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The PowerPCt 440 floating-point unit (FPU) with complex-
arithmetic extensions is an embedded application-specific
integrated circuit (ASIC) core designed to be used with the IBM
PowerPC 440 processor core on the Blue Genet/L compute chip.
The FPU core implements the floating-point instruction set from
the PowerPC Architecturee and the floating-point instruction
extensions created to aid in matrix and complex-arithmetic
operations. The FPU instruction extensions define double-precision
operations that are primarily single-instruction multiple-data
(SIMD) and require two (primary and secondary) arithmetic
pipelines and floating-point register files. However, to aid complex-
arithmetic routines, some FPU extensions actually perform
different (yet closely related) operations while executing in the
arithmetic pipelines. The FPU core implements an operand
crossbar between the primary and secondary arithmetic datapaths
to enable each pipeline operand access from the primary or
secondary register file. The PowerPC 440 processor core provides
128-bit storage buses and simultaneous issue of an arithmetic
instruction with a storage instruction, allowing the FPU core
to fully utilize the parallel arithmetic pipes.

Introduction

The IBM PowerPC* 440 (PPC440) floating-point unit

(FPU) with complex-arithmetic extensions (PPC440 FP2)

was the design point that resulted when we started with

the original PPC440 FPU [1] and applied the Blue

Gene*/L requirements of doubling FPU performance and

improving cycle time, all on an aggressive schedule. The

original PPC440 FPU [1] implemented a double-precision

floating-point fused multiply–add pipeline and an

independent load and store pipeline in IBM 0.18-lm
7SF technology. It attached to the PPC440A4 central

processing unit (CPU) core using an auxiliary processor

unit (APU) interface [2] and used the dual-issue ability

of the CPU to keep the FPU arithmetic and storage

pipelines utilized. The PPC440 FPU is PowerPC Book E

[3] compliant and supports IEEE Standard 754 [4]. It was

designed with an ASIC methodology (without its major

functions, such as the multiplier or register file, being

custom-implemented) to meet a cycle time of 525 MHz

(at 1.8 V) in nominal silicon.

With this FPU as a starting point, we wanted to double

the FPU throughput of Blue Gene/L and aid software

workloads that make heavy use of double-precision

operations in complex arithmetic and matrix

multiplication. In order to achieve the requirements and

meet the aggressive schedule, the PPC440 FP2 had to

reuse as much as possible of the original FPU. Adding

pipeline stages to allow doubling the frequency was

considered too much of a redesign of the original

FPU and would not have helped complex-arithmetic

operations. Instead, it was decided to follow a single-

instruction multiple-data (SIMD) approach and duplicate

the original FPU arithmetic and storage pipelines. In

addition to duplicating the pipelines, a second floating-

point register (FPR) file was added. The result was two

fused floating-point multiply–add (FMA) arithmetic
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pipelines (primary and secondary), each fed by its own

register file and load and store pipeline. The two fused

multiply–add pipelines provide a peak throughput of two

FMAs per cycle or four floating-point operations per

cycle—twice the performance of the original PPC440

FPU core. To aid matrix and complex-arithmetic

operations, the SIMD approach was modified to define

different operations on the primary and secondary

pipelines for a single instruction. To support this

approach, an operand crossbar was implemented to allow

either primary or secondary pipelines access to the data

of the other.

Architecture
Figure 1 shows the primary and secondary arithmetic

pipes, each with its own FPR file. The two register files

share common addresses for each operand as specified by

the instruction. If an instruction specifies the A operand

to use address 3, both the primary and secondary register

files will access address 3. Since the original PPC440 FPU

did not have any special techniques (such as register

renaming) to handle hazards or operand dependencies,

the common addresses were important in allowing the

reuse in the PPC440 FP2 of the complex hazard and

dependency logic. The operands for the primary and

secondary pipes could come from either pipe by means

of the operand crossbar, but each pipe is allowed to

write only to its respective register file. The ability to

share operands between pipes enabled the creation of

useful instructions that accelerate matrix and complex-

arithmetic algorithms. A description of the algorithms

that use the new floating-point instructions is given in [5].

Figure 1 also shows primary and secondary load and

store datapaths, which use a quadword of storage to feed

a doubleword to each pipe each cycle. Multiplexing

allows the two doublewords to be swapped between the

primary and secondary storage pipes before they read

or write their respective register files using a common

register address specified by the instruction. The primary

load and store datapath supports the existing PowerPC

floating-point storage instructions [3], while both pipes

support new double-precision storage instruction

extensions (Table 1) that access the primary and

secondary register files.

The primary arithmetic pipe, along with its register

file, executes the preexisting PowerPC floating-point

instructions [3]. In addition, the primary pipe, along

with the secondary pipe, implements the floating-point

instruction extensions that take advantage of both pipes

(Table 2). The instructions include parallel FMAs, which

Figure 1

Architecture of the IBM PowerPC 440 FP2—primary and secondary 
data flow.
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Table 1 Floating-point storage instruction extension examples.

Storage instruction Mnemonic Description

Primary Secondary

Load floating parallel double indexed lfpdx P
T
= dw(EA) S

T
= dw(EA þ 8)

Load floating parallel single indexed lfpsx P
T
= w(EA) S

T
= w(EA þ 4)

Load floating secondary double indexed lfsdx S
T
= dw(EA)

Load floating cross double indexed lfxdx P
T
= dw(EA þ 8) S

T
= dw(EA)

Store floating parallel double indexed stfpdx dw(EA) = P
S

dw(EA þ 8) = S
S

Store floating parallel single indexed stfpsx dw(EA) = P
S

dw(EA þ 4) = S
S

Store floating secondary double indexed stfsdx dw(EA) = S
S

Store floating cross double indexed stfxdx dw(EA þ 8) = P
S

dw(EA) = S
S
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execute the same operation in each pipe with their

respective pipe operands; cross FMAs, which execute the

same operation in each pipe but with operands from the

opposite pipe; and asymmetric and complex FMAs,

which execute different FMA-type instructions with

operands from either pipe.

With the operand crossbar, many combinations would

be possible, including single-precision versions of the

instructions. However, since each combination would

require a new opcode, and opcode space was limited, only

double-precision versions of the instructions thought to

be the most useful for complex-arithmetic and matrix

operations were provided. Move-type instructions, along

with other parallel non-FMA instructions, were included

to finish the new instruction set. Some of these are

parallel instructions for generating reciprocal estimates,

reciprocal square-root estimates, and even a parallel

floating-point select instruction. The newly defined

operations executing in the primary pipe and secondary

pipe behave the same as their PowerPC floating-point

instruction equivalent [3], with the exception of the

Floating-Point Status and Control Register (FPSCR),

as described next.

FPSCR
The floating-point instruction extensions treat exceptions

as disabled and do not update the PowerPC FPSCR.

However, the instructions do follow the rounding mode

and non-IEEE bit control fields. It was thought that the

default handling of exceptions, as defined by IEEE

Standard 754 [4], would be sufficient for the target

applications. The complexity of handling enabled

exceptions and updating the FPSCR for the SIMD-like

instructions, especially when the SIMD-like instructions

are mixed with PowerPC floating-point instructions,

would outweigh the benefits. This makes the PPC440 FP2

consistent with the IEEE Standard 754, but not strictly

compliant.

Implementation

The PPC440 FP2 core was designed in IBM 0.13-lm 8SF

technology to be attached to the dual-issue PPC440G5

CPU [2] processor core using the APU interface. A

beneficial aspect of the APU interface is its ability

to allow the ‘‘auxiliary processor’’ to implement new

instructions without changes to the PPC440G5 CPU core.

The CPU provides the instruction stream across the APU

interface, allowing the APU to decode instructions it

recognizes. The PPC440 FP2 core was able to implement

all of the newly defined instructions without any impact

to the CPU core, resulting in significant schedule and

design effort savings.

Since a storage instruction using the APU interface

with its quadword storage path can provide two double-

precision operands per cycle, both primary and secondary

arithmetic pipes can execute double-precision FMAs

Table 2 Floating-point instruction extension examples.

Instruction Mnemonic Description

Primary Secondary

Floating parallel multiply–add fpmadd P
T
= P

A
� P

C
þ P

B
S
T
= S

A
� S

C
þ S

B

Floating parallel negative multiply subtract fpnmsub P
T
= �P

A
� P

C
þ P

B
S
T
= �S

A
� S

C
þ S

B

Floating cross multiply–add fxmadd P
T
= S

A
� P

C
þ P

B
S
T
= P

A
� S

C
þ S

B

Floating cross copy–primary multiply–add fxcpmadd P
T
= P

A
� P

C
þ P

B
S
T
= P

A
� S

C
þ S

B

Floating cross copy–secondary multiply–add fxcsmadd P
T
= S

A
� P

C
þ P

B
S
T
= S

A
� S

C
þ S

B

Asymmetrical cross copy–primary nsub–primary

multiply–add

fxcpnpma P
T
= �P

A
� P

C
þ P

B
S
T
= P

A
� S

C
þ S

B

Asymmetrical cross copy–secondary nsub–secondary

multiply–add

fxcsnsma P
T
= S

A
� P

C
þ P

B
S
T
= �S

A
� S

C
þ S

B

Floating cross cmplx nsub–primary multiply–add fxcxnpma P
T
= �S

A
� S

C
þ P

B
S
T
= S

A
� P

C
þ S

B

Floating cross cmplx nsub–secondary multiply–add fxcxnsma P
T
= S

A
� S

C
þ P

B
S
T
= �S

A
� P

C
þ S

B

Floating parallel reciprocal estimate fpre P
T
= RecipEst(P

B
) S

T
= RecipEst(S

B
)

Floating parallel select fpsel P
T
= P

A
? P

C
: P

B
S
T
= S

A
? S

C
: S

B

Floating secondary compare1 fscmp CR[BF] = S
A
,. S

B

Floating cross move fxmr P
T
= S

B
S
T
= P

B
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without becoming starved for data. For the PPC440G5

CPU to be able to efficiently provide a doubleword or

quadword of storage each cycle across the APU interface,

data alignment restrictions must be followed. Storage

addresses must start on a word boundary, and the access

cannot cross a quadword (16-byte) boundary (Figure 2).

The cache architecture of the CPU has a 32-byte cache

line and allows only 16 bytes to come from one half of

the cache or the other. Misaligned accesses cause an

alignment interrupt, creating a significant performance

penalty.

The new SIMD-like instructions execute in the parallel

PPC440 FP2 arithmetic pipes the same way as the similar

PowerPC floating-point instructions [3] (but with

exceptions disabled in the FPSCR). When a parallel

FMA is issued across the APU interface by the CPU, the

FP2 splits the instruction into separate FMA operations,

as defined by the opcode, and selects the appropriate

operands from the crossbar logic. Since the primary and

secondary arithmetic pipes are basically copies of each

other, the two pipes execute the floating multiply–add

operations synchronously as they travel down the

pipelines. Typical FMA latency is five cycles [1], with each

pipe updating its own register file without causing any

changes to the FPSCR.

Operand hazards
One of the advantages of the new SIMD-like instructions

was the ability of the PPC440 FP2 core to reuse the

hazard and dependency logic of the original FPU. Reuse

of this logic reduced the design effort and improved

quality by taking advantage of previous verification

efforts on this complex logic in the original FPU.

However, as is sometimes the case, simple solutions

have surprise problems.

As seen in Figure 3, each arithmetic pipe contains

operand bypass datapaths around the register files—one

bypass from the arithmetic result and one bypass from

the load pipe. A typical read-after-write (RAW) hazard,

in which a load target is bypassed to an FMA, would be

the following:1

Instruction Description FP2 implementation

lfd F3 ‹ dw(EA) P
3
‹ dw(EA)

fmadd F4 ‹ F3, F2, F1 P
4
‹ P

3
� P

2
+ P

1

P3 represents F3 in the primary pipe.

The same hazard logic works equally as well for a

parallel load and parallel FMA:

Instruction Description FP2 implementation

lfpdx F3 ‹ qw(EA) P
3
‹ dw(EA)

S
3
‹ dw(EA + 8)

fpmadd F4 ‹ F3, F2, F1 P
4
‹ P

3
� P

2
+ P

1

S
4
‹ S

3
� S

2
+ S

1

P3 represents F3 in the primary pipe; S3 represents F3 in

the secondary pipe.

Both the primary and secondary load targets (F3) are

bypassed to their respective primary and secondary

arithmetic pipes. Difficulties begin to appear when the

instruction stream contains a mix of parallel and

nonparallel instructions. Nonparallel instructions have

only one register file as a target, such as existing PowerPC

floating-point instructions (arithmetic or loads that target

only the primary register file) or new load instructions

that target only the secondary register file:

Instruction Description FP2 implementation

lfd F3 ‹ dw(EA) P
3
‹ dw(EA)

fpmadd F4 ‹ F3, F2, F1 P
4
‹ P

3
� P

2
+ P

1

S
4
‹ S

3
� S

2
+ S

1

The hazard detection logic sees the RAW hazard for F3

and naturally seeks to enable the bypass datapath for

both pipes. However, the hazard really exists only for the

primary pipe; a false hazard exists for the secondary pipe.

F3 for the secondary pipe should come from the register

Figure 2

Alignment restrictions.

Doubleword
access

Quadword
access

Word
access 

Storage
address 0�00 0�04 0�08 0�0C 0�10 0�14 0�18 0�1C

OK

OK

OK

OK

OK

OK

OK

OK

Storage
address 0�00 0�04 0�08 0�0C 0�10 0�14 0�18 0�1C

OK

OK

OK

OK

OK

OK

Storage
address 0�00 0�04 0�08 0�0C 0�10 0�14 0�18 0�1C

OK

OK

1Boldface and underscores represent FPR dependencies or hazards between
instructions. For example, P3 indicates primary FPR 3, which is the target of one
instruction and is then used as a source in the next instruction. Because of the
characteristics of the new FP instructions, sometimes a dependency or hazard may not
be real. If there is a real hazard, the term is shown in boldface. If the hazard is not real,
the term is underscored.
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file, not from the bypass datapath. An example of another

problem that had to be solved is the following:

Instruction Description FP2 implementation

lfd F3 ‹ dw(EA) P
3
‹ dw(EA

1
)

lfsdx F3 ‹ dw(EA) S
3
‹ dw(EA

2
)

fpmadd F4 ‹ F3, F2, F1 P
4
‹ P

3
� P

2
+ P

1

S
4
‹ S

3
� S

2
+ S

1

This example contains only a secondary pipe load

floating-point double (lfsdx) along with a PowerPC lfd

instruction. These instructions, combined with a parallel

FMA, create an apparent write-after-write (WAW)

hazard and a RAW hazard. The WAW hazard does not

really exist, since the two load commands are actually

writing to different register files; both writes to F3 must

be allowed to complete. The RAW hazard appears to the

logic as one dependency with the most recent load (lfsdx),

but in fact there are two dependencies. The PPC440 FP2

allows both load instructions to bypass data to the

parallel FMA.

Design reuse
The original PPC440 FPU was partitioned into the

following units: instruction decode and issue (IDI),

register and pipe management (RPM), load and store

control (LSC), and the arithmetic status and exceptions

(ASE). The IDI maintained its entire logical structure

in the FP2 core, with the only changes coming in the

additional decodes of the new instructions. As described

above, the original RPM, which included the complex

hazard logic, needed refining, but it was still largely

reused for the PPC440 FP2.

The LSC for the FP2 core duplicated the double-

precision data flow of the original LSC into a primary

and secondary pipe data flow. Additional logic was added

to provide multiplexing of quadword load data into

doublewords for both pipes and merging doubleword

store data into quadwords for stores.

The ASE, which includes the arithmetic data pipe,

made up approximately 65% of the original FPU core

and was entirely duplicated for the secondary pipe. After

duplication, the sections dealing with the FPSCR and

floating-point divide were removed from the secondary

pipe to save area and power. The floorplan of the PPC440

FP2 showing each unit can be seen in Figure 4.

The physical implementation of each unit followed

an ASIC methodology in that most of the design was

synthesized into gates from the IBM 8SF technology

library. No custom complementary metal oxide

semiconductor (CMOS) logic macros were used, but some

key functions were implemented with manually placed

specialized ASIC gates to optimize timing. For example,

the multiplier made use of 4:2 compressor gates to provide

an ‘‘add’’ function for the multiplier partial product bit

vectors. The 4:2 compressor was implemented as an ASIC

circuit and treated as an extension to the 8SF library.

In addition to the multiplier timing challenge, another

problem involved implementing the operand crossbar

to meet the cycle time. As can be seen in Figure 3, the

solution chosen implements the crossbar in the first

Figure 4

PPC440 FP2 floorplan.
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pipeline stage of the multiplier. The basic reason was that

the first stage had the most cycle time flexibility because of

the multiplier design. On the floorplan, the primary and

secondary register files are located side by side with their

arithmetic pipes extending in opposite directions. The first

stage begins near the register files, with the multiplier

employing a radix-8 Booth encode. This choice of encode

requires calculating (33multiplicand), which was the

longest delay path of the first stage. With careful gate

placement and wiring, the additional delay of operands

crossing over the register files from the opposite pipe

through the crossbar selectors and the 33multiplicand

calculation was all accomplished in one cycle.

Conclusion
The PPC440 FP2 with complex-arithmetic extensions was

accomplished with an ASIC design methodology on an

aggressive schedule. A great deal of effort went into

placement and wiring to achieve running at 800 MHz

(nominal process) in IBM 0.13-lm 8SF technology. The

reuse of major functions from the original FPU and

rigorous simulation combined to make the PPC440 FP2

functionally error-free with the first-pass design.
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