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software, and applications
Deep packet processing is migrating to the edges of service
provider networks to simplify and speed up core functions. On
the other hand, the cores of such networks are migrating to the
switching of high-speed traffic aggregates. As a result, more
services will have to be performed at the edges, on behalf of
both the core and the end users. Associated network equipment
will therefore require high flexibility to support evolving high-
level services as well as extraordinary performance to deal with
the high packet rates. Whereas, in the past, network equipment
was based either on general-purpose processors (GPPs) or
application-specific integrated circuits (ASICs), favoring
flexibility over speed or vice versa, the network processor
approach achieves both flexibility and performance. The key
advantage of network processors is that hardware-level
performance is complemented by flexible software architecture.
This paper provides an overview of the IBM PowerNPTM

NP4GS3 network processor and how it addresses these issues.
Its hardware and software design characteristics and its
comprehensive base operating software make it well suited
for a wide range of networking applications.

Introduction
The convergence of telecommunications and computer
networking into next-generation networks poses
challenging demands for high performance and flexibility.
Because of the ever-increasing number of connected
end users and end devices, link speeds in the core will
probably exceed 40 Gb/s in the next few years. At the
same time, forwarding intelligence will migrate to the
edges of service provider networks to simplify and speed
up core functions.1 Since high-speed traffic aggregates will
be switched in the core, more services will be required at
the edge. In addition, more sophisticated end user services
lead to further demands on edge devices, calling for high
flexibility to support evolving high-level services as well as
performance to deal with associated high packet rates.
Whereas, in the past, network products were based either
on GPPs or ASICs, favoring flexibility over speed or vice
versa, the network processor approach achieves both
flexibility and performance.

Current rapid developments in network protocols and
applications push the demands for routers and other
network devices far beyond doing destination address
lookups to determine the output port to which the packet
should be sent. Network devices must inspect deeper into
the packet to achieve content-based forwarding; perform
protocol termination and gateway functionality for server
offloading and load balancing; and require support for
higher-layer protocols. Traditional hardware design, in
which ASICs are used to perform the bulk of processing
load, is not suited for the complex operations required
and the new and evolving protocols that must be
processed. Offloading the entire packet processing to a
GPP, not designed for packet handling, causes additional
difficulties. Recently, field-programmable gate arrays
(FPGAs) have been used. They allow processing to be
offloaded to dedicated hardware without having to
undergo the expensive and lengthy design cycles
commonly associated with ASICs. While FPGAs are
now large enough to accommodate the gates needed
for handling simple protocols, multiple and complex
protocols are still out of reach. This is further intensified

1 The term edge denotes the point at which traffic from multiple customer premises
enters the service provider network to begin its journey toward the network core.
Core devices aggregate and move traffic from many edge devices.
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by their relatively slow clock speeds and long on-chip
routing delays, which rule out FPGAs for complex
applications.

Typical network processors have a set of programmable
processors designed to efficiently execute an instruction
set specifically designed for packet processing and
forwarding. Overall performance is further enhanced with
the inclusion of specialized coprocessors (e.g., for table
lookup or checksum computation) and enhancements to
the data flow supporting necessary packet modifications.
However, not only is the instruction set customized for
packet processing and forwarding; the entire design
of the network processor, including execution
environment, memory, hardware accelerators, and
bus architecture, is optimized for high-performance
packet handling.

The key advantage of network processors is that
hardware-level performance is complemented by
horizontally layered software architecture. On the lowest
layer, the forwarding instruction set together with the
overall system architecture determines the programming
model. At that layer, compilation tools may help to
abstract some of the specifics of the hardware layer by
providing support for high-level programming language
syntax and packet handling libraries [1]. The interface to
the next layer is typically implemented by an interprocess-
communication protocol so that control path functionality
can be executed on a control point (CP), which provides
extended and high-level control functions through a
traditional GPP. With a defined application programming
interface (API) at this layer, a traditional software
engineering approach for the implementation of network
services can be followed. By providing an additional
software layer and API which spans more than one

network node, a highly programmable and flexible
network can be implemented. These layers are shown
in Figure 1 as hardware, software, and applications,
respectively, and are supported by tools and a reference
implementation.

Flexibility through ease of programmability at line speed
is demanded by continuing increases in the number of
approaches to networking [2– 4]:

● Scalability for traffic engineering, quality of service
(QoS), and the integration of wireless networks in a
unified packet-based next-generation network requires
traffic differentiation and aggregation. These functions
are based on information in packet headers at various
protocol layers. The higher up the protocol stack the
information originates, the higher the semantic content,
and the more challenging is the demand for flexibility
and performance in the data path.

● The adoption of the Internet by businesses,
governments, and other institutions has increased the
importance of security functions (e.g., encryption,
authentication, firewalling, and intrusion detection).

● Large investments in legacy networks have forced
network providers to require a seamless migration
strategy from existing circuit-switched networks to next-
generation networks. Infrastructures must be capable of
incremental modification of functionalities.

● Networking equipment should be easy to adapt to
emerging standards, since the pace of the introduction
of new standards is accelerating.

● Network equipment vendors see the need of service
providers for flexible service differentiation and
increased time-to-market pressure.

This paper provides an overview of the IBM PowerNP*
NP4GS32 network processor platform, containing the
components of Figure 1, and how it addresses those needs.
The specific hardware and software design characteristics
and the comprehensive base operating software of this
network processor make it a complete solution for a wide
range of applications. Because of its associated advanced
development and testing tools combined with extensive
software and reference implementations, rapid prototyping
and development of new high-performance applications
are significantly easier than with either GPPs or ASICs.

System architecture
From a system architecture viewpoint, network processors
can be divided into two general models: the run-to-

2 In this paper the abbreviated term PowerNP is used to designate the IBM
PowerNP NP4GS3, which is a high-end member of the IBM network processor
family.

Figure 1

Components of a network processor platform.
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completion (RTC) and pipeline models, as shown in Figure 2.
The RTC model provides a simple programming approach
which allows the programmer to see a single thread that
can access the entire instruction memory space and all
of the shared resources such as control memory, tables,
policers, and counters. The model is based on the
symmetric multiprocessor (SMP) architecture, in which
multiple CPUs share the same memory [5]. The CPUs
are used as a pool of processing resources, all executing
simultaneously, either processing data or in an idle mode
waiting for work. The PowerNP architecture is based on
the RTC model.

In the pipeline model, each pipeline CPU is optimized
to handle a certain category of tasks and instructions. The
application program is partitioned among pipeline stages
[6]. A weakness in the pipeline model is the necessity
of evenly distributing the work at each segment of the
pipeline. When the work is not properly distributed,
the flow of work through the pipeline is disrupted. For
example, if one segment is over-allocated, that segment
of the pipeline stalls preceding segments and starves
successive segments.

Even when processing is identical for every packet, the
code path must be partitioned according to the number of
pipeline stages required. Of course, code cannot always be
partitioned ideally, leading to unused processor cycles in
some pipeline stages. Additional processor cycles are
required to pass packet context from one stage to the
next. Perhaps a more significant challenge of a pipelined
programming model is in dealing with changes, since a
relatively minor code change may require a programmer
to start from scratch with code partitioning. The RTC
programming model avoids the problems associated
with pipelined designs by allowing the complete
functionality to reside within a single contiguous
program flow.

Figure 3 shows the high-level architecture of the
PowerNP—a high-end member of the IBM network
processor family which integrates medium-access controls
(MACs), switch interface, processors, search engines,
traffic management, and an embedded IBM PowerPC*
processor which provides design flexibility for applications.
The PowerNP has the following main components:
embedded processor complex (EPC), data flow (DF),
scheduler, MACs, and coprocessors.

The EPC processors work with coprocessors to provide
high-performance execution of the application software
and the PowerNP-related management software. The
coprocessors provide hardware-assist functions for
performing common operations such as table searches and
packet alterations. To provide for additional processing
capabilities, there is an interface for attachment of
external coprocessors such as content-addressable

memories (CAMs). The DF serves as the primary data
path for receiving and transmitting network traffic. It
provides an interface to multiple large data memories for
buffering data traffic as it flows through the network
processor. The scheduler enhances the QoS functions
provided by the PowerNP. It allows traffic flows to be
scheduled individually per their assigned QoS class for
differentiated services. The MACs provide network
interfaces for Ethernet and packet over SONET (POS).

Figure 2

Network processor architectural models: (a) run-to-completion 

(RTC) model; (b) pipeline model.
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PowerNP high-level architecture.
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Functional blocks
Figure 4 shows the main functional blocks that make up
the PowerNP architecture. In the following sections we
discuss each functional block within the PowerNP.

Physical MAC multiplexer
The physical MAC multiplexer (PMM) moves data
between physical layer devices and the PowerNP. The
PMM interfaces with the external ports of the network
processor in the ingress PMM and egress PMM directions.
The PMM includes four data mover units (DMUs),
labeled A, B, C, and D. Each of the four DMUs can be
independently configured as an Ethernet MAC or a POS
interface. The PMM keeps a set of performance statistics
on a per-port basis in either mode. Each DMU moves
data at 1 Gb/s in both the ingress and the egress

directions. There is also an “internal wrap” link that
enables traffic generated by the egress side of the
PowerNP to move to the ingress side without going out
of the chip.

When a DMU is configured for Ethernet, it can support
either one port of 1 Gigabit Ethernet or ten ports of Fast
Ethernet (10/100 Mb/s). To support 1 Gigabit Ethernet,
a DMU can be configured as either a gigabit media-
independent interface (GMII) or a ten-bit interface (TBI).
To support Fast Ethernet, a DMU can be configured as a
serial media-independent interface (SMII) supporting ten
Ethernet ports. Operation at 10 or 100 Mb/s is determined
by the PowerNP independently for each port.

When a DMU is configured for POS mode, it can
support both clear-channel and channelized optical carrier
(OC) interfaces. A DMU supports the following types and

Figure 4

PowerNP functional block diagram.
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speeds of POS framers: OC-3c, OC-12, OC-12c, OC-48,
and OC-48c.3 To provide an OC-48 link, all four DMUs
are attached to a single framer, with each DMU providing
four OC-3c channels or one OC-12c channel to the
framer. To provide an OC-48 clear channel (OC-48c) link,
DMU A is configured to attach to a 32-bit framer and the
other three DMUs are disabled, providing only interface
pins for the data path.

Switch interface
The switch interface (SWI) supports two high-speed data-
aligned synchronous link (DASL)4 interfaces, labeled A
and B, supporting standalone operation (wrap), dual-mode
operation (two PowerNPs interconnected), or connection
to an external switch fabric. Each DASL link provides up
to 4 Gb/s of bandwidth. The DASL links A and B can be
used in parallel, with one acting as the primary switch
interface and the other as an alternate switch interface
for increased system availability. The DASL interface
is frequency-synchronous, which removes the need for
asynchronous interfaces that introduce additional interface
latency. The ingress SWI side sends data to the switch
fabric, and the egress SWI side receives data from the
switch fabric. The DASL interface enables up to 64
network processors to be interconnected using an external
switch fabric.

The ingress switch data mover (SDM) is the logical
interface between the ingress enqueuer/dequeuer/
scheduler (EDS) packet data flow, also designated as
the ingress DF, and the switch fabric cell data flow. The
ingress SDM segments the packets into 64-byte switch
cells and passes the cells to the ingress SWI. The egress
SDM is the logical interface between the switch fabric cell
data flow and the packet data flow of the egress EDS, also
designated as the egress DF. The egress DF reassembles
the switch fabric cells back into packets. There is also an
“internal wrap” link which enables traffic generated by the
ingress side of the PowerNP to move to the egress side
without going out of the chip.

Data flow and traffic management
The ingress DF interfaces with the ingress PMM, the
EPC, and the SWI. Packets that have been received on
the ingress PMM are passed to the ingress DF. The
ingress DF collects the packet data in its internal data
store (DS) memory. When it has received sufficient data
(i.e., the packet header), the ingress DF enqueues the
data to the EPC for processing. Once the EPC processes
the packet, it provides forwarding and QoS information to

the ingress DF. The ingress DF then invokes a hardware-
configured flow-control mechanism and then either
discards the packet or places it in a queue to await
transmission. The ingress DF schedules all packets that
cross the ingress SWI. After it selects a packet, the ingress
DF passes the packet to the ingress SWI.

The ingress DF invokes flow control when packet data
enters the network processor. When the ingress DS is
sufficiently congested, the flow-control actions discard
packets. The traffic-management software uses the
information about the congestion state of the DF, the rate
at which packets arrive, the current status of the DS, and
the current status of target blades to compute transmit
probabilities for various flows. The ingress DF has
hardware-assisted flow control which uses the software-
computed transmit probabilities along with tail drop
congestion indicators to determine whether a forwarding
or discard action should be taken.

The egress DF interfaces with the egress SWI, the EPC,
and the egress PMM. Packets that have been received on
the egress SWI are passed to the egress DF. The egress
DF collects the packet data in its external DS memory.
The egress DF enqueues the packet to the EPC for
processing. Once the EPC processes the packet, it
provides forwarding and QoS information to the egress
DF. The egress DF then enqueues the packet either to the
egress scheduler, when enabled, or to a target port queue
for transmission to the egress PMM. The egress DF
invokes a hardware-assisted flow-control mechanism, like
the ingress DF, when packet data enters the network
processor. When the egress DS is sufficiently congested,
the flow-control actions discard packets.

The egress scheduler provides traffic-shaping functions
for the network processor on the egress side. It addresses
functions that enable QoS mechanisms required by
applications such as the Internet protocol (IP)-differentiated
services (DiffServ), multiprotocol label switching (MPLS),
traffic engineering, and virtual private networks (VPNs).
The scheduler manages bandwidth on a per-packet basis
by determining the bandwidth required by a packet (i.e.,
the number of bytes to be transmitted) and comparing this
against the bandwidth permitted by the configuration of
the packet flow queue. The bandwidth used by a first
packet determines when the scheduler will permit the
transmission of a subsequent packet of a flow queue. The
scheduler supports traffic shaping for 2K flow queues.

Embedded processor complex
The embedded processor complex (EPC) performs all
processing functions for the PowerNP. It provides and
controls the programmability of the network processor.
In general, the EPC accepts data for processing from
both the ingress and egress DFs. The EPC, under

3 The transmission rate of OC-n is n � 51.84 Mb/s. For example, OC-12 runs at
622.08 Mb/s.
4 Other switch interfaces, such as CSIX, can currently be supported via an
interposer chip. On-chip support for CSIX will be provided in a future version
of the network processor.
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software control and with hardware-assisted coprocessors,
determines what forwarding action is to be taken on the
data. The data may be forwarded to its final destination or
may be discarded.

Within the EPC, eight dyadic protocol processor units
(DPPUs) containing processors, coprocessors, and
hardware accelerators support functions such as packet
parsing and classification, high-speed pattern search, and
internal chip management.

Each DPPU consists of two programmable core
language processors (CLPs), eight shared coprocessors,
one coprocessor data bus, one coprocessor command
bus, and a 4KB shared memory pool—1 KB per thread.
Each CLP supports two threads. Although there are
32 independent threads, each CLP can execute the
instructions of only one of its threads at a time, so at any
instant up to 16 threads are executing simultaneously.
Most coprocessors perform specialized functions and
operate concurrently with one another and with the CLPs.
The 16 CLPs run at 133 MHz, providing 2128 MIPS
aggregate processing capability.

Each CLP is a 32-bit “picoprocessor” (i.e., a scaled-
down RISC processor) consisting of sixteen 32-bit or
thirty-two 16-bit general-purpose registers (GPRs) per
thread and a one-cycle ALU supporting an instruction
set that includes

● Binary addition and subtraction.
● Bit-wise logical AND, OR, and NOT.
● Compare.
● Count leading zeros.
● Shift left and right logical.
● Shift right arithmetic.
● Rotate left and right.
● Bit-manipulation commands: set, clear, test, and flip.
● GPR transfer of halfword-to-halfword, word-to-word,

and halfword-to-word with and without sign extensions.

All ALU instructions support “predicated execution.”
Predicated execution can eliminate hard-to-predict
branches by translating them into predicate definitions,
which do not require prediction. For short branches,
predicated execution provides a performance improvement
over traditional test-and-branch.

A thread has a unique set of general-purpose, scalar,
and array registers. A thread shares execution resources
in the CLP with another thread and execution resources
in the coprocessors with three other threads. Five types
of threads are supported:

● General data handler (GDH)
Seven DPPUs contain the GDH threads for a total of 28
GDH threads. GDHs are used for forwarding packets.

● Guided frame handler (GFH)
There is one GFH thread available in the EPC. A
guided packet (or frame) can be processed only by the
GFH thread, but the GFH can be configured to process
data packets like a GDH thread. Guided packets are
used for transporting control plane information. The
GFH executes guided-packet-related code, runs the
code related to network processor management, and
exchanges control information with a CP function or
a remote network processor. When there is no such
task to perform and the option is enabled, the GFH
may execute packet-forwarding-related code.

● General table handler (GTH)
The GTH thread executes tree-management commands.
It performs actions including hardware assist to perform
tree inserts, tree deletes, and tree aging. Other threads
can also execute tree-insert and -delete operations,
achieving about half a million inserts/deletes per second.
The GTH can process data packets like a GDH when
there are no tree-management functions to perform.

● General PowerPC handler request (GPH-Req)
There is one GPH-Req thread available in the EPC.
The GPH-Req thread processes packets targeted for the
embedded PowerPC 405. The GPH-Req thread moves
data targeted for the PowerPC to the PowerPC mailbox
(i.e., a memory area) and then notifies the PowerPC
that it has data to process.

● General PowerPC handler response (GPH-Resp)
There is one GPH-Resp thread available in the EPC.
The GPH-Resp thread processes responses from the
embedded PowerPC. Work for this thread is dispatched
due to an interrupt initiated by the PowerPC and
does not use the dispatch unit memory. All of the
information used by this thread is found in the
embedded PowerPC mailbox.

One DPPU contains the GFH, GTH, and PowerPC
threads, and the other seven DPPUs contain the GDH
threads.

The interrupts and timers component of the EPC
supports four interrupt vectors. Each interrupt can be
configured to initiate a dispatch to one of the threads for
processing. The network processor also has four timers
that can be used to generate periodic interrupts.

The instruction memory consists of eight embedded
RAMs that are loaded during initialization and contain
the code for forwarding packets and managing the system.
It is designed so as to be able to feed all 16 picoprocessors
simultaneously. Its size is 128 KB (i.e., 32K word instructions).

The control store arbiter (CSA) controls access to the
control store (CS), which allocates memory bandwidth
among the threads of all DPPUs. The CS is shared among
the tree search engine (TSE) coprocessors, and the code
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can access the CS directly through commands to the TSE
coprocessor. The TSE coprocessor also accesses the CS
during tree searches.

The TSE coprocessor provides hardware search
operations for full match (FM) trees, longest prefix
match (LPM) trees, and software-managed trees (SMTs).
Software initializes and maintains trees. Leaves can
be inserted into and removed from FM and LPM
trees without a CP intervention, permitting scalable
configurations with the CP control when needed. The FM
trees provide a mechanism for searching tables with fixed-
size patterns, such as layer-2 Ethernet Unicast MAC
tables, which use fixed six-byte address patterns. Searches
of FM trees are efficient because FM trees benefit from
hash functions. The TSE offers multiple fixed hash
functions that provide very low collision rates. The LPM
trees provide a mechanism for searching tables with
variable-length patterns or prefixes, such as layer-3 IP
forwarding tables, where IP addresses can be full-match
host addresses or prefixes for network addresses. The
SMT trees provide a mechanism for creating trees that
follow a CP-defined search algorithm, such as an IP
quintuple filtering table containing IP source address, IP
destination address, source port, destination port, and
protocol ID. In contrast to FM and LPM, SMT allows
leaves to specify ranges (for instance, that a source port
must be in the range of 100 . . . 110).

LuDefTable, CompTable, and FreeQueues are tables
and queues for use by the TSE coprocessor. The lookup
definition table (LuDefTable), an internal memory
structure that contains 128 entries to define 128 trees,
is the main structure that manages the CS. The table
indicates in which memory (i.e., external DDR-SDRAM,
SRAM, or internal RAM) trees exist, whether caching is
enabled, key and leaf sizes, and the type of search to be
performed.

The dispatch unit dequeues packet information from
the ingress DF and egress DF queues. After dequeue, the
dispatch unit reads part of the packet from the ingress
or egress DS and places it in an internal RAM inside
the dispatch unit. As soon as a thread becomes idle, the
dispatch unit places the packet in the shared memory pool
and passes the packet control information to the thread
for processing. The dispatch unit also handles timers and
interrupts by dispatching the work required for these to
an available thread.

The hardware classifier (HC) parses packet data that is
dispatched to a thread. The classification results are used
to precondition the state of a thread by initializing the
general-purpose and coprocessor scalar registers of the
thread and a starting instruction address (SIA) for the
CLP. Classification results indicate the type of layer-2
encapsulation, as well as some information about the
layer-3 packet. Some recognizable layer-2 encapsulations

include point-to-point protocol (PPP) and virtual local-
area-network (VLAN) tagging. Reportable layer-3
information includes IP protocol, five programmable
network protocols, the detection of IP option fields, user
datagram protocol (UDP), and transmission control
protocol (TCP).

Each thread has read and write access to the ingress
and egress DS through a DS coprocessor. The ingress
and egress DS interface and arbiters are for controlling
accesses to the DS, since only one thread at a time can
access either DS.

Each thread has access to the control access bus (CAB)
arbiter, which permits access to all memory and registers
in the network processor. The CAB arbiter arbitrates
among the threads for access to the CAB.

The debug and single-step control component enables
the GFH thread or CABwatch to control each thread on
the device for debugging purposes. For example, the CAB
can be used by the GFH thread to run a selected thread
in single-step execution mode.

The policy manager is a hardware-assist component of
the EPC that performs policy management on up to 1K
ingress flows. It supports the “single-rate three-color-
marker” and “two-rate three-color-marker” algorithms
which can be operated in colorblind or color-aware mode.
The algorithms are specified in [7, 8].

The counter manager is a hardware-assist component
used by the EPC to manage counters defined by the code
for statistics, flow control, and policy management. The
counter manager is responsible for counter updates, reads,
clears, and writes.

The semaphore manager assists in controlling access to
shared resources, such as tables and control structures,
through the use of semaphores. It grants semaphores
either in dispatch order (“ordered semaphores”) or in
request order (“unordered semaphores”).

The completion unit (CU) performs two functions:

● It provides the interfaces between the EPC and the
ingress and egress DFs. Each DF performs an enqueue
action whereby a packet address, together with
appropriate parameters, is queued in a transmission
queue or a dispatch unit queue.

● The CU guarantees packet sequence. Since multiple
threads can process packets belonging to the same flow,
the CU ensures that all packets are enqueued in the
ingress or egress transmission queues in the proper order.

Sequence of events of a packet traversing a
PowerNP network processor
This section describes the sequence of events that occur
from the time a packet is received by a PowerNP processor
until it is transmitted out. There are too many data flow
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routes and possibilities to fully describe here. However,
data generally moves through the network processor
(Figure 5) as shown in the following sections.

Ingress side
The ingress PMM receives a packet from an external
physical layer device and forwards it to the ingress DF:

1. The ingress DF enqueues the packet to the EPC.
2. The dispatch unit fetches a portion of the packet and

sends it to the next available thread.
3. Simultaneously, the HC determines the starting

instruction address, parses different packet formats
(for example, bridged and IP), and forwards the
results to the thread.

4. The code examines the information from the HC and
may examine the data further; it assembles search keys
and launches the TSE.

5. The TSE performs table searches, using search
algorithms based on the format of the downloaded
tables.

6. The CSA allocates CS memory bandwidth among the
protocol processors.

7. Packet data moves into the memory buffer of the DS
coprocessor.
● Forwarding and packet alteration information is

identified by the results of the search.
● The ingress DF can insert or overlay VLAN tags on

the packet (hardware-assisted packet alteration), or
the code can allocate or remove buffers to allow
alteration of the packet.

8. The enqueue coprocessor builds the necessary
information to enqueue the packet to the SWI and
provides it to the CU, which guarantees the packet
order as the data moves from the 32 threads of the
DPPUs to the ingress DF queues.

9. The packet is enqueued to the ingress DF:
● The ingress DF forwards the packet to the ingress

scheduler.
● The ingress scheduler selects the packet for

transmission to the ingress SWI. The entire packet
is not sent at once; the ingress scheduler sends it a
cell at a time.

● With the help of the ingress DF, the ingress switch
data mover (I-SDM) segments the packets from the
switch interface queues into 64-byte cells and inserts
cell header and packet header bytes as they are
transmitted to the SWI.

The ingress SWI forwards the packet to a switch fabric,
to another PowerNP processor, or to the egress SWI of
the device.

Egress side
The egress SWI receives a packet from a switch fabric,
from another PowerNP processor, or from the ingress SWI
of the device. The egress SWI forwards the packet to the
egress DF:

10. The egress DF enqueues the packet to the EPC.
11. The dispatch unit fetches a portion of the packet

and sends it to the next available thread.
12. Simultaneously, the HC determines the starting

instruction address, parses different packet formats
(e.g., bridged and IP), and forwards the results to the
thread.

13. The code examines the information from the HC and
may examine the data further; it assembles search keys
and launches the TSE.

14. The TSE performs table searches, using search
algorithms based on the format of the downloaded
tables.

15. The CSA allocates CS memory bandwidth among the
protocol processors.

16. Forwarding and packet-alteration information is
identified by the results of the search. The PowerNP

Figure 5

Sequence of events for a packet traversing a PowerNP network 
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provides two packet-alteration techniques: hardware-
assisted packet alteration and flexible packet alteration:

● In hardware-assisted packet alteration, commands
are passed to the egress DF hardware during
enqueueing. These commands can, for example,
update the TTL field in an IP header, generate
packet CRC, or overlay an existing layer-2 wrapper
with a new one.

● In flexible packet alteration, the code allocates
additional buffers, and the DS coprocessor places
data in these buffers. The additional buffers
allow prepending of data to a received packet
and bypassing part of the received data when
transmitting. This is useful for packet fragmentation
when an IP header and MAC header must be
prepended to received data in order to form a
packet fragment of the correct size.

17. The enqueue coprocessor develops the necessary
information to enqueue the packet to the egress DF
and provides it to the CU, which guarantees the
packet order as the data moves from the 32 threads
of the DPPUs to the egress DF queues.

18. The packet is enqueued to the egress DF:
● The packet is forwarded to the egress scheduler

if enabled.
● The egress scheduler selects the packet for

transmission to a target port queue.
● If the scheduler is not enabled, the DF forwards the

packet directly to a target queue.
● The egress DF selects packets for transmission from

the target port queue and moves their data to the
egress PMM.

The egress PMM sends the packet to an external physical
layer device.

System software architecture
The PowerNP system software architecture is defined
around the concept of partitioning control and data
planes, as shown in Figure 6. This is consistent with
industry and standard directions, for example, the
Network Processing Forum (NPF) and the Forces
group of the Internet Engineering Task Force (IETF)
organization. The non-performance-critical functions of
the control plane run on a GPP, while the performance-
critical data plane functions run on the PowerNP
processing elements (i.e., CLPs). In order to optimize
instruction memory use, the data plane is partitioned
so that only the performance-critical paths run on the
PowerNP processor. For example, there is no need to use
the instruction memory on the network processor for IP
options processing, given that options are associated with
only a small percentage of IP packets. The software

architecture and programming model describes the data
plane functions and APIs, the control plane functions
and APIs, and the communication model between these
components. The software architecture supports a
distributed system model including multiple PowerNP
processors and GPPs.

Data plane
The data plane is structured as two major components:

● System library
The system library provides basic functions such as
memory management, debugging, and tree services.
These functions provide a hardware abstraction layer
that can be used either from the control plane, using
a message-passing interface, or from the data plane
software, using API calls.

● Forwarding software
The forwarding software is responsible for performing
high-speed packet processing running the data plane
steady-state portion of networking applications (such as
the IP packet-forwarding protocols).

These components plus the overall software design
help a programmer to develop the PowerNP networking
applications quickly. The data plane programming model
is based on

● Run-to-completion (as described earlier)

Figure 6

PowerNP system software architecture.
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● Message-based control (MBC), as shown in Figure 7
The MBC model provides scalability in configuration,
supporting multiple network processors and control
processors, and achieves a scalable system architecture.
MBC supports transparency in terms of the location of
the CP and transparency in terms of the connection
media (PCI and Ethernet, etc.). MBC also provides a
seamless interface between CP-to-PowerNP processors
and between PowerNP-to-PowerNP processors.

● Distributed control processing
The architecture supports a distributed control processing
(DCP) model in which any thread in the PowerNP can
execute performance-critical control tasks, as opposed to
a single control-processing unit in the PowerNP processor.

Control plane
The control plane networking applications interface with
the data plane functions using the network processor
application services (NPAS) layer that exposes two types
of APIs:

● Protocol services API (such as IPv4 and MPLS)
This set of services handles hardware-independent
protocol objects.

● Management services API (such as the PowerNP
initialization and debug)
This set of services manages hardware resources.

The control plane software architecture and APIs play
a pivotal role in the integration of the PowerNP in a
communication system. The control plane software
provides a way to manage the PowerNP, and it also
provides a set of APIs which can be used to support
generic control plane protocol stacks. This support is
provided without imposing any constraints on the software
environment (i.e., operating system and development tools).

Network processor application services structure
(NPAS)
The NPAS is written using an operating system (OS)
independent layer so that it can run on any OS. It
provides a rich set of APIs that can be used to develop
networking applications quickly. Additionally, it
provides the basis (such as standard application binding,
initialization services, resource management, and error
logging) for developing customized APIs, and is composed
of four major components:

● Transport services
This set of services provides a unified layer for
exchanging control and data packets between the CP
and the PowerNP.

● Message services
This set of services provides a library of control
messages that enables the CP to exchange commands
with the network processor. The network processor
interprets the commands and takes appropriate actions.

● Management services
This set of services is used to manage and to abstract
the network processor hardware resources, such as the
trees or the flow queues.

● Protocol services
This set of services is used to manage the protocol
objects, such as IPv4 forwarding entries or PPP
interface.

The NPAS is provided in the form of a library. The
various APIs are implemented in C language, and the
invocation of an API is done by a function call. Since
communication with the network processor is performed
with guided packets (i.e., frames), the API software model
is asynchronous, which means that an API call is not
blocked while waiting for a response from the network
processor. A registration mechanism provides the binding

Figure 7

PowerNP message-based control model.
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between any custom application and the NPAS to send
and receive any kind of data through the APIs.

Most of the APIs provide the support for unicast and
multicast delivery of the commands and data packets to
the network processor(s). Because the multicast delivery
utilizes the capabilities of the network processor and/or
the one provided by the switch connecting multiple
network processors, this feature dramatically improves
the performance of the CP. This feature is particularly
important when an application is starting, as it usually
wants to populate many network processors with the same
information.

The look and feel of the APIs is consistent inside the
NPAS. Even more significant, however, all APIs have the
same behavior. This allows a programmer to use the same
mechanisms to interface with all APIs, whether the APIs
are related to protocol or resource management services.
One can even create customized APIs inside the NPAS by
simply following the same rules and taking any existing
API as an example.

The NPAS can easily be ported to any operating
system and can be used with any application because
it is designed to run on any OS and to connect to
the network processor via any transport mechanism.
It has two components which help to provide this
ease of portability and integration:

● System services
This set of services provides an interface between the
NPAS and OS. The system services provide a thin
layer which maps some primitives defined to handle
resources such as memory, buffers, and timers into the
corresponding OS calls.

● Physical transport services
This set of services handles the transmission and
reception of packets on the actual media. The physical
transport services provide a consistent interface to the
transport services, regardless of the physical transport
mechanism used to communicate with the network
processor.

Software development toolkit
The PowerNP software development toolkit provides a set
of tightly integrated development tools which address each
phase of the software development process. The toolkit
includes the following:

● Assembler/linker (NPAsm).
● System simulator (NPSim).
● Graphical debugger (NPScope).
● Test-case generator (NPTest).
● Software performance profiler (NPProfile).

All of these tools are written in C�� and are tightly
coupled with Tcl/Tk scripting language, which provides
scripting and graphical interfaces. The toolkit runs
on a wide range of OS platforms. Figure 8 shows the
relationships among the various software tools as well as
the actual hardware. The tools are designed to run either
on top of a chip-level simulation model or on top of the
actual hardware. Connection to the hardware is provided
via the industry-standard RISCWatch interface, which also
provides access to the on-chip PowerPC processor.

NPScope allows the developer to monitor, execute,
and debug picocode written for the PowerNP. NPScope
provides the developer the same graphical user interface
and capabilities on both the simulation model and the
hardware. It provides

● A comprehensive internal view of the PowerNP that
includes the registers, memories, buffers, and queues.

● Debugger facilities such as packet injection, viewing
of register or memory locations, single step execution,
breakpoints, and saving and restoring of a simulation
session.

NPSim provides a Tcl/Tk-based scripting interface to
the simulation model which allows a developer to simulate
the PowerNP chip. Through the use of Tcl/Tk scripts,
developers can interact with the simulation model and
perform a wide range of functions in support of packet
traffic generation and analysis. Through NPSim, the
developer can connect the simulation model to a remote
process via a standard socket interface. The remote
process can then send Ethernet frames or special
simulator messages to the simulation model. The remote
process can also receive egress data from the simulation
model through the same socket interface.

Figure 8

PowerNP software development kit.
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NPProfile provides the developer with the capability to
analyze the performance of picocode. NPProfile analyzes
simulation event information contained in a message log
file produced by NPScope to accumulate relevant data
regarding the performance of picocode execution. It then
displays the information in graphical charts. The following
is a partial list of some of the information available from
NPProfile:

● Summary of the average and cumulative number of
cycles executed for thread dispatches for each thread.

● Histogram of the number of threads stalled for n cycles.
● Coprocessor stall statistics on a per-dispatch basis for

the specified thread.

NPTest provides developers with the environment
needed for the initial testing of picocode and for test-case
regression. It provides a Tcl/Tk scripting interface that
allows developers to construct control packets or data
packets intended to test the forwarding picocode functions,
to load tables with known entries, and to set the network
processor to a known state. This information can be saved
as Tcl/Tk scripts and then retrieved for input into the
simulator.

NPAsm is the assembler for creating images designed to
execute on the PowerNP. It generates files used to execute
picocode on the chip-level simulation model or the
PowerNP, as well as files that picocode programmers can
use for debugging.

The chip-level simulation model is a software
framework that provides an accurate simulation of the
functions of the PowerNP. The model can “execute”
(emulate) more than 100 000 picocode instructions per
second, allowing quick testing of code under various
conditions. It enables a developer to model the flow of
packets through a PowerNP-based system, including
connections to a CP and to a switch fabric. The simulation
model also allows a developer to debug individual pieces
of picocode by designing comprehensive test cases and
examining execution of source code line by line.

The RISCWatch probe connects a host computer to the
PowerNP JTAG interface through Ethernet connections.
The same RISCWatch probe can simultaneously debug
both PowerNP, with NPScope, and its embedded PowerPC
405 processor, with the RISCWatch application.

Networking applications support
The power and flexibility of the PowerNP is useful in
supporting a wide range of existing and emerging
applications. A number of networking applications have
been implemented on the PowerNP chip, and the
following sections discuss two of them.

Small group multicast
Small group multicast (SGM) [9] is a new approach to IP
multicast that makes multicast practical for applications
such as IP telephony, videoconferencing, and multimedia
“e-meetings.” Like today’s multicast schemes, SGM sends
at most one copy of any given packet across any network
link, thus minimizing the use of network bandwidth.
However, SGM (also known as explicit multicast, or Xcast
[10] at the IETF) provides an important complement to
today’s multicast schemes. Whereas existing multicast
schemes can support very large multicast groups, they
have difficulty supporting very large numbers of distinct
multicast groups. SGM, by contrast, can support very large
numbers (actually an unlimited number) of small groups.
It does this by eliminating the “per-flow” state information
and “per-flow” signaling of traditional multicast protocols.
Just as routers can support huge numbers of TCP
connections or UDP flows today, since they do not need
to track or do any signaling for these individual flows,
routers can similarly support huge numbers of
simultaneous SGM flows.

SGM avoids the use of per-flow state information
and per-flow signaling by including an explicit list of
destinations in a new packet header. A router performs a
route table lookup to determine the “next hop” for each
of the destinations. The router partitions the destinations
on the basis of the next hop and sends a packet to each of
the next hops that includes for each next hop the list of
destinations that are reachable through that next hop. This
requires more processing than traditional multicast packet
forwarding but this extra cost is well worth paying, since
SGM supports unlimited numbers of small groups and
thus makes multicast practical for applications such as IP
telephony, videoconferencing, multimedia e-meetings, and
other applications for which today’s multicast schemes are
not practical.

Of course, the “extra processing” required by SGM
cannot be performed by a “hardwired” ASIC that was
developed for standard IP processing prior to the
development of SGM, and a general-purpose processor
cannot easily perform the SGM extra processing. But for a
network processor such as the PowerNP, SGM processing
is a simple matter, since the PowerNP provides

● Route table lookup engines (i.e., TSEs) that can be used
to look up the next hop for each of the destinations in
an SGM packet.

● Checksum engines that can be used to recompute
header checksums when SGM packets are forwarded to
one or more next hops.

● Programmability that allows the above functions to be
combined in nontraditional ways.

● An array of picoprocessors providing an abundance of
processing power.

J. R. ALLEN, JR., ET AL. IBM J. RES. & DEV. VOL. 47 NO. 2/3 MARCH/MAY 2003

188



Thus, the PowerNP makes SGM practical and enables
a variety of applications that are not practical today. A
preliminary version of SGM has been implemented on the
PowerNP chip.

GPRS tunneling protocol
General packet radio service (GPRS), a set of protocols
for converging the mobile data with the IP packet
data, presents new challenges to the equipment
manufacturers of GPRS support nodes (GSNs) as the
bandwidth available to mobile terminals increases
significantly with wireless technology advances. The
routing challenges introduced by the mobility of terminals
are supported by tunneling packets between the GSN of
a wireless network provider, similarly to the mobile IP
scheme [11]. Therefore, in addition to the common
functions performed by an IP router, such as routing table
lookup and packet forwarding, a GSN has to encapsulate
or decapsulate IP packets as part of the stateful GPRS
tunneling protocol (GTP) [12]. A GTP context containing
information pertaining to the mobile terminal must be
stored for each terminal registered in the network. A GSN
must therefore not only alter and forward IP packets at
media speed, but also store and retrieve millions of GTP
contexts.

We consider the support of GTP as a typical networking
application that requires a high memory/bandwidth
product and deeper packet processing than the common
packet forwarding of an IP router. The PowerNP,
with its massive processing power, large memory, and
programmability, is ideally suited for this type of
application. We have identified four data-path functions
necessary to provide GTP support on the network
processor:

● GTP encapsulation and decapsulation.
● Traffic-volume recording for billing.
● Packet reordering based on the GTP sequence numbers.
● Flow mirroring for legal interception.

The encapsulation process requires the retrieval of a
GTP context based on the IP address of the packet being
encapsulated and the construction of the GTP header
using information contained in the context. Traffic
counters associated with the context are incremented
to account for the data transmission. A header chain
composed of the GTP, a UDP, and an IP header is then
prepended to the packet.

The decapsulation process requires the retrieval of the
GTP context from the IP address of the inner IP header.
The content of the GTP header is then checked against
the content of the context to prevent any “spoofing” of the
data contained in the GTP header (e.g., setting a fake IP
address in the datagram). Traffic counters associated with

the context are incremented to account for the data
transmission. The outer header chain composed of the
IP, UDP, and GTP headers is stripped, and normal
IP forwarding is applied to the decapsulated packet.

Packet reordering based on the GTP sequence number
requires the temporary storage of misordered packets in
a per-context associated reordering queue. Packets are
stored in the egress data store of the PowerNP to make
use of the large memory available. Packets belonging to
the same flow (i.e., associated with the same GTP context)
are daisy-chained using pointers to form an ordered
queue. As a packet is already stored in the egress data
store when the EPC starts a thread to process it, the
packet does not have to be copied but has only to be
inserted by reference at the right place in the reordering
queue. Semaphores are used to ensure the consistency
when manipulating the reordering queue structures.

Flow mirroring for legal interception requires that the
packets of some flows be mirrored and sent to a legal
interception system. The multicast support on the
PowerNP provides the basic functions to send multiple
copies of the same frame to different ports.

Our GTP design makes extensive use of the hardware
coprocessors available in the network processor. GTP
contexts are organized as a tree, and the TSE coprocessor
is used to retrieve the GTP context associated with an
incoming packet. Counters for traffic accounting are
incremented using the counter manager coprocessor.
Header prepending and stripping use the packet alteration
hardware assist. Consistency in the assignment and
verification of GTP sequence numbers, and in operations
on the reordering queues, is ensured by using the
semaphore coprocessor. Generic services for table,
memory, and counter management are already available in
the NPAS. Thus, the management of the GTP lookup, the
GTP context table, and the GTP counter tables by the CP
is greatly simplified by making use of these services.

A demonstrator of the GTP encapsulation and
decapsulation functions and the traffic-volume recording
has been designed, developed, and tested during a three-
month internship by a group of four students with no prior
knowledge of the PowerNP architecture and development
environment. A prototype of the GTP frame-reordering
function is currently under development.

Further advanced applications, such as network
address translation (NAT), are under consideration as
complementary functions to the GPRS extensions.
Integrated support of these two services can help
networking-equipment manufacturers develop high-
performance integrated-gateway GPRS service nodes.

Performance
The PowerNP picoprocessors provide 2128 MIPS of
aggregate processing capability. However, this figure alone
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does not represent the total processing capability of
the PowerNP, since it encompasses a large number of
specialized coprocessors that are used in conjunction
with picoprocessors for packet processing. This makes
providing a single performance figure for the PowerNP
a challenging problem. Given this, we discuss two
performance measures: the raw cycle budget per packet
for POS and Ethernet, and available headroom over
typical IP packet forwarding.

Table 1 summarizes the PowerNP cycle budgets for both
Ethernet and POS applications. Packet rates for minimum
packet sizes are also listed. Packet rates not only determine
how often a particular forwarding path must be executed,
but also relate directly to several data-flow throughput
limitations—for example, the rate at which the
device can dispatch new packets to the EPC for
processing. Note that only half of the TSE cycles can be
used to execute picocode5 if they are not used for tree-
search activity. This limitation is due to the dual threads
on each processor sharing the available machine cycles.
Also note from Table 1 that Ethernet has a significantly
larger cycle budget because of larger minimum packet size
and the 20-byte interpacket gap, making more complex
forwarding paths achievable at media speed for Ethernet
connections. Two packet rates are quoted for POS
applications. To sustain media speed with 48-byte packets,
6.1 million packets per second, the egress DS must run
with a 10-clock cycle data store access window. The lower
rate of 5.88 million packets per second corresponds to a
DS running with an 11-clock cycle access window.

The cycle budgets quoted in Table 1 do not correlate
directly with instruction path lengths, since some
instructions require multiple cycles to execute. Similarly,
some cycles are not usable for instruction execution (i.e.,
both threads waiting for search result). To quantify
expected performance for specific applications, associated
code paths are profiled in terms of memory accesses,
coprocessor use, program flow (i.e., branch instructions),

and overlap of coprocessor operations with instructions or
other coprocessor operations. Database structures used
for tree searches and other table accesses must also be
profiled. Once a code path is profiled, an event-driven
simulation model is used to project performance for the
corresponding application. The following code paths from
the PowerNP software package achieve OC-48 line speed
at minimum packet size:

● Border gateway protocol (BGP) layer-3 routing.
● BGP layer-3 routing with behavior aggregate (BA)

lookup for QoS.
● MPLS forwarding.

A significant advantage of network processors, as
compared to a fixed-function design, is the availability of
headroom6 that can be applied to enhance functionality.
Several different perspectives of headroom are illustrated
in Figure 9. Of the code paths described in the previous
paragraph, the BGP layer-3 routing with BA lookup
comes closest to fully consuming the PowerNP processor
resources, as illustrated in the third column in the figure.
Removing the BA lookup could potentially make room for
alternate functionality, as shown in the second column in
the figure.

It is important to recognize that the PowerNP software
package goes significantly beyond basic IP forwarding
in terms of both enhanced features and robust error
checking. A more basic IP forwarding path has been
written with half the code path length, resulting in a
corresponding increase in headroom, as illustrated in the
first column of the figure. The first three columns of the
figure illustrate headroom within the context of media
speed and minimum packet size. The fourth column
illustrates the impact of using average packet size instead
of minimum packet size to define headroom. The average
packet size may be as much as ten times the minimum

5 Picocode is the picoprocessor assembly language program.
6 The term headroom denotes the processing power beyond that required by the
application.

Table 1 PowerNP cycle budgets for Ethernet and POS.

Maximum
wire speed

(Gb/s)

Type of packet/
Minimum packet

size
(bytes)

Maximum packets
per second possible
for minimum size

Maximum TSE
cycles per

packet available
(cycles)

Maximum code
cycles available

per packet
(cycles)

Assumed dead
time between

packets

3 Ethernet/64 4.5 million 948 474 20 bytes
(preamble)

2.4
(OC-48)

PPP POS/48 6.1 million 700 350 1 byte
(flag byte)

2.4
(OC-48)

PPP POS/51 5.88 million 725 362 1 byte
(flag byte)
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packet size (i.e., 476 bytes vs. 48 bytes),7 resulting in
ten times the number of available processing cycles per
packet. Although these excess cycles for basic functions
may not be available during benchmarking tests, there are
many examples of enhanced functions that are required
only within the context of real Internet traffic.

Summary
As the demand on network edge equipment increases to
provide more services on behalf of the core and the end
user, the role of flexible and programmable network
processors becomes more critical. In this paper, we have
discussed the challenges and demands posed by next-
generation networks and have described how network
processors can address these issues by performing highly
sophisticated packet processing at line speed. We have
presented an overview of the IBM PowerNP NP4GS3, a
programmable, high-performance network processor. Its
hardware and software design characteristics make it
an ideal component for a wide range of networking
applications. Its run-to-completion model supports a
simple programming model and a scalable system
architecture, which provide abundant functionality and
headroom at line speed. Because of the availability of
associated advanced development and simulation tools,
combined with extensive reference implementations, rapid
prototyping and development of new high-performance
applications are significantly easier than with either GPPs
or ASICs.
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Figure 9
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