
IBM Streams Processing
Language: Analyzing Big
Data in motion

M. Hirzel

H. Andrade

B. Gedik

G. Jacques-Silva

R. Khandekar

V. Kumar

M. Mendell

H. Nasgaard

S. Schneider

R. Soulé

K.-L. Wu

The IBM Streams Processing Language (SPL) is the programming
language for IBM InfoSphereA Streams, a platform for analyzing
Big Data in motion. By BBig Data in motion,[we mean continuous
data streams at high data-transfer rates. InfoSphere Streams
processes such data with both high throughput and short response
times. To meet these performance demands, it deploys each
application on a cluster of commodity servers. SPL abstracts away
the complexity of the distributed system, instead exposing a simple
graph-of-operators view to the user. SPL has several innovations
relative to prior streaming languages. For performance and code
reuse, SPL provides a code-generation interface to C++ and JavaA.
To facilitate writing well-structured and concise applications,
SPL provides higher-order composite operators that modularize
stream sub-graphs. Finally, to enable static checking while exposing
optimization opportunities, SPL provides a strong type system and
user-defined operator models. This paper provides a language
overview, describes the implementation including optimizations
such as fusion, and explains the rationale behind the language
design.

Introduction
This paper provides an overview of the IBM Streams

Processing Language (SPL) [1] for InfoSphere* Streams [2].

Stream processing is a programming paradigm that processes

continuous data streams via a stream graph. A stream is a

sequence of data items, and a continuous stream is (at least

conceptually) an infinite sequence of data items. A stream

graph is a directed graph in which each edge is a stream

and each vertex is an operator instance. Operators are stream

transformers, sources, or sinks. Stream processing is

important because it can analyze large volumes of data

immediately as it is being produced. Continuous data

streams are ubiquitous: they arise in telecommunications,

health care, financial trading, and transportation, among other

domains. Timely analysis of such streams can be profitable

(in finance) and can even save lives (in health care).

Furthermore, often the data volume is so high that it cannot

be stored to disk or sent over slow network links before being

processed. Instead, a streaming application can analyze

continuous data streams immediately, reducing large-volume

input streams to low-volume output streams for further

storage, communication, or action.

Aside from the above-mentioned motivation from the

application perspective, stream processing is also motivated

by current technology trends. Hardware manufacturers are

increasingly building multi-core chips, and vast clusters of

servers are becoming more common. All this intra-machine

and inter-machine parallelism is difficult to exploit with

conventional programming paradigms that are based on the

von Neumann model with shared state and complex control

flow and synchronization. Much recent work has attempted

to address this difficulty. In stream processing, each vertex

of the stream graph can run in parallel on a different core

of a chip or a different server of a cluster, subject only to data

availability. This makes it easier to exploit the nested levels

of hardware parallelism, which is important for handling

massive data streams or performing sophisticated online

analytics.

A streaming language such as SPL makes it easier to write

streaming applications. The alternative is to either create

applications graphically, by editing a visual instead of a

�Copyright 2013 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without

alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

M. HIRZEL ET AL. 7 : 1IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

0018-8646/13/$5.00 B 2013 IBM

Digital Object Identifier: 10.1147/JRD.2013.2243535

textual representation of the stream graph, or to use a

non-streaming programming language with streaming

libraries. Both approaches have drawbacks. First, providing

only a graphical approach restricts expressiveness (i.e.,

some information that can be easily expressed as text is

missing in typical graphical representations) and, in any case,

is usually implemented internally by a streaming intermediate

language [3]. Second, the library approach is typically less

concise and affords fewer opportunities for error checking

and optimization than a dedicated language [4]. In contrast, a

streaming language can offer more expressiveness, error

checking, and performance. The next subsection of the

introduction makes the concept of stream processing concrete

by introducing SPL via an example, and the subsection after

this places SPL in context by reviewing related efforts in

industry and academia.

The particulars: SPL overview

The central concepts of SPL are streams and operators. An

SPL application corresponds to a stream graph. Operators

without input streams are sources, and have their own thread

of control. Most other operators fire only when there is at

least one data item on one of their input streams. More

specifically, when an operator fires in SPL, it executes a piece

of code to handle an input data item. An operator firing

consumes one input data item and can submit any number

of data items on output streams. A stream delivers data

items from one operator to another in the order they

were submitted.

Figure 1 shows an example bargain-finding financial

application, with the SPL code on the left and the equivalent

stream graph on the right. The code in the figure uses bold

font for SPL keywords; we also follow this convention

Figure 1

Streams Processing Language (SPL) program for computing the VWAP (volume-weighted average price) of a stream of stock trades and identifying

bargains in a stream of stock quotes.

7 : 2 M. HIRZEL ET AL. IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

for SPL keywords throughout this paper. The graph depicts

each vertex next to the corresponding operator invocation

in the code. All operator invocations have the same

high-level syntax. The syntax is declarative, because it

only describes what each operator does, but not how.

The following discussion explains the invocation of the

Aggregate operator as an example for that syntax. Line 12

in Figure 1 is

streamhPreVwapiPreVwaps ¼ AggregateðTradesÞ

and it creates the PreVwaps stream, with data items of type

PreVwap, by invoking the Aggregate operator on the Trades

stream. VWAP stands for volume-weighted average price,

and the PreVwaps stream carries preliminary information

for calculating the VWAP. This example has one input and

one output stream, but in general, an operator invocation can

have zero or more input and output streams. The following

lines of code are indented, because they configure the same

operator invocation that started in Line 12. In Line 13,

we have:

windowTrades : sliding; deltaðts; 60:0Þ; countð1Þ; partitioned;

and this specifies that this instance of the Aggregate operator

works on sliding windows of size delta(ts, 60.0). A window

stores recent data items from a stream, and a sliding

window retires the oldest data items incrementally as new

data items are added. Identifier Bts[refers to a timestamp

attribute of stream Trades, and delta(ts, 60.0) creates a

window in which timestamps are at most 60 seconds apart, in

other words, a 1-minute window. The count(1) means that

the window slides by one data item at a time. The

Bpartitioned[at the end of the window clause means that the

window is maintained separately for each different value of

the partition key, in this case the Bsym[attribute as specified

by the BpartitionBy[parameter in Line 14:

param partitionBy : sym;

Identifier Bsym[refers to a string attribute of the Trades

stream, which contains a stock symbol, for example, BIBM.[

In this case, the corresponding data for each stock is

aggregated separately. Partitioning can be used for

optimization, as we shall see later in this paper. Finally,

Line 15 is

output PreVwaps :

priceVol ¼ Sumðprice � volÞ; vol ¼ SumðvolÞ;

and it assigns the attributes of data items on the output

stream. Output attribute BpriceVol[is the sum, for each data

item in the window, of the price� vol products; and output

attribute Bvol[is the sum of the input volumes. In this

example, Sum is an operator-specific intrinsic output

function. For convenience, the Aggregate operator forwards

other attributes that are not explicitly mentioned in the output

clause unmodified from input to output, if they appear in

both the incoming and outgoing types.

In general, the operator determines which subset of

the clauses window, param, and output is needed, and

what the parameters in the param clause mean. This design

gives SPL a combination of generality and consistency.

For generality, SPL supports a wide variety of operators,

which can also be user-defined. For consistency, all operator

invocations follow the same basic syntax.

Based on the description so far, we can now understand the

entire graph clause in Lines 7 to 37 of Figure 1. In essence,

this application reads Trades from a TCP (Transmission

Control Protocol) connection, computes preliminary

aggregate information on trades in the PreVwaps stream,

computes the VWAP, joins it with the Quotes stream from

another TCP source, and computes a bargain index as its

output.

At the outermost level, an SPL application consists of a

main composite operatorVin this case, the BargainFinder

operator (Line 1). Aside from the graph clause, a composite

operator can also contain type definitions (Lines 2–6).

For example, Line 4,

PreVwap ¼ tuplehrstring sym; timestamp ts;

decimal64 priceVol;decimal64 voli;

defines the PreVwap type as a tuple type with four attributes:

sym, ts, priceVol, and vol. In Figure 1, all tuple types only

contain attributes of primitive types. However, in general, a

tuple attribute in SPL can hold any type, such as a list, a map,

or even another tuple. The hierarchical type system of SPL

allows programmers to select the stream granularity they find

most natural.

The bigger picture: Related technologies

There are two main approaches to processing Big Data

(i.e., massive amounts of data): batch processing and stream

processing. The distinction is that in batch processing,

there is a finite amount of input data, whereas in stream

processing, streams are assumed to be Binfinite.[Batch

processing in its pure form reports results only when all

computation is done, whereas stream processing produces

incremental results as soon as they are ready. This means that

batch processing is associated with different optimization

goals (e.g., it need not optimize for latency of intermediate

results). Furthermore, finiteness affords batch processing the

opportunity to wait until one computation stage is complete

before starting another, enabling it to perform operations

such as globally sorting all intermediate results. Prominent

recent examples of batch processing for Big Data include

MapReduce [5], Dryad [6], and various languages

implemented on top of MapReduce, such as Pig Latin [7]

and Jaql [8]. Hybrids between the extremes of batch and

streaming exist, such as MapReduce Online [9] and

M. HIRZEL ET AL. 7 : 3IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

DBToaster [10]. Batch processing can be emulated by stream

processing, because both paradigms are implemented by

data-flow graphs [11]. The following paragraphs describe the

dominant technologies for stream processing: synchronous

data flow, relational streaming, and complex event

processing.

In the synchronous data flow (SDF) paradigm, each

operator has a fixed rate of output data items per input data

item. In other words, an operator consumes M input data

items and produces N output data items each time the

operator fires, whereM and N are fixed and known statically.

Prominent examples for SDF programming languages

include Lustre** [12], Esterel [13], and StreamIt [14]. SDF

has the advantage that the compiler can exploit static data

rates for optimizations: it can pre-compute a repeating

schedule to avoid runtime scheduling overheads, and it can

pre-compute buffer sizes to avoid runtime dynamic allocation

overheads. On the downside, SDF is inflexible; in many

applications, data rates are not static but dynamic, for

instance, in time-based windows or data-dependent filtering.

SPL is not an SDF language because it allows dynamic data

rates by default.

Another technology for stream processing is relational

streaming. Relational streaming adopts the relational model

from databases: a relation is a bag (i.e., an unordered

collection with duplicates) of tuples and a tuple consists of

named flat attributes. This enables relational streaming

systems to adopt the relational operators (select, project,

aggregate, join, etc.) from databases, with well-defined

semantics and well-developed optimizations. Prominent

examples of relational streaming systems include

TelegraphCQ [15], the STREAM system underlying CQL

(Continuous Query Language) [16], Aurora [17] and Borealis

[18], StreamInsight [19], and SPADE (Stream Processing

Application Declarative Engine) [20]. SPL supports

relational streaming, because it uses tuples as a central data

type, and provides relational operators in its standard library.

However, SPL is more general than this: tuples can nest,

topologies can be cyclic, the library contains many more

operators, and users can define their own, fully general,

new operators.

A special case of stream processing is complex event

processing (CEP). CEP terminology refers to data items in

input streams as raw events and to data items in output

streams as composite (or derived) events. A CEP system uses

patterns to inspect sequences of raw events and then

generates a composite event for each match, for example,

when a stock price first peaks and then dips below a

threshold. Prominent CEP systems include NiagaraCQ [21],

SASE (Stream-based and Shared Event processing) [22],

Cayuga [23], IBM WebSphere* Operational Decision

Management (WODM) [24], Progress Apama [25], and

TIBCO BusinessEvents [26]. Etzion and Niblett provide an

introduction to CEP [27]. SPL is a streaming language, not a

CEP language, because it does not primarily focus on

matching patterns over event sequences. However, it is

possible to implement CEP in SPL by wrapping a CEP

matching engine in an operator [28].

Other contemporary streaming systems akin to InfoSphere

Streams include StreamBase [3], S4 [4], and Storm [29].

As mentioned, SPL differentiates InfoSphere Streams from

those systems by providing a declarative language while,

at the same time, supporting fully general user-defined

operators.

Contributions and paper organization

Compared with the related work we outlined, SPL makes

three primary contributions. The following three sections

of this paper explain each of these contributions. First, SPL

distinguishes itself by its approach for interfacing with

non-streaming languages. Specifically, SPL takes a

code-generation approach, where fast streaming operators are

implemented by emitting optimized code in a non-streaming

language. Second, SPL distinguishes itself by how it

provides modularity for large streaming applications.

Specifically, the higher-order composite operators of SPL

encapsulate parametric stream sub-graphs. Third, SPL

distinguishes itself by its strong type system and operator

models. Together, they enable users to write modularized,

large, and efficient streaming applications, which are

essential for developing big-data analytics.

Interfacing with C++ and Java code
Some SPL applications need only operators from the

standard library of SPL, but other applications need their own

new operators. For instance, the example in Figure 1 uses

only standard library operators (TCPSource, Aggregate,

Functor, Join, and TCPSink). However, imagine that the

input arrives in XML (Extensible Markup Language) format.

Because there are already powerful XML libraries for

non-streaming languages such as C++ or Java, an XML

operator for SPL is best implemented in C++ or Java as

well, so it can reuse those libraries [30]. For this particular

functionality, one could argue that such an operator could

be added as a built-in feature. However, in general, there are

so many possible features that it is better to have a general

extensibility framework available to the SPL user.

There are four design goals for creating an interface

between SPL and native C++ or Java code. The first goal is

generality: users should be able to write new operators that

are just as powerful as those in the standard library. The

second goal is consistency: all operators should Blook and

feel[the same in an SPL application. For example, the SPL

code in Figure 1 uses several different operators, but the

high-level syntax is the same in all cases. In SPL, this syntax

does not change whether the operator is part of the library or

written by users. The third goal is legacy code reuse: SPL

operators can internally call code written in other languages.

7 : 4 M. HIRZEL ET AL. IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

The fourth goal is flexibility and performance. In general,

operators can be configured in several different ways. For

instance, Figure 1 uses the Aggregate operator with a

delta-based window to compute sums, but other applications

can use the same operator with other window configurations

(e.g., count-based) or compute different kinds of

aggregations (e.g., average or maximum). SPL supports these

flexible configurations with high performance by allowing

the operator definition to generate different code depending

on how the operator invocation is configured. Using code

generation means that the decisions that can be made at

compile time do not incur run-time overhead.

In SPL, an operator written in C++ or Java is called a

primitive operator, in contrast to the composite operators that

encapsulate sub-graphs and are the subject of the next

section. Figure 2 illustrates the code-generation approach

of SPL for primitive operators. Each primitive operator

definition consists of two artifacts: an operator model and

an operator code generator. The operator model (top of

Figure 2) is an XML document that describes the operator

to the SPL compiler [31]. For example, the operator model

for the Aggregate operator indicates that this operator is

windowed, and has an optional partitionBy parameter, and

can output a variety of aggregations via one of several

operator-internal intrinsic functions such as Sum, Max, and

Average. Later sections of this paper will also explore how

to use the operator model for optimization. The operator

code generator (top right of Figure 2) is responsible for

generating the C++ code for a particular invocation of

the operator in the SPL code. For example, the code

generator for the Aggregate operator emits the necessary

data structures for incrementally maintaining the required

aggregation state as each data item enters or leaves the

window.

All primitive operators in SPL, including both library

operators and user-defined operators, employ the same

code-generation framework. When the SPL compiler

processes the application source code written in SPL (left

of Figure 2), it encounters several operator invocations. For

each operator invocation, it checks the operator model (top

of Figure 2), and emits an operator instance model (middle of

Figure 2) that contains all the customization information

necessary for the code generator. Then, the SPL compiler

runs the code generators for each of the operator instance

models, yielding a set of operator instances (bottom right of

Figure 2). Aside from using the operator code generators

to generate all of the operator instances, the SPL compiler

also emits an application model (bottom left of Figure 2).

At runtime, the streaming platform (InfoSphere Streams)

consults the application model to launch all the operators for

the stream graph. Each runtime operator instance is a stream

transformer, consuming input data items and producing

output data items, with the streaming platform responsible

for transport, resilience, and overall management of the

runtime environment.

While the ability to write code generators for new

operators is powerful, it also assumes a high level of

sophistication on the part of the programmer. It means that

the operator developer is de-facto writing a small compiler.

To facilitate this, SPL provides a templating mechanism.

SPL code-generation templates consist of C++ code

to-be-generated interspersed with Perl code for customization

in much the same way that a PHP (a recursive acronym that

stands for PHP: Hypertext Preprocessor) program consists

Figure 2

Compiling and running a Streams Processing Language (SPL) application.

M. HIRZEL ET AL. 7 : 5IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

of HTML (HyperText Markup Language) to be generated

interspersed with PHP code for customization. The Perl code

is executed at compile time to perform advanced error checks

and to generate more or customized C++ code. In cases

where no customization is required, this reduces to just

writing the C++ code to be generated without any

interspersed Perl code. In other words, operator developers

do not need to know or care about the code-generation

framework except in advanced cases. The C++ runtime

application programming interfaces (APIs) provide

introspection facilities that are often sufficient; for instance,

parameters from the SPL source code are available not only

at compile time, but also at runtime. As mentioned, a

primitive operator definition consists of two parts: the

operator model and the code generator. SPL is distributed

with an Eclipse-based environment that makes the operator

model easy to write as well.

Finally, in some cases, instead of defining an entirely new

operator from scratch, users only want to add some logic

to an existing operator, for example, to handle the arrival of a

new data item at an input port. For this purpose, SPL syntax

supports a logic clause alongside the window, param,

and output clauses we already saw in Figure 1. The logic

clause contains handlers written in SPL itself, without the

need to write code in a separate, more low-level language.

The Custom operator in the standard library has no built-in

behavior of its own and instead allows all functionality to

reside in the logic clause. Figure 3 shows an example of using

logic in a Custom operator to deduplicate a stream. The logic

state sub-clause (Line 3) declares variable _first (Line 4)

to keep track of whether the current tuple is the first in the

stream, and _prev (Line 5) to remember the previous tuple.

The logic onTuple sub-clause (Line 7) executes each time a

tuple arrives on the specified input port. If the current tuple

(Inputs) is first or differs from the previous tuple, it is unique

and gets submitted to the output stream (Uniques, Line 12).

The code-generation framework of SPL meets its

generality and consistency goals: it has been used for

dozens of operators, all of which have the same high-level

syntax. Some operators in the standard library are highly

customizable, such as Join, which selects different

algorithms depending on the type of relational join.

Operators reuse legacy code by accessing libraries and

platform services in C++ and Java. In extreme cases, the

implementation of an operator can include a full-fledged

compiler, such as translating CEP patterns to efficient finite

state machines [28].

Modularizing via composite operators
Large SPL applications can have stream graphs containing

hundreds of operator invocations. For such a large graph to

be comprehensible, it is best if it is hierarchically composed

from smaller sub-graphs. For this purpose, SPL provides

composite operators. A composite operator encapsulates

a stream sub-graph. When studying an SPL application,

one can first look at the composite operator as a single vertex

in a collapsed stream graph, and then look at the details by

expanding it into the vertices of its own sub-graph. Aside from

modularity, composite operators also help with code reuse.

If the same sub-graph occurs multiple times (with small

variations), each occurrence can be represented by a different

invocation of the same composite operator (with parameters).

For example, one could have multiple financial applications

that all have the same sub-graph for reading a stream of

trades and computing their volume-weighted average prices.

By placing this sub-graph in a composite, one can avoid

code duplication. This is a key SPL feature that enables

development of complex Big Data applications.

Figure 3

Invocation of the Custom operator with a logic clause.

7 : 6 M. HIRZEL ET AL. IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

There are three design goals for composite operators in

SPL. As mentioned, the first goal is consistency: composite

operators should have the same look-and-feel as primitive

operators when they are invoked from an SPL application.

The second goal is flexibility: a composite does not need to

expand to identical sub-graphs each time, but rather, can have

variations, which are controlled by parameters. The third

goal is hygiene: composite operator expansion does not

change the bindings of SPL names to entities. Hygiene is

important for making code easier to understand. Names in

a composite operator invocation are scoped such that no

expansion is needed to resolve them and such that there is

no accidental name capture after expansion. Capturing a

name means changing its binding, which is what hygiene

prevents [32].

Figure 4 shows an example of composite operator

expansion in SPL. The SPL code on the left defines the Vwap

composite operator (Lines 1–13), and then uses it in the

VwapApp composite operator (Lines 14–30). The stream

graphs in the middle show these two composites before

expansion, aligned with the corresponding source code.

VwapApp is the main composite operator of the application,

since it has no input or output streams, and it invokes

Vwap in Lines 22 to 24. This operator invocation looks just

like any other operator invocation: if one examines only

Lines 22 to 24, one cannot tell whether Vwap is a primitive

operator or a composite operator. Using the same high-level

syntax helps consistency. After the SPL compiler expands

composite operators, it obtains the stream graph on the

far right of Figure 4. That graph is obtained by starting

with the main composite and replacing invocations of other

composites by their sub-graphs, while renaming streams

as necessary to prevent accidental name capture. In this

example, Vwap is replaced by Aggregate and Functor,

and stream Pre is renamed into Vwaps.Pre. Without that

renaming, using the composite twice would cause the name

to be ambiguous and unhygienic.

Composite operators are flexible in terms of both types and

parameters. The Vwap composite operator from Figure 4 is

flexible with respect to the type of its input stream, In. As

mentioned, the In stream must have at least the attributes ts,

sym, price, and vol, because those are mentioned by the

Aggregate operator in Lines 5 to 9. The presence of these

attributes is checked after expansion, when the compiler

type-checks the expanded code. If they are missing or are

used with the wrong type, the compiler reports an error,

along with the expansion context to make the error easier

to understand. Note, however, that the actual input stream

Figure 4

Composite operator expansion for an application that computes the VWAP (volume-weighted average price) of a stream of stock trades.

M. HIRZEL ET AL. 7 : 7IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

can contain more attributes. Furthermore, the type of In is

used to define the type of Pre in Line 5:

streamhIniPre ¼ AggregateðInÞ

Usually, the streamhTi syntax expects a type name for T .

However, for convenience, SPL permits use of a stream name

where a type name is expected. In this case, the result is

the type of the tuples on the stream, making it easy to write

operator invocations whose input and output tuples have

the same attributes. Aside from reusing types unmodified,

SPL also supports defining new tuple types by adding

additional attributes to an existing tuple type. For example,

type T1 ¼ tuplehT2; T3i defines a new tuple type T1,

which contains the union of all attributes from types T2
and T3. The details are in the SPL specification [1].

Figure 4 also contains an example of a parameter being

passed to a composite operator. The Vwap composite

operator declares the $itv parameter in Line 3 and uses it to

define the window size in Line 6. The VwapApp composite

operator uses parameter Bitv[when it invokes Vwap in

Line 23. The mandatory dollar sign at the start of the

parameter name in the composite operator definition serves

as a reminder to the programmer that this name gets replaced

at compile time. While this example only passes a constant

to a parameter, in general, operator parameters in SPL can

also be unevaluated expressions (e.g., filtering conditions),

attributes, functions, types, or even other operators. A

composite operator that takes another operator as a parameter

is a higher-order composite. This feature is useful for making

graph shapes reusable without requiring each instance of

the sub-graph to contain the exact same operators. Prior

work on hierarchically composed stream graphs lacked

higher-orderness (e.g., see the prior work in [3], [27]).

Composites in SPL satisfy the design goals of consistent

syntax, flexible and even higher-order invocations, and

hygienic scoping behavior. Since composite operators make

sub-graphs reusable, they can reduce the amount of code

compared to repeating similar sub-graphs over and over.

In one case study, a Telco benchmark required 7,029 lines

of SPL code to write [33]. After expanding all composite

operators, this yielded 316,725 lines of SPL code, an

expansion factor of 45. This application used nested chains

of up to six composite operator invocations and contained

33 higher-order composites.

Optimizing via types and operator models
An optimization is safe if it does not change the behavior

of the program. The program may run faster after the

optimization, but it must not exhibit any observable behavior

that could not be observed on the unoptimized version as

well. It is up to the compiler and runtime system to establish

that optimizations are safe. This can be challenging in the

presence of user-defined code. Therefore, prior work on

streaming systems either minimizes user-defined code or

compromises on safety. Relational streaming systems such as

CQL [16] minimize user-defined code by relying mostly on a

small set of built-in relational operators. The semantics of

these operators is well understood and can be safely exploited

for optimization. On the other hand, recent streaming

systems such as S4 [4] or Storm [29] maximize user-defined

code by compromising on safety. They optimize based on

assumptions about user-defined code that they cannot

establish automatically and may thus yield surprising

behavior. The SPL compiler performs several optimizations

in the presence of user-defined code. To establish safety,

the SPL compiler relies on data types and operator models.

There are four design goals for types and operator models

in SPL. The first goal is static error checking. Diagnosing

errors at runtime is difficult in any parallel language,

streaming or not. Since streaming applications run forever

(at least in theory), and since SPL applications run in parallel

on multi-cores and distributed on clusters, diagnosing errors

at runtime can be a challenge. Hence, the SPL compiler

strives to diagnose errors as early as possible, so the

programmer can fix them before runtime. The second goal

is to enable optimizations based on information gleaned

by the compiler as it processes the application code. The

type system and operator models help the SPL compiler use

memory more sparingly, keep the cost of serializing data

for network communication low, avoid copying data

unnecessarily, limit runtime type checks, and even take

advantage of more parallelism. The third goal is conciseness:

specifying types should not create more boiler-plate code

than necessary. (Here, the term boiler-plate code refers to

code that needs to be written to satisfy the compiler and

avoid compiler errors, without contributing much value of its

own.) The fourth goal is support for native code. Native code

is non-SPL code used from an SPL application, either via

primitive operators or via native functions, i.e., functions

written in C++ that can be called from SPL. The author of a

primitive operator or native function must provide sufficient

information to the SPL compiler to enable it to be safely

optimized in the context of an SPL application.

SPL type system and optimization

SPL has a strong static type system. The type system is

strong, because it minimizes implicit conversions, where a

value of one type is treated as a value of another type without

an explicit cast. In addition, the type system is static, because

all types are known at compile time. SPL supports three

collection types: list, set, and map. All three collection types

are generic, meaning that, for instance, a list of integers is

a different type than a list of strings. SPL users can write

generic native functions that work on both, for instance, to

perform sorting. All composite types (collections or tuples) in

SPL support full nesting. However, SPL intentionally does

not provide any pointer types. Instead, all types have copy

7 : 8 M. HIRZEL ET AL. IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

semantics. Copy semantics make sense for a distributed

streaming language, since data traveling on streams between

servers must be copied. Avoiding pointers minimizes

aliasing, where two names refer to the same entity.

Minimizing aliasing helps optimization, because the compiler

can establish more easily whether pieces of code interfere

with one another.

In languages such as C, C++, or Java, the programmer

can use a keyword to declare a variable constant. That means

that the default is mutable (non-constant) variables in these

languages, which are harder for the compiler to optimize.

SPL flips this default around: variables in SPL are immutable

by default unless explicitly declared mutable. Since most

variables are, in fact, immutable, this leads to more concise

code that is easier to optimize. Of course, the SPL compiler

will generate an error message when the code attempts

to modify an immutable variable. Aside from variable

mutability, SPL also allows functions to be declared as

stateful or stateless. The result of a stateless function depends

only on its parameters, making it easier to optimize. SPL

functions are stateless by default unless explicitly declared

stateful. The compiler checks whether the declaration

is correct by analyzing whether the function calls other

stateful functions.

SPL supports a large number of primitive types. For

example, integers include four signed types int8, int16,

int32, int64 and four unsigned types uint8, uint16, uint32,

uint64 at different bit-widths. In addition, there are Booleans,

binary and decimal floating-point types at different

bit-widths, complex numbers, enumerations, timestamps,

8-bit and 16-bit strings, and blobs (binary large objects).

The large number of primitive types gives the programmer

more control over data representation. This is good for

performance, since the size of data items affects the costs

of serialization, cache footprint, and network transport.

SPL operator models and optimization

An operator model is an XML document written by the

operator developer and used by the SPL compiler [31].

Figure 2 illustrates how operator models are used during

compilation. The SPL compiler uses the operator model

for two purposes: first, to check for errors in the operator

invocation, and second, to make optimization decisions. The

core portion of the operator model declares the signature

of the operator: the number of input and output ports, names

of parameters, restrictions on what kind of arguments the

parameters expect, and operator-specific intrinsic functions

such as the Sum function for the Aggregate operator. If the

operator invocation violates any of these restrictions, the SPL

compiler generates an error message.

The operator model includes information on port

mutability. Specifically, an operator can declare that it

does not modify data items arriving on an input port or that

it tolerates a downstream operator modifying data items

departing from an output port. The SPL compiler uses this

information to minimize the number of copies necessary for

correct behavior. The operator model can declare certain

input ports as control ports. A control port is usually used

in a feedback loop and does not trigger further data items.

The SPL compiler uses knowledge about control ports to

decide when it is safe to fuse cyclic sub-graphs without

causing deadlocks. The fusion optimization reduces

communication costs by combining multiple operators

in the same operating-system process or even in the same

thread [34]. In the latter case, fusion is a tradeoff between

communication cost and pipeline parallelism, i.e., parallel

execution of a producer and a consumer operator on different

threads. The operator model can specify that an operator

provides a single-threaded context. In this case, the compiler

can optimize by inserting less synchronization.

Finally, in a research (i.e., non-product) branch of

InfoSphere Streams, we have prototyped the operator fission

optimization. Fission replicates an operator instance multiple

times to introduce additional parallelism [35]. To be safe,

the replicated operator must produce the same data items in

the same order as before fission. Our implementation uses

sequence numbers to keep track of the order. If the operator

is prolific (can generate multiple output data items per input

data item), this leads to duplicate sequence numbers that

make ordering more difficult. Hence, fission uses selectivity

information (information about whether the operator is

prolific or selective) from the operator model to establish

safety. Furthermore, in a distributed system, sharing state

is detrimental to performance. Hence, fission also uses state

information from the operator model to establish safety.

An operator is easy to parallelize if it is either stateless or

if each replica can work on a disjoint portion of the state.

One challenge with optimizations based on the operator

model is that the compiler must Btrust[that the information

in the operator model is correct. To this end, we keep the

operator model simple. Many programmers can just assemble

applications from existing operators, without ever needing

to write their own, making use of libraries written by IBM

and other vendors [36]. The need to write new operators

is further reduced by the logic clause and Custom operators

mentioned earlier. Only sophisticated programmers write

their own operators, with their own operator models. Another

challenge with advanced optimizations is that even if they

do not change the external behavior of the application,

they may change its internal structure, such as replicating

operators for fission. This becomes problematic if that

internal structure is visualized for debugging purposes [37].

However, this difficulty is hardly unique to SPL or even

to streaming languages. Much of the academic literature

on debugging non-streaming languages is concerned with

debugging optimized code. Our approach is to maintain

meta-information alongside the compiled application that a

debugger or visualization tool can use to keep track of the

M. HIRZEL ET AL. 7 : 9IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

mapping between what the user wrote and what the compiler

produced.

Overall, the type system and operator models in SPL

help both with static error checking and with enabling

optimizations. Furthermore, using immutability and

statelessness as the default assumption in the type system

improves conciseness. Asking the operator developer to

specify an operator model allows the SPL compiler to make

safe assumptions about semantic properties of non-SPL

native code. SPL on InfoSphere Streams achieves both

high throughput (millions of data items per second) and

low latency (on the order of microseconds) [38] as a result

of a careful implementation of the underlying distributed

streaming platform, as well as optimizations in the

SPL compiler.

Conclusion
This paper provided an overview of IBM’s SPL language

and its key features that make it suitable for Big Data

analytics. It describes SPL both from the user’s perspective,

with detailed code examples, and from the implementer’s

perspective, with substantial contributions relative to prior

work in streaming languages and systems. This paper focuses

on three primary contributions: code generation for primitive

operators, modularity via higher-order composite operators,

and innovations that make it easier for the compiler to safely

optimize user-defined code. By providing flexible support

for primitive and composite operators, SPL allows users to

write a broad range of expressive analytics. By supporting

efficient code with code generation and optimizations, SPL is

suitable for handling big data at massive scales. SPL is the

primary means for programming InfoSphere Streams [2]

applications. While InfoSphere Streams is a product with

a growing user community, SPL is also the subject of

ongoing research on languages and optimizations for big

data in motion.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of Cluster File
Systems, Inc., or Sun Microsystems in the United States, other
countries, or both.

References
1. M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, M. Mendell,

H. Nasgaard, R. Soulé, and K.-L. Wu, BSPL stream processing
language specification,[IBM Research, Yorktown Heights, NY,
USA, Tech. Rep. RC24 897, 2009.

2. IBM Corporation, InfoSphere Streams. [Online]. Available: http://
www.ibm.com/software/data/infosphere/streams/

3. N. Seyfer, R. Tibbetts, and N. Mishkin, BCapture fields:
Modularity in a stream-relational event processing language,[in
Proc. Conf. DEBS, 2011, pp. 15–22.

4. L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, BS4: Distributed
stream computing platform,[in 2010 IEEE Int. Conf. Data
Mining Workshops (ICDMW), 2010, pp. 170–177.

5. J. Dean and S. Ghemawat, BMapReduce: Simplified data
processing on large clusters,[in Proc. Operat. Syst. Des. Impl.
(OSDI), 2004, p. 10.

6. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, BDRYAD:
Distributed data-parallel programs from sequential building
blocks,[in Proc. Eur. Conf. Comput. Syst. (EuroSys), 2007,
pp. 59–72.

7. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
BPig Latin: A not-so-foreign language for data processing,[in
Proc. Int. Conf. Manage. Data (SIGMOD), 2008, pp. 1099–1110.

8. K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh,
C.-C. Kanne, F. Ozcan, and E. J. Shekita, BJaql: a scripting
language for large scale semistructured data analysis,[in Proc.
Conf. Very Large Data Bases (VLDB), 2011, pp. 1272–1283.

9. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, BMapReduce online,[in Proc. 7th USENIX Conf.
Netw. Syst. Des. Impl. (NSDI’10), 2010, p. 21.

10. Y. Ahmad and C. Koch, BDBToaster: A SQL compiler for
high-performance delta processing in main-memory databases,[
Proc. Very Large Data Bases (VLDB-Demo), vol. 2, no. 2,
pp. 1566–1569, Aug. 2009.

11. R. Soulé, M. Hirzel, R. Grimm, B. Gedik, H. Andrade, V. Kumar,
and K.-L. Wu, BA universal calculus for stream processing
languages,[in Proc. Eur. Symp. Progr. (ESOP), 2010,
pp. 507–528.

12. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, BThe
synchronous data flow programming language LUSTRE,[
Proc. IEEE, vol. 79, no. 9, pp. 1305–1320, Sep. 1991.

13. G. Berry and G. Gonthier, BThe ESTEREL synchronous
programming language: Design, semantics, implementation,[
Sci. Comput. Programm., vol. 19, no. 2, pp. 87–152,
Nov. 1992.

14. M. I. Gordon, W. Thies, and S. Amarasinghe, BExploiting
coarse-grained task, data, and pipeline parallelism in stream
programs,[in Proc. Arch. Supp. Programm. Lang. Op. Syst.
(ASPLOS), 2006, pp. 151–162.

15. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
V. Raman, F. Reiss, and M. A. Shah, BTelegraphCQ: Continuous
dataflow processing for an uncertain world,[in Proc. Conf. Innov.
Data Syst. Res. (CIDR), 2003, p. 668.

16. A. Arasu, S. Babu, and J. Widom, BThe CQL continuous query
language: Semantic foundations and query execution,[VLDB J.,
vol. 15, no. 2, pp. 121–142, Jun. 2006.

17. D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, BAurora:
A new model and architecture for data stream management,[
VLDB J., vol. 12, no. 2, pp. 120–139, Aug. 2003.

18. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin,
E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik, BThe design of
the Borealis stream processing engine,[in Proc. Conf. Innov. Data
Syst. Res. (CIDR), 2005, pp. 277–289.

19. R. S. Barga, J. Goldstein, M. Ali, and M. Hong, BConsistent
streaming through time: A vision for event stream processing,[in
Proc. Conf. Innov. Data Syst. Res. (CIDR), 2007, pp. 363–373.

20. B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, BSPADE:
The System S declarative stream processing engine,[in Proc.
Int. Conf. Manage. Data (SIGMOD), 2008, pp. 1123–1134.

21. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, BNiagaraCQ:
A scalable continuous query system for internet databases,[in
Proc. Int. Conf. Manage. Data (SIGMOD), 2000, pp. 379–390.

22. J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, BEfficient
pattern matching over event streams,[in Proc. Int. Conf. Manage.
Data (SIGMOD), 2008, pp. 147–160.

23. A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and
W. White, BCayuga: A general purpose event monitoring system,[
in Proc. Conf. Innov. Data Syst. Res. (CIDR), 2007, pp. 412–422.

24. IBM Corporation, WebSphere Operational Decision
Management. [Online]. Available: http://www.ibm.com/
software/decision-management/operational-decision-management/
websphere-operational-decision-management/

7 : 10 M. HIRZEL ET AL. IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

25. Progress Software, Progress Apama. [Online]. Available:
http://www.progress.com/en/apama/index.html

26. TIBCO, TIBCO BusinessEvents. [Online]. Available: http://www.
tibco.com/multimedia/ds-businessevents_tcm8-796.pdf

27. O. Etzion and P. Niblett, Event Processing in Action. Greenwich,
CT, USA: Manning Publ., 2010.

28. M. Hirzel, BPartition and compose: Parallel complex event
processing,[in Proc. Conf. DEBS, 2012, pp. 191–200.

29. N. Marz, Storm: Distributed and fault-tolerant real-time
computing. [Online]. Available: http://storm-project.net/

30. M. Mendell, H. Nasgaard, E. Bouillet, M. Hirzel, and B. Gedik,
BExtending a general-purpose streaming system for XML,[in
Proc. Int. Conf. Extend. Database Technol. (EDBT), 2012,
pp. 534–539.

31. B. Gedik and H. Andrade, BA model-based framework for building
extensible, high performance stream processing middleware and
programming language for IBM InfoSphere Streams,[Softw.
Pract. Exp. (SP&E), vol. 42, no. 11, pp. 1363–1391, Nov. 2012.

32. E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba,
BHygienic macro expansion,[in Proc. LISP Funct. Programm.
(LFP), 1986, pp. 151–161.

33. M. Hirzel and B. Gedik, BStreams that compose using macros
that oblige,[in Proc. Workshop Partial Eval. Progr. Manipul.
(PEPM), 2012, pp. 141–150.

34. R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf,
K.-L. Wu, H. Andrade, and B. Gedik, BCOLA: Optimizing stream
processing applications via graph partitioning,[in Proc. Int.
Middleware Conf. (MIDDLEWARE), 2009, pp. 308–327.

35. S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu,
BAuto-parallelizing stateful distributed streaming applications,[in
Proc. Int. Conf. Parallel Arch. Compil. Techn. (PACT), 2012,
pp. 53–64.

36. IBM Corporation, Streams Exchange: A place for InfoSphere
Streams application developers to share code and ideas
with others. [Online]. Available: https://www.ibm.com/
developerworks/wikis/display/streams/Home

37. W. De Pauw, M. Letia, B. Gedik, H. Andrade, A. Frenkiel,
M. Pfeifer, and D. Sow, BVisual debugging for stream
processing applications,[in Proc. Int. Conf. Runtime Verific.,
2010, pp. 18–35.

38. Y. Park, R. King, S. Nathan, W. Most, and H. Andrade,
BEvaluation of a high-volume, low-latency market data processing
system implemented with IBM middleware,[Softw. Pract. Exp.,
vol. 42, no. 1, pp. 37–56, Jan. 2012.

Received July 11, 2012; accepted for publication
August 7, 2012

Martin Hirzel IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (hirzel@us.ibm.
com). Dr. Hirzel has worked at IBM since 2004, conducting
programming languages research. In the SPL team, his focus is
on the language design and the compiler front-end.

Henrique Andrade Goldman Sachs, New York, NY 10282 USA
(hcma@hcma.info). Dr. Andrade worked at IBM from 2004 to 2010.
While at IBM, he co-invented SPADE, the precursor to SPL, and
helped launch the SPL project. For a period of time, he was also the
runtime architect for InfoSphere Streams.

Buğra Gedik Department of Computer Engineering, Bilkent
University, Bilkent, Ankara 06800, Turkey (bgedik@cs.bilkent.edu.tr).
Dr. Gedik worked at IBM from 2006 to 2012. While at IBM, he
co-invented SPADE and helped launch the SPL project. For a period of
time, he also served as the chief architect for InfoSphere Streams.

Gabriela Jacques-Silva IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(g.jacques@us.ibm.com). Dr. Jacques-Silva joined IBM in 2010.
In the SPL team, her focus is on fault tolerance.

Rohit Khandekar Knight Capital Group, Jersey City, NJ 07310
USA (rkhandekar@gmail.com). Dr. Khandekar worked at IBM from
2008 to 2012. In the SPL team, his contributions included the fusion
optimizer.

Vibhore Kumar IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (vibhorek@us.
ibm.com). Dr. Kumar joined IBM in 2008. In the SPL team, he is
working on distributed shared variables.

Mark Mendell IBM Canada, Markham, ON, L6G 1C7 Canada
(mendell@ca.ibm.com). Mr. Mendell has been at IBM since 1991.
He worked on C++ compilers and was team lead for the TOBEY
optimizer for several years. In the SPL team, his focus is on the
compiler back-end and libraries.

Howard Nasgaard IBM Canada, Markham, ON, L6G 1C7
Canada (nasgaard@ca.ibm.com). Mr. Nasgaard has been at IBM
since 1977 and has worked on compilers for 17 years. In the SPL team,
his focus is on the compiler front-end.

Scott Schneider IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (scott.a.s@us.ibm.
com). Dr. Schneider has been at IBM since 2011. In the SPL team,
his focus is on optimizations and, in particular, on auto-parallelization.

Robert Soulé Cornell University, Department of Computer
Science, Ithaca, NY 14850 USA (soule@cs.cornell.edu). Dr. Soulé
worked at IBM as an intern and a co-op student while he was a student
at New York University. In the SPL team, he focused on translating
SPADE to SPL and on formalizing the programming model as a
calculus.

Kun-Lung Wu IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (klwu@us.ibm.
com). Dr. Wu has worked at IBM for more than 20 years. He manages
the SPL team, both on the research side and in product development.
Dr. Wu was part of the SPL team from back when it was still called
SPADE.

M. HIRZEL ET AL. 7 : 11IBM J. RES. & DEV. VOL. 57 NO. 3/4 PAPER 7 MAY/JULY 2013

