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ABSTRACT 

Within the framework of a project comprising part of the Spanish Space Program related to the JASON-1 
CNES (Centre National d’Etudes Spatiales)/NASA (National Aeronautics and Space Administration) 
mission, a campaign was conducted on June 9-17, 2003, in the Absolute Calibration Site of the island of 
Ibiza. The objective was to determine the local marine geoid slope under the ascending (187) and descending 
(248) Jason-1 ground tracks, in order to allow a better extrapolation of the open-ocean altimetric data with 
on-shore tide gauge locations, and thereby improve the overall precision of the calibration process. For this 
we have used a catamaran with two GPS antennas onboard, following the Corsica/Senetosa design 
(Bonnefond et al., 2003a). Five GPS reference stations were deployed in order to reduce the distance 
between the areas covered by the catamaran and the fixed GPS receiver used in the kinematic process. The 
geodetic activities (e.g., GPS, leveling) have enabled to build a very accurate (few mm) network in a 
reference frame compatible with the satellite altimetry missions (ITRF2000). The GPS kinematic data were 
processed using two different softwares allowing to check the consistency of the solutions. If the standard 
deviation of the differences (3.3 cm) is close to the kinematic process precision they exhibits some large 
values (up to 14 cm). These large discrepancies have been reduced using a weighting based on the crossover 
differences. Inasmuch the distances between the tide gauges and the areas covered by the GPS catamaran we 
have used the MOG2D ocean model (Carrère and Lyard, 2003) to correct the sea surface from tides: in the 
farest areas it shows an improvement by a factor of two on the crossover differences. Finally, we also present 
preliminary results on Jason-1 altimeter calibration using the derived marine geoid: from this analysis the 
altimeter bias is estimated to be 120 ±5 mm. The quality of this first result validate the whole GPS-based 
marine geoid processing, for which the accuracy is estimated to be better than 3 cm rms at crossovers.  

 

Introduction  

Description of the Ibiza 2003 campaign  

The Jason-1 project has set up a CalVal Plan organizing calibration and validation activities during the 
validation and operational phase of Jason-1. Amongst the studies concerning the verification of the altimetric 
system components, some of them are devoted to the altimeter sea-level measurement assessment by 
comparing space-derived measurements to in situ ones. 

The Jason-1 project has already equipped two main NASA and CNES devoted calibration sites: at the 
Senetosa Cape in Corsica for the French side (Bonnefond et al., 2003b), and on the Harvest Oil platform off 
the Californian coast for the USA side (Haines et al., 2003). Other sites are already equipped, or in 
installation phase for in situ measurements mainly using tide gauges, in order to help the verification of 
altimeter range measurements. This is the case for Bass Strait, Tasmania (Australia) (Watson et al.,2003), 
Gavdos Island (Greece) (Pavlis et al.,2002), Lake Eire (USA) (Shum et al.,2003) and Ibiza/ Cape of Begur 
(Spain). 

A Spanish (with French support) JASON-1 calibration campaign, IBIZA 2003, was carried out in June 9-17, 
2003 around Ibiza in the NW Mediterranean Sea (Figure 1a). It has required a deep involvement and 
logistics in the field campaign, in the processing of the collected GPS/tide gauges data and in the analysis of 
results. The main objective of the campaign was to map the instantaneous sea level/local geoid gradient in 
three areas around Ibiza: at the crossing point of ascending and descending JASON-1 tracks located to the 
north of the island, and along these tracks to the SE and SW of the Island (Figure 1b). The campaign was 
based on the experience gained from three previous pilot experiments at Begur Cape (NE Spain). They were 
carried out in March 1999 and July 2000 for TOPEX/POSEIDON and August 2002 for JASON-1, as part of 
the JASON-1 CalVal Team. The Spanish 1999 campaign using a GPS buoy (Born et. al. 1994; Kruizinga, 
1997) included the first direct absolute altimeter calibration of TOPEX Altimeter Site B in the western 
Mediterranean (Martinez-Benjamin et al. 2000). Single point calibrations were performed (Martinez-Garcia 
et al., 2002). GPS buoys presents potential application to deep-sea studies (Colombo et al., 2000).  

A major component of the campaign was a newly designed, calibrated GPS catamaran built up at ICC, 
following the original design from Senetosa experiences (Bonnefond et al., 2003a). It was towed by the 
Spanish Navy Patrol Deva, with a crew of 17 persons on board plus researchers from ROA, UPC and 
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GEMINI. A zodiac from the Spanish Navy was also used to deploy one light wave-rider GPS buoy at Ibiza 
and San Antonio harbours. The objective was to provide instantaneous geocentric sea-level measurements 
with the instantaneous nearby GPS data obtained with the catamaran (an optical levelling was carried out in 
both harbours). Finally, a direct altimeter absolute calibration was also made (on June 14) with the catamaran 
and the GPS buoy near the crossover point located to the north of the island. 

Complementary data come from five GPS reference stations deployed at Ibiza city, San Antonio and 
Portinatx, and from vertically-referenced tide gauges located at Ibiza and San Antonio. The marine geoid 
will be used to relate the coastal tide gauge data from Ibiza and San Antonio harbours to off-shore altimetric 
data. The map obtained will be used to validate and filter altimetric data in the vicinity of the island and to 
correct the altimeter data from the geoid slope before comparison with tide gauge measurements.  

 

FIGURE 1. Geographical area of the western Mediterranean sea (a) 
and Ibiza 2003 campaign (b). 

. 

Geodetic Characteristics of the Ibiza Island Area  

The Western Mediterranean is quite a complex area for different reasons: due to the presence of several 
islands, coastal lines, shallow waters and a peculiar hydrologic equilibrium due to its proximity to the 
Atlantic water exchange area. This makes the estimation of the gravity field and the geoid slope quite a 
difficult task. Presently there are several global models accounting for free air gravity anomalies (GAS), but 
their fits are not good enough to make accurate determinations. 
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FIGURE 2. Level lines of the gravimetric geoid. Contour interval: 10 cm. 
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There are some results for the local/regional gravimetric geoid, which have been built up using different 
techniques such as least squares collocation (LSC) and spectral methodology (fast Fourier transform; 
Rodriguez&Sevilla 2000). In all cases, the classical remove-restore technique has been employed, taking into 
account the long wavelength part of the gravity field by means of coefficients sets of the geopotential 
EGM96 model and the topography effect or contribution of high frequencies to the gravity field. The result is 
a fairly smooth surface, with variation range around the Island of about one meter, from 48,5 m to 49,5 m. 
The isolines of this geoid are depicted in Figure 2. When gravimetric geoids are compared to each other they 
show a good match, with only small discrepancies found to the South of Ibiza Island. 

 

The instruments and the data set 

GPS Reference Stations 

Five GPS reference stations were deployed on Ibiza Island: one in Portinatx, two in San Antonio and two in 
Ibiza (see Figure 1 and Tables 1 and 2). An additional Trimble antenna and receiver were also installed in 
Ibiza harbour for a few hours (on 06/16/2004). For IBIA, SANA and SANB stations, the raw data set 
covered 6 days (11-16 June 2003), whereas for IBIB and PORT stations it covered only 5 days. The sample 
rate was fixed to 30 seconds except during the Catamaran/Buoy measurements, when it was set to 1 second. 

                                                                                                             

 

TABLE 1 Location and time of observation for each GPS station. 

Marker Name Location From To 

IBIA Ibiza (hotel roof) 11/06 18h58 16/06 24h00  
IBIB Ibiza (hotel roof) 12/06 08h29 16/06 24h00  
SANA San Antonio (nautical club roof) 11/06 12h49 16/06 07h53  
SANB San Antonio (nautical club roof) 11/06 13h24 16/06 07h32  
PORT

*
 Portinatx (room roof) 10/06 15h49 15/06 24h00  

Buoy Ibiza, San Antonio, Calibration (North) 11/06 15h33 16/06 07h37  
CATR Ibiza, San Antonio, Calibration (North) 11/06 15h34 16/06 07h37 

CATL Ibiza, San Antonio, Calibration (North) 12/06 08h24 16/06 09h48  
*Data lacking on 11/06 from 08h09 to end of day 

TABLE 2 Antenna height, type of antenna and type of receiver for each GPS station. 

Marker Name ARP Height Antenna Type Receiver Type 

IBIA 0.8447 TRIMBLE: 4000 ST/SST ASHTECH: XII Z-12 
IBIB 1.1510 LEICA: AT502 LEICA: SR530  3.02 
SANA 0.6385 ASHTECH: Choke Ring ASHTECH: iCGRS Z-12 
SANB 0.1438 TOPCON choke ring antenna CR-3 TOPCON: LEGACY-E L1/L2 
PORT 0.9510 LEICA: AT502 LEICA: SR530  3.02 
Buoy

*
 -0.0078 TRIMBLE: Compact L1/L2 TRIMBLE: 4000SSI 

CATR
*
 0.4640 LEICA: AT502 LEICA: SR530  3.02 

CATL* 0.4025 TRIMBLE: Compact L1/L2 TRIMBLE: 4000SSI 
*Height relative to the water line. 

 

Catamaran description 

A catamaran equipped with two GPS antennas to perform continuous sea level measurements at a convenient 
velocity was built up using two wind-surf boards and a metallic structure onto which the antennas were fixed 
(Figure 3a). The design followed the model used in Senetosa measurements (Bonnefond et al., 2003a), and is 
stable enough to be towed by a boat (in this campaign the Patrol Deva P29, from the Spanish Navy, 
Figure 3b) at a convenient speed without stopping GPS data acquisition. Two radomes for protection were 
placed above the two GPS antennas, a Trimble (CATL), and a Leica (CATR). Two GPS receivers, Trimble 
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and Leica, were used aboard the Deva and linked to the antennas of the catamaran by cables independent of 
the towing rope at a distance about 30 m. Measurements were made in the harbours of San Antonio and 
Ibiza, with the catamaran close to the GPS buoy (Figure 3c) and at the same time as tide gauge records.  

                            a                                                    b                                                           c  

     

FIGURE 3. GPS Catamaran (a), Patrol Deva from the Spanish Navy towing the GPS Catamaran leaving 
Ibiza harbour (b) and GPS Buoy near the zodiac at San Antonio harbour (c). 

 

 
 

Description of the tide gauges 

The tide gauges used to complement GPS and altimetric data are installed in Ibiza town and San Antonio 
(see Figure 1 for a general location and Figure 4 for details). 

                                                                    a                                                           b      

      

FIGURE 4. Detail of the locations of the tide gauges in Ibiza harbour (a) and San Antonio (b). 

 
The Spanish Port Authority “Puertos del Estado” (hereafter PE) installed the tide gauge station of Ibiza 
harbour in January 2003. The station is part of the REDMAR network, at this moment comprising 21 stations 
distributed along the whole Spanish coast (http://www.puertos.es). The tide gauge deployed in Ibiza is also 
part of the European Sea-Level Service (ESEAS) network. The instrument, an Aanderaa water 
level/temperature sensor (3796 A) with compensating unit for atmospheric pressure, was installed at the 
Golondrinas pier (Figure 4a). In 2004 a permanent GPS station funded by ESEAS-RI EU project was placed 
with the tide gauge in a building in front of the tide gauge pier.  

The San Antonio tide gauge (Figure 4b), an Aanderaa WLR7, was deployed by IMEDEA by the beginning 
of 2002. It was funded by the European Space Agency (ESA) in the framework of the calibration and 
validation activities of the ENVISAT radar altimeter RA-2. From the beginning of 2003 onwards, the station 
has been funded by the ESEAS-RI EU Project.  

Within the framework of the Ibiza 2003 campaign (on the 1st and 2nd of July 2003), the levelling of both tide 
gauges to the respective GPS markers was repeated. The classical high precision automatic level Zeiss-Ni1 
(with parallel plate micrometer) was used and the method was double run levelling with observation in the 
middle point to avoid systematic errors. In order to avoid and detect bounder and accidental errors, each line 
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was observed twice by the double run method. The loop misclosures in any case exceeded 1 mm. The results 
are shown in Tables 3 and 4. 

 

 
TABLE 3. Leveling at San Antonio 

Marker Height (m) 

SANA 8,2431 ± 0.0008 

SANB 8,2320 ± 0.0008 

Top of the iron bar 0,0000 ± 0.0008 

Pressure sensor -1.998 

 
 

 
TABLE 4. Leveling at Ibiza 

Marker Height (m) 

IBIA 10,5805 ± 0.0008 
IBIB 10,5631 ± 0.0008 
Top of the iron bar 0,0000 ± 0.0008 
Tide Gauge Bench mark 

(TGBM) 
0,0001 ± 0.0008 

Pressure sensor -0.884  

 
 
A test for the long term sea level data came has been made from the comparison of sea level measurements 
recorded at Ibiza and San Antonio with Valencia tide gauge (located on the continental shelf, in front of 
Ibiza). As shown in Fig.5, the observed evolution of monthly means is largely due to regional meteorological 
conditions, and is therefore expected to be rather similar for the three stations. 
 

 

FIGURE 5. Monthly means during 2003 in Valencia, Ibiza and San Antonio tide gauges. 

 

GPS Processing  

The GPS data processing can be divided into two parts: first we need very accurate absolute positions 
(particularly in the vertical component) in a global reference frame coherent with the one commonly used for 
T/P and Jason-1 mission (ITRF2000). Secondly, these reference stations will define the datum for the 
kinematic processing of the GPS catamaran and buoy data but will be also used to determine the absolute sea 
level heights derived from tide gauges data. 

Reference Stations Analysis 

The reference stations are processed using the GAMIT (King and Bock, 2000) and GLOBK (Herring, 2002a) 
suites developed at the Massachusetts Institute of Technology. Details on the GAMIT/GLOBK processing 
and standards can be found in Watson et al. (2003). 

The GPS station processing has been carried out in two stages: we have used the GAMIT “Relax” mode for 
the reference stations (SANA, SANB) with antenna compatible IGS standards and the GAMIT “Baseline” 
mode for the others (IBIA, IBIB, and PORT).  

For the two reference stations processed in the GAMIT “Relax” mode, a regional network based on the most 
accurate GPS stations of the EUREF network has been chosen (Figure 6): Ajaccio and Grasse (France) - 

7 



Cagliari, Matera and Medicina (Italy) - Ebre and San-Fernando (Spain) - Wettzell (Germany). With six daily 

FIGURE 6. Network used for the GAMIT “Relax” mode for SANA and SANB determination. 

solutions the weighted root mean square (wrms) values for SANA and SANB were 3.8 mm and 2.4 mm. 

 from these 

ign we have compared the height 

 

TABLE 5 Height differences between GPS results and leveling 

e Leveling – GPS (m) 

Ibiza

SANA and SANB were then fixed and the three other stations determined using baselines
reference stations (GAMIT “Baseline” mode) to reduce the impact of the heterogeneous antenna types. With 
four daily solutions, the weighted root mean square values for IBIA, IBIB and PORT were 5.0 mm, 3.5 mm 
and 18.2 mm. The large wrms for PORT is due to a linear trend that remains unexplained at the time of 
writing. However, because this station is not used as reference station either for kinematic or for tide gauges 
absolute positioning, the poor determination will have a very small impact. 

In order to estimate the quality of the local network used during this campa
differences with the optical leveling (Table 3 and 4). The very good agreement (Table 5) for the reference 
stations (2 mm) and the relatively good agreement between the other stations (5 mm for IBIA-IBIB) make us 
confident as to the quality of the Ibiza network in term of systematic errors: indeed, the reference stations 
(SANA and SANB) have been processed independently using long baselines from European IGS stations 
and the others relatively short baselines (30-40 km) using the SANA and SANB reference stations. Cartesian 
coordinates of the GPS stations are given in Table 6 at the epoch 2003.456 as well as their heights above the 
conventional GRS80 ellipsoid used in GPS processing (semi major axis of 6378137 m and an inverse 
flattening of 298.257222101). 

Marker1->Marker2 δH GPS (m) δH Leveling (m) Differenc
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SANA-SANB -0.013 -0.011 +0.002 

IBIA-IBIB -0.012 -0.017 -0.005 

 



 

TABLE 6 Cartesian coordinates and heights above GRS80 ellipsoid at epoch 2003.456 

H (m) Marker X (m) Y (m) Z (m) 

SANA 4 96 26 11 8 3 99 96 3 596.2 2 798.20 0 492.9 57.438 

SANB 4 963 597.316 112 793.093 3 990 491.772 57.425 

PORT 4 953 996.022 130 706.294 4 001 814.258 76.430 

IBIA 4 968 004.124 125 818.741 3 984 658.110 60.311 

IBIB 4 968 002.892 125 818.607 3 984 659.621 60.299 

 

Kinematic Analysis 

 are based on high rate GPS data (1 Hz). The mobile receivers (Catamaran and buoy) The kinematic solutions
ellipsoidal heights are solved relatively to the coordinates of the reference stations chosen in the previous 
section (OCA-GEMINI solution). This processing was carried out independently by ICC (POSGPS 
Software) and OCA-GEMINI (TRACK software). 

Description of Each Solution 

OCA-GEMINI Solution 

The kinematic solution has been processed using TRACK software developed at MIT (Herring 2002b). 
Details of the TRACK processing and standards can be found in Watson et al. (2003). In order to reduce the 
impact of distance in the kinematic GPS processing SANA, IBIB and PORT were chosen as reference 
stations (fixed) and CATL and CATR were processed independently. IBIB has been chosen instead of IBIA 
because it was equipped with the same antenna/receiver as CATR. However, there were large data gaps for 
the Leica receiver (CATR) and also lots of satellite lost, so the solution was very difficult to process and 
results were very uncertain because of too few fixed ambiguities. We then decided to use only the CATL 
solution for processing the GPS sea level map. 

ICC Solution 

For computing GPS kinematic sessions ICC used POSGPS v4.02 software, from Applanix. The computation 

ory can be done: 

ard filtering process 

2. ries computed using different GPS reference stations. 

The eiver (buoy or 

d some variability depending on the quality of 

of each trajectory was done in three steps: a forward filtering (positive in time), a backward filtering 
(negative in time) and a final combination of the two previous processes (smoothing), assigning weights at 
each epoch according to certain quality parameters. This software also has the possibility to combine 
different solutions computed from several GPS permanent stations.  

In this way, two preliminary quality controls for the estimated traject

1. Differences between the forward filtering process solution and the backw
solution (nearly independent), 

Agreement between all trajecto

 strategy adopted in the kinematic processes was the following: for each kinematic rec
catamaran), a set of trajectories was computed from 3 or 4 different GPS permanent stations (IBIA, IBIB, 
PORT, SANA or SANB). The two best trajectories (determined by the quality controls explained before) 
were combined to obtain a final solution. The combination uses weights that the software assigns to each 
one, depending on some internal quality parameters (number of satellites, ambiguities fixed, distance from 
rover to reference station, standard deviation...). We can also force the process not to use one solution in a 
certain time period (then software gives weight 0 to this one). 

The accuracy of trajectories obtained in these processes showe
data collected. For most buoy sessions, some time periods showed a large number of important satellite 
occlusions as can be observed in Figure 7 showing the number of locked satellites during a session. 
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FIGURE 7. Satellite visibility in buoy for day 165 (06/14/2003). 

As a consequence, for these periods, no position can be obtained for the buoy, and the data around them was 
also too bad to obtain acceptable results. Despite this, in time intervals with a good number of satellites (for 
example from time 548000 to the end of the session in Figure 7), estimated accuracy for buoy trajectory was 
below a few centimeters. Figure 8, shows the comparison between two solutions of the buoy trajectory 
computed from two different stations (SANA and SANB stations). 

 

FIGURE 8. Absolute value of height difference between solutions from SANA and from SANB to buoy for 
day 165 (06/14/2003). 

For the processes of the kinematic catamaran trajectories, data collection in both receivers also showed some 
short time intervals with less than 4 satellites (lasting for 3 or 4 seconds) that also caused a poor estimate of 
the trajectory. Figure 10 shows the difference between forward and backward filtering processes for session 
163 of antenna placed in the left side of the catamaran. Some spikes can be observed that were caused by the 
interruptions of satellite signals (checked observing raw data from receivers). Moreover, there are some 
persistent differences of up to 20 cm, that may be caused by a faulty resolution of ambiguities in one of the 
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processes (after loss of satellites, ambiguities are solved again), taking into account the fact that the distance 
to the reference station was greater than 20-30 km. It must be noted that the accuracy of the solution might 
be much better than values shown by these differences imply (one of both processes may be better than the 
other in some time intervals). 

 

FIGURE 9. Height difference between forward and backward solutions from IBIB to catamaran for day 163 
(06/13/2003). 

 

FIGURE 10. Absolute values of height difference between solutions from IBIB and SANA to catamaran for 
day 163 (06/12/2003). 

Following Figure 11 shows the differences in the trajectory of this session computed from two different 
reference stations. 

The problems with the data quality previously explained, affected the accuracy of the estimated trajectory. 
However, it must be noted that the problems are very localized, and despite the existence of some persistent 
differences (for example up to 15-20 cm around time 400000 seconds in previous plot), it is well known that 
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they are caused by problems in the process from one of the reference stations chosen (in this case from 
SANA). Then, in the final trajectory, this bad solution is discarded for this time interval. All catamaran 
kinematic sessions are very long (around 10 hours or more), hence, for the greater part of the trajectories the 
quality is acceptable (below a few centimeters). Moreover, the final trajectories (combining two solutions 
computed from different GPS reference stations) allowed a redundancy increase and a quality improvement 
leading to a final trajectory determination accurate enough for this project’s aims. Figure 11 shows the 
coherence of a catamaran trajectory determination from two GPS reference stations, noting that most of the 
difference is of around 5-6 cm during the 12.5 hour session. 

 

FIGURE 11. Absolutes values of height difference between solutions from IBIB and SANA to catamaran 
for day 166 (06/15/2003). 

Sea Height Processing 

Methods and details used to derive the sea level map from kinematic GPS solutions can be found in 
Bonnefond et al. (2003a). We will only describe the steps and parameters of the processing which are 
different from the Corsica experiment.  

Filtering and Data Editing 

The chosen boat velocity was about 4.2 m/s, (~8 knots) so the cut-off period in the time domain was chosen 
as 400 s (~1.7 km in the space domain) in order to homogenize along-track and across-track (~2 km) 
wavelengths. This filtering also allows reduction of the high frequency sea level variations due to both GPS 
processing uncertainty and sea state. Only results on the filtered GPS sea heights are given in this paper. 

For the data editing a global velocity criteria (between 3.7 and 4.7 m/s) was chosen in order to avoid speed-
dependent sea-height variations. Some parts of the solutions were also excluded due to very poor results for 
both ICC and OCA-GEMINI solution (large crossover values, rms, …): the longer period removed is for the 
long diagonal of the south west area because the boat had to be stopped to reinforce the towing rope; in fact 
during this period the GPS cable was too tense and the connector was unscrewed leading to many satellite 
loss. From a total of 158400, only 74505 GPS data was kept for the final solution (Figure 12): the eliminated 
data mostly corresponds to transits between the harbours and the area of interest (59103 GPS data) during 
which time the boat velocity was about 10 knots (~5 m/s). 

. 
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FIGURE 12. GPS data collected (gray) and kept (black). Dashed lines represent the Jason-1 passes: 
ascending N°187 (South West – North East) and descending N°248 (North West –. South East). 

Tide Correction 

Because of the time needed to cover the whole area, it is necessary to correct the instantaneous GPS sea 
heights for tides. In that way all the sea heights refer to a common reference epoch (06/13/2003 at 12h00) 
and are then comparable. In Bonnefond et al. (2003a), authors have used tide gauge information for 
correcting the GPS sea heights. We also used such a method but because of distance between areas of 
interest and tide gauge locations, significant ocean dynamics can cause this correction to lack accuracy. In 
order to improve this correction, we used an ocean model (MOG2D): results and comparisons of these two 
approaches are given in this section. 

From Tide Gauges 

The principle of this correction is to compute the sea level height difference between instantaneous tide 
gauges measurement, at the time of GPS data, and mean sea level at the chosen reference epoch (Table 7). 
This correction is derived from each tide gauge (Ibiza and San Antonio) and averaged before being applied 
to GPS sea heights. Figure 13 shows the differences between the San Antonio and Ibiza tide gauges 
corrections at the GPS data location. From this map we can see that, because Ibiza and San Antonio tidal 
signals are not in phase, differences can slowly increase (up to ~ 4 cm) during a few hours, and then a  
deformation in the sea surface at wavelength comparable to the areas size (15 km) can occur during this 
period. This is very critical because it can affect the mean geoid slope that is of interest for the altimeter 
calibration. 

TABLE 7 Mean of tide gauges heights from 06/11/2003 (9h00) to 06/17/2003 (0h00) for Ibiza and San Antonio 

 Ibiza (M1) San Antonio (M2) 

Mean height (m) 49.114 49.209 

Reference epoch: day 164 (06/13/2003) at 12h00 
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FIGURE 13. Differences between the San Antonio and Ibiza tide gauges corrections at the GPS data 
location (unit is meters). 

From an Ocean Model 

MOG2D is a barotropic, time-stepping, non-linear model, derived from Lynch and Gray (1979) developed at 
the LEGOS, France. In short, it is based on a wave equation formulation and the non-conservative 
momentum equations. Forcing terms include the tidal potential (both astronomical and loading/self-attraction 
parts), the atmospheric surface pressure and wind stress. Dissipative terms include non-linear bottom 
friction, wave drag parameterization and horizontal diffusion (based on a Smagorinski scheme). One of the 
most appealing features of this model is its finite element spatial discretisation (Lagrange P1-P1 type) 
allowing an increase in resolution in coastal areas and over regions of steep topography. In this application, 
the Mediterranean-MOG2D grid size varies from 30 km in regions of deep topography to less than 1 km in 
some coastal areas (Figure 14). A novel sub-cycling time scheme allows dynamic and local adaptation of the 
time step to control the model stability instead of tuning the horizontal viscosity terms.  

The meteorological forcing is extracted from the cartesian grid products ARPEGE (analysis) and ALADIN 
(forecasting) from Météo-France operational system. The spatial and time resolutions range from 0.5°/six 
hours (eastern Mediterranean basin) to 0.1°/three hours (western Mediterranean basin). As a consequence, 
the dynamic processes with a period equal to or less than 6 and 12 hours are misrepresented in the 
atmospheric forcing and hence in the model simulation. The wind stress is computed from wind speed 
through the classical bulk formula from Rosati and Miyakoda (1988). Open boundary conditions are taken 
from the inverted barometer approximation through a radiative condition (characteristics method). Although 
the influence of the Atlantic ocean on the Mediterranean sea through the Gibraltar strait is limited, later 
experiments have demonstrated that the impact of inverted barometer-based boundary conditions was not 
insignificant on the simulations’ accuracy. In present applications, this problem is solved by using the global 
ocean MOG2D simulations (Carrère and Lyard, 2003) as boundary conditions. 
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FIGURE 14. Finite element spatial discretisation in the area of Ibiza. 

 

FIGURE 15. Differences between MOG2D and tide gauges approach for tide correction (unit is meters). 

To compute the tide corrections a first run of the model was done at each GPS data location with a constant 
time corresponding to the chose reference epoch (13/06/2003 at 12h00). In a second step the model is run at 
each GPS data location and time and the difference is used to correct the GPS sea heights. Figure 15 shows 
the tide correction differences between MOG2D and tide gauges approach; this clearly reveals that in the 
southern part of the southeast area MOG2D can significantly improve the tide correction. Indeed, it was an 
area where we found the largest differences for tide gauges (see Figure 13). This is confirmed by the 
significant decrease of crossover differences (Table 9). 

Comparisons of Results 

In this section we will compare the ICC and OCA-GEMINI solutions using internal and external estimators 
in order to evaluate the quality of both solutions. Results of these comparisons are also given for the two tide 
correction approaches. 
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Internal Consistency 

The crossover differences method has been described in detail in Bonnefond et al. (2003a). Tables 8 to 10 
show the statistics for both ICC and OCA-GEMINI solutions, for the South West, South East and North 
areas. The average standard deviation is close to 4 cm and 5 cm respectively for OCA-GEMINI and ICC 
solutions either for tide gauges or MOG2D correction. From this it is very difficult to analyze the impact of 
MOG2D because of lots of outliers in the crossovers. These outliers are due to divergence of the solutions 
either for ICC or OCA-GEMINI for parts of the campaign where lots of satellites were not locked. However 
because of software behavior differences these parts were not always located at the same place in time or 
space (Figure 15). So we have decided to merge the two solutions using the crossovers for controlling the 
process. This method and results are given in the section “Mixing the Solutions”.  

TABLE 8 Crossover differences for the South West area 

Correction N Min (cm) Max (cm) Mean (cm) σ (cm) 

 OCA-GEMINI 

Tide gauges 44 -11.4 5.7 -1.5 4.4 

MOG2D 44 -7.1 7.5 0.5 3.9 

 ICC 

Tide gauges 46 -9.9 16.1 -0.4 5.9 

MOG2D 46 -9.1 17.4 1.6 6.3 

 

TABLE 9 Crossover differences for the South East area 

Correction N Min (cm) Max (cm) Mean (cm) σ (cm) 

 OCA-GEMINI 

Tide gauges 80 -6.4 6.2 0.0 3.0 

MOG2D 80 -7.1 5.8 -0.7 3.2 

 ICC 

Tide gauges 82 -10.8 5.8 -0.9 3.0 

MOG2D 82 -10.5 5.3 -1.8 2.9 

 

TABLE 10 Crossover differences for the North area 

Correction N Min (cm) Max (cm) Mean (cm) σ (cm) 

 OCA-GEMINI 

Tide gauges 39 -8.3 7.8 -0.2 3.4 

MOG2D 39 -7.7 7.3 -0.7 3.6 

 ICC 

Tide gauges 42 -12.0 8.0 -0.4 5.2 

MOG2D 42 -12.6 7.6 -0.9 5.4 

External Consistency 

Between Solutions 

Table 11 shows the statistics of the GPS sea height differences between OCA-GEMINI and ICC solutions. If 
the averaged standard deviation is reasonable (3.3 cm) compared to the classic noise of kinematic GPS, the 
minimum/maximum exhibits large values up to 14 cm. As explained before in the crossovers section, this is 
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due to a region where OCA-GEMINI or ICC solutions are very bad. These discrepancies are due to the 
software strategy and the lost of signals which have often occurred during the campaign: indeed, it implies 
that a new ambiguity has to be defined and search for each data gap and then the solution accuracy is 
affected. Moreover the distance between the reference stations and the catamaran is a factor of degradation. 
It means that for short distance and not too often data gap the GEMINI and ICC solutions are very close (see 
day 11/06 in Table 11). 

TABLE 11 GPS sea heights differences for CATL: GEMINI - ICC 

Day/Month Location Min (cm) Max (cm) Mean (cm) σ (cm) 

11/06 Bay of San Antonio -3.2 3.2 0.0 1.6 

12/06 South West area -11.8 13.8 0.0 4.5 

13/06 North area -12.0 12.0 1.6 3.6 

14/06 North area -7.5 13.6 0.2 3.6 

15/06 South East area -12.4 2.9 -3.1 3.0 

 

Tide gauges 

For each day (morning and evening) of the campaign we also made GPS catamaran measurements, and at the 
same time GPS buoy measurements as close as possible to the tide gauge locations (< 2km). These 
measurements were carried out with the same Catamaran velocity as the one used to cover the areas 
(4.2 m/s). These periods were dedicated to comparing sea level with tide measurements, but also to spotting 
the possible impact of the velocity to the waterline definition for the catamaran (Figure 16). Indeed, the buoy 
had no velocity, and the antenna height above the waterline was easier to determine. First we should note 
that on average, results from buoy and Catamaran show similar biases (Table 1). This means that the 
waterline of the catamaran was well defined. The 1 cm bias observed at San Antonio is not negligible and 
might be due either to the absolute height of the tide gauge or the GPS solutions.  If such a bias is in the 
whole GPS solution it will disappear when computing the geoid slope for the altimeter calibration. However, 
at Ibiza the bias is significantly higher (4.8 cm more than the one observed at San Antonio) so we suspect a 
problem in the absolute height of the tide gauge. This last point will be discussed and confirmed in the 
“Preliminary calibration results” section. 

TABLE 12 Statistics of the differences between GPS sea heights and tide gauges measurements 

Solution Ibiza San Antonio 

 Mean (cm) σ (cm) Mean (cm) σ (cm) 

CATL (OCA-GEMINI) 5.4 2.8 1.1 3.5 

CATL (ICC) 7.1 1.7 0.5 2.5 

Buoy (ICC) 5.8 0.7 1.6 0.6 

Average 6.0 2.1 1.2 1.5 
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FIGURE 16. Differences between GPS sea heights and tide gauges measurements. Errors bars represent the 
standard deviation of the differences. 

Mixing the Solutions 

The final solution was processed using a weighted average of both ICC and OCA-GEMINI solution based on 
crossover values. In the first stage, crossovers are interpolated at each time of GPS sea heights and then the 
following formula is applied. 

Hmean(t) = (HGEMINI(t)*WGEMINI(t) + HICC(t)*WICC(t)) / (WGEMINI(t)  + HICC(t) *WICC(t)) 

Where W(t) = 1/|Crossover value interpolated at time t|  

Figure 17 illustrates this process showing that the mean solution is close to the solution for which the 
crossovers values are the smallest. 

 

FIGURE 17. Illustration of the weighted average process between OCA-GEMINI and ICC solutions. Error 
bars represent the crossover values. Dotted, dashed and plain lines are the ICC, OCA-GEMINI and Mean 
solutions respecttively. 
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Tables 13 to 15 show the statistics for the mean solution for the South West, South East and North areas 
respectively using the MOG2D tide corrections. The standard deviation is reduced from 4-5 cm (GEMINI 
and ICC solutions) to 2.7 cm, showing that the mean weighted solution has a better consistency. For the 
crossovers inside Ibiza and San Antonio bays (close to the tide gauges) the mean is close to zero and they 
have a standard deviation of 1.5 cm. 

TABLE 13 Crossover differences for the South West area 

N Min (cm) Max (cm) Mean (cm) σ (cm) 

42 -7.2 8.3 1.0 2.9 

 

TABLE 14 Crossover differences for the South East area 

N Min (cm) Max (cm) Mean (cm) σ (cm) 

79 -5.6 2.1 -0.9 1.9 

 

TABLE 15 Crossover differences for the North area 

N Min (cm) Max (cm) Mean (cm) σ (cm) 

38 -8.1 5.2 -0.9 3.2 
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�FIGURE 18. Crossovers for the South West areas. The dashed rectangle is the area where the differences 
between tide gauges and MOG2D tide corrections exhibit the largest differences (unit is meters). 

Using the mean weighted solution in the area where tide gauges and MOG2D tide corrections exhibit the 
largest differences (Figure 18 and 15), the standard deviation of crossovers is reduced by a factor of two, and 
the mean is close to zero (Table 16). This validates the fact that the use of MOG2D for computing the tide 
correction is more accurate. 

TABLE 16 South West restricted area defined in Figure 18. 

Correction N Min (cm) Max (cm) Mean (cm) σ (cm) 

Tide gauges 20 -6.0 4.7 -1.7 2.4 

MOG2D 20 -2.5 3.2 -0.3 1.2 
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FIGURE 19. Contour Map of the gridded GPS sea surface heights (weighted mean). Dashed lines represent 
the Jason-1 passes: ascending N°187 (South West – North East) and descending N°248 (North West –. South 
East). 

The GPS sea surface at the end of the treatment do contain systematic errors (GPS processing, tides model, 
…) but this surface is used in a relative sense meaning that it is only used to compute the geoid height 
differences (the systematic errors cancel out) between altimetric and tide gauge data locations. 

 

 

Preliminary Calibration Results 

Method 

A comparison of the instantaneous sea surface height (SSH) estimated by two independent techniques at the 
same geographical location and time was the methodology followed (Bonnefond et al. 2003b). This 
technique is the so-called direct calibration method. The instantaneous SSH derived from the JASON-1 
measurements, that is, the difference between the satellite orbit height (horbit) and the altimeter measurement 
(halt), which represents the corrected basically raw range of the media delays, troposphere and ionosphere, 
the sea state bias and the instrumental delay: 

            SSHJASON = horbit - halt  

is compared with the same magnitude SSHtide gauge, which can be considered a 'true' measurement of the 
instantaneous sea level, estimated from the measurements of the GPS buoys placed underneath the ascending 
T/P satellite ground track. The bias of the altimeter is obtained from this comparison : 
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           BIAS = SSHJASON - SSHtide gauge 

However, because off-shore altimetric data are affected by the geoid slope, the Sea Level map derived from 
the GPS catamaran campaign (Figure 19) is used to correct them (Figure 20). Such a method is described in 
detail in Bonnefond et al. (2003b): the mean catamaran heights at tide gauge locations used to compute the 
geoid height differences are given in Table 17. 

TABLE 17 Mean of GPS sea heights at tide gauge locations 

Ibiza (M1) San Antonio (M2) 

Mean (m) σ (m) Mean (m) σ (m) 

49.119 0.017 49.148 0.017 

 

FIGURE 20. Jason-1 altimeter calibration process for pass 248 and cycle 44. 

Jason-1 Altimeter Bias 

Jason-1 altimetric data was analyzed from cycle 9 (beginning of San Antonio tide gauges data) to cycle 62. 
Figure 21 shows the time series of the Jason-1 altimetric bias for pass 187 (left) and 248 (right) from Ibiza 
and San Antonio tide gauges 

22 



 

FIGURE 21. Time series of Jason-1 altimeter bias for pass 187 (left) and 248 (right). Crosses and diamonds 
represent the determination from San Antonio and Ibiza tide gauges respectively. 

The statistics of this analysis are summarized in Table 18. The bias found at San Antonio is very close to that 
found at other calibration sites notably the Corsica one where the geographically correlated errors should be 
comparable (orbit, sea state,..): +138 ± 7 mm at Harvest (Haines et al., 2003), +120 ± 7 mm at Corsica 
(Bonnefond et al., 2003b) and +131 ± 11 mm at Bass Strait (Watson et al., 2003). However, the one derived 
from Ibiza tide gauge data exhibit a difference of about +50 mm. This confirms the difference of 48 mm 
found in the GPS sea height versus tide gauge sea level at Ibiza (Table 12 and Figure 21). Moreover, the 
mean sea heights of tide gauges (Table 5) exhibits a difference of 95 mm while the geoid height difference 
(Figure 2) should be close to 50 mm. It seems that there should be an error of about 50 mm either in the 
leveling or the height between the pressure sensor and the Tide Gauge Bench mark (Table 4). These 
measurements have to be redone to find the error source.  

TABLE 18 Statistics of the Jason-1 altimeter bias for passes 187 and 248 using Ibiza and San Antonio tide 
gauges. 

 Ibiza San Antonio 

Pass Mean (mm) σ (mm) Mean (mm) σ (mm) 

187 169.0 33.4 119.0 23.4 

248 177.0 24.5 122.0 27.4 

 

Conclusion 

The main objective was to test the value of Ibiza Island as a possible permanent calibration site in the 
western Mediterranean Sea, to complement to the Corsica/Senetosa site. Indeed, more dedicated calibration 
sites, as Ibiza or San Antonio, can help to control the geographically correlated errors that are significant at 
single sites. Results from the 2003 campaign, with a technical contribution on the design of the GPS buoy 
and GPS catamaran, indicate the convenience of including this site in the network of altimeter calibration 
sites. They also suggest that together with other calibration programs it might contribute to a better 
characterization and understanding of the altimeter bias. However, this will need the carrying out of a few 
more optimised campaigns with very high geodetic quality GPS equipment deployed at more suitable sites, 
such as Llentrisca Cape at Ibiza island and Formentera island in order to avoid the long distances of about 
20/30 km GPS-area of mapping limiting the possibilities of the kinematic analysis. On the other hand, this 
campaign has permitted to obtain a very accurate geodetic network with systematic errors below 5 mm. 

Leveling the marine sea surface using a GPS catamaran proved to be useful in defining the local marine 
geoid slope between the coast and offshore area. This allows the application of the kinematic GPS 
methodology, significantly expanding the geographic coverage of the survey, and mapping the marine sea 
surface very quickly when towed by a convenient and powerful ship as in this case with Patrol Deva. 
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The area covered by the GPS catamaran represents a huge amount of GPS data processed independently by 
two institutes using two different softwares. Previous campaigns, (Bonnefond et al, 2003a) used tide gauge 
data to correct the GPS catamaran in their processing to determine a sea level map near the Corsica/Senetosa 
site. In this analysis, improved results were obtained by using the MOG2D model data on the ocean tide 
correction notably far from the location of the tide gauges. The overall precision of the resulting “marine 
geoid” is estimated to be at the level of 3 cm rms. The remaining systematic errors which can affect the 
overall surface (e.g. waterline definition of the catamaran) is estimated to be at the centimeter level from 
comparisons with the buoy and tide gauges data (Table 12); moreover, these systematic errors cancel out 
when the geoid height differences are computed in the calibration process.  

Finally this “marine geoid” has been used in an altimeter calibration process for two Jason-1 passes and two 
tide gauges location. The Jason-1 altimeter bias derived from San Antonio tide gauge is +120 ± 5 mm: this is 
very coherent with the other calibration sites in term of absolute value but also for the standard error 
(σ/√Ncycles). 

The first results make us confident on the quality of this newly-implemented absolute altimeter calibration 
site. 
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