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IBM Q Experience as a versatile experimental testbed

for simulating open quantum systems
Guillermo García-Pérez 1,2,4*, Matteo A. C. Rossi 1,4 and Sabrina Maniscalco1,3

The advent of noisy intermediate-scale quantum (NISQ) technology is changing rapidly the landscape and modality of research in
quantum physics. NISQ devices, such as the IBM Q Experience, have very recently proven their capability as experimental platforms
accessible to everyone around the globe. Until now, IBM Q Experience processors have mostly been used for quantum computation
and simulation of closed systems. Here, we show that these devices are also able to implement a great variety of paradigmatic open
quantum systems models, hence providing a robust and flexible testbed for open quantum systems theory. During the last decade
an increasing number of experiments have successfully tackled the task of simulating open quantum systems in different platforms,
from linear optics to trapped ions, from nuclear magnetic resonance (NMR) to cavity quantum electrodynamics. Generally, each
individual experiment demonstrates a specific open quantum system model, or at most a specific class. Our main result is to prove
the great versatility of the IBM Q Experience processors. Indeed, we experimentally implement one and two-qubit open quantum
systems, both unital and non-unital dynamics, Markovian and non-Markovian evolutions. Moreover, we realise proof-of-principle
reservoir engineering for entangled state generation, demonstrate collisional models, and verify revivals of quantum channel
capacity and extractable work, caused by memory effects. All these results are obtained using IBM Q Experience processors publicly
available and remotely accessible online.
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INTRODUCTION

The theory of open quantum systems studies the dynamics of
quantum systems interacting with their surroundings.1–3 In its most
general formulation, it allows us to describe the out-of-equilibrium
properties of quantum systems, it provides a theoretical framework
to assess the quantum measurement problem, and it gives us the
tools to investigate, understand and counter the deleterious effects
of noise on quantum technologies. For these reasons its range
of applicability is extremely wide, from solid state physics to
quantum field theory, from quantum chemistry and biology to
quantum thermodynamics, from foundations of quantum theory
to quantum technologies.
Generally, the dynamics of open quantum systems are

described in terms of a master equation, i.e., the equation of
motion for the reduced density operator describing the quantum
state of the system. Master equations are either phenomenolo-
gically postulated or derived microscopically from a Hamiltonian
model of quantum system plus environment. Contrarily to the
case of closed quantum systems, where the equation of motion
describing the state dynamics is the Schrödinger equation, the
general form of the master equation for an open quantum system
is not known. Only under certain assumptions, known as the
Born–Markov approximation, one can derive a general equation in
the so called Lindblad form, able to describe the physical
evolution of quantum states.1–5 When these assumptions are
not satisfied, e.g., for strong system–environment interaction and/
or long-living environmental correlations, we enter the intricate
(and somewhat fuzzy) reign of non-Markovian dynamics. This
consideration already illustrates how, despite its indubitable
foundational nature, open quantum systems theory is still far

from being completely understood and, in fact, it is peppered with
unanswered questions of deep nature.
The increasing ability to coherently control an ever increasing

number of individual quantum systems, together with the
discovery of quantum coherence in complex biological systems,6

has brought to light several scenarios in which the Markovian
assumption fails. This has in turn given rise to a proliferation of
results on the characterisation of memory effects and non-
Markovian dynamics.7–10 Interestingly, the cross-fertilisation of
ideas from quantum information theory and open quantum
systems has led to a new understanding of memory effects in
terms of information backflow,11–16 namely a partial return of
quantum information previously lost from the open system due to
the interaction with the environment.
Experimental results on quantum reservoir engineering, includ-

ing the possibility to design desired forms of non-Markovian
dynamics,17–25 naturally lead to the question of whether or not
memory effects are useful for quantum technologies, in the sense
of constituting a resource for certain tasks.15,26–31 This question
has not yet been satisfactorily answered. Even more remarkably, a
complete understanding of non-Markovianity is still missing, as
clearly illustrated in the insightful review of ref. 10

Given the considerations above, it is not surprising that in
recent years a number of experiments have been proposed and
realised to verify paradigmatic open quantum system models and
test some of their predictions. Examples are numerous: the
milestone experiment on the decoherence of a Schrödinger cat
state with trapped ions is one of the first examples of engineered
environment,32 followed by the open system quantum simulator
of ref. 33 The latter is also the first experimental realisation of an
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idea that shifted our perspective about environmental noise.
Following a proposal by Vertsrate et al.,34,35 experimentalists
proved that, by engineering certain types of Markovian master
equation, one may actually create entangled states as stationary
asymptotic states of the dynamics, therefore turning dissipation
and decoherence from enemies to allies of quantum
technologies.33,36,37

In optical platforms, simulators of Markovian open quantum
systems have been used to prove the existence of interesting
phenomena, such as sudden death of entanglement38,39 and
sudden transition from quantum to classical decoherence.40,41 In
the same platform, experiments have shown how to engineer
collisional models,19 wherein the microscopic interaction between
system and environment is obtained through a sequence of
collisions between the open quantum system and one or more
ancillae, the latter collectively describing the environment.42 More
recently, experiments in linear optics,17–19,21,23,24 cavity QED,43

NMR22 and trapped ions25 successfully demonstrated the engi-
neering of non-Markovian open quantum systems and monitored
the Markovian to non-Markovian crossover. Also complex
quantum networks have been proposed as new systems for
reservoir engineering of arbitrary spectral densities,44 and a
bosonic implementation with optical frequency combs has been
presented.45

Most of the experiments until now realised for simulating open
quantum systems rely on the idea of analogue quantum simulator,
that is a quantum system whose dynamics resemble those of
another quantum system that we wish to study and understand.
In contrast, a digital quantum simulator is a gate-based quantum
computer which can be used to simulate any physical system, if
suitably programmed.46,47

Theoretical and experimental research on open systems digital
quantum simulators is only now starting to flourish.48–53 While, in
principle, general algorithms for digital simulation of open
quantum systems have been theoretically investigated,48,50,53

their experimental implementation poses several challenges, since
the physical quantum gates depend on the experimental platform
and the circuit decomposition needs to be optimised in view of
gates and measurement errors as well as qubit connectivity.
Therefore, the existence of general algorithms for implementing
theoretically universal open quantum system simulators does not
guarantee the practical implementability in a realistic experiment
on a given platform.
In this paper, we demonstrate that a careful circuit decomposi-

tion allows us to experimentally implement a vast number of
fundamental open quantum systems models for one and two
qubits. Not only are we able to generate different classes of open
quantum dynamics, namely, unital (e.g., pure dephasing dynami-
cal maps), non-unital (e.g., amplitude damping dynamical maps),
phase covariant, and non-phase covariant (e.g., Pauli dynamical
maps), but also we can explore the Markovian to non-Markovian
crossover, including the recently discovered examples of essen-
tial16 and eternal54,55 non-Markovianity. We implement a recently
proposed non-Markovianity witness56 and we use our simulator to
prove the non-monotonic behaviour of quantum channel
capacity15 and extractable work,31 with implications to quantum
communication and quantum thermodynamics.
Overall, our results clearly prove that even small quantum

processors are versatile and robust testbeds for verifying a
number of theoretical open quantum systems results and
predictions, therefore paving the way to both new discoveries
and a deeper understanding of one of the most fascinating and
fundamental fields of quantum physics.

RESULTS

We consider an open quantum system represented by a density
operator ρS. The dynamics of the open system are described by a

family Φt of completely positive and trace preserving (CPTP) maps,
known as the dynamical map: ρSðtÞ ¼ ΦtρSð0Þ, with ρSð0Þ the
initial state. The equation of motion for the state of the system is
the master equation and, if the dynamical map is invertible, can be
written in a time-local form

_ρSðtÞ ¼ LtρSðtÞ; (1)

where Lt is the time-dependent generator of the dynamics

Φt ¼ T exp

Z t

0
Lτ dτ

� �

; (2)

with T the chronological ordering operator, and Φ0 ¼ I. Under
rather general conditions,1 the generator can be written in the
form

LtρSðtÞ ¼ �i½HS; ρSðtÞ� þ
P

k γkðtÞ VkρSðtÞVy
k � 1

2 fV
y
kVk ; ρSðtÞg

� �

:

(3)

In the equation above, the first term on the r.h.s. describes the
unitary dynamics, with HS the system Hamiltonian, and the second
term, the dissipative dynamics induced by the interaction with the
environment, with γkðtÞ and Vk the decay rates and jump
operators, respectively. If the decay rates are positive and
constant, i.e., γkðtÞ � γ � 0, the dynamical map is a semigroup,
Φtþt0 ¼ Φt � Φt0 , and we refer to the dynamics as semigroup
Markovian. Extending this definition, it is nowadays common to
say that the dynamics are Markovian whenever all the decay rates
γkðtÞ are positive at all times. In this case, the dynamical map
satisfies the property of CP-divisibility, namely Φt ¼ Φt;s � Φs , with
Φt;s a two-parameter family of CPTP maps. Non-Markovian
dynamics occur, instead, whenever at least one of the decay
rates becomes negative for a certain interval of time. In this case,
the intermediate map Φt;s is not CP anymore and the dynamics is
non-CP-divisible.
In the following subsections, we present experiments run on

the IBM Q Experience processors simulating different types of
open quantum systems dynamics, both Markovian and non-
Markovian. We begin by considering an example of Markovian
semigroup master equation and dynamical evolution.

Markovian reservoir engineering

For decades, noise induced by the environment has been
considered the archetype enemy of quantum technologies. This
is because very often the interaction between a quantum system
and its surroundings leads to the fast disappearance of quantum
properties, notoriously coherences and entanglement, playing a
key role in providing quantum advantage. This point of view
drastically changed as soon as physicists demonstrated that
appropriate manipulation of an artificial environment (quantum
reservoir engineering) would allow one to steer the open system
towards, e.g., a maximally entangled state,33,36 hence turning
upside down the perspective of the environment as an enemy.
Following the lines of ref., 33 in this subsection we experimen-

tally simulate a semigroup Markovian master equation for a two-
qubit open system having as asymptotic stationary state the Bell
state ψ�j i ¼ 1

ffiffi

2
p ð 01j i � 10j iÞ, where we indicate with 0j i and 1j i

the computational basis of each qubit and we use the notation
01j i ¼ 0j i1 1j i2. This allows us to prepare a maximally entangled
state as a result of the dissipative open system dynamics.
Each of the four Bell states is uniquely determined as an

eigenstate with eigenvalues ± 1 with respect to σ
ð1Þ
z � σ

ð2Þ
z and

σ
ð1Þ
x � σ

ð2Þ
x , where σ

ðiÞ
x and σ

ðiÞ
z , with i ¼ 1; 2, are the x and z Pauli

operators of qubit 1 and 2. The dissipative dynamics that pumps
two qubits from an arbitrary initial state into the Bell state ψ�j i is
realised by the composition of two channels that pump from the
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þ1 into the �1 eigenspaces of the stabiliser operators σð1Þ
z � σ

ð2Þ
z

and σ
ð1Þ
x � σ

ð2Þ
x .

Specifically, we consider the two p-parametrised families of

CPTP maps ΦzzρS ¼ E1zρSE
y
1z þ E2zρSE

y
2z , with

E1z ¼ ffiffiffi

p
p

I
ð1Þ � σ

ð2Þ
x

1
2 Iþ σ

ð1Þ
z � σ

ð2Þ
z

� �

;

E2z ¼ 1
2 I� σ

ð1Þ
z � σ

ð2Þ
z

� �

þ ffiffiffiffiffiffiffiffiffiffiffi

1� p
p 1

2 Iþ σ
ð1Þ
z � σ

ð2Þ
z

� �

;

(4)

and ΦxxρS ¼ E1xρSE
y
1x þ E2xρSE

y
2x , where E1x and E2x have the same

form of E1z and E2z in Eq. (4), provided that we replace σ
ð2Þ
x with

σ
ð2Þ
z and σ

ð1Þ
z � σ

ð2Þ
z with σ

ð1Þ
x � σ

ð2Þ
x .

By changing the parameter 0 � p � 1 we simulate different
types of open quantum system dynamics. For p 	 1, the repeated
application of, e.g., Φzz generates a master equation of Lindblad

form with jump operator operator V ¼ 1
2 I

ð1Þ � σ
ð2Þ
x

Iþ σ
ð1Þ
z � σ

ð2Þ
z

� �

. For p ¼ 1, the map Φxx � Φzz generates ψ�j i
for any initial state.
In Fig. 1, we show the action of the dissipative pumping maps

Φxx , Φzz and their composition Φxx � Φzz as a function of p, for a
maximally mixed initial state. We compare the theoretical
prediction (dashed lines) with the experimental data. Our results
show a very good agreement between theory and experiment for
the implementation of both the two families of maps and their
composition. In the latter case, the results are more sensitive to
errors because of the larger depth of the circuit implementing the
composition of maps. Details on the circuit implementations and
on their optimisation with respect to the specific qubit
connectivity are given in Methods.

Collisional model and essential non-Markovianity

Our second example of an open quantum system simulator deals
with a class of models known as collisional models. These describe
the interaction between a quantum system and its environment in
terms of consecutive collisions between the system, in our case a
qubit, and a sequence of environmental qubits (ancillae) in a given
state. The system qubit and the nth environmental qubit interact
pairwise during a time period τ. One assumes, as usual, a
factorised initial state of system and environmental qubits. After
the system has interacted with a given ancilla, one can trace out
the ancillary degrees of freedom as it no longer affects the
system’s dynamics.
For a sufficiently large number of collisions, when the ancillae

are in a thermal state, one can prove that the equation of motion
describing the system’s dynamics is of Gorini–Kossakowski–

Sudarshan–Lindblad form.4 Interestingly, contrarily to the micro-
scopic derivation of the Markovian master equation, this approach
does not rely on Born–Markov approximation, but it automatically
leads to a CPTP dynamical semigroup. Also non-Markovian master
equations can be introduced in the collisional model picture, for
example by allowing for the ancillae to interact with each other in
a well defined manner.57–59

We implement experimentally an exemplary model of dynamics
displaying the property of essential non-Markovianity,16 following
the lines of ref. 60 As research in the field of non-Markovian open
quantum systems progressed, more refined definitions of memory
effects started to appear in the literature. In ref. 16 a hierarchical
classification of non-Markovianity was introduced, generalising
the notion of CP-divisibility. In particular, the dynamical map is
said to be P-divisible if the two-parameter family Φt;s is positive.
This is, of course, a weaker condition than CP-divisibility, since
there exist maps that are P-divisible but not CP-divisible, while all
CP-divisible maps are also P-divisible. We say that the dynamics is
essentially non-Markovian if it is non-P-divisible, while it is weakly
non-Markovian if it is non-CP-divisible but P-divisible.
We consider n ancillae initially prepared in the classically

correlated state ρcorr ¼ 1
2 ð 0j i�n 0h j�n þ 1j i�n 1h j�nÞ. The collision

between the system qubit and the kth environmental ancilla is
described by the unitary operator Uk ¼ eigτσz � 0j ik 0h jþ
e�igτσz � 1j ik 1h j, where g is the coupling strength. The dynamical
map after n ¼ t=τ collisions is given by

ΦtρS ¼ TrE ½Un 
 
 
 U2U1ðρS � ρcorrÞUy
1U

y
2 
 
 
 Uy

n�
¼ cos2ðngτÞρS þ sin2ðngτÞσzρSσz :

(5)

We compare this dynamics to the case in which the
environmental ancillae are prepared in the uncorrelated state
þj i�n. In this case, the dynamics is given by

Φ
ðþÞ
t ρS ¼ 1

2 ð1þ cosnð2gτÞÞρS
þ 1

2 ð1� cosnð2gτÞÞσzρSσz:
(6)

In the weak-coupling case (when gτ < π=4) the map in Eq. (6)
gives rise to Markovian dynamics. In contrast, the map in Eq. (5)
alternates intervals, with periodicity π=2, in which it is P-divisible
(0 < ngτ < π=4) with intervals in which it is non-P-divisible
(π=4 < ngτ < π=2), i.e., it is essentially non-Markovian. In Fig. 2,
we compare, for both maps, the exact dynamics of the qubit
coherence with the experimental results, for the initial state
þj i ¼ 1

ffiffi

2
p ð 0j i þ 1j iÞ. The experimental data are in good agree-

ment with the theoretical predictions, and the oscillatory
behaviour of the coherences in the case of correlated ancillae is
a signature of the essential non-Markovianity of the dynamics. We
note that the (much smaller) oscillations in the separable case are
due to the repeated, imperfect application of the CNOT gates that

Fig. 1 Simulation of the Markovian reservoir engineering. Every plot compares the measured overlap between the state of the system and
the four Bell states (dots) with the corresponding analytical prediction for the ZZ pump (a), the XX pump (b) and their consecutive application
(c). The pumps are applied to an initial maximally mixed state. The first two pumps clearly reduce the populations of the þ1 eigenspace of the
corresponding stabiliser operator, and their composition results on a probability for the ψ�j i state around 0.94. Throughout the paper, the
error bars indicating statistical errors are not shown, as they would be indistinguishable from the markers given the large number of
experimental runs (see Methods).
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are required to swap the ancillae that have interacted with the
qubit with fresh ones: there is a small probability that the swap
fails and the system interacts again with the same ancilla. This can
introduce memory effects, as shown, e.g., in refs. 58,59

Markovian and non-Markovian dissipative dynamics

The dynamical maps of Eqs. (5) and (6) are purely dephasing, since
they affect only the coherences of the qubit. In this section we
simulate an exactly solvable dissipative open quantum system
known as the Jaynes–Cummings or generalised amplitude
damping model. The microscopic derivation of the master
equation can be found in textbooks (see, e.g., ref. 1). The master
equation is given by

dρS
dt

ðtÞ ¼ γðtÞ σ�ρSðtÞσþ � 1

2
fσþσ�; ρSðtÞg

� �

; (7)

where σ ± are the raising and lowering operators and the time-
dependent decay rate γðtÞ has the following analytical form

γðtÞ ¼ �2R _c1ðtÞ
c1ðtÞ

� �

; (8)

with

c1ðtÞ ¼ c1ð0Þe�λt=2 cosh λt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2R
p	 
�

þ 1
ffiffiffiffiffiffiffiffi

1�2R
p sinh λt

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2R
p	 


i

:
(9)

The equation above is obtained assuming that the environment
is a bosonic zero-temperature reservoir with Lorentzian spectral
density

JðωÞ ¼ 1

2π

γ0λ
2

ðω0 � ωÞ2 þ λ2
; (10)

with ω0 the qubit frequency, γ0 an overall coupling strength, and λ
the half height width of the Lorentzian profile. The time-
dependent coefficient c1ðtÞ defined in Eq. (9) crucially depends
on the ratio R ¼ γ0=λ between the coupling strength and the
width of the spectrum. Also, this coefficient fully determines the
qubit dynamics as one can see from the following expression

ρSðtÞ ¼
jc1ðtÞj2 c�0c1ðtÞ
c0c

�
1ðtÞ 1� jc1ðtÞj2

 !

: (11)

From Eq. (9) a straightforward calculation shows that the time-
dependent decay rate γðtÞ, defined in Eq. (8), takes negative
values for certain time intervals whenever 2R � 1. In this

case the dynamical map is not CP-divisible, and therefore
non-Markovian. In Fig. 3a, b we show, as example of Markovian
and non-Markovian dynamics, the evolution of the excited state
population of an initially excited state for two values of the
parameter R, corresponding to Markovian (R ¼ 0:2) and non-
Markovian (R ¼ 100) dynamics, respectively. The figures show
the monotonic decay of the excited state population in the former
case, while in the latter case the population oscillates since the
qubit exchanges information and energy with the central mode of
the Lorentzian peak, resonant with the qubit’s Bohr frequency. As
done for the other open quantum systems simulators, we
compare the experimental data with theoretical predictions,
finding a good agreement.
We also implement an experimentally friendly witness of non-

Markovianity which was recently introduced in ref. 56 and stems
from the spectral properties of the dynamical map. The witness is
based on the behaviour of an initial maximally entangled state of
qubit and auxiliary ancilla, and requires only the measurement of
the expectation values of local observables such as σi � σi ,
(i ¼ x; y; z). Non-monotonic behaviour of the witness as a function
of time signals non-Markovianity. Other witnesses of non-
Markovianity (such as the BLP measure introduced in ref. 11)
could be implemented, and may be more efficient at detecting
memory effects, but they generally require a larger number of
measurements or optimisation over initial states.

Fig. 2 Simulation of a collisional model. The red triangles show the
collisions with the ancillae prepared in a classically correlated state
(red triangles), while the blue dots show the case of a separable
state. In both cases g ¼ 1, τ ¼ π=6 (weak-coupling regime). The red
and blue dashed curves show, respectively, the theoretical predic-
tions of Eqs. (5) and (6) for time t ¼ ngτ. Up to 7 collisions were
simulated: the depth of the circuits grows with the number of
collisions, causing increasing decoherence, but the oscillations due
to the essential non-Markovianity are clearly visible in the case of
correlated ancillae.

Fig. 3 Simulation of the amplitude damping channel. a Markovian
dynamics (R ¼ 0:2). b Non-Markovian dynamics (R ¼ 100). Blue
triangles show the measured populations of the excited state as a
function of time, whereas orange circles stand for the non-
Markovianity witness, given by the probability of observing the
system and an ancilla, initially prepared in the state ϕþj i, in that
same state as the channel acts on the system (see Methods for
further details). In b, the experimental results clearly show a non-
monotonic behaviour, hence confirming the non-Markovian char-
acter of the dynamical map. Dashed lines show the theoretical
predictions for both quantities.
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In Fig. 3, we plot the dynamics of the entanglement witness for
the amplitude damping channel. In Fig 3b, the witness clearly
shows oscillatory behaviour, and therefore properly signals the
presence of memory effects. The circuits implementing both the
amplitude damping model and the non-Markovianity witness are
presented and discussed in Methods.

Depolarising and Pauli channels

The depolarising channel is one of the most common models of
qubit decoherence due to its nice symmetry properties. We can
describe it by stating that, with probability 1� p the qubit remains
intact, while it becomes maximally mixed with probability p. This
mixing can be modelled through a bit flip error, described by the
action of σx , a phase flip error, described by the action of σz , or
both, described by the action of σy . The dynamical map of a
Markovian open quantum system subjected to depolarising noise
can be written as

ΦtρS ¼ 1� 3

4
pðtÞ

� �

ρS þ
pðtÞ
4

X

i

σiρSσi; (12)

where i ¼ x; y; z and pðtÞ ¼ 1� e�γt , with γ the Markovian
decay rate.
In Fig. 4, we plot the qubit density matrix elements for various

values of p, comparing the experimental data with the theoretical
prediction. For exemplary purposes, we choose a specific initial
state possessing non-zero coherences, but we have verified, by
repeating the experiment for different initial states, that the
agreement observed between experiment and theory is indepen-
dent from the initial state chosen. As for the other simulated
models, we postpone the discussion on the circuit implementa-
tion, the readout, and the error mitigation strategy to the Methods
section.
Let us now introduce the most general single-qubit open

quantum system model, namely the time-dependent Pauli
channel. The master equation in this case takes the form

dρS
dt

ðtÞ ¼ 1

2

X

i

γiðtÞ σiρSðtÞσi � ρSðtÞ½ �: (13)

We note that for γiðtÞ ¼ γ, we recover the Markovian
depolarising channel. Generally, the dynamics described by the
master equation above is not phase-covariant,61 except for the
case in which γxðtÞ ¼ γyðtÞ. Moreover, since the decay rates may
take negative values, conditions for complete positivity must be
imposed, and they are given in terms of a set of inequalities
involving all the three decay rates, as one can see, e.g., from ref. 16

In the Discussion section we present the simulation of a specific
form of time-dependent Pauli channel proposed in ref. 54 and
used as an example of eternal non-Markovianity, i.e., an open
quantum system dynamics for which the dynamical map is non-

CP-divisible for all times t. More precisely, we use this
experimental simulation to demonstrate a phenomenon predicted
in ref., 31 namely the presence of oscillations in the extractable
work. This shows an application of open quantum system
simulation on the IBM Q Experience processors to fields other
than quantum information theory, specifically quantum thermo-
dynamics for the example here considered.

DISCUSSION

The results presented in the previous section highlight how few-
qubit NISQ devices publicly available on the cloud already provide
sufficient robustness and reliability to implement experimentally a
number of open quantum systems dynamics, both Markovian and
non-Markovian, both unital (dephasing collisional model) and
non-unital (amplitude damping, depolarising and Pauli channels).
We have simulated all the paradigmatic open quantum systems

models typically used to demonstrate physical phenomena
induced by the presence of the environment, its consequences
for quantum technological applications, but also possible benefits
in the spirit of reservoir engineering. As an example of a
fundamental study on open quantum systems, we have measured
the dynamics of a non-Markovianity witness and showed that it
correctly signals the presence of memory effects for time-local
amplitude damping dynamics.
In this section, we build on these results to substantiate our

claim of the IBM Q Experience being a versatile testbed for the
experimental verification of physical effects due to the open
character of the dynamics. Specifically, we focus on two
applications: non-Markovian quantum channel capacity, of poten-
tial use in quantum communication, and extractable work
dynamics, relevant in quantum thermodynamics.
Let us first consider a typical setting in quantum information

processing and communication: Alice and Bob are at the opposite
ends of a quantum channel, the former sending information
(classical or quantum) and the latter receiving it. The maximum
amount of information that can be reliably transmitted along a
noisy quantum channel is known as the channel capacity.
Specifically, we consider the quantum capacity Q defined as the
limit to the rate at which quantum information can be reliably sent
down a quantum channel.
In the following, we focus on the time-local amplitude damping

model introduced in the previous section. In this case, the
quantum channel capacity can be calculated exactly and takes the
form15

QðΦtÞ ¼ max
p2½0;1�

H2ðjc1ðtÞj2pÞ � H2ð½1� jc1ðtÞj2�pÞ
h i

; (14)

for jc1ðtÞj2 > 1=2 and QðΦtÞ ¼ 0 otherwise. In the equation above,
H2 is the binary Shannon entropy and c1ðtÞ is given by Eq. (9).
One may be led into believing that the quantum channel

capacity decreases, and in some case disappears, for increasing
lengths of the noisy channel, due to the cumulative destructive
effect of decoherence. This, however, only holds for Markovian
noise, as theoretically demonstrated in ref. 15 Indeed, due to
memory effects, the quantum channel capacity may take again
non-zero values after disappearing for a certain finite length of the
channel. In Fig. 5a, we experimentally demonstrate this effect,
comparing the measured behaviour of QðΦtÞ with the theoretical
prediction for an amplitude damping model with R ¼ 100,
R ¼ 200, and R ¼ 400.
We now consider an example of interest in the field of quantum

thermodynamics, specifically related to the presence of memory
effects in the open system dynamics. In ref., 31 the connection
between information backflow and thermodynamic quantities
was established by means of a non-Markovianity indicator based
on the quantum mutual information. More specifically, it was
proven that there exists a link between memory effects, as

Fig. 4 Simulation of the depolarising channel. Tomography of a
single-qubit density matrix initially prepared in the state

ψ0j i ¼ cos π=8 0j i þ sin π=8eiπ=4 1j i, for various values of the para-
meter p (cf. Eq. (12)).
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indicated by oscillations in the quantum mutual information and
the non-monotonic behaviour of the extractable work Wex.
To understand this connection, let us recall that in order to link

non-Markovianity with the evolution of thermodynamical quan-
tities one needs to describe not only the system S, whose
information content we are interested in, but also an observer or
memory M. Interestingly, quantum mechanical correlations
between system and observer may lead to the exciting possibility
of extracting work while erasing information on the system.62

Following ref., 31 we consider the case of a qubit S subjected to
a Pauli dynamical map, see master Eq. (13), and an isolated qubit
acting as memory, M. If the system and memory are prepared in a
maximally entangled state, work can be extracted during the
information erasure by using the initial entanglement, as
predicted in ref. 62 In this framework, the extractable work takes
the form31

WexðtÞ ¼ n� HðΦtρSÞ þ IðΦtρS : ρMÞ½ �kT ln2; (15)

with n the number of qubits in S, HðΦtρSÞ the von Neumann
entropy of the evolved state of the system, IðΦtρS : ρMÞ the
quantum mutual information quantifying the amount of total
correlations between system S and memory M, k the Boltzmann
constant and T the temperature of the reservoir used for the
erasure. For the open system here considered, revivals of
extractable work are due to the interplay between memory
effects, witnessed by the quantum mutual information, and
entropy dynamics, as dictated by Eq. (15).

We now further specify our analysis to the eternal non-
Markovianity model, for which γxðtÞ ¼ γyðtÞ ¼ λ=2 and
γzðtÞ ¼ �ω tanhðωtÞ=2. We compare the dynamics with the case
in which γxðtÞ ¼ γyðtÞ ¼ λ=2 and γzðtÞ ¼ ω tanðωtÞ=2. The first
dynamics is eternally non-Markovian, since γzðtÞ < 0 at all times,
while the second one is non-CP-divisible but not eternally non-
Markovian, since γzðtÞ takes both positive and negative values.
This comparison allows us to distinguish between quantum and
classical memory effects.31

In Fig. 5b, we show the experimental results and the theoretical
prediction for the dynamics of the extractable work for the two
cases here considered. Despite the presence of experimental
imperfections, clear oscillations of the extractable work are visible
in one case, but completely absent in the other one, therefore
showing for the first time not only the impact of memory effects
on a thermodynamic quantity such as Wex, but also the subtle
origin of these oscillations.
To conclude, it is worth mentioning that experiments on open

quantum systems performed in dedicated experimental labora-
tories in different platforms such as, e.g., trapped ions, linear
optical systems, superconducting qubits, NMR, NV centres in
diamonds and cavity QED, generally reach higher precision and
fidelity than those reported in our paper. However, this often
occurs at the expense of increased specificity in terms of the
models that can be simulated. Moreover, these experiments are
accessible only to the researchers working in the given laboratory.
Open source small quantum processors already are, however, a

reality and they have opened the door of experimental physics to
quantum researchers who do not have either specific experimental
training or sufficient economic resources to set up a laboratory. We
therefore envisage a rapid change in the way in which research is
conducted in a field which has been until now dominantly
theoretical, namely the study of open quantum system dynamics.
Perhaps, in a not too far future, this will blur the line separating
theoretical and experimental research, and an increasing number of
experiments will be remotely programmable by using a simple
interface and language, in the true spirit of a quantum simulator.

METHODS

The results presented in this paper have been obtained on the IBM Q
Experience processors freely available online: two 5-qubit machines,
ibmqx2 and ibmq_vigo, and a 14-qubit machine, ibmq_16_mel-
bourne. The circuits have been written using IBM’s Qiskit,63 a Python-based
programming language for the IBM Q Experience. Each circuit has been
run for 8192 shots (the maximum allowed by the devices) to gather
statistics from the measurements. When needed, one- and two-qubit full
state tomography has been obtained by using the tools provided in Qiskit,
performing a maximum-likelihood reconstruction of the density matrix.64

In the following, we give detailed explanations of the various circuits
implemented to produce the results presented in the paper. We first make
a few general considerations on the sources of error and on how to devise
circuits with high fidelity on the IBM Q Experience devices.
Given the large number of experimental runs allowed by the devices,

the errors due to statistical fluctuations, of orderOð1=
ffiffiffiffi

N
p

Þ � 0:011, are too
small for errorbars to be distinguishable from markers in Figs 1–5, and thus
they are not shown. The discrepancy between the experimental points and
the theoretical prediction, on the other hand, comes from systematic errors
induced by various factors in the hardware implementation. First, the
qubits undergo relaxation and decoherence due to external noise. This
error becomes more relevant when increasing the depth of the circuit.
Second, the gates have errors due to cross-talk and unwanted interactions
between qubits when addressing them with pulses. In particular, the error
rate of CNOT gates is about 10 times larger than single-qubit unitaries.
Finally, there is a readout error affecting the quantum measurement,
although this can be mitigated to some extent, as we discuss later on. The
error rates and noise parameters on IBM Q devices are characterised on a
daily basis using randomised benchmarking techniques. Since there are
various, interdependent sources of noise, modelling and predicting the
deviations in the experimental data is a non-trivial matter, beyond the
scope of this paper. In this work, all quantum channels have been

Fig. 5 Applications in quantum communication and thermody-
namics. a Quantum channel capacity as a function of time for three

different values of R calculated from Eq. (14), where jc1ðtÞj2 has been
approximated by the ratio between the population of the excited
state at time t and at t ¼ 0 in order to account for the deviations in
the initial state preparation. b Rescaled extractable work
WexðtÞ=kT ln2 as a function of time for the eternally non-Markovian
Pauli channel, with γxðtÞ ¼ γyðtÞ ¼ λ=2 and γzðtÞ ¼ �ω tanhωt=2,
with λ ¼ 1 and ω ¼ 1

2 (green circles) and for the non-CP-divisible
Pauli channel γxðtÞ ¼ γyðtÞ ¼ λ=2 and γzðtÞ ¼ ω tanωt=2, with λ ¼
0:1 and ω ¼ 2. The extractable work has been evaluated using Eq.
(15) from a full two-qubit tomography of system S and memory
ancilla M.
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decomposed into circuits bearing in mind some general guidelines
targeted at minimising the aforementioned inaccuracies.
Since the IBM Q Experience devices are universal quantum computers,

they enable the implementation of any unitary transformation of their
constituent qubits; once a quantum circuit is provided for its execution, it is
compiled into an equivalent circuit involving only the machine’s basis
gates, that is, those realisable experimentally. In the case of the IBM Q
Experience devices, these include any single-qubit rotation, whereas the
only multi-qubit gates are CNOTs. However, if the circuit requires a multi-
qubit gate among qubits that are not physically connected, the
corresponding gate will be replaced with a longer circuit in which the
states are swapped to neighbouring qubits in the compiled circuit. Since
every swap gate includes a minimum of three CNOT gates, and these
introduce considerable noise to the execution, it is crucial to assign the
relevant qubits involved in the simulation (e.g., system, environment and
ancillae) to the machine’s qubits so that the number of CNOT gates
between disconnected qubits is minimised. Furthermore, the devices are
calibrated daily and the errors of the basis gates are reported. This
information can also be taken into account in the qubit assignment, as
using the CNOT gates with smaller errors is preferable.
In addition to the gate errors, the qubits’ readout errors characterising

the discrepancies between the qubit state and the measurement outcome
probabilities are also provided. In the IBM Q Experience devices, there are
considerable differences in the readout errors of the different qubits, so
this information should also be taken into account in the qubit-assignment
process: if possible, it is preferable to assign the system (and any auxiliary
ancillae whose measurement is required) to low readout-error qubits, while
qubits with large readout errors can still be used to simulate the
environment or other ancillae that need not be measured. In any case,
Qiskit provides post-processing error-mitigation tools that generally
improve the experimental results under the package ignis. To do so,
we first prepare all possible basis states 0 
 
 
 0j i; 0 
 
 
 1j i; ¼ ; 1 
 
 
 1j i and
measure their corresponding outcome probabilities (notice that it is only
necessary to include the qubits whose measurement outcomes need to be
corrected). Once these are known, they can be used to correct any other
experimental result by finding, via likelihood maximisation, the experi-
mental outcome that is most congruent with the observed measurement
deviations. All the data shown in the paper have been mitigated as
described above, with the only exception of the collisional model with the
ancillae prepared in the separable state; the reason why we have not
mitigated those results is that, due to the qubit swapping, the
measurements are performed on different physical qubits.

Reservoir engineering
In ref., 33 the authors provide the circuits for the implementation of the
Bell-state pumping. However, these are composed of gates that are natural
to the trapped-ions platform used in that work, so their direct
implementation on the IBM Q Experience devices would result in far too
long circuits. Therefore, we propose a different set of circuits that follow
the same basic working principles, but have been designed specifically
keeping in mind the characteristics of the IBM Q Experience platform.
The pumping circuits proposed in ref. 33 are composed of four parts.

First, the relevant information regarding the state of the system (that is,
whether the system is in the þ1 or the �1 eigenspaces of the stabiliser
operators) is mapped into an ancilla. Second, the state of the system is
modified depending on the state of the ancilla. Third, the mapping circuit
is reversed. At this stage, the system has been pumped, but if the ancilla is
to be used again for a new pumping cycle, it needs to be reset, which is
the fourth step. We follow these same lines, designing circuits that perform
these same steps while minimising the number of gates involved. Before

we explain the resulting circuits, let us mention that, since the IBM Q
Experience devices are not equipped with the reset operation, we must
use a different ancilla for every pump.
The way we map the eigenspace information into an ancilla is by first

applying a CNOT gate between the system qubits. Suppose that qubits s1
and s2 are initially in some Bell state, for instance, ϕ±j i ¼ ð 00j i± 11j iÞ=

ffiffiffi

2
p

.
A CNOT gate controlled by s1 transforms the state into ±j i 0j i. Instead,
ψ±j i would be transformed into ±j i 1j i. Hence, we see that the

information regarding the σ
ð1Þ
x � σ

ð2Þ
x eigenspace (namely, the sign) is

contained in the state of s1 after the transformation, whereas the one

corresponding to the σ
ð1Þ
z � σ

ð2Þ
z is in qubit s2 . Now, let us consider the

circuit implementing the σ
ð1Þ
z � σ

ð2Þ
z pump in Fig. 6a. To map the

eigenspace information into the environment ancilla aZZ , we apply a
CNOT controlled by the relevant qubit, s2 . After these two gates (and
considering that the initial state of the ancilla is 1j i), aZZ will be in state 1j i
if the initial state of the system is ϕ±j i and 0j i if it is ψ±j i. Therefore, the
conditional rotation gate only acts in the former case, while it does not
modify the state in the latter. The angle of the controlled rotation, in turn,
controls the efficiency of the pump p via the relation θ ¼ 2 arcsin

ffiffiffi

p
p

.
Finally, the last two CNOT gates simply revert the mapping part of the

circuit. The working principle of the σ
ð1Þ
x � σ

ð2Þ
x pump (Fig. 6b) is essentially

the same. However, we need to add an extra Hadamard gate to transform
the state of s1 before mapping the information to the ancilla aXX . As for the
composite pump, we can simply concatenate the two circuits. Notice that
in the direct concatenation there would be two consecutive CNOTs
between the system qubits, which can be removed.
Regarding the measurement process, the IBM Q Experience platform only

enables measurement in the computational basis. Hence, to assess the
probabilities for each of the Bell states, we need to change basis by applying
again a combination of CNOT and Hadamard to the system qubits, so ϕþj i is
mapped into 00j i, etc. Again, notice that this would result in repeated
consecutive gates, the effect of which amounts to identity, so they can be
removed from the circuits. Finally, in Fig. 1, we show the results starting from
the maximally mixed state. To do so, we simulated the circuits preparing the
system in four different initial conditions, 00j i, 01j i, 10j i and 11j i.

Collisional model
The circuit used to implement the collisional model described in the
section “Collisional model and essential non-Markovianity” is depicted in
Fig. 7. Initially, the system and ancillae are prepared in the desired initial
state, then each collision is applied, and finally the qubit is measured in the
σx basis. The collision unitary U ¼ eigτσz � 0j i 0h j þ e�igτσz � 1j i 1h j can be
implemented by means of a rotation RzðgτÞ around the Z-axis between
two CNOT gates.
When the ancillae are prepared in the state

ρcorr ¼ ð 0j i�n 0h j�n þ 1j i�n 1h j�nÞ=2, we can simplify the circuit by noticing
that each ancilla is in the maximally mixed state, and the action of U does
not affect its state. We thus only need three ancillae prepared in the GHZ
state ψGHZj i ¼ ð 000j i þ 111j iÞ=

ffiffiffi

2
p

: by tracing out the third one we are left

with the two-qubit state ρ
ð2Þ
E ¼ ð 00j i 00h j þ 11j i 11h jÞ=2, and then we can

keep colliding with either of the two ancillae.
The circuit with the ancillae in the separable state was implemented and

run on the device ibmq_16_melbourne (14 qubits), in order to have a
larger number of ancillae for the collisions. The system qubit was chosen to
have the highest connectivity (three qubits) and smallest readout error.
The connectivity layout of the computer does not allow for direct collisions
with more than three ancillae, and swaps between qubits are required,
increasing the errors in the simulation and possibly introducing memory
effects (as discussed in the Results section).

Fig. 6 Circuits implementing the reservoir engineering protocol. a ZZ pump, b XX pump and c ZZ and XX pump. The circuits were run on
ibmqx2. Qubits s1 and s2 (corresponding to q2 and q1 on the device) are the system qubits, while qubits aXX and aZZ (q4 and q0) are the
environment ancillae for the two maps. State preparation and measurement are not shown in the circuits above.
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Amplitude damping channel
The circuit in Fig. 8 implements the amplitude damping channel with the
non-Markovianity witness. For an arbitrary pure state of the system
ψj is ¼ α 0j is þ β 1j is, and setting the state of the environment to vacuum
0j ie , the two gates between the system and environment qubits transform
the joint state into α 0j is 0j ie þ β cos θ 1j is 0j ie þ β sin θ 0j is 1j ie . Therefore,
identifying the states 0j is and 1j is with the ground and excited states
respectively, and by choosing θ ¼ arccos c1ðtÞ, the reduced state of the
system becomes Eq. (11).
The non-Markovianity witness for a channel Φt proposed in ref. 56 is

based on the dynamical behaviour of the entanglement between the
system and an ancilla initially prepared in a maximally entangled state.
Namely, this quantity is defined as fΦ ¼ hϕþjI� Φt ½jϕþihϕþj�jϕþi. Hence,
implementing this quantity requires preparing the state ϕþj i between the
system and an ancilla, which can be achieved using a Hadamard and a
CNOT gate, applying the dynamical map to the system and measuring the
probability of finding the joint system and ancilla state in ϕþj i. As

suggested in ref., 56 we need not use an extra CNOT gate to project on the
Bell basis; instead, we can take advantage of the fact that ϕþj i ϕþh j ¼
ðI� Iþ σx � σx � σy � σy þ σz � σzÞ=4 and measure the corresponding
local observables. Figure 8 shows the circuit corresponding to the
measurement of σx � σx .

Depolarising channel
The depolarising channel defined in Eq. (12) can be implemented, for any
value of p � pðtÞ 2 ½0; 1�, with the circuit shown in Fig. 9. Three ancillary
qubits are prepared in a state ψθj i ¼ cos θ=2 0j i þ sin θ=2 1j i, and are used
as controls for, respectively, a controlled-X (CNOT), a controlled-Y and a
controlled-Z rotation. This way, each gate will be applied with a probability
sin2θ=2.
The rotation angle θ must be chosen so that each of the gates is applied

with probability p. Notice that applying X and then Y , but not applying Z is
equivalent (up to global phases) to just applying Z, and so on. The
resulting equation that binds θ to p is thus

sin2
θ

2
cos4

θ

2
þ sin4

θ

2
cos2

θ

2
¼ p

4
; (16)

with solution θðpÞ ¼ 1
2 arccosð1� 2pÞ.

Pauli channel
At a specific time instant t, the Pauli channel described by the master Eq.
(13) can be written as

EðρÞ ¼
X

3

i¼0

piσiρσi ; (17)

with 0 � pi � 1 and
P

ipi ¼ 1. The depolarising channel is a special case of
the Pauli channel where p1 ¼ p2 ¼ p3 ¼ p=4.
One could think to implement the channel by generalising the circuit of

Fig. 9, specifically, by allowing for the three ancillae to be prepared in
different states. One can see, however, that this cannot be done in the
most general case. For example, the eternally non-Markovian channel
presented in the Discussion section is not implementable in this way.
It is possible to implement the general Pauli channel with just two

qubits, if we allow them to be in an entangled state. The first qubit acts as
the control for a controlled-X (CNOT) gate, and the second one for a
controlled-Y . Notice that, as remarked in the previous section, applying
both X and Y is effectively equivalent to applying a Z gate.
The state ψj i of the ancillae needed for the Pauli channel can be

implemented by the circuit in Fig. 10, parametrised by the three angles
θ1; θ2; θ3

ψj i ¼ ðc1c2c3 þ s1s2s3Þ 00j i þ ðc1c2s3 � s1s2c3Þ 01j i
þ ðc1s2c3 � s1c2s3Þ 10j i þ ðs1c2c3 þ c1s2s3Þ 11j i

(18)

where ci � cos θi and si � sin θi .
The angles θi can be found by solving the following system of equations:

p0 ¼ jh00jψij2 ¼ ðc1c2c3 þ s1s2s3Þ2

p1 ¼ jh01jψij2 ¼ ðc1c2s3 � s1s2c3Þ2

p2 ¼ jh10jψij2 ¼ ðc1s2c3 � s1c2s3Þ2

p3 ¼ jh11jψij2 ¼ ðs1c2c3 þ c1s2s3Þ2

8

>

>

>

<

>

>

>

:

: (19)

Fig. 7 Circuits implementing the collisional model. The top circuit
shows the case of the collision with three ancillae in the separable
þþþj i state, prepared by means of Hadamard gates. Each collision
consists of a rotation around Z between two CNOTs. A final
measurement in the X basis is performed in order to measure the
coherence of the system qubit. The bottom circuit shows how, in the
case of ancillae prepared in the correlated state, we can effectively
simulate the map with three ancillae prepared in the GHZ state

ð 000j i þ 111j iÞ=
ffiffiffi

2
p

, by colliding alternately with two of them. Notice
that, in principle, we could have always a collision with the same
ancilla. This, however, would cause the compiler to remove
consecutive CNOTs and join the rotations into a single gate, making
the circuit trivial. The top circuit was run on ibmq_16_melbourne,
while the bottom circit was run on ibmqx2.

Fig. 8 Circuit for the amplitude damping channel with non-
Markovianity witness. The circuit was run on ibmq_vigo. Qubits
q1 , q2 and q3 were used as system, environment and witness ancilla,
respectively. Setting θ ¼ arccos c1ðtÞ, the channel acting on the
system qubit simulates the amplitude damping dynamics. The two
Hadamard gates rotate the state of the qubits in order to measure

the observable σx � σx . To measure σy � σy , the combination SyH
can be used instead, whereas no gates are required for σz � σz .

Fig. 9 Circuit implementation of the depolarising channel. The
circuit was run on ibmqx2. Qubit q2 is used as the system qubit, as it
is the only one that can be targeted with three CNOTs. The ancillae
a1; a2 and a3 are initially in the state 0j i and rotated around the y
direction by an angle θðpÞ ¼ 1

2 arccosð1� 2pÞ. They then act as
controls for controlled-X , -Y and -Z gates, respectively.
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The above system of equations allows for multiple analytical solutions
whose expressions are too cumbersome to be reported here. The choice of
the solution to use in each case depends on a number of factors, such as
the gate fidelity for the specific values of the parameters.
Notice that the circuit for the Pauli channel can be used also for the

depolarising channel, instead of the three-qubit circuit of Fig. 9, but it
proves to be less accurate on the IBM Q Experience devices, presumably
because of the required entanglement between the two qubits.
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