]=5.1±0.7, [HCOOH]=5.2±0.2,

[CH3COOH] = 0.6±0.2, [PAN] = 2.0±0.1, all expressed in

1016 molecules cm−2. We stress that the errors given here

on the columns are the statistical (1σ ) retrieval errors, which

may not be representative considering the assumptions made

on the variance-covariance matrices (see Sect. 2.3.) and the

fact that possible interferences by e.g. aerosols, have not been

taken into account. Furthermore, although vertical profiles

are retrieved, the number of independent pieces of informa-

tion (the so-called degrees of freedom for signal – DOFS –

in the Optimal Estimation Method) is for most species not

larger than one, suggesting that only a column can be re-

trieved. Only in the case of NH3, for which the signal is

strongest, the DOFS gets occasionally to 1.5 but this value

remains tributary, however, of the large variability allowed

in the retrieval. In the following we therefore only use col-

umn abundances. We note in addition that other classic fire

tracers, including C2H2, C2H6, H2CO, HCN and CH3CN

have not been identified in these IASI spectra. For C2H2

and HCN this could be due in part because their main ab-

sorption bands lie in a CO2-saturated region of the spectrum

below 750 cm−1, while for H2CO this is explainable to the

weak lines in the near infrared above 2500 cm−1, where the

noise performances of IASI are significantly reduced. For

C2H6 and CH3CN the reason is unclear and in all cases not

attributable to instrumental limitations.

Comparing the different fire plumes, it is worth stressing

that unlike the spectra of 18 April in the Baikal region, the

temperature profile for the 17 May case in Eastern Mongolia

is not associated with a favourable thermal contrast situation

(a 1T of −6 K prevails for the example spectrum of Fig. 4).

The observation of NH3 and VOCs in these fires may there-

fore point to a higher altitude of the plume, well above the

boundary layer, where the IASI measurements are by nature

more sensitive. The injection of fire plumes directly into the

free troposphere can take place through different convection

mechanisms (e.g. Freitas et al., 2007), but are relatively in-

frequent (Freitas et al., 2007; Labonne et al., 2007). These

injections are for instance estimated to be on the order of

10% in boreal regions (Hyer et al., 2007; Kahn et al., 2008),

where they can be exceptionally exacerbated during violent

pyro-convective events (Damoah et al., 2006; Fromm and

Servranckx, 2003). The lack of vertical sensitivity of IASI

to trace gas profiles does not allow for a precise estimate of

the injection height and cannot confirm this: although useful

information can be extracted from the CO vertical profiles

in favourable situations (Turquety et al., 2009), this is un-

fortunately not the case for the observation discussed here,

for which the retrieved CO profile does not reveal any fine

structure on the vertical.

The species firmly (NH3, C2H4, CH3OH, HCOOH) or

more tentatively (PAN, CH3COOH) detected by IASI in the

Siberia/Eastern Mongolia fire plumes are well known rel-

atively short-lived biomass burning products (Andreae and

Merlet, 2001), with lifetimes in the boundary layer ranging

from a few hours (NH3) to several days (CH3OH), increas-

ing for all species to several days/weeks at higher altitudes.

These species have for instance been measured before by a

variety of instruments, including for some ground- (Rins-

land et al., 2005) or airborne-based infrared Fourier trans-

form spectrometers (e.g. Yokelson et al., 1999, 2003; Worden

et al., 1997). Their observations from space were, however,

very sparse until recently. HCOOH (Rinsland et al., 2006),

CH3OH (Dufour et al., 2006, 2007) and C2H4 (Herbin et

al., 2009) have now been extensively studied from the ACE-

FTS solar occultation spectra in the upper troposphere (see

also Rinsland et al., 2007). NH3 and PAN have in addition

been observed in a particular young biomass burning plume

with the same instrument (Coheur et al., 2007) and by the

MIPAS/Envisat limb emission spectrometer on larger scale

(Burgess et al., 2006; Glatthor et al., 2007). More recently

CH3OH and NH3 have been observed in a nadir mode by

the Tropospheric Emission Spectrometer (TES) on a case

basis (Beer et al., 2008). The results presented here thus

provide the first observations of C2H4, HCOOH, PAN and

CH3COOH for nadir sounding instruments. Furthermore,

this is the first time that the simultaneous measurement of all

above-mentioned species in fire plumes is made with such

high spatial resolution, coverage and temporal sampling. As

shown in the next section, this opens the way to support stud-

ies in relation to the chemistry processes in the fires plumes,

which are currently mostly undertaken by confronting lo-

cal ground based or airborne observations to sophisticated
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ν

Fig. 4. Same as Fig. 3 (left panel) also shown for a spectrum measured on 17 May in Eastern Siberia (46.09◦ N, 118.99◦ E, 11:07 local

time, middle and right vertical panels). The focus is given here to the region 1075–1250 cm−1, with contributions from HCOOH ν6 band,

CH3COOH and PAN (CO stretching modes), and to the region from 760 to 835 cm−1 with contribution from PAN (NO2 bending mode). In

the middle panels, the light gray lines are the spectral residuals with all species accounted for in the retrieval, indicative of the best achievable

RMS.

chemistry and transport models (Jost et al., 2003; Mason et

al., 2001, 2006; Trentmann et al., 2003, 2005).

3.2 Emission and chemistry in the fire plumes

The large fires that occurred in Greece in the summer of

2007, which lasted for several days, are a good basis for

performing a prospective study on the capabilities of IASI

to track fire plumes from their emission source to regions

downwind, as thoroughly discussed in a companion paper

by Turquety et al. (2009), and also for capturing the chem-

ical processes occurring in the first hours using the avail-

able information on the shorter lived species. Figure 5 (left

panel) is similar to Fig. 3 in all respects, showing one typ-

ical IASI spectrum from the Greek fires on 25 August in

the evening, when the emissions were largest, and the cor-

responding spectral fits in the atmospheric window. The

NH3, C2H4 and CH3OH bands are clearly identified in the

plume, transported here from Peloponnese to the Mediter-

ranean Sea by North Eastern winds (Fig. 6). In contrast to

the fires in South Siberia/Eastern Mongolia described previ-

ously, the spectral signatures of HCOOH, CH3COOH and

PAN are not detectable here, which could be explained by

the larger amounts of VOCs emitted from boreal fires (Ma-

son et al., 2006). For the particular spectrum shown in

Fig. 5 we calculate total columns for NH3, CH3OH and

C2H4 of, respectively 5.09±0.3 1017, 6.78±2.0 1016 and

1.22±1.6 1017 molecules cm−2, with volume mixing ratios

near the surface (essentially scaled versions of the prior

profile due to the absence of vertical information) reaching

200 ppbv for NH3, somewhat less for the two organic com-

pounds. Elevated concentrations are also retrieved from IASI

for CO, reaching 2.74 1019 molecules cm−2 with exceptional

volume mixing ratios well above several ppmv in the bound-

ary layer (Turquety et al., 2009). The range of column abun-

dances retrieved from IASI can not directly be compared to

other measurements inside biomass burning plumes, which

sample the atmosphere only at low altitude.

The large plume of 25 August shown in Fig. 6 was found

to be relatively localized at the time of the IASI first over-

pass in the morning (08:20 local time). It then extended

over a much wider area in the evening (19:40 local time),

reaching the African coasts on the 26th in the morning (be-

tween 08:00 and 09:40). This transport pattern is well seen

in Fig. 7 on the basis of the NH3 signal. It is fully consis-

tent with the transport of CO and aerosols (Turquety et al.,

2009). We find the highest concentrations in the different

species in the plume from the 25th in the afternoon, showing

that intense burning persisted during the entire daytime, less-

ening afterwards. The concentrations retrieved in the plume

on the 26th in the morning have significantly decreased as a

result of fast chemical processes but obviously also because

of dilution in the ambient air. Assuming here that most of

the plume measured on 25 August in the evening was emit-

ted in a few hours, and simply integrating the concentrations
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Fig. 5. Left: same as Fig. 3 for an observation of the fires from the Peloponnese on 25 August 2007 at 19:40 local time. Right: retrieved

NH3, CH3OH and C2H4 profiles from that spectrum, in ppbv and on a logarithmic scale. The retrieved total columns are given inside the

Figure, along with that of CO, obtained from FORLI-CO near-real-time processing (Turquety et al., 2009).

over the plume area, we estimate a total emitted mass for

that particular day of 40 103, 6.5 103 and 7.0 103 Tons for

NH3, C2H4 and CH3OH, respectively. Because of the al-

ready large uncertainties in the column retrieval for each in-

dividual pixels, these values are only indicative. Keeping

this in mind, the NH3 plume could represent a non negli-

gible fraction (0.06%) of the yearly mean global emissions,

and in particular of its biomass burning component (about

0.5%) (Galloway et al., 2004). For C2H4 and CH3OH these

would be smaller parts of the total emissions (0.025 and less

than 0.01%, respectively; Folberth et al., 2006), which would

still be considerable amounts in regard to the local and brief

character of the event analyzed here.

Instead of looking into the concentrations of each species

individually, the chemistry patterns in the fire plumes can

best be highlighted by comparing the retrieved concentra-

tions for the short-lived compounds to that of CO, which has

a mean lifetime in the troposphere of several weeks. This

procedure allows indeed removing the mixing component

with ambient air, which occurs over time. This comparison

is provided in Fig. 8 for the concentrations on the 25th in the

evening and 26th in the morning. We find linear relations be-

tween CO and the other species for both days, with correla-

tion coefficient above 0.9 for NH3, 0.88 for C2H4 and around

0.8 for CH3OH. Despite possible large errors on the deter-

mination of the column abundance for each species, which

could in turn cause large errors on the enhancement ratios

if only individual scenes were considered, the observed high

degree of correlation among the species provides good con-

fidence of the reproducibility on the column measurements

within a plume and as function of time. Hence, the value

of the slopes ∂[X]/∂[CO], which give the enhancement ra-

tio relative to CO, is more reliable than the column them-

selves. Close to the fire source, however, the linear regres-

sions are not statistically representative because of the few

measurements (see Fig. 7) and the calculated enhancement

ratios are provided with larger errors. Values of 0.157, 0.039

and 0.009 for NH3, C2H4 and CH3OH are respectively calcu-

lated close to the source, which are extremely high for NH3

and C2H4 as compared to those usually reported from air-

craft measurements, even in fresh biomass burning plumes

(e.g. Christian et al., 2007; Goode et al., 2000; Hobbs et al.,

2003; Mauzerall et al., 1998; Yokelson et al., 2003). In fact

such high values for the enhancement ratio of NH3 relative to

CO were only reported above very specific burning sources

such as cattle dung and charcoal-making kilns (Christian et

al., 2007). The temporal evolution of the enhancement ra-

tio relative to CO over the 24 h period investigated here for

the Greek fires is displayed in Fig. 9, on a logarithmic scale.

There is a decrease for all species, which is consistent with

the shorter lifetime of these compounds compared to that of

CO. The values of the enhancement ratios for NH3 and C2H4

drop very rapidly, by a factor of about seven, during the first

twelve hours (Fig. 9) and slower afterwards. For CH3OH the

situation is similar but the rate of decrease during the first half

of the period is much more reduced than for the other two

species, which could be interpreted by less primary emission

and possibly also secondary formation of that species in the

plume (Holzinger et al., 2005).
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Fig. 6. Fire plume from the Peloponnese fires, measured on 25 Au-

gust 2007 at 19:40 local time, shown separately from the upper left

to the bottom right, for CO, NH3, CH3OH and C2H4 total columns,

in molecules cm−2. For the short-lived species only the measure-

ments showing elevated BTD values were kept for the retrievals.

The CO distribution was cut for the lower total columns (values

smaller than 2.85 1018 cm−2) to reveal the enhanced concentrations

in the plume from the background ones. Data are interpolated on a

0.125◦
×0.125◦ grid.

The analysis performed above for the plume of 25 to 26

August could unfortunately not be extended over a longer

time period because the plume progressively disappeared and

other emissions took place the following day in the same

region. Similarly, such time-dependent study was difficult

to perform for the South Siberia/East Mongolia fire events

described above, which were not traceable in time, show-

ing more of an intermittent character with the short-lived

species being rapidly lost. As a basis of comparison, how-

ever, we find for the large plume observed on 17 May 2008,

in Eastern Mongolia (see also Clerbaux et al., 2009), values

of the ∂[X]/∂[CO] slopes of 0.013, 0.011 and 0.005 for NH3,

CH3OH and C2H4, respectively, with, however, larger scatter

around the linear regression (correlation coefficients between

0.53 and 0.73). These results suggest much lower ammonia

and ethene emissions relative to CO than in the Greek fires.

4 Conclusions and perspectives

We have performed detailed analyses of thermal infrared ra-

diance spectra measured from space in nadir geometry by

the IASI/MetOp sounder above large forest fires. Two major

events have been studied: the wildfires from August 2007 in

Fig. 7. IASI observation of the plume’s transport from the Pelopon-

nese fires during three successive orbits from 25 August 2007 in the

morning to the next day, using NH3 as tracer. Each point represents

a IASI pixel, with the colour scale giving the BTD values associ-

ated to the NH3 line at 867.75 cm−1 (negative values represent an

absorption signal). Note that BTD values are given for a restricted

number of measurements along the orbits; it is such as to give an

estimate of the noise level outside the plume, while avoiding super-

position of the values from different orbits. The orange, grey lines

indicate the spatial extent of the plume for the three periods.

the Mediterranean basin, mainly originating from the Pelo-

ponnese peninsula, and those of early spring in Southern

Siberia (Baikal Lake area) and Eastern Mongolia. In all these

fire plumes, the presence of NH3, C2H4 and CH3OH has

been firmly attested based on their spectral features in the

atmospheric window. In the boreal fires, absorption bands

of HCOOH and PAN have been observed, and the assign-

ment of another broadband extinction feature to CH3COOH

has tentatively been made. For C2H4, HCOOH, and possibly

PAN and CH3COOH, these are the first reported observa-

tions from a nadir infrared sounder. Total columns have been

retrieved for all species, with statistical errors generally in

the range 5–30% (1σ ), which are to be considered as a lower

bound to the total error due to the limited vertical sensitivity

and unknown plume height and in addition due to the possi-

ble influence of e.g. aerosols in these extreme environments.

Taking advantage of the excellent spatial resolution, cover-

age and sampling of IASI, the horizontal extension of the

plumes have been captured and their evolutions in space and

time have been tracked. We have used as a case study the

fire from the Peloponnese for three successive IASI orbits

to provide insight onto the capabilities of IASI to contribute

in understanding the chemical processes in the plume. En-

hancement ratios of NH3, CH3OH and C2H4 relative to CO

have been inferred by linear regression analysis and the val-

ues were found to be relatively high in comparison to lit-

erature data for a young biomass burning plume. The rapid
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σ)

Fig. 8. Correlation between CO total columns and NH3, C2H4 and CH3OH total columns retrieved in the fire plume on 25 August 2007 in

the evening (left) and the 26 August 2007 in the morning (right). Linear regressions are plotted for each species vs. CO. The values for the

resulting slopes and their errors are given in the figure, along with the correlation coefficient R and the standard deviation (1σ ).

σ) 

Fig. 9. Temporal evolution of the enhancement ratio of NH3, C2H4,

CH3OH relative to CO, in logarithmic scale, during the 24 h af-

ter the plume’s first observation on 25 August 2007, closest to the

source region of the Peloponnese (see Fig. 7). The error bars are

standard deviation (1σ ) from the linear regressions relative to CO

(see Fig. 8).

decrease of the enhancement ratios after half a day is explain-

able by the short lifetime of these three compounds relative

to that of CO. A somewhat slower decrease of CH3OH en-

hancement ratios as compared to that of NH3 and C2H4 was

found, possibly reflecting a secondary source of that species

in the plume.

The analyses have suggested, using available information

on the local thermal structure of the atmosphere, and assum-

ing that the emitted plumes were largely confined to the low-

est part of the atmosphere, that IASI was able to probe the

chemical composition deep in the troposphere. If confirmed

by more detailed forward and inverse simulations, this re-

sult would open extremely promising perspectives for iden-

tifying local to global sources of short-lived species and for

monitoring air quality. This would obviously fill current ob-

servational gaps and improve our knowledge of both emis-

sion inventories and chemical reactions in the global atmo-

spheric environment. As an example, a simple estimate of

the NH3, C2H4 and CH3OH mass emissions from the Pelo-

ponnese fires on 25 August 2007 was found to make up a

non negligible contribution to the global emission budgets.

Since the IASI launch in October 2006 several similar strong

fires have been monitored and other emission sources have

been revealed. It is therefore anticipated that the continuous

monitoring of the lower atmosphere by IASI for the planned

14 years will ultimately help, along with global chemistry

models, to better quantify the atmospheric budgets of a se-

ries of short-lived species. A first step in reaching this objec-

tive was recently achieved from IASI global observations of

atmospheric ammonia (Clarisse et al., 2009a).
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