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Abstract

In computational grids, performance-hungry applications need to simultaneously tap the

computational power of multiple, dynamically available sites. The crux of designing grid

programming environments stems exactly from the dynamic availability of compute cycles:

grid programming environments (a) need to be portable to run on as many sites as possible,

(b) they need to be flexible to cope with different network protocols and dynamically changing

groups of compute nodes, while (c) they need to provide efficient (local) communication that

enables high-performance computing in the first place.

Existing programming environments are either portable (Java), or they are flexible (Jini,

Java RMI), or they are highly efficient (MPI). No system combines all three properties that are

necessary for grid computing. In this paper, we present Ibis, a new programming environment

that combines Java’s “run everywhere” portability both with flexible treatment of dynamically

available networks and processor pools, and with highly efficient, object-based communica-

tion. Ibis can transfer Java objects very efficiently by combining streaming object serialization

with a zero-copy protocol. Using RMI as a simple test case, we show that Ibis outperforms ex-

isting RMI implementations, achieving up to 9 times higher throughputs with trees of objects.

1 Introduction

Computational grids can integrate geographically distributed resources into a seamless environ-

ment [12]. In one important grid scenario, performance-hungry applications use the computational

power of dynamically available sites. Here, compute sites may join and leave ongoing computa-

tions. The sites may have heterogeneous architectures, both for the processors and for the network

connections. Running high-performance applications on such dynamically changing platforms

causes many intricate problems. The biggest challenge is to provide a programming environment

and a runtime system that combine highly effi cient execution and communication with the flexibil-

ity to run on dynamically changing sets of heterogeneous processors and networks.
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Although effi cient message passing libraries, such as MPI [24], are widely used, they were

not designed for grid environments. MPI only marginally supports malleable applications that can

cope with dynamically changing sets of processors. MPI implementations also have diffi culties to

effi ciently utilize multiple, heterogeneous networks simultaneously; let alone switching between

them at run time. For grid computing, more flexible, but still effi cient, communication models and

implementations are needed.

Many researchers believe that Java will be a useful technology to reduce the complexity of grid

application programming [14]. Based on a well-defi ned virtual machine and class libraries, Java

is inherently more portable than languages like C and Fortran, which are statically compiled in a

traditional fashion. Java allows programs to run on a heterogeneous set of resources without any

need for recompilation or porting. Modern Just In Time compilers (JITs) such as the IBM JIT1 or

Sun HotSpot2 obtain execution speed that is competitive to languages like C or Fortran [4]. Other

strong points of Java for grid applications include type safety and integrated support for parallel

and distributed programming. Java provides Remote Method Invocation (RMI) for transparent

communication between Java Virtual Machines (JVMs).

Unfortunately, a hard and persistent problem is Java’s inferior communication speed. In par-

ticular, Java’s RMI performance is much criticized [3]. The communication overhead can be one

or two orders of magnitude higher than that of lower-level models like MPI or RPC [32]. In ear-

lier research on RMI [21], we have solved this performance problem by using a native compiler

(Manta), replacing the standard serialization protocol by a highly effi cient, compiler-generated

zero-copy protocol written in C. Unfortunately, this approach fails for grid programming, as it

requires a custom Java runtime system that cannot be integrated with standard JVMs. Thus, an

important research problem is how to obtain good communication performance for Java without

resorting to techniques that give up the advantages of its virtual machine approach.

In this paper, we present a Java-based grid programming environment, called Ibis, that allows

highly effi cient communication in combination with any JVM. Because Ibis is Java-based, it has

the advantages that come with Java, such as portability, support for heterogeneity and security. Ibis

has been designed to combine highly effi cient communication with support for both heterogeneous

networks and malleability. Ibis can be confi gured dynamically at run time, allowing to combine

standard techniques that work “everywhere” (e.g., using TCP) with highly-optimized solutions that

are tailored for special cases, like a local Myrinet interconnect. The Ibis Portability Layer (IPL)

that provides this flexibility consists of a set of well-defi ned interfaces. The IPL can have different

implementations, that can be selected and loaded into the application at run time. We will call a

loaded implementation an Ibis instantiation.

As a test case for our strategy, we implemented an optimized RMI system on top of Ibis. We

show that, even on a regular JVM without any use of native code, our RMI implementation out-

performs previous RMI implementations. When special native implementations of Ibis are used,

we can run RMI applications on fast user-space networks (e.g., Myrinet), and achieve performance

that was previously only possible with special native compilers and communication systems.

In this paper, we show that the IPL provides an extensible set of interfaces that allow the

construction of dynamic grid applications in a portable way. The IPL communication primitives

have been designed to allow effi cient implementations. We demonstrate that the actual Ibis im-

1see www.java.ibm.com
2see www.java.sun.com
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plementation can be chosen at run time, by the application. Using generated serialization code,

object streaming, and a zero-copy protocol, Ibis makes object-based communication effi cient. We

demonstrate the effi ciency of Ibis with a fast RMI mechanism, implemented in pure Java. The

Ibis approach of combining solutions that work “everywhere,” combined with highly optimized

solutions for special cases, provides effi ciency and portability at the same time.

In Section 2 of this paper, we present the design of the Ibis system. Section 3 explains two

different Ibis implementations. We present a case study of Ibis RMI in Section 4. Related work is

discussed in Section 5, and conclusions are drawn in Section 6.

2 Ibis Design

For deployment on the grid, it is imperative that Ibis is an extremely flexible system. Ibis should be

able to provide communication support for any grid application, from the broadcasting of video to

massively parallel computations. It should provide a unifi ed framework for reliable and unreliable

communication, unicasting and multicasting of data, and should support the use of any underlying

communication protocol, like TCP/IP, UDP, GM. Moreover, Ibis should support malleability, i.e.,

machines must be able to join and leave a running computation.

Ibis consists of a runtime system (RTS) and a bytecode rewriter. The RTS implements the IPL.

The bytecode rewriter is used to generate bytecode for application classes to actually use the IPL,

a role similar to RMI’s rmic. Below, we will describe how Ibis has been designed to support the

aforementioned flexibility, while still achieving high performance.

2.1 Design Overview of the Ibis Architecture

A key problem in making Java suitable for grid programming is how to design a system that ob-

tains high communication performance while still adhering to Java’s ”write once, run everywhere”

model. Current Java implementations are heavily biased to either portability or performance, and

fail in the other aspect. Our strategy to achieve both goals simultaneously is to develop reasonably

effi cient solutions using standard techniques that work “everywhere”, supplemented with highly

optimized but non-standard solutions for increased performance in special cases. We apply this

strategy to both computation and communication. Ibis is designed to use any standard JVM, but if

a native, optimizing compiler (e.g., Manta [21]) is available for a target machine, Ibis can use it in-

stead. Likewise, Ibis can use standard communication protocols, e.g., TCP/IP or UDP, as provided

by the JVM, but it can also plug in an optimized low-level protocol for a high-speed interconnect,

like GM or MPI, if available. Essentially, our aim is to reuse all good ideas from the Manta native

Java system [21], but now implemented in pure Java. This is a non-trivial task, because pure Java

lacks pointers, information on object layout, low level access to the thread package, interrupts,

and a select mechanism to monitor the status of a set of sockets. The challenges for Ibis are:

1. how to make the system flexible enough to run seamlessly on a variety of different commu-

nication hardware and protocols;

2. how to make the standard, 100% pure Java case effi cient enough to be useful for grid com-

puting;
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3. study which additional optimizations can be done to improve performance further in special

(high-performance) cases.

Thus, grid applications using Ibis can run on a variety of different machines, using optimized

software (e.g., a native compiler, the GM Myrinet protocol, MPI, etc.) where possible, and using

standard software (e.g., TCP) when necessary. Interoperability is achieved by using the well-

known TCP protocol: when multiple Ibis implementations are used, e.g., one Ibis implementation

on top of MPI, and one on top of GM, all machines can still be used in one single computation,

using TCP across the different implementations. It is thus possible to simultaneously use GM for

local communication and TCP for remote communication. There are currently two ways to achieve

this with Ibis. A runtime system on top of the IPL can load two Ibis instantiations simultaneously,

and choose the right one depending on the destination each message. Second, we provide an Ibis

implementation that performs the bridging between multiple protocols internally. Some underlying

communication systems may have a closed world assumption. In that case, Ibis also uses TCP to

glue multiple “closed worlds” together. Below, we discuss the three aforementioned issues in more

detail.

2.1.1 Flexibility

The key characteristic of Ibis is its extreme flexibility, which is required to support grid applica-

tions. A major design goal is the ability to seamlessly plug in different communication substrates

without changing the user code. For this purpose, the Ibis design uses the IPL, which consists

of a number of well-defi ned interfaces. The IPL can have different implementations, that can be

selected and loaded into the application at run time. A software layer on top of the IPL can

negotiate with Ibis instantiations through the well-defi ned IPL interface, and select the modules it

needs. This flexibility is implemented using Java’s dynamic class-loading mechanism. Although

this kind of flexibility is hard to achieve with traditional programming languages, it is relatively

straightforward in Java.

Many message passing libraries such as MPI and GM guarantee reliable message delivery and

FIFO message ordering. When applications do not require these properties, a different message

passing library might be used to avoid the overhead that comes with reliability and message or-

dering. The IPL supports both reliable and unreliable communication, ordered and unordered

messages, using a single, simple interface. Using user-defi nable properties (key-value pairs) appli-

cations can create exactly the communication channels they need, without unnecessary overhead.

2.1.2 Optimizing the Common Case

To obtain acceptable communication performance, Ibis implements several optimizations. Most

importantly, the overhead of serialization and reflection is avoided by compile-time generation of

special methods (in bytecode) for each object type. These methods can be used to convert objects

to bytes (and vice versa), and to create new objects on the receiving side, without using expensive

reflection mechanisms. This way, the overhead of serialization is reduced dramatically.

Furthermore, our communication implementations use an optimized wire protocol. The Sun

RMI protocol, for example, resends type information for each RMI. Our implementation caches
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this type information per connection. Using this optimization, our protocol sends less data over the

wire, but more importantly, saves processing time for encoding and decoding the type information.

2.1.3 Optimizing Special Cases

In many cases, the target machine may have additional facilities that allow faster computation or

communication, which are diffi cult to achieve with standard Java techniques. One example we

investigated in previous work [21] is using a native, optimizing compiler instead of a JVM. This

compiler (Manta), or any other high performance Java implementation, can simply be used by

Ibis. We therefore focus on optimizing communication performance. The most important special

case for communication is the presence of a high-speed local interconnect. Usually, specialized

user-level network software is required for such interconnects, instead of standard protocols (TCP,

UDP) that use the OS kernel. Ibis therefore was designed to allow other protocols to be plugged

in. So, lower-level communication may be based, for example, on a locally-optimized MPI library.

We have developed low-level network software based on Panda [2], which can likewise be used by

Ibis. Panda is a portable communication substrate, which has been implemented on a large variety

of platforms and networks, such as Fast Ethernet (on top of UDP) and Myrinet (on top of GM).

An important issue we study in this paper is the use of zero-copy protocols for Java. Such

protocols try to avoid the overhead of memory copies, as these have a relatively high overhead with

fast gigabit networks, resulting in decreased throughput. With the standard serialization method

used by most Java communication systems (e.g., RMI), a zero-copy implementation is impossible

to achieve, since data is always serialized into intermediate buffers. With specialized protocols

using Panda or MPI, however, a zero-copy protocol is possible for messages that transfer array data

structures. For graph data structures, the number of copies can be reduced to one. Another major

source of overhead is in the JNI (Java Native Interface) calls [20] required to convert floating point

data types into bytes (and back). We found that, in combination with a zero-copy implementation,

this problem can be solved by serializing into multiple buffers, one for each primitive data type.

Implementing zero-copy (or single-copy) communication in Java is a non-trivial task, but it is

essential to make Java competitive with systems like MPI for which zero-copy implementations

already exist. The zero-copy Ibis implementation is described in more detail in Section 3.2.

2.1.4 Design Overview

The overall structure of the Ibis system is shown in Figure 1. The gray box denotes the Ibis

system. An important component is the IPL or Ibis Portability Layer, which consists of a set of

Java interfaces that defi ne how the layers above Ibis can make use of the lower Ibis components,

such as communication and resource management. Because the components above the IPL can

only access the lower modules via the IPL, it is possible to have multiple implementations of the

lower modules. The IPL design will be explained in more detail in Section 2.2.

Below the IPL are the modules that implement the actual Ibis functionality, such as serializa-

tion, communication, and typical grid computing requirements, such as performance monitoring

and topology discovery. Although serialization and communication are mostly implemented inside

Ibis, this is not required for all functionality. For many components, standard grid software can be

used. Ibis then only contains an interface to these software packages.
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Figure 1: Design of Ibis. The various modules can be loaded dynamically, using run time class

loading.

Generally, applications will not be built directly on top of the IPL (although this is possible).

Instead, applications use some programming model for which an Ibis version exists. At this mo-

ment, we have implemented four runtime systems for programming models on top of the IPL:

RMI, GMI, RepMI and Satin.

RMI is Java’s equivalent of RPC. However, RMI is object oriented and more flexible, as it sup-

ports polymorphism [33]. In [27] we demonstrated that parallel grid applications can be

written with RMI. However, application-specifi c wide-area optimizations are needed.

GMI [23] extends RMI with group communication. GMI also uses an object-oriented program-

ming model, and cleanly integrates into Java, as opposed to Java MPI implementations. We

intend to port the wide-area optimizations we implemented in earlier work on MPI (Mag-

PIe [18]), in order to make GMI more suitable for grid environments.

RepMI extends Java with effi cient replicated objects. In [22] we show that RepMI also works

effi ciently on wide-area systems.

Satin [26] provides divide-and-conquer and replicated worker programming models, and is specif-

ically targeted at grid systems. The four mentioned programming models are integrated into

one single system, and can be used simultaneously. In this paper, we use our Ibis RMI

implementation as a case study.

2.2 Design of the Ibis Portability Layer

The Ibis portability layer is the interface between Ibis implementations for different architectures

and the runtime systems that provide programming model support to the application layer. The IPL

is a set of Java interfaces. The philosophy behind the design of the IPL is the following: whenever

effi cient hardware primitives are available, make it possible to use them. Great care has to be taken

to ensure that the use of mechanisms such as zero-copy protocols and hardware multicast are not
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made impossible by the interface. We will now describe the concepts behind the IPL and we will

explain the design decisions taken.

2.2.1 Negotiating with Ibis Instantiations

Ibis implementations are loaded at run time. Ibis allows the application or runtime system on top

of it to negotiate with the Ibis instantiations, in order to select the instantiation that best matches

the specifi ed requirements. More than one Ibis implementation can be loaded simultaneously, for

example to provide gateway capabilities between different networks. For example, it is possible

to instantiate both a Panda Ibis implementation that runs on top of a Myrinet network for effi cient

communication inside a cluster, and a TCP/IP implementation for (wide-area) communication be-

tween clusters.

Figure 2 shows example code that uses the IPL to load the best available Ibis implementation

that meets the requirements of providing both FIFO ordering on messages and reliable communica-

tion. Although this code can be part of an application, it typically resides inside a runtime system

for a programming model on top of the IPL. The loadIbis method is the starting point. First, it

tries to load some user specifi ed Ibis implementation, by calling loadUserIbis. If that fails, the

code falls back to load the Panda implementation. If the Panda implementation cannot be loaded,

the last resort is the TCP/IP implementation. The code in the loadUserIbis method shows how

the layer above the IPL can negotiate with a loaded Ibis implementation about the desired prop-

erties. If the loaded Ibis implementation does not support the requirements, it can be unloaded.

Subsequently, another implementation can be loaded and queried in the same way. Whether an

implementation provides the desired properties has to be checked explicitly, because this can only

be determined at runtime. The set of properties that is provided by an Ibis instantiation can depend

on the availability of some native library or the version of the JVM that is used, for instance.

In contrast to many message passing systems, the IPL has no concept of hosts or threads, but

uses location-independent Ibis identifiers to identify Ibis instantiations. A registry is provided to

locate communication endpoints, called send ports and receive ports, using Ibis identifi ers. The

communication interface is object oriented. Applications using the IPL can create communication

channels between objects (i.e. ports), regardless of the location of the objects. The connected

objects can be located in the same thread, on different threads on the same machine, or they could

be located at different ends of the world.

2.2.2 Send Ports and Receive Ports

The IPL provides communication primitives using send ports and receive ports. A careful design

of these ports and primitives allows flexible communication channels, streaming of data, and zero-

copy transfers. Therefore, the send and receive ports are important concepts in Ibis, and we will

explain them in more detail below. The layer above the IPL can create send and receive ports,

which are then connected to form a unidirectional message channel. The send port initiates the

connection. Figure 3 shows such a channel. New (empty) message objects can be requested from

send ports. Next, data items of any type can be inserted in this message. Both primitive types such

as long and double, and objects such as String or user-defi ned types can be written. When all data

is inserted, the send primitive can be invoked on the message, sending it off.
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Ibis loadUserIbis(String ibisImplName) {

Ibis ibis = null;

try {

ibis = Ibis.createIbis("my ibis", ibisImplName);

} catch (IbisException e) {

return null; // Unable to load specified Ibis.

}

// An implementation is loaded, now see

// whether it provides the properties we require.

StaticProperties p = ibis.properties();

// We need an Ibis that supports FIFO ordering.

String ordering = p.find("message ordering");

if(!ordering.equals("FIFO")) {

ibis.unload();

return null; // Not suported.

}

// We also need reliable communication.

String reliability = p.find("reliability");

if(!reliability.equals("true")) {

ibis.unload();

return null; // Not supported.

}

return ibis; // OK, return loaded implementation.

}

Ibis loadIbis(String ibisImplName) {

Ibis ibis = loadUserIbis(ibisImplName);

if(ibis == null) { // failed to load user Ibis

try {

ibis = Ibis.createIbis("my ibis",

"ibis.ipl.impl.panda.PandaIbis");

} catch (IbisException e) {

// Could not load Panda/Ibis.

try { // Fall back to TCP/Ibis.

ibis = Ibis.createIbis(name,

"ibis.ipl.impl.tcp.TcpIbis");

} catch (IbisException e) {

return null; // All failed!

}

}

}

// We have loaded an Ibis implementation

// with the desired properties.

return ibis;

}

Figure 2: Loading and negotiating with Ibis implementations.

8



m = sendPort.getMessage();

m.writeInt(3);

m.writeIntArray(a);

m.writeObject(o);

m.send();

i = m.readInt();

o = m.readObject();

a = m.readIntArray();

m = receivePort.receive();

m.finish();

send port receive port

m.writeIntSlice(b, 0, 100); m.readIntSlice(b, 0, 100);

Figure 3: Send ports and receive ports.

The IPL offers two ways to receive messages. First, messages can be received with the receive

port’s blocking receive primitive (see Figure 3). The receive method returns a new message object,

and the data can be extracted from the message using the provided set of read methods. Second,

the receive ports can be confi gured to generate upcalls, thus providing the mechanism for implicit

message receipt. The upcall provides the message that has been received as a parameter. The data

can be read with the same read methods described above. The upcall mechanism is provided in the

IPL, because it is hard to implement an upcall mechanism effi ciently on top of an explicit receive

mechanism. Many applications and runtime systems, like RMI, GMI and Satin, rely on effi cient

implementations of upcalls. To avoid overheads of thread creation and switching, the IPL defi nes

that there is at most one upcall thread running at a time per receive port.

Many message passing systems, like MPI or Panda, are connectionless. Messages are sent

to their destination, without explicitly creating a connection fi rst. In contrast, the IPL provides a

connection-oriented scheme (send and receive ports must be connected in order to communicate).

This way, message data can be streamed. When large messages have to be transferred, the building

of the message and the actual sending can be done simultaneously. This is especially important

when sending large and complicated data structures, as can be done with Java serialization, because

this incurs a large host overhead. It is thus imperative that communication and computation are

overlapped.

A second design decision is to make the connections unidirectional. This is essential for the

flexibility of the IPL, because it sometimes is desirable to have different properties for the individ-

ual channel directions. For example, when video data is streamed, the control channel from the

client to the video server should be reliable. The return channel, however, from the video server

back to the client, should be an unreliable channel with low jitter characteristics. For some ap-

plications there is no return channel at all (e.g., wireless receivers that do not have a transmitter).

The IPL can support all these communication requirements. Furthermore, on the Internet, the out-

bound and return channel may be routed differently. It is therefore sensible to make it possible

to export this to the layers above the IPL when required. Differences between the outbound and

return channels are important for some adaptive applications or runtime systems, such as the Satin

runtime system. Moreover, the IPL extends the send and receive port mechanism with multicast

and many-to-one communication, for which unidirectional channels are more intuitive.

The standard Java streaming classes (used for serialization and for writing to TCP/IP sockets)

convert all data structures to bytes, including the primitive types and arrays of primitive types. An

exception is only made for byte arrays. Furthermore, there is no support for slices of arrays. When

a pure Java implementation is used, the copying of the data is thus unavoidable.

9



send port
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upcall handler
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RPC

Figure 4: An RPC implemented with the IPL primitives.

receive port

receive port

receive port

multicast

send port

send port

send port

many to one

receive portsend port

Figure 5: Other IPL communication patterns.

An important insight is that zero-copy can be made possible in some important special cases

by carefully designing the interface for reading data from and writing data to messages. As can

be seen in Figure 3, the IPL provides special read and write methods for (slices of) all primitive

arrays. This way, Ibis allows effi cient native implementations to support zero copy for the array

types, while only one copy is required for object types.

Connecting send ports and receive ports, creating a unidirectional channel for messages is the

only communication primitive provided by the IPL. Other communication patterns can be con-

structed on top of this model. By creating both a send and receive port on the same host, bidirec-

tional communication can be achieved, for example to implement an RPC-like system, as Figure 4

shows. The IPL also allows a single send port to connect to multiple receive ports. Messages

that are written to a send port that has multiple receivers are multicast (see Figure 5). Further-

more, multiple send ports can connect to a single receive port, thus implementing many-to-one

communication, also shown in Figure 5.
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feature / system UDP TCP Panda MPI Nexus IPL

FIFO ordering no yes yes yes yes yes

unordered messages yes no no yes yes yes

reliable messages no yes yes yes yes yes

unreliable messages yes no no no yes yes

streaming data no yes no no no yes

unordered multicast no no yes yes yes yes

totally ordered multicast no no yes yes yes yes

malleability yes yes no no yes yes

multithreading support no no yes no yes yes

upcalls no no yes no yes yes

asynchronous upcalls no no yes no no yes

explicit receive yes yes no yes yes yes

complex data structures no no yes yes no yes

dynamic/linked data structures no no yes no no yes

multiple protocols no no no no yes yes

connection oriented no yes no no yes yes

multiple language bindings yes yes no yes no no

Table 1: Features of communication systems.

2.2.3 Port Types

All send and receive ports that are created by the layers on top of the IPL are typed. Port types are

defi ned and confi gured with properties (key-value pairs) via the IPL. Only ports of the same type

can be connected. Properties that can be confi gured are, for instance, the serialization method that

is used, reliability, message ordering, performance monitoring support, etc. This way, the layers on

top of the IPL can confi gure the send and receive ports they create (and thus the channels between

them) in a flexible way.

2.3 Comparison with Other Communication Systems

The extreme flexibility of the IPL is shown by the features that are supported in the interface.

Table 1 lists several features of communication systems, and compares the IPL with UDP, TCP,

Panda [2], MPI [24], and Nexus [8]. The great strength of the IPL is that all features can be

accessed via one single interface. The layers above the IPL can enable and disable features as

wanted using key-value pairs (properties). Moreover, the IPL is extensible, as more properties can

be added without changing the interface.

TCP and UDP are widely used communication protocols that are also supported in Java. How-

ever, the programming interfaces (i.e., sockets and unreliable datagrams) offered by the pro-

tocols are too low level for use in a parallel programming context. TCP does not provide

multicast, although this is important for many parallel applications. UDP does provide a

multicast mechanism, but it provides only unreliable communication, and no ordering is

guaranteed between messages. Parallel programs often require both properties, however.

Panda is an effi cient communication substrate that was designed for runtime systems for parallel

languages. Panda is not suitable for grid environments because it does not support malleabil-

ity. Panda is described in more detail in [2].
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MPI [24] (Message Passing Interface) is a message passing library that is widely used for parallel

programming. However, the programming model of MPI is designed for SPMD style com-

putations, and lacks support for upcalls and multithreading, which are essential for effi cient

RPC and RMI implementations. Moreover, although MPI supports complex data structures,

it cannot handle dynamic data structures like linked lists and hash tables. MPI was ini-

tially targeted for shared memory machines and clusters of workstations, Recently, however,

there has been a large interest in using MPI in grid environments [7, 9, 10, 18]. MPI only

marginally supports malleable applications that can cope with dynamically changing sets of

processors. MPI implementations also have diffi culties to effi ciently utilize multiple, hetero-

geneous networks simultaneously; let alone switching between them at run time. For grid

computing, more flexible, but still effi cient, communication models and implementations are

needed.

Nexus [8] is a communication library that was used in the early versions Globus toolkit. Although

Nexus is no longer supported, the way Nexus deals with multiple protocols is interesting.

Nexus, like Ibis, supports automatic selection of optimal protocols at run time. However,

Nexus chooses the protocol based on the hardware it runs on, while Ibis is more flexible: it

allows the layer on top of the IPL to negotiate about the protocol that should be used. This

is important, because the optimal protocol may depend on the application, not only on the

hardware that is available.

Nexus is written in C, and is therefore portable only in the traditional sense. The interface

provided by Nexus is similar to the IPL: the only supported mechanism is a connection

oriented one way channel that allows asynchronous messages. However, Nexus does not

support asynchronous upcalls (i.e., polling is required to trigger upcalls), and more impor-

tantly, Nexus does not provide a streaming mechanism, as a single data buffer is passed to

the asynchronous message when it is sent. We found that the streaming of data is imperative

to achieve good performance with complex data structures. The performance results pro-

vided in [8] show that Nexus adds considerable overhead to the low-level communication

mechanisms that it is built upon.

3 Ibis Implementations

In this section, we will describe the Ibis implementations. An important part is the implementa-

tion of an effi cient serialization mechanism. Although the Ibis serialization implementation was

designed with effi cient communication in mind, it is independent of the lower network layers, and

completely written in Java. The communication code, however, has knowledge about the serial-

ization implementation, because it has to know how the serialized data is stored, in order to avoid

copying. Applications can select at run time which serialization implementation (standard Sun

serialization or optimized Ibis serialization) should be used for each individual communication

channel. At this moment we have implemented two communication modules, one using TCP/IP

and one using message passing (MP) primitives. The MP implementation can currently use either

Panda or MPI. The TCP/IP implementation is written in 100% pure Java, and runs on any JVM.

The MP implementation requires some native code to convert JNI calls to native Panda or MPI

calls.
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class Foo implements java.io.Serializable {

int i1, i2;

double d;

int[] a;

Object o;

String s;

Foo f;

}

Figure 6: An example serializable class: Foo.

3.1 Efficient Serialization

Serialization is a mechanism for converting (graphs of) Java objects to some format that can be

stored or transfered (e.g., a stream of bytes, or XML). Serialization can be used to ship objects

between machines. One of the features of Java serialization is that the programmer simply lets the

objects to be serialized implement the empty, special interface java.io.Serializable. Therefore, no

special serialization code has to be written by the application programmer. As an example, the Foo

class in Figure 6 is tagged as serializable in this way. The serialization mechanism always makes

a deep copy of the objects that are serialized. For instance, when the fi rst node of a linked list

is serialized, the serialization mechanism traverses all references, and serializes the objects they

point to (i.e., the whole list). The serialization mechanism can handle cycles, making it possible

to convert arbitrary data structures to a stream of bytes. When objects are serialized, not only

the object data is converted to bytes, but type and version information is also added. When the

stream is deserialized, the versions and types are examined, and objects of the necessary type can

be created. When a version or type is unknown, the deserializer can use the bytecode loader to

load the correct classfi le for the type into the running application. Serialization performance is of

critical importance for Ibis (and RMI), as it is used to transfer objects over the network, such as

parameters to remote method invocations.

In previous work [21], we identifi ed the performance bottlenecks in the serialization mecha-

nism, and how it can be made effi cient when a native Java system like Manta is used. The most

important sources of overhead in standard Java serialization are run-time type inspection, data

copying and conversion, object creation and the use of an ineffi cient protocol. Because Java lacks

pointers, and information on object layout is not available either, it is non-trivial to apply the tech-

niques we implemented for Manta. We will now explain how we avoid these sources of overhead

in the Ibis serialization implementation.

3.1.1 Avoiding Run Time Type Inspection

The standard Java serialization implementation uses run time type inspection, called reflection in

Java, to locate and access object fi elds that have to be converted to bytes. The run time reflection

overhead can be avoided by generating serialization code for each class that can be serialized. This

way, the cost of locating the fi elds that have to be serialized is moved from run time to compile

time. Ibis provides a bytecode rewriter that adds generated serialization code to class fi les, allowing

all programs to be rewritten, even when the source code is not available. The rewritten code for
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public final class FooGenerator extends Generator {

public final Object doNew(ibis.io.IbisInputStream in)

throws ibis.ipl.IbisIOException,

ClassNotFoundException {

return new Foo(in);

}

}

class Foo implements java.io.Serializable,

ibis.io.Serializable {

int i1, i2;

double d;

int[] a;

String s;

Object o;

Foo f;

public void ibisWrite(ibis.io.IbisOutputStream out)

throws ibis.ipl.IbisIOException {

out.writeInt(i1);

out.writeInt(i2);

out.writeDouble(d);

out.writeObject(a);

out.writeUTF(s);

out.writeObject(o);

out.writeObject(f);

}

public Foo(ibis.io.IbisInputStream in)

throws ibis.ipl.IbisIOException,

ClassNotFoundException {

in.addObjectToCycleCheck(this);

i1 = in.readInt();

i2 = in.readInt();

d = in.readDouble();

a = (int[])in.readObject();

s = in.readUTF();

o = (Object)in.readObject();

f = (Foo)in.readObject();

}

}

Figure 7: Rewritten code for the Foo class.

the Foo class from Figure 6 is shown in Figure 7. There, we show Java code instead of bytecode

for readability.

The bytecode rewriter adds a method that writes the object fi elds to a stream, and a constructor

that reads the object fi elds from the stream into the newly created object. A constructor must be

used for the reading side, because all final fi elds must be initialized in all constructors. Further-

more, the Foo class is tagged as rewritten with the same mechanism used by standard serialization:

we let Foo implement the empty ibis.io.Serializable interface.

The generated write method (called ibisWrite) just writes the fi elds to the stream, one at a time.

The constructor that reads the data is only slightly more complicated. It starts with adding the this

reference to the cycle check table, and continues reading the object fi elds from the stream that is

provided as parameter. The actual handling of cycles is done inside the Ibis streaming classes. As

can be seen in Figure 7, strings are treated in a special way. Instead of serializing the String object,
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int typeDescriptor = readInt();

Generator gen = getFromGeneratorTable(typeDescriptor);

if (gen == null) { // Not seen before.

String name = readClassName();

gen = Class.newInstance(name + "Generator");

addToGeneratorTable(typeDescriptor, gen);

}

return gen.doNew();

Figure 8: Pseudo code for optimized object creation.

the value of the string is directly written in the more effi cient UTF format.

3.1.2 Optimizing Object Creation

The reading side has to rebuild the serialized object graph. In general, the exact type of objects that

have to be created is unknown, due to inheritance. For example, the o fi eld in the Foo object from

Figure 7 can refer to any non-primitive type. Therefore, type descriptors that describe the object’s

class have to be sent for each reference fi eld. Using the type descriptor, an object of the actual type

can be created. Standard Java serialization uses a private native method inside the standard class

libraries to create objects without invoking a constructor, as a constructor may have side-effects.

We found that this is considerably more expensive than a normal new operation.

Ibis serialization implements an optimization that avoids the use of this native method, making

object creation cheaper. For each serializable class, a special generator class (called FooGenerator

in Figure 7) is generated by the bytecode rewriter. The generator class contains a method with a

well-known name, doNew, that can be used to create a new object of the accompanying serializable

class, like Foo.

Pseudo code that implements the object-creation optimization using the generator class is

shown in Figure 8. When a type is encountered for the fi rst time, the IbisInputStream uses the

standard, but expensive Class.newInstance operation to create an object of the accompanying gen-

erator class. A reference to the generator object is then stored in a table in the IbisInputStream.

When a previously encountered type descriptor is read again, the input stream can do a cheap

lookup operation in the generator table to fi nd the generator class for the type, and create a new ob-

ject of the desired class, by calling the doNew method on the generator. Thus, the IbisInputStream

uses newInstance only for the fi rst time a type is encountered. All subsequent times, a cheap table

lookup and a normal new is done instead of the call to a native method that is used by standard Java

serialization. Side effects of user defi ned constructors are avoided because doNew calls the gen-

erated constructor that reads the object fi elds from the input stream. A user defi ned constructor is

never invoked. This optimization effectively eliminates a large part of the object creation overhead

that is present in standard serialization.

The serialization mechanism can be further optimized when serializable classes are final (i.e.,

they cannot be extended via inheritance). When a reference fi eld that has to be serialized points to

a fi nal class, the type is known at compile time, and no type information has to be written to the
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public final void ibisWrite(ibis.io.IbisOutputStream out)

throws ibis.ipl.IbisIOException {

// Code to write fields i1 ... o is unchanged.

boolean nonNull = out.writeKnownObjectHeader(f);

if(nonNull) f.ibisWrite(out);

}

public Foo(ibis.io.IbisInputStream in)

throws ibis.ipl.IbisIOException,

ClassNotFoundException {

// Code to read fields i1 ... o is unchanged.

int i = in.readKnownTypeHeader();

if(i == NORMAL_OBJECT) f = new Foo(in);

else if(i == CYCLE) f = (Foo)in.getFromCycleCheck(i);

else f = null;

}

Figure 9: Optimization for final classes.

JVM Sun 1.4 IBM 1.31 Manta

conversion zero-copy conversion zero-copy conversion zero-copy

read write read write read write read write read write read write

100 KB byte[] 115.9 � 134.2 � 121.6 � 120.4 � 187.8 � 195.3 �

100 KB int[] 77.6 282.3 118.4 � 82.4 186.4 110.4 � 68.8 195.3 160.1 �

100 KB double[] 36.2 43.3 135.1 � 49.9 45.2 121.2 � 54.3 111.6 203.5 �

1023 node tree user 41.7 50.6 61.0 71.0 31.7 49.0 38.6 80.5 23.0 35.5 36.5 60.0

1023 node tree total 63.0 76.4 92.2 107.3 47.9 74.0 58.3 121.7 34.7 53.3 55.2 90.8

Table 2: Ibis serialization throughput (MByte/s) for three different JVMs.

stream. Instead, the deserializer can directly do a new operation for the actual class. Example code,

generated by the bytecode rewriter, that implements this optimization, assuming that the Foo class

is now fi nal, is shown in Figure 9. The code only changes for the f fi eld, because it has the (now

fi nal) type Foo. The other fi elds are omitted for brevity. The ibisWrite method can now directly

call the ibisWrite method on the f fi eld. The writeKnownObjectHeader method handles cycles and

null references. On the reading side, a normal new operation can be done, as the type of the object

that has to be created is known at compile time.

Some classes cannot easily be rewritten. For example, classes that were received over the

network. These classes can be recognized because they do not implement the ibis.io.Serializable

interface (which is added by the Ibis bytecode rewriter). If a class was not rewritten, objects of that

class are serialized using the normal (but slower) run time inspection techniques.

3.1.3 Avoiding Data Copying

Ibis serialization tries to avoid the overhead of memory copies, as these have a relatively high

overhead with fast networks, resulting in decreased throughputs. With the standard serialization

method used by most RMI implementations, a zero-copy implementation is impossible to achieve,

since data is always serialized into intermediate buffers. By using special typed buffers and treat-

ing arrays separately, Ibis serialization achieves zero-copy for arrays, and reduces the number of

copies for complex data structures to one. The generated serialization code uses the classes IbisIn-
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Figure 10: Low-level diagram of zero copy data transfers with the Ibis implementation on Myrinet.

putStream and IbisOutputStream to read and write the data. We will now explain these classes in

more detail, using Figure 10. The streaming classes use typed buffers to store the data in the stream

for each primitive type separately. When objects are serialized, they are decomposed into primitive

types, which are then written to a buffer of the same primitive type. No data is converted to bytes,

as is done by the standard object streams used for serialization in Java. Arrays of primitive types

are handled specially: a reference to the array is stored in a separate array list, no copy is made.

The stream data is stored in this special way to allow a zero copy implementation (which will be

described in Section 3.2).

Figure 10 shows how an object of class Bar (containing two integers, a double and an integer

array) is serialized. The Bar object and the array it points to are shown in the upper leftmost cloud

labeled “application heap”. As the Bar object is written to the output stream, it is decomposed

into primitive types, as shown in the lower cloud labeled “Ibis RTS heap”. The two integer fi elds

i1 and i2 are stored in the integer buffer, while the double fi eld d is stored in the separate double

buffer. The array a is not copied into the typed buffers. Instead, a reference to the array is stored

in a special array list. When the typed buffers are full, or when the flush operation is invoked, the

data is streamed.

For implementations in pure Java, all data has to be converted to bytes, because that is the only

way to write data to TCP/IP sockets, UDP datagrams and fi les. Therefore, the typed buffer scheme

is limited in its performance gain in a pure Java implementation. All types except floats and dou-

bles can be converted to bytes using Java code. For floats and doubles, Java provides a native

method inside the class libraries (Float.floatToIntBits and Double.doubleToLongBits), that must be

used for conversion to integers and longs, which can then be converted to bytes. Because these

native methods must be provided by all JVMs, their use does not interfere with Ibis’ portability

requirements. When a float or double array is serialized, a native call is used for conversion per el-

ement. Because the Java Native Interface is quite expensive [20], this is a major source of overhead
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JVM Sun 1.4 IBM 1.31 Manta

read write read write read write

100 KB byte[] 99.6 � 97.0 � 171.3 �

100 KB int[] 64.3 151.0 68.2 144.9 87.2 113.6

100 KB double[] 32.7 38.4 54.8 61.0 85.7 120.6

1023 node tree user 8.2 12.4 3.3 6.0 5.9 15.6

1023 node tree total 11.8 17.9 4.7 8.6 8.6 22.4

Table 3: Standard Java serialization throughput (MByte/s) for three different JVMs.

for both standard and Ibis serialization. However, this overhead is unavoidable without the use of

native code. Using the typed buffers mechanism and some native code, the conversion step from

primitive types to bytes can be optimized by converting all typed buffers and all primitive arrays

in the array list using one native call. For native communication implementations, conversion may

not be needed; the typed buffer scheme then allows a zero copy implementation. On the receiving

side, the typed buffers are recreated, as is shown in the right side of Figure 10. The read methods

of the input stream return data from the typed buffers. When a primitive array is read, it is copied

directly from the data stream into the destination array. The parts of Figure 10 that have not yet

been discussed will be explained in the next section.

3.1.4 Ibis Serialization Performance

We have run several benchmarks to investigate the performance that can be achieved with the Ibis

serialization scheme. Our measuring platform consists of 1 GHz Pentium III machines, connected

both by 100 Mbit Ethernet and by Myrinet, running RedHat Linux 7.2 with kernel 2.4.9-13. The

results for Ibis serialization on different Java systems are shown in Table 2, while the performance

of standard Java serialization is shown in Table 3 for reference. The fi gures give the performance

of serialization to memory buffers, thus no communication is involved. The numbers show the

host overhead caused by serialization, and give an upper limit on the communication performance.

We show serialization and deserialization numbers separately, as they often take place on different

machines, potentially in parallel. Due to object creation and garbage collection, deserialization is

the limiting factor for communication bandwidth. This is reflected in the table: the numbers for

serialization (labeled “write”) are generally higher than the numbers for deserialization (labeled

“read”).

For Ibis serialization, two sets of numbers are shown for each JVM: the column labeled “con-

version” includes the conversion to bytes, as is needed in a pure Java implementation. The column

labeled “zero-copy” does not include this conversion and is representative for Ibis implementations

that use native code to implement zero-copy communication.

We present numbers for arrays of primitive types and balanced binary trees with nodes that

contain four integers each. For the trees, we show both the throughput for the user payload (i.e.,

the 4 integers) and the total data stream, including type descriptors and information that is needed

to rebuild the tree (i.e., the references). The latter gives an indication of the protocol overhead.

Some throughput numbers are infi nite, indicated by the � -signs in the table, because zero-copy

implementations can have constant overhead in cases where they just store references to arrays in

the array list, which is independent of the amount of data being transfered. The same holds for

serialization of byte arrays, as these are not converted.
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The numbers show that data conversion is expensive: throughputs without conversion (labeled

zero-copy) are much higher. It is clear that, although no native code is used, high throughputs

can be achieved with Ibis serialization, especially for complex data structures. For reading binary

trees, for instance, Ibis serialization with data conversion achieves a payload throughput that is

5.0 times higher than the throughput of standard serialization on the Sun JIT, and 9.6 times higher

on the IBM JIT. When data conversion is not needed, the difference is even larger: the payload

throughput for Ibis serialization is 7.4 times higher on the Sun JIT and 11.6 times higher on the

IBM JIT.3 On Manta, the throughput for arrays is better for Sun than for Ibis serialization, because

Manta avoids clearing new objects (initializing with zero values) with its native Sun serialization

implementation.

3.2 Efficient Communication

It is well known that in (user level) communication systems most overhead is in software, e.g.,

data copying. Therefore, much can be gained from software optimization. In this section, we will

describe the optimizations we have implemented in the TCP/IP and Panda Ibis implementations.

The general strategy that is followed in both implementations is to avoid thread creation, thread

switching, locking, and data copying as much as possible.

3.2.1 TCP/IP Implementation

The TCP/IP Ibis implementation is relatively straightforward. One socket is used per unidirec-

tional channel between a single send and receive port. However, we found that using a socket as

a one-directional channel is ineffi cient. This is caused by the flow control mechanism of TCP/IP.

Normally, acknowledgment messages are piggybacked on reply packets. When a socket is used in

one direction only, there are no reply packets, and acknowledgments cannot be piggybacked. Only

when a timeout has expired, the acknowledgments are sent in separate messages. This severely

limits the throughput that can be achieved. Because it is common that a run-time system of ap-

plication creates both an outgoing and a return channel (for instance for RMI, see Figure 4), it is

possible to optimize this scheme. Ibis implements channel pairing: whenever possible, the out-

going and return data channels are combined, using only one socket. This optimization greatly

improves the throughput.

A socket is a one-to-one connection. Therefore, with multicast or many-to-one communication,

like multiple clients connecting to one server via RMI, multiple sockets must be created. A related

problem is that not all Java implementations provide a select primitive4. The select operation can

be used on a set of sockets, and blocks until data becomes available on any of the sockets in the

set. A select operation cannot be implemented in native code, because Java does not export fi le

descriptors. We must also provide a solution when select is not present. In that case, there are only

two ways to implement many-to-one communication (both are supported by Ibis).

3Separate measurements show that using the java.io.Externalizable interface can improve the performance of

SUN serialization slightly. However, Ibis serialization still is signifi cantly faster for all tests. Moreover, when

java.io.Externalizable is used, the user has to write all serialization code by hand.
4A select operation has recently been added in Java 1.4, in the java.nio package. Because we use Ibis for grid

computing, and the latest features of Java may not be available on all platforms, we must support older Java versions.
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First, it is possible to poll a single socket, using the method InputStream.available. A set of

sockets can thus be polled by just invoking available multiple times, once per socket. However,

the available method must do a system call to fi nd out whether data is available for the socket.

Hence, it is an expensive operation. Moreover, polling wastes CPU time. This is not a problem for

single-threaded applications that issue explicit receive operations (e.g., MPI-style programs), but

for multithreaded programs this is undesirable. When implicit receive is used in combination with

polling, CPU time is always wasted, because one thread must be constantly polling the network to

be able to generate upcalls.

Second, it is possible to use one thread per socket. Each thread calls a blocking receive prim-

itive, and is unblocked by the kernel when data becomes available. This scheme does not waste

CPU time, but now each thread uses memory space for its stack. Moreover, a thread switch is

needed to deliver messages to the actual receiver thread when explicit receive is used. Ibis al-

lows the programmer to decide which mechanism should be used via the properties mechanism

described in Section 2.2.

3.2.2 Zero Copy Message Passing Implementation

The message passing (MP) implementation is built on top of native (written in C) message passing

libraries, such as Panda and MPI. For each flush, the typed buffers and application arrays to be sent

are handed as a message fragment to the MP device, which sends the data out without copying;

this is a feature supported by both Panda and MPI. This is shown in more detail in Figure 10. On

the receiving side, the typed fi elds are received into pre-allocated buffers; no other copies need

to be made. Only when sender and receiver have different byte order, a single conversion pass is

made over the buffers on the receiving side. Arrays are received in the same manner, with zero

copy whenever the application allows it.

Multiplexing of Ibis channels over one device is challenging to implement effi ciently. It is hard

to wake up exactly the desired receiver thread when a message arrives. For TCP/IP, there is support

from the JVM and kernel that manage both sockets and threads: a thread that has done a receive call

on a socket is woken up when a message arrives on that socket. A user-level MP implementation

has a more diffi cult job, because the JVM gives no hooks to associate threads with communication

channels. A straightforward, ineffi cient solution is to let a separate thread poll the MP device, and

trigger a thread switch for each arrived fragment to the thread that posted the corresponding receive.

We opted for an effi cient implementation by applying heuristics to maximize the chance that the

thread that pulls the fragment out of the MP device actually is the thread for which the fragment is

intended. A key observation is that a thread that performs a downcall receive is probably expecting

to shortly receive a message (e.g., a reply). Such threads are allowed to poll the MP device in

a tight loop for roughly two message latencies, or until their message arrives. After this polling

interval, a yield call is performed to relinquish the CPU. A thread that performs an upcall service

receives no such privileged treatment. Immediately after an unsuccessful poll, it yields the CPU to

another thread.

3.2.3 Performance Evaluation

Table 4 shows performance data for both Ibis implementations. For comparison, we show the

same set of benchmarks as in Table 2 for both Sun serialization and Ibis serialization. Ibis is able
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JVM Sun 1.4 IBM 1.31 Manta

network TCP GM TCP GM TCP GM

latency downcall 143 61.5 134 33.3 147 35.1

latency upcall 129 61.5 126 34.4 140 37.0

Sun serialization

100 KB byte[] 9.7 32.6 10.0 43.9 9.9 81.0

100 KB int[] 9.4 28.2 9.6 42.5 9.1 27.6

100 KB double[] 8.4 18.7 9.1 29.5 9.0 27.6

1023 node tree user 2.8 3.2 1.7 2.7 1.4 1.9

1023 node tree total 4.0 4.6 2.4 3.9 2.0 2.7

Ibis serialization

100 KB byte[] 10.0 60.2 10.3 123 10.0 122

100 KB int[] 9.9 60.2 9.6 122 9.7 122

100 KB double[] 9.0 60.2 9.2 123 9.7 123

1023 node tree user 5.9 17.7 5.8 23.6 4.4 22.0

1023 node tree total 8.9 26.7 8.8 35.6 6.6 33.2

Table 4: Ibis communication latencies in � s and throughputs in MByte/s on TCP (Fast Ethernet)

and GM (Myrinet).

to exploit the fast communication hardware and provides low communication latencies and high

throughputs on Myrinet, especially when arrays of primitive types are transfered. The numbers

show that Ibis provides portable performance, as all three Java systems achieve high throughputs

with Ibis serialization. The array throughput on Myrinet (GM) for the Sun JIT is low compared to

the other Java systems, because the Sun JIT makes a copy when a pointer to the array is requested in

native code, while the other systems just use a pointer to the original object. Because this copying

affects the data cache, throughput for the Sun JIT is better for smaller messages of 40KB, where

83.4 MByte/s is achieved.

4 A case study: Effi cient RMI

As described in Section 2.1, we have implemented four runtime systems as part of Ibis. In this pa-

per, we elaborate on the RMI implementation, because RMI is present in standard Java, and many

people are familiar with its programming model. The API of Ibis RMI is identical to Sun’s RMI.

We briefly describe the RMI implementation on top of the IPL and investigate the performance

with microbenchmarks and an application. We compare the Ibis RMI performance with Sun RMI,

KaRMI [28], and with C and MPI.

4.1 RMI Implementation

RMI is straightforward to implement, because most building blocks are present in the IPL. We

extended the bytecode rewriter (which we use to generate serialization code) to generate the RMI

stubs and skeletons. The RMI registry is implemented on top of the IPL registry. Communication

channels are set up as shown in Figure 4. Each stub has a send port, and each skeleton creates a

receive port. When an RMI program issues a bind operation, the ports are connected. Using the

properties mechanism described in Section 2.2, the ports can be confi gured to use Sun serialization

or Ibis serialization.
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C / MPI IPL Sun RMI KaRMI 1.05b Ibis RMI

network UDP GM TCP GM TCP TCP GM TCP GM

null-latency 161 22 126 34.4 218.3 127.9 32.2 131.3 42.2

array throughput

100 KB byte[] 11.1 143 10.3 123 9.5 10.3 57.2 10.3 76.0

100 KB int[] 11.1 143 9.6 122 9.5 9.6 45.6 9.6 76.0

100 KB double[] 11.1 143 9.2 123 10.2 9.5 25.1 9.1 76.0

tree throughput

1023 node tree user 5.4 16.6 5.8 23.6 2.2 2.3 2.5 4.3 22.9

1023 node tree total 8.0 30.0 8.8 35.6 3.2 3.3 3.6 6.5 34.6

Table 5: Latencies in � s and throughputs in MByte/s on TCP (Fast Ethernet) and GM (Myrinet)

using C / MPI and the IBM JIT.

4.2 RMI Performance

Table 5 shows the latencies and throughputs that are achieved by several RMI implementations

on our hardware using the IBM JIT. For comparison, we also provide numbers for C / MPI and

IPL level communication. For Fast Ethernet, we use MPICH-P4, for Myrinet we use MPICH-GM.

The Sun RMI implementation only runs over TCP. KaRMI [28] is an optimized serialization and

RMI implementation. On TCP, KaRMI is implemented in pure Java, as is Ibis RMI on TCP. There

also is a KaRMI version that uses native code to interface with GM, which makes KaRMI a good

candidate for performance comparison with Ibis RMI, both on TCP and GM.

The Ibis performance at the IPL level is close to the MPI performance. The IPL throughput

on Myrinet, for instance, is only 14% lower than the MPI throughput. For complex data structures

Ibis even outperforms MPI, even though the MPI tree benchmark uses cached send and receive

buffers that are large enough to contain the whole tree.

As can be seen, RMI has a substantial performance overhead on Myrinet compared to IPL level

communication. The higher latency is mainly caused by thread creation and thread switching at

the receiving side, which are a result of the RMI model: RMI uses implicit message receipt (popup

or upcall threads). Also, an ”empty” RMI call still transmits an object identifi er and a method,

and requires the object and method to be looked up in a table at the receiver, while an empty IPL

level message requires no data or processing at all. The lower RMI array throughput on Myrinet

is caused by the fact that the JVM must allocate a new array for each incoming invocation, and

also zeroes (clears) this newly allocated array. Moreover, the garbage collector has to be activated

to reclaim the arrays. Using the low-level Ibis communication primitives, the same array can be

reused for each incoming message, thus avoiding memory management overhead and also resulting

in better caching behavior.

The throughput on TCP for sending double values with Sun RMI are higher than the through-

puts achieved by KaRMI and Ibis RMI, because the IBM class libraries internally use a non-

standard native method to convert entire double arrays to byte arrays, while the KaRMI and Ibis

RMI implementations must convert the arrays using a native call per element. The latencies of

KaRMI are slightly lower than the Ibis RMI latencies, but both are much better than the standard

Sun RMI latency. Ibis RMI on TCP achieves similar throughput as KaRMI, but is more effi cient

for complex data structures, due to the generated serialization code. On Myrinet, however, Ibis

RMI outperforms KaRMI by a factor of 1.3 – 3.0 when arrays of primitive types are sent. For

trees, the effectiveness of the generated serialization code and the typed buffer scheme becomes
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clear, and the Ibis RMI throughput is 9.1 times higher than KaRMI’s throughput.

4.3 Ibis RMI Application Performance

To investigate the performance of Ibis RMI at the application level, we implemented Successive

Over-Relaxation, in C with MPI, in Java using the IPL for communication, and in Java with RMI.

The idea is that for Java and Ibis to be useful for high-performance grid computing, its application

level performance should be close to that of traditional C / MPI applications. SOR is an iterative

algorithm for solving Laplace equations on a grid data structure. The sequential algorithm works

as follows. For all non-boundary points of the grid, SOR fi rst calculates the average value of the

four neighbors of the point:

�✂✁☎✄✝✆✟✞✡✠☞☛✍✌✏✎✒✑ ✆✔✓✖✕✗✞✘✠✙✓✖✕✛✚✜✓ ✎✒✑ ✆✔✓✖✕✗✞✘✠✣✢✤✕✛✚✥✓ ✎✒✑ ✆✦✢✧✕✗✞✡✠✙✓★✕✛✚✥✓ ✎✒✑ ✆✩✢✪✕✗✞✘✠✫✢✪✕✛✚✬
Then the new value of the point is determined using the following correction:

✎✮✭✰✯✲✱✳✑ ✆✟✞✡✠✡✚☎✌ ✎✒✑ ✆✟✞✡✠✡✚✜✓✵✴✩✄✲�✂✁☎✄✝✆✟✞✡✠☞☛✳✢ ✎✒✑ ✆✟✞✡✠✡✚✶☛✴ is known as the relaxation parameter and a suitable value can be calculated in the following

way:

✴✷✌ ✸✕✣✓✺✹ ✕✻✢✽✼✾ ✄✝✿✛❀❂❁ ❃❄❆❅❇❄❆❈❊❉●❋❍❅■❉❑❏▼▲ ✭❖◆ ✓✷✿✛❀✗❁ ❃❄❆❅❇❄❆❈P❉❑◗❘❅ ✱❙◆ ☛P❚
The entire process terminates if during the last iteration no point in the grid has changed more

than a certain (small) quantity maxDiff. The parallel implementation of SOR is based on the

Red/Black SOR algorithm. The grid is treated as a checkerboard and each iteration is split into

two phases, red and black. During the red phase only the red points of the grid are updated. Red

points only have black neighbors and no black points are changed during the red phase. During the

black phase, the black points are updated in a similar way. Using the Red/Black SOR algorithm

the grid can be partitioned among the available processors, each processor receiving a number of

adjacent rows. All processors can now update different points of the same color in parallel. Before

a processor starts the update of a certain color, it exchanges the border points of the opposite color

with its neighbor. After each iteration, the processors must decide if the calculation must continue.

An all-reduce operation is used to determine the maximum change of the grid points. If the largest

change is smaller than maxDiff, the program terminates. In short, SOR uses neighbor communica-

tion to exchange the grid rows, and a collective reduce operation to test the stop condition. Both

operations are performed each iteration.

For the C measurements, we use the GNU C compiler version 3.3.2, with the “-O3” flag to

turn optimizations on. For Java, we use the IBM JIT version 1.3.1, because it is signifi cantly faster

than the SUN JIT. We use a grid of ❯ ✕❖❱ ✸❳❲ ❯ ✕❖❱ ✸ , which occupies 512 MByte of memory. With

this problem size, SOR needs 151 iterations to complete. The run time for the sequential C version

is 1407.4 seconds, while the Java version runs for 1466.6 seconds. The overhead of using Java

instead of C is thus only 4%.
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Figure 11: Performance of the SOR application on Fast Ethernet and Myrinet, with C / MPI, Ibis

IPL, Ibis RMI and Sun RMI.

Figure 11 shows the speedups achieved by the parallel versions of SOR. The graph shows the

speedups of the C / MPI version, a Java version written directly on top of the IPL, and a Java version

written with RMI. We ran the RMI program both with Sun RMI and Ibis RMI. All speedups, also

for the Java versions, are computed relative to the sequential C program. Therefore, it is possible

to directly compare the lines in the graph: a higher line means a faster execution time. Although

the sequential C version is slightly faster than the sequential Java program, the parallel Java SOR

implemented directly on top of the IPL scales better, and actually outperforms the C / MPI version

on a larger number of machines, both on Fast Ethernet and Myrinet.

Using the Java RMI model instead of the IPL causes a noticeable performance drop. The

microbenchmarks in Section 4.2 show that the overhead of RMI is signifi cant, and the application

measurements confi rm this. Still, the performance difference between Ibis RMI and C / MPI on 64

machines is only 10% on Fast Ethernet, and less than 5% on Myrinet. The graph makes clear that

Sun RMI is signifi cantly slower than Ibis RMI at the application level.

5 Related Work

We have discussed a Java-centric approach to writing wide-area parallel (grid computing) appli-

cations. Most other grid computing systems (e.g., Globus [11] and Legion [15]) support a variety

of languages. GridLab [31] is building a toolkit of grid services that can be accessed from various

programming languages. Converse [16] is a framework for multi-lingual interoperability. The Su-

perWeb [1], Javelin 2.0 [25], and Bayanihan [30] are examples of global computing infrastructures

that support Java. A language-centric approach makes it easier to deal with heterogeneous systems,
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since the data types that are transferred over the networks are limited to the ones supported in the

language (thus obviating the need for a separate interface defi nition language) [35]. Recently, web

services [12] have become the de-facto standard for communication between grid services. Al-

though the performance of web services is adequate for communication between grid services, for

parallel programming, high performance communication is critical. For web services to support

high performance distributed scientifi c computing, the standard must be modifi ed or extended [17]

to achieve acceptable performance.

Much research has been done since the 1980s on improving the performance of Remote Pro-

cedure Call protocols [32]. Several important ideas resulted from this research, including the use

of compiler-generated serialization routines and the need for effi cient low-level communication

mechanisms. Ibis can use effi cient user-level communication substrates instead of kernel-level

TCP/IP. Several projects are currently also studying protected, user-level network access from

Java, often using VIA [34]. Our communication substrate Panda [2] also uses one interface for

different communication hardware. However, with Panda, this selection is performed at compile

time; Ibis can switch implementations at run time. A communication library in the Globus toolkit,

Nexus [8], also supports automatic selection of optimal protocols at run time.

Many other projects for parallel programming in Java exist. Titanium [36] is a Java-based

language for high-performance parallel scientifi c computing. It extends Java with features like

immutable classes, fast multidimensional array access, and an explicitly parallel SPMD model of

communication. The JavaParty system [29] is designed to ease parallel cluster programming in

Java. In particular, its goal is to run multithreaded programs with as little change as possible on a

workstation cluster. JavaParty originally was implemented on top of Sun RMI, and thus suffered

from the same performance problem as Sun RMI. The current implementation of JavaParty uses

KaRMI.

An alternative for parallel programming in pure Java is to use MPI. Several MPI bindings for

Java already exist [5, 13]. This approach has the advantage that many programmers are familiar

with MPI. However, the MPI message-passing style of communication is diffi cult to integrate

cleanly with Java’s object-oriented model. MPI assumes an SPMD programming model that is

quite different from Java’s multithreading model. Also, current MPI implementations for Java

suffer from the same performance problem as most RMI implementations: the high overhead of

serialization and the Java Native Interface. For example, for the Java-MPI system in [13], the

latency for calling MPI from Java is 119 � s higher than calling MPI from C (346 versus 227 � s,

measured on an SP2).

RMI performance is studied in several other papers. KaRMI is an improved RMI and seri-

alization package designed to improve RMI performance [28]. The performance of Ibis RMI is

better than that of KaRMI (see Table 5 in Section 4.2). The main reason is that Ibis generates

serialization code instead of using run time type inspection. Also, Ibis exploits features of the

underlying communication layer, and allows a zero-copy implementation by using typed buffers.

RMI performance is improved somewhat by Krishnaswamy et al. [19] by using caching and UDP

instead of TCP. Their RMI implementation, however, still has high latencies (e.g., they report null-

RMI latencies above a millisecond on Fast Ethernet). We found that almost all RMI overhead is in

software, so only replacing the communication mechanism does not help much.
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6 Conclusions and Future Work

Ibis allows highly effi cient, object-based communication, combined with Java’s “run everywhere”

portability, making it ideally suited for high-performance computing in grids. The IPL provides

a single, effi cient communication mechanism using streaming and zero copy implementations.

The mechanism is flexible, because it can be confi gured at run time using properties. Effi cient

serialization can be achieved by generating serialization code in Java, thus avoiding run time type

inspection, and by using special, typed buffers to reduce type conversion and copying.

The Ibis strategy to achieving both performance and portability is to develop effi cient solutions

using standard techniques that work everywhere (for example, we generate effi cient serialization

code in Java), supplemented with highly optimized but non-standard solutions for increased perfor-

mance in special cases. As test case, we studied an effi cient RMI implementation that outperforms

previous implementations, without using native code. The RMI implementation also provides ef-

fi cient communication on gigabit networks like Myrinet, but then some native code is required.

In future work, we intend to investigate adaptivity and malleability for the programming models

that are implemented in Ibis (i.e., GMI, RepMI, and Satin). Ibis then provides dynamic informa-

tion to the grid application about the available resources, including processors and networks. For

this part, we are developing a tool called TopoMon [6], which integrates topology discovery and

network monitoring. With the current implementation, Ibis enables Java as a quasi-ubiquitous plat-

form for grid computing. In combination with the grid resource information, Ibis will leverage the

full potential of dynamic grid resources to their applications.
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