THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

IATK

Citation for published version:

Cordeil, M, Cunningham, A, Bach, B, Hurter, C, Thomas, BH, Marriott, K & Dwyer, T 2019, IATK: An
immersive analytics toolkit. in 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).,
8797978, Institute of Electrical and Electronics Engineers Inc., pp. 200-209, 26th IEEE Conference on
Virtual Reality and 3D User Interfaces, VR 2019, Osaka, Japan, 23/03/19.
https://doi.org/10.1109/VR.2019.8797978

Digital Object Identifier (DOI):
10.1109/VR.2019.8797978

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 28. Aug. 2022


https://doi.org/10.1109/VR.2019.8797978
https://doi.org/10.1109/VR.2019.8797978
https://www.research.ed.ac.uk/en/publications/8f405b3c-6430-4fcb-9f17-711ae97146e8

IATK: An Immersive Analytics Toolkit

Maxime Cordeil *
Monash University

Bruce H. Thomas 1
University of South Australia

Limpon

Quanter

Andrew Cunningham *
University of South Australia

Kim Marriott !
Monash University

I Vara

Benjamin Bach * Christophe Hurter ®
Edinburgh University ENAC

Tim Dwyer **
Monash University

s il L/

Figure 1: IATK is a scalable and expressive visualisaton toolkit that enables the creation of large, multidimensional data visualisations

in immersive environments

ABSTRACT

We introduce IATK, the Immersive Analytics Toolkit, a software
package for Unity that allows interactive authoring and exploration
of data visualisation in immersive environments. The design of
IATK was informed by interdisciplinary expert-collaborations as
well as visual analytics applications and iterative refinement over
several years. IATK allows for easy assembly of visualisations
through a grammar of graphics that a user can configure in a GUI—
in addition to a dedicated visualisation API that supports the creation
of novel immersive visualisation designs and interactions. IATK is
designed with scalability in mind, allowing visualisation and fluid
responsive interactions in the order of several million points at a
usable frame rate. This paper outlines our design requirements,
IATK’s framework design and technical features, its user interface,
as well as application examples.

Index Terms: Human-centered computing— Visualization—Visu-
alization techniques—; Human-centered computing—Visualiza-
tion—visualisation design and evaluation methods
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1 INTRODUCTION

This paper introduces IATK, an open-source toolkit! that enables
users to create data visualisations and immersive analytics systems.
Hardware and software development toolkits have significantly con-
tributed to the development of the fields of virtual [26] and aug-
mented [37] reality, computer graphics?, and data visualisation [10].
IATK has been designed to provide an expressive framework for
building immersive data visualisations that scale to large datasets.
As a toolkit, IATK provides both a high-level GUI interface for
simple authoring and a low-level API for fine control and extending
the visualisations.

Toolkits for 3D immersive environments (MR/VR/AR) have a
long tradition [7,37], e.g. facilitating object tracking [8,50] or 3D
modeling and rendering [48,49]3. Most recently, Unity has be-
come a standard platform for developing immersive environment.
Such toolkits form the backbone of development, education, and
dissemination of computing software technology by providing sim-
ple access to routines and standard solutions, as well as facilitating
development and prototyping.

An application area of immersive environments that is gaining
increasing attention is data visualisation in immersive environments,
commonly called immersive analytics [39]. This development is
driven by the desire to investigate new means to explore large and
potentially complex datasets using new and emerging display and
interaction technologies. While data visualisation has traditionally
focused on 2D media such as screen and paper, a range of novel
applications are exploiting stereoscopic perception for the visual-
isation of 3D spatial datasets such as anatomic data [22], abstract
high-dimensional data [17], and networks [18,35]. Direct and nat-
ural interaction in immersive environments can support selection
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and manipulation of 3D content [4]. Eventually, data visualisations
can be embedded into the real world to support in-situ decision
making [5,54]. As the technology continues to improve and be-
come more affordable, we expect an increase in both research on
novel visualisation techniques in immersive environments and a
wider range of applications for immersive visualisation [2, 3]. To
cope with this growing demand and to increase exploration in the
field, immersive analytics requires its own set of toolkits, providing
standard routines, predefined visualisations and support for creating
novel visualisations and interactions.

IATK addresses this gap. Itis inspired by existing toolkits and con-
cepts for visualisation on traditional 2D media such as screen and pa-
per (notably Vega-lite [46] and The Grammar of Graphics [53]). Al-
though there are existing immersive visualisation toolkits (DXR [47],
VR-viz [45], and Glance [24]), IATK has been designed with a focus
on scalability, data visualisation design, and user interaction. Ad-
ditionally, IATK has emerged from several years of development
of visualisation applications [17,31] in collaboration with Monash
University, the University of South Australia, ENAC and Edinburgh
University. IATK builds upon previous work with the following
contributions:

* A composable grammar of visualisation primitives.

* A high-level interface for rapidly constructing advanced interac-
tive immersive visualisations in the Unity editor.

* Rendering millions of items, allowing IATK to be used in actual
real-world scenarios.

* An extensive set of example visualisations e.g. scatterplots, scat-
terplot matrices, line graphs, parallel coordinates plots, trajectories
and bar charts.

¢ An expressive API for building novel immersive visualisations.

* Extended interaction capabilities for brushing and linking, spa-
tial interaction, and direct manipulation.

In the remainder of this paper, we outline existing toolkits for
both immersive applications in general and visualisations in particu-
lar (Section 2). We then define four design requirements for IATK
(Section 3) and explain which features in IATK meet these criteria.
We introduce the IATK framework (Section 4). Further, we show
how the concepts and components implemented from the design
requirements of IATK (Section 5) empower users to build reactive,
advanced immersive visualisations that enable novel ways to explore
data. For example, it simplifies building an augmented reality desk-
top setup that uses a head-mounted AR device and hand gestures to
explore data. In Section 7 we provide details on how to explicitly
build this setup and provide a series of use cases that demonstrates
the power of IATK. Additionally we report on IATK’s performance
and provide feedback collected from Immersive Analytics researcher
attendees at two recent international tutorials.

2 RELATED WORK
2.1 Visualisation in Immersive Environments

Immersive visualisation has been defined as “the use of engaging,
multisensory, embodied data and analysis tools to support explo-
ration, communication, reasoning and decision making” [15,39].
Previous VR research for data visualisation has focused on CAVE
environments for scientific visualisation [1, 19] and abstract infor-
mation visualisation [42]. However, more recent work has shown
the potential of head-mounted displays (HMDs) for perception and
interaction [4] and collaboration [17]. HMDs have been used to
explore networks [35], immersive ego and exocentric maps [56],
origin-destination flow maps [55], trajectories and brain fibers [31].
They also offer potential for integrating visualisation into a real-
world context by projecting data visualisations into a user’s physical
environment [5,21,54].

2.2 Information Visualisation Toolkits

The formalisation of the grammar of graphics [6,53] and research
to automate the design of visualisations [38] have significantly con-
tributed to the design processes of data visualisation. These for-
malisms provide a systematic approach to creating visualisations
and usually include (i) visual marks, such as points, lines, and ar-
eas representing data objects, (ii) visual variables to change the
appearance of marks (color, transparency, size, texture, etc.) [6], and
(iii) a range of visual layouts to position marks (e.g., cartesian and
polar coordinate systems, network layout, etc.) as well as a range of
supporting elements such as labels, titles, grids and different scales
(e.g., linear, log scale). Data is mapped to visual marks and their
attributes in a processes called visual mapping. Combining these
aspects in a grammar provides a systematic approach to describe a
very large design space.

A wide range of authoring tools and visualisation toolkits are based
on such abstractions. For example, Fekete [23] introduced the Info-
Vis toolkit, the first visualisation toolkit for Java Swing applications.
The Infovis toolkit allows users to define visualisations from existing
templates, control visual variable mappings and define user interac-
tions. A similar toolkit is Prefuse [28]. More recently, D3 [10] was
introduced to facilitate the design of web visualisations by providing
a low-level toolkit for interactive graphics. Most recently tools have
emerged to provide high-level declarative grammars for creating
visualisations [9,36,43,46]. Instead of coding, visual mappings and
layouts are assigne in a declarative way, allowing for very rapid and
automatic design.

2.3 Immersive Applications and Visualisation Toolkits

Few toolkits exist that bring visualisation concepts to virtual and
augmented reality. The general concepts for data visualisation re-
main the same (visual marks, attributes, layouts, etc.), but immersive
spaces involve a greater range of technologies and programming en-
vironments. For example, dedicated toolkits exist for many specific
tasks: Vuforia for tracking®, A-frame for building AR applications
on the web’, and ARKit for iOS°.

For scientific visualisation, ParaView [1] and VTK [41] have
been used to create high-quality large-volume isosurface, and flow
data visualisation. While successful in medical and engineering
applications, they do not facilitate the simple creation of informa-
tion visualisations such as scatterplots, matrices, and trajectories.
Glance [24] is a graphics-optimized toolkit for information visuali-
sation, but it requires low-level programming instead of providing a
declarative grammer like IATK. GUISs are provided in both 1Viz [20]
and Visualitics”. However, iViz is a commercial platform for immer-
sive visualisation and does not provide programming capabilities nor
the range of visualisations possible with IATK. There are two immer-
sive toolkits for the web, VRIA [13] and VR-Viz8 that use javascript
to program a predefined set of visualisations. VR-Vis is based on
A-Frame and uses a grammar approach inspired by Vega-lite.

Most similar to IATK is DxR [47], an authoring toolkit based on
Unity. It targets three levels of user expertise (beginner, intermediate,
advanced) and the grammar-based approach of Vega-Lite [46]. DxR
is designed for rapid prototyping, rather than scaling to large datasets.
Moreover, IATK’s grammar is more expressive than those of existing
toolkits and which allows for the creation of additional visualisations
such as parallel coordinates or multiple views. Finally IATK is
meant to support large datasets for research but also for real-world
applications, while remaining an open-source toolKkit.

“https://www.vuforia.com
Shttps://aframe.io
Shttps:/developer.apple.com/arkit
http://www.virtualitics.com
Shttps://www.npmjs.com/package/vr-viz



3 DESIGN REQUIREMENTS

To inform the design of IATK, we established a set of design require-
ments. We gathered these requirements based on our own experience
as data visualisation researchers but also with the feedback of visu-
alisation practitioners willing to explore immersive interactive data
visualisation. These practitioners are academics from core AR/VR
and visualisation areas.

R1—Expressiveness: Exploring complex data requires a variety
of visualisations (e.g. scatterplots, parallel coordinates, scatterplot
matrices, graphs etc.), each of which providing a different and ideally
complementary perspective on the data. Moreover, different aspects
of the data (time, geography, connections, etc.), different data types
(dense-sparse, small-large, networks, temporal, etc.), and a range of
analytical tasks (finding clusters and outliers, estimating trends, etc.)
call for their own visualisation solution. To increase the range of
applications, our grammar and toolkit must allow for the design and
configuration of a large variety of visualisations.

R2—Simple authoring: A range of visualisation practitioners
with diverse backgrounds must be able to create immersive visuali-
sations. Those users include researchers, students, visual designers,
data engineers and data scientists. Simple authoring through GUIs
is essential to help a wide range of users to rapidly and efficiently
build data visualisations.

R3—Scalability: Modern datasets often have many data points
and attribute dimensions. In VR/AR, the display space that sur-
rounds the user requires a new approach to visualising big data.
Further, fluid and responsive rendering and interaction is crucial for
usability [32,33].

R4—Integration of MR with the desktop for authoring and
exploration: While MR provides new opportunities for visualising
and interacting with data, traditional desktop environments (key-
board, mouse and screen) are still the defacto way to code and
perform traditional authoring tasks. Bridging the two environments—
desktop and MR—is essential to fully support efficient data visuali-
sation design and exploration.

4 |ATK FRAMEWORK

The design of the IATK framework is grounded in fundamental
interactive visualisation models and principles. In particular the
IATK framework implements:

 an abstracted data model based on tabular data;

¢ a simple grammar of graphics that focuses on geometry and
aesthetic design of data visualisations [53];

¢ an advanced interaction model that supports filtering, brushing
and linking, and drill-down operations to get details on demand.

We will explain each of these points in detail in the following.

4.1 Data Model

IATK features a data model that abstracts data files into a data
table used by the visualisation components. The tabular data con-
tains observations (row) and named attributes (columns). Several
attribute types are supported: numerical, date and time, and categor-
ical. These attributes are normalised into float values in the range
[0,1], which is optimal for GPU shader code (as described in Section
6), while functions are provided for converting from normalised
values back to their original format. The data model contains an
abstract DataSource class and an implementation CSVDataSource
that supports comma separated values (CSV). This implementation
covers a large proportion of datasets, either natively or through con-
version tools. After reading the header of the CSV, CSVDataSource
will attempt to automatically infer the datatypes of attributes within
the data, however users are able to pass in a metadata file that speci-
fies the types and ranges of specific attributes.

4.2 |ATK Grammar of Graphics

A strong motivation behind IATK is to empower users with an
expressive interface that allows them to create a wide variety of data
visualisations. Rather than simply providing a disparate collection
of predefined graphics, we chose to use a “grammar of graphics”
approach [52, 53]. This captures the underlying commonalities
between different kinds of statistical graphics and provides the user
with the power to move beyond named graphics [52].

IATK is based on a simple grammar of graphics that is expres-
sive enough to handle a wide variety of common data graphics. A
simple visualisation is created by specifying three components: a
view-frame, the geometric objects to be placed in the frame, and the
mapping from data attributes to the spatial and visual attributes of
the geometric objects [6,51]. More complex visualisations can be
built from simple visualisation by using the compound view com-
ponent, which generates view-frames and the /inking visualisation
component which can be used to display visual links (i.e. lines)
between data points of two visualisations.

Simple and Compound View-Frames: Abstract data visualisa-
tions use a variety of coordinate frames, such as 2D and 3D orthogo-
nal axis, radial, the many kinds of map projections, and parallel axes.
The grammar of IATK contains a View-frame Type element that
specifies the choice of coordinate frame. Currently 1D, 2D and 3D
orthogonal axes are provided. View-frames can be combined into
more complex objects using Compound-view elements. Currently
1D, 2D and 3D orthogonal grids are provided.

Geometric Objects and Visual Encoding: The Geometry spec-
ifies the geometric objects to encode the data. The currently avail-
able geometries of IATK are Points, Lines and Bars. Glyphs consist
of a set of predefined graphical elements to draw the geometries.
Points, Spheres, Quads and Cubes are available to draw Point geome-
tries, Lines, Connected Dots and Lines to draw Line geometries and
Cuboids to draw Bar geometries. The Colour channel maps a set
of colours to a data dimension. If the data dimension is undefined,
the same colour applies to all the data points; a continuous data
dimension is mapped to the colour channel, the user can define a
colour gradient. The user can define a colour palette when a cate-
gorical data dimension is mapped to the colour channel. The Size
channel maps a data dimension to the size of the glyph. If the data
dimension is undefined, a default, customisable size is applied to all
data points. A mapping to a data dimension allows the user to define
a minimum and a maximum range. Users can control pixel-level
features such as transparency and blending modes. This type of
interaction enables information emergence in dense datasets, and
reveals structural information in data. Transparency control can also
be used as an additional channel to filter out pixels.

Visual Linking: Visual links [16] help users to visually connect
the same data points across multiple visualisations and to understand
relationships in data. Typically, visual links are lines that connect
the same data points across multiple visualisations. In abstract data
visualisation, e.g. on dashboards, visual links can connect a number
of heterogeneous visualisations such as scatterplots, graphs and
barcharts. Since the architecture of IATK is fluid and reactive, the
design and orientation of the visual links between two visualisations
are updated when the aesthetic design (e.g. axes values or colors)
or the position and orientation of a visualisation is changed. Visual
links can also be brushed if the data point is brushed (i.e. the line
of the visual link visualisation corresponding to the brushed data
point is highlighted with the brush color (see Brushing and Linking,
Section 5). One consequence of this architecture is that IATK can
be used to create a system like ImAxes [17], in which visualisations
can be linked (Figure 1 (11,12)). Those links can be manipulated
with hand controllers, e.g. to improve the perception of tclutter.

Summary: The IATK grammar enables the design and creation
of a wide range of data visualisations commonly used in information
visualisation and visual analytics, such as statistical charts (scatter-



plots and bar charts), trajectories, graphs and line charts (see Figure
1). However, this expressiveness means that it can be at first daunting
to create a graphic using the full grammar. To simplify the creation
of common data visualisations in IATK, we provide a number of
predefined combinations of the above elements:

e Scatterplot: 2D and and 3D orthogonal axes with point geometric
object (Figure 1 (1,7))

¢ Scatterplot matrix: a 2D or 3D grid of 2D or 3D scatterplots
(Figure 1 (5,6))

¢ Parallel coordinates: a 1D grid of 1D axes with line geometry.
(Figure 1 (13))

4.3 Interactive Visualisation Model

Efficient visual data exploration requires a set of interactions that in-
clude filtering data, making queries, select data points and changing
the visual design to seek outliers, trends and more general structural
information in the data [30]. IATK’s interaction model is composed
of manipulating the grammar of graphics using high-level interfaces
(see next Section), and immersive interactions with the visualisations.
This interaction model is integrated directly within the visualisation
components and scales to support large datasets.

Filtering: Filtering allows a user to define useful data ranges on
the visualisation’s axes, filter out outliers and categories or ranges
of data from other dimensions of the dataset. In IATK the user
can specify a minimum and maximum value per axis. Changing
these values results in re-scaling the range of a dimension. IATK
also allows to filter out minimum and maximum values without
re-scaling. The data points that are filtered out are not displayed
and the filtered values on the axis are grayed out. Finally, users
can build multidimensional queries to filter out data in additional
dimensions. This is done by selecting one or several data dimensions
and specifying minimum and maximum filter values for the selected
dimensions.

Brushing and linking: In the process of creating several visuali-
sations showing many facets of multidimensional data, users may
need to relate the data points across visualisations. This is supported
by interactive brushing and linking [11,12,34], an interactive pro-
cess that enables the selection of data points in one visualisation and
automatically highlights the same data points in other visualisations.
A highly responsive interface [40] is required to ensure a smooth
Brushing an Linking interaction.

Details on demand: Retrieving values of selected information is
an essential task during the visual exploration or presentation of data.
We defined an inverse projection function that transforms screen and
model coordinates back to the normalized data space. This allows
retrieving values on axes, or from 2D/3D pointing in a visualisation.

Animated transitions and animations: Changing the design of
a data visualisation can alter the focus of a user. For example, if the
geometry or data bindings are changed abruptly the user may lose
track of the set of data points they were inspecting. Smooth animated
transitions between visualisation designs are required to help users
preserve focus and keep track of graphical objects of interest [29].
Animations based on temporal attributes help to understand the
dynamics of data [44]. The IATK framework contains both animated
transitions and attribute-based animation mechanisms.

5 IATK INTERFACE

We implemented the IATK framework into Unity, as it is a broad
immersive environment technology enabler that is accessible from
beginners to expert designers and programmers. In consideration of
requirement R2 (simple authoring), we provide two user-facing inter-
faces for working with the toolkit: a Graphical User Interface (IATK
GUI) that integrates with the Unity editor and a direct Application
Programming Interface (IATK API).
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Figure 2: The IATK Data Source and Visualisation GUI panels.

5.1 IATK GUI

The Unity editor is composed of four main panels: the rendering
window, the scene hierarchy that contains the rendered objects,
a project browser and an inspector GUI. IATK features a set of
visualisation authoring GUI panels that integrate directly within
the Unity editor’s inspector panel. By integrating with the Unity
editor, IATK can leverage the WIMP interactions of the interface
to bind data files and objects to other components, e.g. using drag
and drop. This drag and drop interaction approach encourages rapid
development and exploration of the visualisation design space. The
elements of IATK GUI (see Figure 2) are:

The (D TATK data GUI panel contains a CSV file field, a graph
data file field, and a meta data file field. A user drags and drops text
files from the Unity project browser into the fields to configure the
underlying datasource object.

The Q) IATK visualisation Editor panel is the central GUI el-
ement component of IATK. It is enabled after creation once a user
drags and drops a Data component, The 3) visualisation Type
dropdown menu selects the type of visualisation to create: either a
scatterplot, a parallel coordinates or a scatterplot matrix visualisa-
tion. The parameters unique to each visualisation appear in the (4)
visualisation panel.

Scatterplot item: when the scatterplot item menu is selected, the
visualisation Editor panel displays three groups of controls (referred
to as attribute filters), each consisting of an attribute dropdown and
two range sliders. The three attribute filters correspond to the X,
Y, and Z axes of the visualisation. When the user selects a new
attribute from a dropdown list, the visualisation axis animates to
the new attribute values. The two range sliders for an attribute filter
normalise and filter values in the axis respectively.

Scatterplot Matrix item: when selected, the visualisation Editor
panel displays three editable lists of attribute filters. The three lists
correspond to the X, Y, and Z dimensions of the SPLOM.

Parallel Coordinates item: when selected, the visualisation Ed-
itor panel displays a reorderable list of attribute filters that represent
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Figure 3: Sphere and box Brushing and Linking in IATK — a selec-
tion is made in a Brushing visualisation and the selected points are
highlighted in the Brushed visualisations (red marks)

the axes of the visualised PCP.

Aesthetics are defined in the (5) aesthetic panel. The geometry of
the visualisation is defined with a dropdown menu that contains the
geometries available in IATK’s grammar. General aesthetics (e.g.
color, size) are also defined by selecting attributes from dropdown
menus.

IATK Linked visualisations enables visual links between visu-
alisations. The user drags and drops visualisation objects from the
hierarchy onto the visualisation fields of the Linked visualisation
GUI. A boolean value enables and disables the linked lines.

IATK Brushing and Linking propagates a data point selection
from a Brushing visualisation to a set of Brushed visualisations
(Figure 3). The user can define the geometry (Brush Type), the
input parameters (Inputl and Input2) and the aesthetics (i.e. the
color and size of selected data points) to create a custom selection.
The Inputl and Input2 fields are generic as they only require a
Transform component (i.e. the position and rotation of an object
in the scene). Hence the Transform of any object in the scene can
be used to specify the selection. IATK contains two Brush Type
elements that allow 1D, 2D and 3D selections:

* SPHERE requires a Transform component to be attached to Inputl
and a radius value in the normalized range [0,1]. This Brush Type
allows a disc selection on a 2D visualisation (i.e. the intersection
of the sphere on the 2D plane) and when the radius is set to a small
value, allows single point brushing. In 3D, the sphere brushes all
the 3D points within its radius.

* BOX requires two object Transform components to be attached to
Inputl and Input2. This Brush Type enables bi-manual interaction
to draw a box selection in 3D, or a rectangle in 2D.

The Brushing and Linking component also exposes a list of the
selected data points’ ids that enables the user to obtain details on
demands of the selected data points.

Interactions with the GUI are fluid and responsive up to 1M points
(see Section Performance), i.e. when a visualisation parameter is
changed, the visualisation in the Unity editor rendering window or
the headset view is updated instantly. This ensures an uninterrupted
flow of actions [14] to explore data and build visualisations.

5.2 IATK Low-Level API

The GUI editor allows users to create a wide range of data visuali-
sations with different designs. However, if a user wants to create a
custom visualisation outside the constraints of the GUI, an APl is re-
quired to enable more expressiveness. This supports more flexibility,
modularity, and fine grained control over the design of an immersive
visualisation. IATK provides a C# and Javascript API to address this.
The API is designed around a fluent interface, which encourages a
domain specific language style approach to the interface design [25].
This aspect of fluent design supports an interface that reflects the
grammar of graphics defined by IATK. We follow the conventions of
D3, where a visualisation object is created by chaining design com-
mands to a declared object. In IATK, a ViewBuilder is declared
by defining the base geometry and the name of the visualisation.
Aesthetics commands (e.g. position values, color, size etc.) are
chained to the ViewBuilder. When applied the builder returns
a View object. To illustrate, the following code outlines the calls
required for a basic 3D point visualisation:

int number_of_points;

float[] data_array_x, data_array_y, data_array_z, data_array_size;

Color[] data_array_color;

// create a view builder with the point topology

ViewBuilder vb = new ViewBuilder (geometry, “visualisation name”).
initialiseDataView(number_of_points).
setDataDimension(data_array_x, ViewBuilder. VIEW _DIMENSION.X).
setDataDimension(data_array.y, ViewBuilder. VIEW_DIMENSION.Y).
setDataDimension(data_array_z, ViewBuilder. VIEW_DIMENSION.Z).
setSize(data_array_size). // set the size of each data point
setColors(data_array_color); // set the color of each data point

View view = vb.updateView().apply(gameObject, nil);

Unity uses the Mono programming framework environment.
Mono includes the LINQ framework to perform advanced data filter-
ing and queries (e.g. using SQL-like commands to select subsets of
data). Given this rich integrated programming environment, the API
of IATK allows to specify interactive data visualisations with few
lines of code (Section 7.3 details an example of use with LINQ).

6 ARCHITECTURE AND PERFORMANCE

Several architectural considerations emerge from the requirements
identified in Section 3. To support R3 (scalability), we designed
IATK to leverage modern GPU processors where possible, in lieu of
the higher level frameworks offered by Unity. To support R2 (simple
authoring), we have designed a multi-level architecture that provides
a high-level GUI driving a low-level API, both accessible to the user.
To support R4 (MR and desktop integration), we implemented a
serialisation facility that preserves the design changes at runtime
and rebuilds the modified visualisations back into the editor. This
architecture is modular and can be extended. New Visualisation
types can be created that use the ViewBuilder and interaction
model.

Scalability: The scalability (R3) of the IATK architecture re-
volves around the use of a data-driven mesh model. Naively ren-
dering the data points as Unity game objects would limit perfor-
mance beyond one-thousand data points. In IATK’s data-driven
mesh model, dataset attributes and aesthetic parameters are bound
and encoded to individual vertices in a mesh object. Computation-
ally expensive tasks are then handled by a custom set of visualisation
shader programs, moving the computation from the CPU to the GPU
where it can be parallelised.

Figure 4 illustrates the rendering pipeline for the sphere glyph.
Each stage in the pipeline represents a data transformation. In the
first CPU-bound stage, data attributes are mapped to IATK’s gram-
mar of graphics. The second stage encodes each datapoint into a
unique vertex, mapping aesthetics such as size to the UV compo-
nents of the vertex. Dimension manipulations, such as filtering and
normalisation, occur on the GPU in the vertex shader stage. This is
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Figure 4: The rendering pipeline of IATK. Each stage represents
a data transformation. Computational expensive stages, such as
normalisation and animation, are performed on the GPU.

also the stage where animation is applied, interpolating positions and
other aesthetics such as size. In the geometry stage, IATK creates
geometry such as cubes and quads directly on the GPU, reducing
communication from the CPU that forms a common bottleneck in
3D applications. The glyphs are rendered during the final fragment
stage. For the sphere shader, a pre-computed normal map of a sphere
is applied to a lighting model to give the quad the appearance of a
physically lit sphere while being composed of far less actual vertices.
In this way, the shader has rendered what appears to be a complex
shape using minimal data passed from the CPU.

Fluid interaction: To achieve fluid interaction, we propose a fast
implementation of Brushing and Linking that leverages the Com-
pute Shader capabilities of the GPU. The computationally expensive
aspect of brushing involves testing every data point of the visualisa-
tion against the brush shape (a O(n) task). Moving this algorithm
to the GPU provides several performance benefits. The algorithm
can be parallelised, increasing performance by a factor of 32. The
algorithms can leverage the float performance of the GPU. Finally,
performing brushing on the GPU means the brush data is immedi-
ately available to the rendering pipeline without needing further CPU
communication. The Brushing and Linking uses a compute kernel.
The data attributes are passed to the kernel in a similar process to
the vertex stage of the rendering pipeline. The kernel tests each data
point against the given brush position and shape (either a box, cube,
or sphere). Brushed data point IDs are written to a brushing “texture”
that has a texel for each data point. The state of a data point (i.e.
whether it is brushed or not) is encoded in a color channel in the
texture. This texture is then passed to the vertex program stage of
the rendering pipeline.

Integration of desktop and MR: Unity makes a distinction be-
tween editing and runtime. During editing the user sets up the
environment and simulations. During runtime, the simulations play
out and the user can experience the application. While editing is
supported during runtime, any changes are reset when runtime is
finished. For a game engine, this behaviour is ideal. For a visu-
alisation designer, this behaviour is detrimental to the exploratory
process. We implemented a serialisation facility that preserves the
design changes at runtime and rebuilds the modified visualisations
back into the editor. This serialisation supports continuity between
the desktop and MR environments (R4).

6.1 Performance Graph

We profiled IATK with the Oculus Rift CV1, the Meta 2, and the
HoloLens to determine performance with large datasets. The Ocu-
lus Rift CV1 and Meta 2 were running on an Intel(R) Core(TM)
17-7800X CPU (3.5Ghz), 32GB of RAM and an Nvidia Geforce
GTX1080 graphics card (8GB VRAM). We generated six 3D scatter-
plot datasets of increasing size (10,000, 100,000, 1M, 2M, 5M and
10M data points). The data point positions were randomly generated.
The scatterplot was positioned such that it filled the device’s view.
Figure 5 summarises the results of the benchmark. Up to 2M
points the refresh rate constantly hits 90 FPS on the Oculus Rift,

which then decays linearly to 25 FPS when tested under the extreme
conditions of 10M points. Similarly the Meta 2 maintains 100 FPS,
dropping slightly by 2M points, and then linearly dropping. It is
worth noting that these framerates up to 2M are artificially capped
by the hardware. The HoloLens ran at an optimal 60 FPS at 1,000
data points. However, the hardware (CPU, GPU and RAM) in the
HoloLens are more akin to mobile class hardware. As such, the
performance dropped linearly from 1,000 points. Subjectively, it
was still usable at 10,000 points (running at 41 FPS), but by 1M
points the system is unusable. We noted that when fragment shader
overdrawing occurs, the performances of the toolkit are degraded.
It is then necessary to adjust the size of the geometry to minimise
overdrawing. Finally the responsiveness of the Unity GUI editor
scripts decreases dramatically from SM data points, with a response
time approaching 5 seconds (see Figure 5).
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Figure 5: IATK FPS and editor response time performances

7 SCENARIOS AND USE CASES

We demonstrate how IATK can be used to build a range of interactive
immersive visualisation applications within the Unity Editor GUI
and using the IATK API. We illustrate the use of our toolkit with
three scenarios and then demonstrate how to partially clone existing
immersive visualisation techniques. We close each scenario with a
high level conclusion in italics.

7.1 Interactive VR setup with IATK GUI

Virtual Reality immersive environments are a particularly interesting
medium for investigating high-dimensional and multivariate data
because they offer spatial real estate all around the user to display and
arrange a large number of visualisations. IATK can be used to setup
this environment without having to write a single line of code. We
illustrate building such an environment with IATK using a scenario
that involves Alice, a data scientist with beginner knowledge of Unity.
Alice’s goal is to setup a VR dashboard to explore a Dow Jones index
data set. Alice requires three key components to explore the data: a
scatterplot matrix, a 3D scatterplot and parallel coordinates. Alice
creates a data source and the corresponding three visualisation types
using the GUI contextual menu in the scene hierarchy of Unity. After
exploring different data mapping and aesthetic options for all the
visualisations (again using the IATK GUI), she arranges them into
the virtual environment using the Unity scene view. Further, Alice
creates a BrushingAndLinking component to create a brushing
interaction that links the three views. Alice has now created a setup
in which she can interact with the 3D line chart that shows the
evolution of index volumes and inspect specific periods by selecting
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Figure 6: Two examples of immersive visualisation with IATK1) An immersive VR visualisation platform to analyze multidimensional data (Dow
Jones dataset). The user brushes a 3D trendline visualisation and the points are highlighted in red in both the scatterplot matrix and the parallel
coordinates. 2) An augmented desktop visualisation platform with the Meta 2. The user interacts with a map displayed in AR above the physical
desktop, and the selected data points highlight on the 2D visualisation on screen in Unity.

sets of points in the visualisation (Figure 7(1)). The corresponding
data is highlighted on the virtual scatterplot matrix wall and parallel
coordinates. With this setup, she benefits from a room-size display
environment in which she can get more visual detail from the data
she inspects, and leverage bi-manual input to quickly select data
points of interest in a visualisation.

This scenario showed how IATK facilitated the creation (R2) of
advanced, highly interactive multidimensional data visualisation
in VR. Using only GUI actions, the system is expressive enough to
build an interactive dashboard without programming.

7.2 AR-desktop Exploration of Geospatial Data

Multivariate geospatial data is analysed in a wide variety of domains
and industries. The data consists of latitude and longitude values
with additional fields. The exploration of this data often consists
of mapping the data points to 2D glyphs (e.g. position and size for
certain data dimensions). In this example scenario we are interested
in Tom, an analyst working for a famous ridesharing company. Tom
has a very large open source dataset® of pickup locations in New-
York that also contains the date and time of the day and other data
dimensions. Tom’s aim is to analyse the correlation between the date,
the time of the day and the pickup locations. Tom uses the IATK
GUI to design a 2D (Date,Time) scatterplot visualisation of his data.
Realising that the data was incomplete, Tom uses his traditional
desktop-based data tools to clean and wrangle the data. Returning
to Unity, Tom creates a geographic 2D map (latitude, longitude)
with the updated data. Tom then declares a brushing and linking
mechanism, and attaches the hands Transforms provided by the AR
Meta 2 Unity framework. Tom runs the app and places the map to
his left, as if it was a 2.5D holographic screen (Figure 7 (2)). In
order to maximise the number of visible datapoints, Tom re-sises
the visualisation object. Using hand interactions, Tom selects single
and multiple datapoints which are then highlighted on the desktop
visualisation.

Because IATK offers continuity between immersive and desktop en-
vironments (R4), a user can leverage familiar desktop tools while
visualising their data in AR. Tom can keep using his desktop appli-
cations with his mouse and keyboard, but also benefits from direct
manipulation interaction on the immersive map, thanks to the inte-
gration with a see-through device with hand-tracking capabilities.

Ywww.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
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Figure 7: A fanning interaction for a 3D layered visualisation. Layers
of a large dataset are “fanned” out between the user’s hands.

7.3 “One Million Data Points in My Hands”

The input modalities and affordances in immersive environments are
of particular interest for exploratory immersive analytics research
[39]. For example 6DOF VR controllers offer direct interaction with
data visualisations. However the integration of these inputs (e.g.
position of motion-tracked controllers) with visualisation systems
is not easy and often requires fastidious programming. The API of
IATK is a powerful yet concise programming tool to easily create
novel interactions that take advantage of these input modalities.
Here we show how we can leverage Unity and its programming
environment to create a fanning interaction [27] of an exploded 3D
visualisation using two motion tracked controllers.

A 3D layered visualisation of latitude, longitude and base (same
dataset used in the previous scenario) can be obtained with the
following code. In order to create a fanning interaction it is necessary
to isolate each layer into a single IATK View. IATK’s compatibility
with the integrated query framework LINQ allows us to perform
complex data filtering to effectively isolate each base into separate
IATK Views layers. First, we create a filter function that uses LINQ
to filter IATK’s DataSource object:

// filters the array on a particular value in another dimension
Filter baseFilter = (array, datasource, value, dimension) => {
return array.Select((_base, index) => new { _base, index })
.Where(b => datasource.getOriginal ValuePrecise(
array[dimension].Data[b.index],dimension). ToString() == value)
.Select(b => b._base).ToArray(); };

This function is used to facet the data into layers when building
the views. We then add the following code to the update loop to



interpolate the layer positions, creating a fluid interaction:

// interpolate the position and orientation of each facet

layers][i].transform.position = Vector3.Lerp(controllerLeft.position,
controllerRight.position, (float)i / (float)(layers.Length — 1));

layers[i].transform.rotation = Quaternion.Lerp(controllerLeft.rotation,
controllerRight.rotation, (float)i / (float)(layers.Length — 1));

The resulting system from these few lines of code produces a fluid

fanning interaction that interpolates the positions and rotations of the
layers between the two controllers Transforms (Figure 7). The user
is able to “fan out” their hands and see the faceted data spreadout
fluidly.
This scenario demonstrates how to quickly build a fanning technique
with few lines of code and a high level LINQ syntax. This technique
can be further studied e.g. by extending the interpolation method
between the layers to parametric curves such as Beziers curves.

7.4 Reproducing Immersive Visualisation Applications

In order to further demonstrate IATK expressivity we show how
previous immersive visualisation interaction principles and systems
can be implemented with IATK.

Minimal implementation of ImAxes ImAxes [17] allows users
to place embodied data axes in 3D space and displays visualisations
according to the relative placement of those axes, as determined by
a spatial grammar. This grammar recognises spatial layouts such as
perpendicular or parallel axes to produce, respectively, scatterplots
and parallel coordinates. Additionally links appear between visu-
alisations when they are within a distance threshold. IATK can be
used to recreate all the defined visualisations (e.g. scatterplots, PCPs,
links) from ImAxes. The grammar recogniser of ImAxes 10 can
be directly reused with the IATK framework. Furthermore, IATK
can be used to create more visualisations and linked visualisations
based on the type of data (e.g. continuous vs discrete). For example,
ImAxes can be extended with linked bar charts and scatterplots (see
Figure 1 (11)).

FiberClay selection style FiberClay [31] is a VR aircraft trajec-
tory visualisation tool that implements a specific bi-manual inter-
action to select a set of trajectories (i.e. a trajectory is selected if
it intersects the two controllers). First, IATK can be easily used to
author a 3D immersive aircraft trajectory visualisation using simple
GUI operations within the Unity editor (see Figure 1 (9)). Second,
the flexibility of IATK allows a programmer to alter the Compute
Shader code that handles the selection of graphical objects. Since
the framework already takes into account two input Transforms to
select data, it is sufficient to store the index of the selected trajectory
in another color channel of the brushing texture and only select a
line when the two inputs intersect it.

Immersive AR Recently Bach et al. [4] studied immersive aug-
mented reality visualisation with multiple data selection tasks (see
section 2). The study used the HoloLens, which has usability issues
such as a narrow field of view and the results may have depended
on limitations of the device itself. IATK facilitates the work of
researchers to reproduce the same conditions in a device agnostic
environment. In this way, it opens possibilities for research to test
devices with different properties to make potential new insights and
contribute new results to the field of Immersive Analytics research.
IATK allows researchers to recreate immersive techniques and sys-
tems that already exists, making it a support tool for research to
reproduce previous experiments and to extend research to make new
insights on Immersive Analytics usability.

8 DiscussION

In this section, we elaborate a discussion on the current limits and
future extensions of our toolkit based on feedback collected during
two IATK tutorials (IEEE VIS 2018 and IEEE BDVA 2018). The

10github.com/MaximeCordeil/ImAxes

participants of the workshops were data visualisation, virtual reality
and human-computer interaction experts (researchers, PhD students,
and engineers from industry).

Usability and community impact: IATK has been particularly
well received by the research community. In particular, one re-
searcher was eager to further explore the concept of “flexible linked
visualisation” introduced in ImAxes [17], and was able during the
tutorial to assemble the basic interaction bricks required to emulate
the system. Another researcher found the toolkit very useful as they
wanted to explore visualisation perception in VR. In that case IATK
offers the possibility to rapidly create different visualisation designs
(e.g. spheres, plots, quads with different sizes and colors) with po-
tentially large datasets to test users’ perception. Finally during a
workshop a researcher ported IATK to Linux. This feedback suggest
a strong community interest for IATK.

Expressiveness: We received positive feedback regarding ex-
pressiveness with many participants reporting that they were able to
create the visualisations they wanted. Considering the descriptive
power of the toolkit, we have shown that IATK can reproduce a
diverse range of existing system. Considering the generative power
of IATK for new visualisations, some participants requested more
geometries, glyphs and View Frames (e.g. radar plots, surfaces,
node-link graphs). Since the architecture and model of IATK ex-
poses a data-driven Mesh object that can render any primitive via the
graphics card, it is possible to extend the grammar to include more
visualisations, addressing these requests. In future work, more
glyphs and View Frames will be available directly on the GUI to
allow for more combinations and expressiveness.

Scalability: Based on performance measures and participants’
feedback, the scalability of the tool for VR and thethered AR plat-
forms covers a wide range of real-world dataset sizes. However,
according to our measures, performances are still relatively low in
mobile AR environments (e.g. on HoloLens which possesses a low
performance GPU). For mobile AR devices with DirectX 11 support,
we are currently exploring how we can optimize performances e.g.
using GPU instancing for point geometry.

9 CONCLUSION

‘We contributed the design and implementation of IATK a scalable,
expressive and device agnostic data visualisation toolkit for immer-
sive environments. Informal feedback from our workshop tutorials
suggests that IATK supports a simple yet expressive grammar of
graphics that allows users from diverse backgrounds to create a wide
range of visualisations and to explore new visualisations using the
GUI and the API. It also defines a high-level interaction model that
enable filtering, brushing and linking and details on demand. We
demonstrated how our toolkit can be employed to create innovative
data visualisation setups in VR and AR, and how it can be used to
reproduce immersive data visualisation tools and techniques. The
performance tests we ran indicate that our toolkit can be effectively
used for immersive visual analytics of large data. Additionally, we
gathered useful feedback from a community of Immersive Analytics
researchers and plan to extend our grammar of graphics to allow for
more expressiveness. More precisely, in future work we plan to add
grammar operators to support visualisation composing and layout.
Further investigation of the usability of the GUI interface (at the
moment rather technical) would help to us to refine and streamline
the authoring experience. In particular, there is the opportunity to
take advantage of the live VR editing features available in current
Unity beta versions to allow users to author visualisations without
switching back and forth between headset and desktop.
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