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eMax-Planck-Institut für Physik, Werner-Heisenberg-Institut,

D-80805, München, Germany

E-mail: boehm@mathematik.uni-kl.de, mwittman@rhrk.uni-kl.de,

wuzihao@mail.ustc.edu.cn, yingxu@student.ethz.ch, yzhphy@ustc.edu.cn

Abstract: We present an efficient method to shorten the analytic integration-by-parts

(IBP) reduction coefficients of multi-loop Feynman integrals. For our approach, we develop

an improved version of Leinartas’ multivariate partial fraction algorithm, and provide a

modern implementation based on the computer algebra system Singular. Furthermore,

we observe that for an integral basis with uniform transcendental (UT) weights, the de-

nominators of IBP reduction coefficients with respect to the UT basis are either symbol

letters or polynomials purely in the spacetime dimension D. With a UT basis, the par-

tial fraction algorithm is more efficient both with respect to its performance and the size

reduction. We show that in complicated examples with existence of a UT basis, the IBP
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1 Introduction

With the end of Large Hadron Collider (LHC) run-II and the upgrade to HL-LHC [1, 2],

there is an eager demand for high-precision physics computations. The integration-by-

parts (IBP) reduction is a critical and often bottleneck step for the evaluation of multi-loop

scattering amplitudes in precision physics. Via the IBP identities [3, 4], a large number of

Feynman integrals can be reduced to a small set of master integrals.

There are many publicly available IBP reduction programs, like AIR, FIRE, Kira,

Reduze and LiteRed [5–16], based on the Laporta algorithm [17] and/or the algebra

structures of IBP relations [18–20]. In recent years, many new ideas and programs have

appeared for use in the computation of complicated multi-loop IBP reductions, for exam-

ple, syzygy approach [21–26], finite-field interpolation [27–31], module intersection [32, 33],

intersection theory [34–37], η expansion [38–42] and direct solution of IBP recursive rela-

tions [43].

Besides the development of the computational techniques for IBP reductions, there is

another problem which was less addressed in the literature. Frequently, after an analytic
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IBP reduction of complicated multi-loop Feynman integrals, we obtain reduction coeffi-

cients with a huge size, as rational functions of the spacetime parameter D and kinematic

variables. The huge coefficients are difficult to store, to transfer, to use for analytic scatter-

ing amplitude computations, and also very cumbersome for numerical evaluations. Thus,

an important question arises:

How do we simplify the analytic IBP reduction coefficients in practice?

One natural idea to make analytic IBP reduction coefficients shorter, is to choose a

“good” master integral basis. Early attempts were made to test different integral orderings

in the Laporta algorithm, in order to get shorter reduction coefficients. However, it is

difficult to dramatically shorten IBP reduction coefficients by simply changing the integral

ordering. Recently, new methods were presented [44, 45] to find a good master integral

basis such that the dimensional parameter D factorizes out in the final IBP reduction

coefficients and makes the reduction much easier. In ref. [33], the master integral basis

with uniform transcendental (UT) weights [46, 47] was suggested to shorten the size of

IBP reduction coefficients.

In this paper, we propose a powerful method to reduce the byte size of the analytic

IBP reduction coefficients, which is based on our modern version of Leinartas’ multivari-

ate partial fraction algorithm [48, 49]. Leinartas’ algorithm has been used for solving basis

transformation matrix in Meyer’s UT determination algorithm [50], and for the reconstruc-

tion and simplification of the planar two-loop five-parton pentagon function coefficients [51].

We develop an improved version of Leinartas’ algorithm and implement it in a library for

the open source computer algebra system Singular [52]. From the examples we have

tested, this method can rewrite a huge rational function in IBP reduction coefficients as a

much shorter sum of simpler rational functions.

The improvements to Leinartas’ algorithm include an additional decomposition step

between the first step (Nullstellensatz decomposition) and second step (algebraic depen-

dence decomposition) of the algorithm which reduces the size of the denominators (and

numerators) by doing a (multivariate) division with remainder by the denominator fac-

tors. Moreover, in addition to Leinartas’ original algorithm, we add a third step in the

algorithm, which implements a numerator decomposition as suggested in [50] and uses a

syzygy computation to reduce the size of the decomposition expression. In particular in

the case of examples arising from IBP reductions, due to the additional decomposition step

and by reducing the size of the algebraic relations used, we were able to drastically reduce

the runtime of the second step of Leinartas’ algorithm, which relies on algebraic relations

between the denominator factors. For this we make use of Singular’s efficient algorithms

for calculating Gröbner bases, syzygy modules and polynomial factorizations. We provide

a detailed description of the algorithm in pseudocode.

As an algorithm based on partial fractioning, the size reduction ratio and the running

time depend on the degree of irreducible denominators. We combine our partial fractioning

approach with the strategy of choosing a “good” master integral basis. In particular, as

mentioned in ref. [33], we suggest that when a UT master integral basis for the integral

family under consideration exists, it is advantageous to first reduce Feynman integrals to
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the UT basis, and then run our partial fraction algorithm to shorten the size of the IBP

coefficients. The reason is that, in the examples we have tested, for Feynman integrals

G[α1, . . . , αj ] =

∫ L∏
j=1

dDlj

iπD/2
1∏n

i=1D
αi
i

, αi ∈ Z (1.1)

with each Di defined as a square of a Z-linear combination of loop and external momenta

minus the mass term, IBP reduction coefficients with respect to a UT basis have the

following good properties:

• The spacetime dimension parameter D factorizes out in the denominator of the re-

duction coefficients.

• Except the factors purely in D’s, the other factors in the IBP reduction coefficients’

denominators, are (a subset of) the symbol letters.

Therefore, using a UT basis, we usually get much simpler irreducible factors in the denom-

inators of IBP reduction coefficients. This property makes the partial fractioning much

faster and the result usually shorter than that from the usual master integral choice.

We tested various IBP reduction coefficients from simple diagrams to complicated

frontier diagrams. In some complicated IBP reduction coefficients examples, we observe

that our partial fractioning algorithm, combined with the UT basis choice, dramatically

shortens the coefficient size by a factor of as large as 100. In the appendix B, we explicitly

list an example of one coefficient, before and after the partial fraction decomposition to

provide an impression of this dramatic reduction of size.

We distribute the Singular code of our partial fraction implementation as an open

source Singular library for download:

https://github.com/Singular/Singular/tree/spielwiese/Singular/LIB/pfd.lib

This paper is organized as follows: in section 2 we set up the notations and review

the concepts of IBP reduction and master integrals. In section 3, we present our improved

verion of Leinartas’ algorithm to shorten IBP reduction coefficients. In section 4, we

provide several IBP reduction simplifications, and also emphasize the benefit of using UT

bases in case they exist. In section 5, we summarize our discoveries and discuss possible

directions for future research. In the appendices, we provide a manual describing the use

of our Singular library for multivariate partial fractioning, and an explicit example of the

coefficient size reduction.

2 IBP and master integrals

2.1 Integration-by-parts identities and master integrals

There are many algebraic relations between different Feynman integrals and it is very

efficient to use these relations to obtain further Feynman integrals from the ones we already

know. A very useful set of relations can be obtained via the integration-by-parts (IBP)

identities, which relate different integrals of a given integral family.
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Consider a Feynman integral with any loops∫ L∏
j=1

dDlj

iπD/2
1∏n

i=1D
αi
i

, (2.1)

where L is the number of loops, αi are integer indisces and the denominators are given by

Di =
L∑

j≥k≥1
Ajki lj · lk +

L∑
i=1

Bj
i · lj + Ei, (2.2)

i.e are quadratic or linear functions of the external momenta pi and the loop momenta li.

The standard IBP relation [3, 4] is,

0 =

∫ L∏
j=1

dDlj

iπD/2
∂

∂lm

(
qk

n∏
i=1

D−αii

)
, (2.3)

where m = 1, . . . , L with qk a linear combination of loop momenta and external momenta.

With the IBP identities, we can find the basis of a given integral family, which are

called master integrals (MIs). The fact that the number of master integrals is always finite

was proven in ref. [53].

So a Feynman integral can be written as a linear combination of master integrals,

I[α1, . . . , αn] =
∑
i

ciIi, (2.4)

here αi are integer indices of denominators and Ii are master integrals.

In practice, IBP reduction can be done by many algorithms, such as the Laporta algo-

rithm [17], the algebra structures of IBP relations [18–20], finite-field interpolation [27–31],

module instersection [32], intersection theory [34], η expansion [39] and direct solution of

IBP recursive relations [43]. And there are also many public IBP reduction codes, like

AIR, FIRE, Kira, Reduze, LiteRed [5–15].

2.2 Differential equation and UT basis

Since the master integrals are functions of scalar products of external momenta, it is natural

to consider the derivatives with respect to the scalar products. By introducing a vector

~I =


I1
I2
. . .

In

 , (2.5)

here Ii are the master integrals of a corresponding Feynman diagram, we can set up the

following differential equation

d~I = (dA)~I, (2.6)
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where A is a n× n matrix. If we write down a differential equation using scalar products,

then every element of A is a rational function of scalar products and spacetime dimension D.

While, Henn showed that with a new choice of MIs, differential equations can simplify

in a way that they can be solved easily order by order [46, 47]. With suitable MIs, the

differential equation can be written like that

d~I ′ = ε(dA)~I ′ (2.7)

with

A =
∑

Ak logSk. (2.8)

This is called the canonical form of differential equations, here we set D = 4− 2ε and each

Ak is a constant matrix, Sk are functions of Lorentz invariants, which are called symbol

letters.

With (2.7), the differential equations can be solved order by order in an ε-order ex-

pansion:

~I ′ = ~I ′0 + ε~I ′1 + ε2 ~I ′2 + . . . , (2.9)

d~I ′1 = (dA)~I ′0, d~I ′2 = (dA)~I ′1 . . . .

The key property of these suitable master integrals can be described with the concept

of the degree of transcendentality T (f) of a function. T (f) defines the fold number of

iterated integrals needed in the function f . Moreover, we require T (f1f2) = T (f1)+T (f2).

So that, we can see

T (Lik(x)) = k, T (log x) = 1, T (ζn) = T (Lin(1)) = n, (2.10)

T (algebraic factors) = 0, T (ζ2) = T
(
π2

6

)
= 2⇒ T (π) = 1.

If the function also satisfies

T
(
d

dx
f(x)

)
= T (f(x))− 1, (2.11)

then the function f is called a pure function. With this definition we can see that if we

multiply a pure function with an algebraic function of x, the resulting function would still

have the same uniform transcendentality but no longer be a pure function anymore, since

the derivative is also applied on the algebraic function.

Because of (2.7) and (2.9), we can see that the functions in ~I ′k are all pure functions,

hence the ~I ′ is called uniform transcendental (UT) basis.

There are many ways to construct a UT basis. For examples, we can construct it

via Fuchsia and epsilon, based on the Lee’s algorithm [54–56]. Meyer proposed a package

CANONICA to find a transformation to get UT integrals [50]. What is more, by means

of leading singularity analysis and the dlog ansatz, we can also construct a UT basis [57].

A UT basis can be also constructed via Baikov analysis [58], and systematically via the

dlog form in a general representation and the intersection theory [59]. And recently, it was

discovered that the full UT basis from only one UT integral [60].

– 5 –



J
H
E
P
1
2
(
2
0
2
0
)
0
5
4

2.3 Symbol of a transcendental function

In section 2.2, we proposed the canonical form of differential equation in (2.7) and (2.8).

In the case where the symbol letter alphabet can be written in terms of rational functions

(in at least one variable), one can write the answer in terms of Goncharov polylogarithms

(also called hyperlogarithms, multiple logarithms) [47, 61]. The Goncharov polylogarithms

can be defined iteratively as follows,

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t), ai ∈ C, (2.12)

with

G(z) ≡ G(; z) = 1. (2.13)

In the special case where all the ai are zero, we define, using the obvious vector notation

~an = (a, ..., a), a ∈ C,

G(~0n; z) =
1

n!
logn z, G(~an; z) =

1

n!
logn

(
1− z

a

)
. (2.14)

A Goncharov polylogarithm Tk of transcendentality degree k can be written as a linear

combination (with rational coefficients) of k-fold iterated integrals of the form [62]

Tk =

∫ b

a
d logR1 ◦ . . . ◦ d logRk, (2.15)

where a and b are rational numbers, Ri(t) are rational functions with rational coefficients

and the iterated integrals are defined recursively by∫ b

a
d logR1 ◦ . . . ◦ d logRk =

∫ b

a

(∫ t

a
d logR1 ◦ . . . ◦ d logRk−1

)
d logRk(t), (2.16)

in physics, there d logRk are just the ones appeared in eq (2.7), with Rk equal Sk in (2.8).

There is one useful quantity associated with Tk called the symbol, which is an element

of the k-fold tensor product of rational functions modulo constants [63], denoted by S. The

symbol of the function Tk is

symbol(Tk) ≡ S(Tk) = R1 ⊗R2 ⊗ . . .⊗Rk, (2.17)

that is why Sk in (2.8) are called symbol letters.

There are many other properties of the symbol, see refs. [64, 65] for a discussion of

their properties.

3 Improved Leinartas’ algorithm and modern implementation

In this section we describe an algorithm based on the work of Leinartas [48, 49] to reduce the

size of rational functions by writing them as a sum of functions with “smaller” numerators

and denominators.
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The improvements to the algorithm described in the original paper by Leinartas lie

mainly in an additional decomposition step described in algorithm 4, which reduces the

size of the numerators and denominators by doing a (multivariate) division with remainder

by the denominator factors, as well as the changes discussed in Remark 3.13, which aim at

improving the performance of the second decomposition step (algorithm 2) by reducing the

size of the required annihilating polynomials. In addition to Leinartas’ original algorithm

we also add, as suggested in [50], a numerator decomposition as the final step of the

algorithm and use a syzygy module computation to reduce the size of the decomposition

(see algorithm 3 and Remark 3.11). Thus, while Leinartas’ original algorithm calculates a

decomposition satisfying only the first two conditions in Theorem 3.5, we add an additional

condition. In our implementation, we make use of the computer algebra system Singular,

which provides efficient algorithms for the calculation of Gröbner bases and syzygy modules

as well as polynomial factorization.

To state more precisely what we mean by “smaller” numerators/denominators, we first

need the following definitions. The goal is then an algorithmic proof of Theorem 3.5. For

this, let in the following K[x1, . . . , xd] or short K[x] be the polynomial ring over some field

K in d variables x = (x1, . . . , xd) and let K denote the algebraic closure of K.

Definition 3.1. (algebraic dependence) A set {q1, . . . , qm} ⊆ K[x] of m polynomials is

called algebraically dependent if there exists a nonzero polynomial p ∈ K[y1, . . . , ym] in

m variables, such that p(q1, . . . , qm) = 0 in K[x]. Call p an annihilating polynomial of

q1, . . . , qm.

Definition 3.2 (monomial ordering). A monomial ordering for K[x] is a total ordering

“>” on the set
{
xα
∣∣α ∈ Nd

}
of monomials (writing “xα” for xα1

1 · . . . · x
αd
d ), such that > is

compatible with multiplication, i.e. for all α, β, γ ∈ Nd it holds

xα > xβ ⇒ xαxγ > xβxγ (3.1)

and > is called global if it is a well ordering or equivalently if 1 < xi for all i = 1, . . . , d. For

any polynomial f ∈ K[x] write L(f) for its lead monomial, that is the largest monomial

with respect to >.

Definition 3.3 (Gröbner basis). A Gröbner basis of an ideal I ⊆ K[x] with respect to a

given global monomial ordering is a finite subset G ⊆ I such that the ideals generated by

all lead monomials of G and of I coincide:

〈L(g)|g ∈ G〉 = 〈L(f)|f ∈ I〉 (3.2)

Definition 3.4 (division with remainder). After the choice of a (global) monomial or-

dering there exists an algorithm (multivariate reduced division with remainder, (see [66],

section 3 Theorem 3) to determine for any polynomials f, g1, . . . , gr ∈ K[x] a division

expression

f = r +

r∑
i=1

aigi (r, a1, . . . , ar ∈ K[x]) (3.3)

– 7 –
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such that none of the lead monomials L(aigi) are bigger than L(f) and no term of r is

divisible by any lead monomial L(gi). Call a polynomial r with this property reduced with

respect to g1, . . . , gr.

In case G = (g1, . . . , gr) is a Gröbner basis of an ideal I ⊆ K[x], it can be shown ([66],

section 6 Proposition 1), that the remainder r only depends on the monomial ordering and

I. In this case call r reduced with respect to I.

Call G a reduced Gröbner basis, if every g ∈ G is reduced with respect to G\{g}.
It can be shown ([66], section 7 Proposition 6), that for any ideal I ⊆ K[x] a reduced

Gröbner basis exists and is unique up to multiplication with constants and reordering of

the elements. It can be calculated with Buchberger’s algorithm ([66], section 7 Theorem 2).

Theorem 3.5 (partial fraction decomposition). Let f, g ∈ K[x] and let g =
∏m
i=1 q

ei
i be

the factorization of g into irreducible factors (ei ∈ N). Then there exists a decomposition

f

g
=

∑
S⊆{1,...,m}

fS∏
i∈S q

bi
i

(bi ∈ N, fS ∈ K[x]) (3.4)

where all nonzero summands satisfy the following conditions

(1) the polynomials {qi|i ∈ S} have a common zero in K
d

(2) the polynomials {qi|i ∈ S} are algebraically independent

(3) fS is reduced with respect to the ideal 〈qi|i ∈ S〉 ⊆ K[x]

Note that (3) depends on the monomial ordering. In order to get numerator polynomi-

als of low degree, a degree ordering (i.e. deg(xα) < deg(xβ)⇒ xα < xβ for any monomials

xα,xβ in K[x]) should be chosen. In our Singular implementation we used the graded

reverse lexicographic ordering defined by

xα >grevlex xβ :⇔ deg(xα) > deg(xβ) or deg(xα) = deg(xβ)

and the last nonzero entry of α− β is negative (3.5)

Furthermore condition (2) ensures, that at most d different irreducible factors occur in

each denominator of the decomposition, since it can be shown, that any set of at least

d + 1 polynomials (in d variables) is algebraically dependent. (This follows directly from

the Jacobian criterion 3.7.)

In view of condition (1) in Theorem 3.5, the following corollary to Hilbert’s weak

Nullstellensatz can be used to eliminate factors from the denominators if the qi have no

common zero.

Lemma 3.6 (Nullstellensatz certificate). Polynomials f1, . . . , fm ∈ K[x] have no common

zero in K
d

if and only if the generated ideal is trivial, i.e. 〈f1, . . . , fm〉 = 〈1〉 = K[x].

In this case there exist polynomials h1, . . . , hm ∈ K[x] such that

1 =
m∑
i=1

hifi (3.6)

Call (h1, . . . , hm) a Nullstellensatz certificate for (f1, . . . , fm).

– 8 –
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Proof. This is exactly the weak Nullstellensatz ([66], secion 4.1 Theorem 1) with the excep-

tion, that we require hi ∈ K[x] instead of hi ∈ K[x]. However the equation 1 =
∑m

i=1 hifi
can be seen as a set of linear equations (with coefficients in K) in the coefficients of the

polynomials hi and by the weak Nullstellensatz we know, that it is solvable over K. But

then it is solvable over K as well, since all the coefficients in these linear equations lie in

K. Hence we may assume h1, . . . , hm ∈ K[x].

Given a rational function f/g as in Theorem 3.5 for which the irreducible factors qi of

g have no common zero in K
d
, we know that qe11 , . . . , q

em
m have no common zero as well and

if (h1, . . . , hm) is a Nullstellensatz certificate, we can simply multiply f by 1 =
∑m

k=1 hkq
ek
k

to get a decomposition

f

g
=
f ·
∑m

k=1 hkq
ek
k∏m

i=1 q
ei
i

=
m∑
k=1

f · hk∏m
i=1,i 6=k q

ei
i

(3.7)

where each denominator contains only m− 1 different irreducible factors.

To calculate this decomposition (algorithm 1), we compute a reduced Gröbner basis G

of 〈qe11 , . . . , qemm 〉 as well as the transformation matrix T from the original ideal generators

qe11 , . . . , q
em
m to G. This can be done with Buchberger’s algorithm for the computation of

Gröbner bases as implemented in the Singular function liftstd.

Input: rational function f/g where f, g ∈ K[x] and g =
∏m
i=1 q

ei
i for irreducible

qi ∈ K[x]

Output: set of rational functions with sum f/g

1: calculate the reduced Gröbner basis G of 〈qe11 , . . . , qemm 〉 as well as the

transformation matrix T from the generators qeii to G

2: if G = {c} for c ∈ K (so 〈qe11 , . . . , qemm 〉 = 〈1〉) then

3: using T , find polynomials hi such that
∑m

i=1 hiq
ei
i = 1 (namely hi = Ti1/c)

4: return

{
f ·hk∏m

i=1,i 6=k q
ei
i

∣∣∣∣k = 1, . . . ,m

}
5: else

6: return
{
f
g

}
7: end if

Algorithm 1. NSSdecompStep (Nullstellensatz decomposition step).

Note that 〈qe11 , . . . , qemm 〉 = 〈1〉 if and only if G = {c} for c ∈ K (constant polynomial).

This follows directly from the uniqueness of reduced Gröbner bases.

Repeated application of algorithm 1 will yield a decomposition satisfying condition (1)

in Theorem 3.5. For (2) let’s assume f/g is a rational function and g =
∏m
i=1 q

ei
i as in

Theorem 3.5. There is a simple criterion to test for algebraic dependence:

Lemma 3.7 (Jacobian criterion). A set of m polynomials {f1, . . . , fm} ⊆ K[x] is alge-

braically independent if and only if the Jacobian matrix
(
∂fi
∂xj

)
i,j
∈ K[x]m×d has rank m

over the field K(x) of rational functions. (A proof can be found in [67].)

– 9 –
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Corollary 3.8. A set of polynomials {q1, . . . , qm} ⊂ K[x] is algebraically dependent if and

only if {qe11 , . . . , qemm } is (ei ∈ N>0).

Proof. This follows directly from Lemma 3.7 since(
∂ (qeii )

∂xj

)
i,j

=

(
eiq

ei−1
i

∂qi
∂xj

)
i,j

= T ·
(
∂qi
∂xj

)
i,j

(3.8)

where T is the invertible diagonal matrix diag(e1q
e1−1
1 , . . . , emq

em−1
m ) ∈ K(x)m×m. So the

Jacobian matrices of {q1, . . . , qm} and {qe11 , . . . , qemm } have the same rank over K(x).

If now the factors q1, . . . , qm of the denominator g are algebraically dependent, then so

are qe11 , . . . , q
em
m and if p ∈ K[y] = K[y1, . . . , ym] is an annihilating polynomial we can write

p = cαyα +
∑
β∈Nm

deg(p)≥|β|≥|α|

cβy
β (cα, cβ ∈ K, cα 6= 0) (3.9)

such that cαyα is one of the terms of smallest degree (using multi-indices β ∈ Nm, so

deg(yβ) = |β|= β1 + · · ·+ βm). Writing q for the vector (qe11 , . . . , q
em
m ), it holds

0 = p(q) ⇔ cαqα = −
∑
β

cβq
β

⇔ 1 = −
∑
β

cβq
β

cαqα
= −

∑
β

cβ
cα

m∏
i=1

qeiβii

qeiαii

⇒ f

g
= −

∑
β

cβ
cα
f

m∏
i=1

qeiβii

q
ei(αi+1)
i

(3.10)

Since yα has minimal degree, for every β occurring in equation (3.10) it holds βi ≥ αi + 1

for at least one index i. Therefore the factor qi does not appear in the denominator of

the corresponding term. So we obtain a sum of rational functions with at most m − 1

different irreducible factors in their denominators and thus, as with algorithm 1, repeated

application of this step leads to a decomposition satisfying condition (2) in Theorem 3.5.

But in order to turn this into an algorithm, we need a way of computing annihilating

polynomials:

Lemma 3.9 (annihilating polynomials). The annihilating polynomials of a fixed tuple

(f1, . . . , fm) of polynomials in K[x] = K[x1, . . . , xd] are precisely the elements of the ideal

〈y1 − f1, . . . , ym − fm〉K[x,y] ∩K[y] where y = (y1, . . . , ym).

Proof. Let p ∈ K[y] be an annihilating polynomial for f1, . . . , fm and write f =(f1, . . . , fm).

Define p̃(x,y) = p(f − y) ∈ K[x,y]. Then p̃(x,0) = p(f) = 0 and thus every term

of p̃ must be divisible by some yi (1 ≤ i ≤ m), hence p̃ ∈ 〈y1, . . . , ym〉K[x,y]. But since

p̃(x, f−y) = p(y) = p (replacing each yi by fi−yi), we get p ∈ 〈f1 − y1, . . . , fm − ym〉K[x,y].

Now assume p ∈ 〈yi − f1, . . . , ym − fm〉K[x,y] ∩K[y]. Then p =
∑m

i=1 ai · (yi − fi) for

some ai ∈ K[x,y] and thus p(f) =
∑m

i=1 ai(x, f) · (fi − fi) = 0.
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Lemma 3.10 (elimination ordering). Call a monomial ordering for the polynomial ring

K[x,y] = K[x1, . . . , xd, y1, . . . , ym] an elimination ordering for the variables x1, . . . , xd if

L(p) ∈ K[y] implies already p ∈ K[y] for any polynomial p ∈ K[x,y].

If now G is a (reduced) Gröbner basis of an ideal I ⊆ K[x,y] with respect to such an

ordering, then G ∩K[y] is a (reduced) Gröbner basis of the ideal I ∩K[y] ⊆ K[y].

(A proof can be found in [68], Lemma 1.8.3.)

Input: rational function f/g where f, g ∈ K[x] and g =
∏m
i=1 q

ei
i for irreducible

qi ∈ K[x]

Output: set of rational functions with sum f/g

1: if rank
(
∂qi
∂xj

)
i≤m,j≤d

< m then

2: calculate the reduced Gröbner basis G of 〈y1 − qe11 , . . . , ym − qemm 〉 ⊆ K[x,y]

with respect to an elimination ordering for x1, . . . , xd (y = (y1, . . . , ym))

3: G′ = G ∩K[y]

4: p = some element of G′ (choose a “simple” one, e.g. with smallest degree)

5: write p = cαy
α +

∑
β cβy

β where yα has minimal degree

6: return
{
− cβ
cα
f
∏m
i=1,i 6=k q

ei·(βi−αi−1)
i

∣∣∣β ∈ Nm
}

7: else

8: return
{
f
g

}
9: end if

Algorithm 2. algDependDecompStep (algebraic dependence decomposition step).

In order to calculate the rank of the Jacobian matrix in line 1 of algorithm 2, we can

test, if the syzygy module of the K[x]-module generated by the rows of the Jacobian matrix

(that is the module of all K[x]-linear relations of the rows) is zero (e.g. with the Singular

command syz). Instead of calculating the rank of the Jacobian, we could also just check

whether G′ is empty, however the derivatives ∂qi
∂xj

are in general of much lower degree than

qeii , so using the Jacobian criterion is cheaper, especially for small factors qi. Also, if d < m

the criterion becomes trivial since the rank is at most d.

The previous two strategies to decompose a rational function only decrease the size of

the denominators while leaving the numerator mostly untouched. To simplify the numer-

ators as well, it makes sense to do a (reduced) division with remainder of the numerator

f by a Gröbner basis G of the ideal 〈q1, . . . , qm〉 generate by all the irreducible factors in

the denominator. This gives a division expression

f = r +
∑
g∈G

agg (r, ag ∈ K[x]) (3.11)

as in Definition 3.4. Rewriting this in terms of the ideal generators q1, . . . , qm we get

f = r +
m∑
k=1

bkqk (bk ∈ K[x])

⇒ f

g
=

r∏m
i=1 q

ei
i

+
m∑
k=1

bk

q
(ek−1)
k

∏m
i=1,i 6=k q

ei
i

(3.12)
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The first term with numerator r already fulfills condition (3) of Theorem 3.5 and all other

terms have one irreducible factor qi less in their denominator. Thus repeated application

of algorithm 3 results in a decomposition satisfying (3).

Input: rational function f/g where f, g ∈ K[x] and g =
∏m
i=1 q

ei
i for irreducible

qi ∈ K[x]

Output: set of rational functions with sum f/g

1: calculate the reduced Gröbner basis G of 〈q1, . . . , qm〉 as well as the

transformation matrix T from the generators qi to G

2: divide f by G (reduced division with remainder) to get a division expression

f = r +
∑

g∈G agg where r, ag ∈ K[x1, . . . , xd] and r is reduced w.r.t. G

3: using T and (ag)g∈G, find polynomials bk such that f = r +
∑m

k=1 bkqk
4: replace (b1, . . . , bm) ∈ K[x]m by its remainder after division by a Gröbner basis of

the syzygy module of (q1, . . . , qm)

5: return

{
bk

q
(ek−1)

k

∏m
i=1,i 6=k q

ei
i

∣∣∣∣k = 1, . . . ,m, bk 6= 0

}
∪
{
r
g

}
Algorithm 3. numeratorDecompStep (numerator decomposition step).

Remark 3.11 (syzygy reduction). In order to further simplify the coefficients bk, in line

4 of algorithm 3 we replace (b1, . . . , bm) ∈ K[x]m by its remainder after division by (a

Gröbner basis of) the syzygy module {(s1, . . . , sm)|
∑m

i=1 siqi = 0} ⊂ K[x]m of (q1, . . . , qm)

(extending the notions of monomial orderings, Gröbner bases and division with remainder

from K[x] to the K[x]-module K[x]m as described in [68], Chapter 2.3). After doing this,

the polynomials bk will still satisfy equation (3.12), since we just changed (b1, . . . , bm) by

an element (s1, . . . , sm) of the syzygy module and
∑m

i=1 siqi = 0. This step is optional, but

in practice we found, that reducing the coefficients by the syzygy module can dramatically

reduce the runtime of algorithm 5. In Singular we can just apply the procedures syz and

std to calculate a Gröbner basis of the syzygy module and reduce the coefficients bk with

reduce.

Using all three decomposition techniques one after the other yields algorithm 5 which

calculates a partial fraction decomposition fulfilling conditions (1), (2) and (3), finally

proving Theorem 3.5.

However, in practice the calculation of annihilating polynomials can be quite slow if

the degrees of the polynomials qeii get too big. Therefore it is more efficient to do an ad-

ditional “short” numerator decomposition before the algebraic dependence decomposition

(see algorithm 5), in order to simplify the denominators. For this we repeatedly apply

algorithm 4, which is identical to algorithm 3 with the exception, that whenever the re-

mainder r is nonzero, we return the input and do not decompose further since the term

corresponding to r would not have a smaller denominator anyway. Note that this is only

effective, because most of the rational functions we are interested in (i.e. those arising from

IBP-reductions) have the property, that the numerator is already contained in the ideal
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〈q1, . . . , qm〉, such that the remainder r becomes 0. Thus, while it is not needed in order

to get a decomposition fulfilling the conditions of Theorem 3.5, the insertion of a short

numerator decomposition (lines 6 to 8 in algorithm 5) reduces runtimes.

Input: rational function f/g where f, g ∈ K[x] and g =
∏m
i=1 q

ei
i for irreducible

qi ∈ K[x]

Output: set of rational functions with sum f/g

1: calculate the reduced Gröbner basis G of 〈q1, . . . , qm〉 as well as the

transformation matrix T from the generators qi to G

2: divide f by G (reduced division with remainder) to get a division expression

f = r +
∑

g∈G agg where r, ag ∈ K[x1, . . . , xd] and r is reduced w.r.t. G

3: if r 6= 0 then

4: return
{
f
g

}
5: end if

6: using T and (ag)g∈G, find polynomials bk such that f = r +
∑m

k=1 bkqk
7: replace (b1, . . . , bm) ∈ K[x]m by its remainder after division by a Gröbner basis

of the syzygy module of (q1, . . . , qm)

8: return

{
bk

q
(ek−1)

k

∏m
i=1,i 6=k q

ei
i

∣∣∣∣k = 1, . . . ,m, bk 6= 0

}
Algorithm 4. shortNumeratorDecompStep (short numerator decomposition step).

Lemma 3.12. algorithm 5 terminates for any input f/g and returns a partial fraction

decomposition of f/g satisfying all three conditions in Theorem 3.5.

Proof. As shown above, Algorithms 1 to 4 applied to any rational function f/g always

return a set of rational functions with sum f/g. So in algorithm 5, at all times the elements

of D sum up to the input of the algorithm.

It is also easy to see, that if algorithm 3.5 terminates, the returned decomposition D

indeed fulfils conditions (1) to (3): if no term of the decomposition is decomposed further

when applying algorithm 1 (i.e. the first while loop terminates), then by Lemma 3.6 in each

denominator the irreducible factors qi have a common zero. Similarly, if a rational function

is not decomposable by algorithm 2, then by Lemmata 3.9 and 3.10 and Corollary 3.8 the

qi are algebraically independent. And finally, if a rational function f/g is not decomposed

further in algorithm 3, this means that f = r in equation (3.12) and thus the numerator is

reduced with respect to the ideal generated by the factors qi in the denominator.

Also, algorithm 2, 3 and 4 only ever change the denominators by removing irreducible

factors (and changing their exponents) and thus preserve the properties (1) and (2) in

Theorem 3.5. (If q1, . . . , qm have a common zero or are algebraically independent, then so

are q1, . . . , qm−1.)

It remains to show that all while loops terminate. As argued above, each term in

the decomposition returned by algorithm 1 has fewer different irreducible factors in its

denominator than the input and thus after applying NSSdecompStep to each element of D,
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Input: rational function f/g where f, g ∈ K[x1, . . . , xd]

Output: partial fraction decomposition as a set of rational functions.

1: factorize g =
∏m
i=1 q

ei
i where qi ∈ K[x1, . . . , xd] are irreducible

(and represent all denominators in the following steps in factorized form)

2: D = {f/g}
3: while ∃s ∈ D such that |NSSdecompStep(s)| > 1 do

4: D = NSSdecompStep(s) ∪D\{s}
and merge elements of D with equal denominators

5: end while

6: while ∃s ∈ D such that |shortNumeratorDecompStep(s)| > 1 do

7: D = shortNumeratorDecompStep(s) ∪D\{s}
and merge elements of D with equal denominators

8: end while

9: while ∃s ∈ D such that |algDependDecompStep(s)| > 1 do

10: D = algDependDecompStep(s) ∪D\{s}
and merge elements of D with equal denominators

11: end while

12: while ∃s ∈ D such that |numeratorDecompStep(s)| > 1 do

13: D = numeratorDecompStep(s) ∪D\{s}
and merge elements of D with equal denominators

14: end while

15: return D

Algorithm 5. Partial fraction decomposition.

all terms have at most m− 1 different irreducible factors qi and thus the first loop termi-

nates by induction on m. The same argument also works for algDependDecompStep. In

numeratorDecompStep each element of the returned decomposition has one less irreducible

factor in its denominator than the input with the exception of the term corresponding to

the remainder r in equation (3.12), which has the same denominator as the input. How-

ever terms of this form are not decomposed further (since in equation (3.12) r is already

reduced with respect to 〈q1, . . . , qm〉) and can thus be disregarded in the argument. Now

by induction on
∑m

i=1 ei the fourth loop terminates as well. A very similar argument works

for shortNumeratorDecompStep.

Since the calculation of annihilating polynomials can still be quite slow for some of the

more complicated rational functions, we make the following modification to the algorithm.

Remark 3.13 (simplified algDependDecompStep). In algorithm 2 it is also possible to

use an annihilating polynomial for q1, . . . , qm rather than qe11 , . . . , q
em
m . Instead of equa-

tion (3.10) we then get the decomposition

f

g
= −

∑
β

cβ
cα
f

m∏
i=1

qβii
qαi+eii

. (3.13)
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where p = cαyα +
∑

β cβy
β is the annihilating polynomial and cαy

α a term of minimal

degree as in equation (3.9). Since the polynomials qi are of lower degree than qeii , this

will speed up the calculation of annihilating polynomials at the cost of needing more steps

in the algebraic dependence decomposition in algorithm 5, since the number of different

irreducible denominator factors then does not decrease in every step. (If βi < αi + ei for

all i, it stays the same.) In fact it is not at all clear that algorithm 5 terminates with the

simplified algDependDecompStep and indeed this depends on the choice of α. However, if

α is chosen minimal with respect to the graded reverse lexicographic ordering >grevlex on

K[y] as defined in equation (3.5), it can be shown, that algorithm 5 still terminates with

a correct decomposition:

Proof. All we have to show is that the third while loop in algorithm 5 terminates, the

rest follows as in the proof of Lemma 3.12. For this, take any sequence f1/g1, f2/g2, . . . of

rational functions such that fi+1/gi+1 is one of the terms in algDependDecompStep(fi/gi).

It is enough to show, that in each such sequence eventually a rational function is reached,

which has fewer different factors in its denominator or satisfies (2) already. Assume this is

not the case. Then all the denominators gi have the same irreducible factors (with different

exponents). Thus in each call of the simplified algDependDecompStep the same annihilating

polynomial p is chosen (assuming a deterministic implementation of the algorithm). Write

p = cαyα +
r+s∑
j=1

cβ(j)yβ
(j)

(r, s ∈ N) (3.14)

where |β(j)|= |α| for j ≤ r and |β(j)|> |α| for j > r. Since yα is minimal with respect to

>grevlex, for each j = 1, . . . , r there exists an index kj ∈ {1, . . . ,m} such that

αkj > β
(j)
kj

and αi = β
(j)
i for all i > kj . (3.15)

Without loss of generality we may assume that k1 ≥ . . . ≥ kr. If we factorize the denomi-

nators as gi =
∏m
l=1 q

e
(i)
l
l (e

(i)
l ∈ N), then it holds

fi+1

gi+1
= −

cβ(ji)

cα
fi

m∏
l=1

q
β
(ji)

l
l

q
αl+e

(i)
l

l

(3.16)

for some index ji depending on i. Since we assumed that in gi+1 no irreducible factor

vanishes, it holds

e
(i+1)
l = αl + e

(i)
l − β

(ji)
l > 0 (l = 1, . . . ,m) (3.17)

If ji > r, then the sum of all exponents decreases:
∑m

l=1 e
(i+1)
l <

∑m
l=1 e

(i)
l . If ji ≤ r, it

stays the same. Thus the case ji > r can only occur for finitely many i and after that it

always holds ji ≤ r, but then |β(ji)|= |α| and by equations (3.15) and (3.17) it holds

kji−1∑
l=1

e
(i+1)
l <

kji−1∑
l=1

e
(i)
l and

k∑
l=1

e
(i+1)
l =

k∑
l=1

e
(i)
l for any k ≥ kji (3.18)
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Since the exponents e
(i)
l have to stay positive and k1≥ . . .≥kr, in the sequence β(j1), β(j2), . . .

the multi-index β(1) can only appear finitely often and after that β(2) can only appear

finitely often and so on. But f1/g1, f2/g2, . . . was an infinite sequence, a contradiction.

Thus in the sequence f1/g1, f2/g2, . . . the number of different irreducible factors in the

denominators decreases until a rational function is reached, that satisfies condition (2) and

the third while loop terminates after finitely many iterations.

Remark 3.14. The multivariate partial fractioning can be combined with the rational

reconstruction scheme for commutative algebra developed in [69, 70] as long as a consistent

factorization patterns can be guaranteed.

Example 3.15. Consider the rational function

−2s12s23ε5 + 3s23s34ε5 + s15s45ε5 + s23s45ε5 − s34s45ε5
8s12s23(−s15 + s23 + s34)(s12 − s45)s45

(3.19)

This is the (24, 7)-th entry of the IBP-matrix for the double pentagon (see section 4).1 For

better readability, replace s12, s15, s23, s34, s45 by x1, x2, x3, x4, x5 and divide by ε5/8 to get

the function

f

g
=
−2x1x3 + 3x3x4 + x2x5 + x3x5 − x4x5

x1x3(−x2 + x3 + x4)(x1 − x5)x5
∈ R(x) = R(x1, x2, x3, x4, x5) (3.20)

Now apply algorithm 5 using the graded reverse lexicographic ordering with x1 > · · · > x5
and employ the modification to algDependDecompStep discussed in Remark 3.13. For

simplicity we omit the syzygy reduction step described in Remark 3.11.

1. factorization of the denominator The denominator factors as g = q1 · q2 · q3 · q4 · q5
where q1 = x1, q2 = x3, q3 = −x2 + x3 + x4, q4 = x1 − x5, q5 = x5.

2. Nullstellensatz decomposition As with most entries of this IBP-matrix, the denom-

inators have already a common zero, namely 0, since none of the factors qi have a

constant term. Thus algorithm 1 (NSSdecompStep) does nothing.

3. short numerator decomposition

reduced G.B. of 〈q1, q2, q3, q4, q5〉: G = (x5, x3, x2 − x4, x1) = (q5, q2, q2 − q3, q4 + q5)

reduced division with remainder : f = (x2 + x3 − x4) · x5 + (−2x1 + 3x4) · x3
= (x2 + x3 − x4) · q5 + (−2x1 + 3x4) · q2

⇒ f

g
=
x2 + x3 − x4
q1 · q2 · q3 · q4

+
−2x1 + 3x4
q1 · q3 · q4 · q5

=
f1
g1

+
f2
g2

(3.21)

reduced G.B. of 〈q1, q2, q3, q4〉: G = (x5, x3, x2 − x4, x1) = (q1 − q4, q2, q2 − q3, q1)

reduced division with remainder : f1 = 1 · x3 + 1 · (x2 − x4) = 2 · q2 + (−1) · q3

⇒ f1
g1

=
2

q1 · q3 · q4
+

−1

q1 · q2 · q4
(3.22)

1ε5 ≡ 4iεµνρσk
µ
1 k

ν
2k

ρ
3k
σ
4 for the five-point kinematics. This is a square root of a polynomial in Mandelstam

variables sij ’s. Here we can treat it as an irrelevant overall factor.
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reduced G.B. of 〈q1, q3, q4, q5〉: G = (x5, x2 − x3 − x4, x1) = (q5,−q3, q4 + q5)

reduced division with remainder : f2 = (−2) · x1 + 3x4 = (−2) · q4 + (−2) · q5 + 3x4

The remainder 3x4 is nonzero, so we do not decompose f2/g2 further and get in total

f

g
=

2

q1 · q3 · q4
+

−1

q1 · q2 · q4
+
−2x1 + 3x4
q1 · q3 · q4 · q5

(3.23)

4. (simplified) algebraic dependence decomposition For the first two terms the Ja-

cobian matrices have full rank and therefore algorithm 2 (algDependDecompStep)

does nothing. For the third term the Jacobian matrix is

(
∂qi
∂xj

)
i=1,3,4,5
j=1,2,3,4,5

=


1 0 0 0 0

0 −1 1 1 0

1 0 0 0 −1

0 0 0 0 1

 (3.24)

and has only rank 3, so q1, q3, q4, q5 are algebraically dependent. Indeed it is obvious,

that q1 = x1, q4 = x1 − x5 and q5 = x5 are even linearly dependent and thus a

possible annihilating polynomial for q1, q3, q4, q5 is

p = y1 − y3 − y4 ∈ R[y1, y2, y3, y4] (3.25)

leading to the relation

1 =
q1 − q4
q5

⇒ −2x1 + 3x4
q1 · q3 · q4 · q5

=
−2x1 + 3x4
q3 · q4 · q25

+
2x1 − 3x4
q1 · q3 · q25

(3.26)

Now {q3, q4, q5} as well as {q1, q4, q5} are algebraically independent and we are done.

Note that the exponent of q5 increased and the number of irreducible factors in the

denominators stayed the same (4), but the number of different irreducible factors

decreased from 4 to 3. Overall, we now have

f

g
=

2

q1 · q3 · q4
+

−1

q1 · q2 · q4
+
−2x1 + 3x4
q3 · q4 · q25

+
2x1 − 3x4
q1 · q3 · q25

(3.27)

and all terms fulfil conditions (1) and (2) of Theorem 3.5.

5. numerator decomposition The first two numerators (2 and −1) are obviously re-

duced with respect to 〈q1, q3, q4〉 and 〈q1, q2, q4〉 respectively. So algorithm 3

(numeratorDecompStep) does nothing. For the third and fourth term we get:

reduced Gröbner basis of 〈q3, q4, q5〉: G = (x5, x2 − x3 − x4, x1) = (q5,−q3, q4 + q5)

reduced division with remainder : −2x1 + 3x4 = (−2) · x1 + 3x4
= (−2) · q4 + (−2) · q5 + 3x4

⇒ −2x1 + 3x4
q3 · q4 · q25

=
−2

q3 · q25
+

−2

q3 · q4 · q5
+

3x4
q3 · q4 · q25

(3.28)

reduced Gröbner basis of 〈q1, q3, q5〉: G = (x5, x2 − x3 − x4, x1) = (q5,−q3, q1)
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reduced division with remainder : 2x1 − 3x4 = 2 · x1 − 3x4 = 2 · q1 − 3x4

⇒ 2x1 − 3x4
q1 · q3 · q25

=
2

q3 · q25
+

−3x4
q1 · q3 · q25

(3.29)

Thus, merging terms with the same denominator, we get in total

f

g
=

2

q1 · q3 · q4
+

−1

q1 · q2 · q4
+

−2

q3 · q4 · q5
+

3x4
q3 · q4 · q25

+
−3x4

q1 · q3 · q25
(3.30)

where all terms satisfy conditions (1) to (3).

Example for syzygy reduction: If we had done the syzygy reduction step, for the first

step in the short numerator decomposition above, i.e. the decomposition

f

g
=
x2 + x3 − x4
q1 · q2 · q3 · q4

+
−2x1 + 3x4
q1 · q3 · q4 · q5

(3.31)

arising from the division expression

f = (−2x1 + 3x4) · q2 + (x2 + x3 − x4) · q5, (3.32)

we would have to calculate a Gröbner basis of the syzygy module of the ideal

〈q1, q2, q3, q4, q5〉. Using Singular we get the reduced Gröbner basis

{ (−1, 0, 0, 1, 1) , (−x3, x5, 0, x3, 0) , (0, x2 − x3 − x4, x3, 0, 0) ,

(−x2 + x4, x5,−x5, x2 − x4, 0) , (−x3, x1, 0, 0, 0) , (3.33)

(x2 − x3 − x4, 0, x1, 0, 0) , (−x1 + x5, 0, 0, x1, 0) }

with respect to the graded reverse lexicographic ordering with priority to monomials

(see [68], Definition 2.3.1). The original relation (3.32) corresponds to the module

element (0,−2x1 + 3x4, 0, 0, x2 + x3 − x4) and dividing by the Gröbner basis yields

the remainder (−2x3, 3x4 + 2x5,−x5, 0, 0). So we would use the relation

f = (−2x3) · q1 + (3x4 + 2x5) · q2 + (−x5) · q3 (3.34)

instead of relation (3.32), leading to the decomposition step

f

g
=

−2x3
q2 · q3 · q4 · q5

+
3x4 + 2x5

q1 · q3 · q4 · q5
+

−x5
q1 · q2 · q4 · q5

. (3.35)

This simple example may not show, why syzygy reduction should be an advantage,

since here the decomposition seems to get longer, but, as mentioned above, for more

complicated input functions we observe a significant improvement of the performance

of the algorithm.

4 Examples

In the following, we discuss the application of the partial fraction decomposition to IBP

reduction coefficients of Feynman integrals, in examples of various complexity, and with

and without use of a UT basis.
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Figure 1. One-massive crossed box.

4.1 A baby example: nonplanar two-loop four-point with an external massive

leg

In this subsection, we present a baby example, one-massive crossed box, showing how

partial fraction decomposition simplifies the IBP reduction coefficients. The diagram is

shown in figure 1.

The physical kinematic conditions are that p1, p2 and p3 are massless, while p24 = m2,

2p1 · p2 = s and 2p2 · p3 = t. The propagators are

D1 = k21, D2 = (k1 − p1)2, D3 = (k1 − p1 − p2)2, D4 = k22,

D5 = (k2 + p1 + p2 + p3)
2, D6 = (k2 + k1 + p3)

2, D7 = (k1 + k2)
2,

D8 = (k1 − p1 − p2 − p3)2, D9 = (k2 + p1)
2

(4.1)

The parameters are thus ε = (4− d)/2, s, t, and m2.

We study the IBP reduction coefficients of integrals in the sector (1, 1, 1, 1, 1, 1, 1, 0, 0)

with the ISP degrees up to 5. This is a simple example, the IBP reduction can be easily

done with LiteRed/FIRE6 [9, 15]. There are 29 master integrals and the evaluation of the

master integrals was done by Gehrmann and Remiddi in ref. [71]. With LiteRed/FIRE6’s

master integral choice, the byte size of the IBP reduction coefficients is around 9.5MB.

We discuss the coefficients in more detail, listing the irreducible denominator factors

(poles) below:

ε+ 1, −2ε− 1, − 2ε, 1− 2ε, 2− 2ε, 3− 2ε,

2− ε, −4ε− 1, 1− 4ε, 3− 4ε, 1− 3ε, 2− 3ε,

m2, m2 − s, s, −10m2ε− 6m2 + 12sε+ 8s,

m2 − t, m2 − s− t, t, s+ t, m2s−m2t− s2 − st, (4.2)

It is not surprising that there is a pole −10m2ε− 6m2 + 12sε+ 8s , with the dependence in

both ε and the kinematic parameters. There is also a nonlinear pole, m2s−m2t− s2 − st
occurring in the list above.

We then convert the IBP reduction coefficients to a UT basis. It is easy to find the

UT basis via leading singularity analysis or Wasser’s dlog algorithm [57, 72]. The IBP

reduction coefficients of the UT basis clearly have simpler poles:

ε− 2, ε− 1, 2ε− 3, 2ε− 1, 3ε− 2, 3ε− 1, 4ε− 3, 4ε− 1,

m2, m2 − s, s, m2 − t, m2 − s− t, t, s+ t
(4.3)
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Figure 2. 2-loop 5-point nonplanar double pentagon.

We find the previously occurring factor −10m2ε− 6m2 + 12sε+ 8s with mixed dependence

in ε and kinematic variables is now absent. Furthermore, all the kinematic dependent poles

are symbol letters, as seen by a comparison with the canonical differential equation. The

previously occurring denominator factor m2s−m2t− s2− st, which is not a symbol letter,

is also absent.

Note that in this example, the size of the IBP coefficients with respect to the UT

basis, is around 9.0MB. By converting to the UT basis, the byte size of coefficients does

not decrease much, but the denominator structure becomes much simpler.

We then apply our implementation of our partial fractioning algorithm to the IBP

reduction coefficients, both with respect to the Laporta and the UT basis, to simplify the

coefficients.

• After applying the algorithm, the size of IBP coefficients with respect to the La-

porta basis (LiteRed/FIRE6) is shortened from 9.5MB to 3.0MB (2.7MB if indexed),

simplified by about a factor of 3.4.

• Converting to the UT basis and then applying the algorithm, the resulting coefficients

are only of size 1.9 MB (1.5 MB if indexed). With respect to the original Laporta

basis a 6.5-times size reduction.

This example indicates that our method works for both the Laporta basis and UT basis,

but the size reduction ratio is larger for UT basis. Since this is a baby example, our method

runs fast in both cases.

4.2 A cutting-edge example: nonplanar two-loop five-point

In this section, we present a computationally cutting-edge example, the two-loop five-point

nonplanar double pentagon. The diagram is shown in figure 2. All external and internal

lines are massless. The kinematic conditions are 2p1 ·p2 = s12, 2p2 ·p3 = s23, 2p3 ·p4 = s34,

2p4 · p5 = s45 and 2p1 · p5 = s15. The propagators are

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p12)2, D4 = l22,

D5 = (l2 − p123)2, D6 = (l2 − p1234)2, D7 = (l1 − l2)2,
D8 = (l1 − l2 + p3)

2, D9 = (l1 − p1234)2, D10 = (l2 − p1)2,
D11 = (l2 − p12)2.

(4.4)
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Where pi...j =
∑j

k=i pk. A UT basis for this diagram and its symbol form was found in

refs. [58, 73], and the analytic expressions for the master integrals were obtained in ref. [58].

Relying on the module intersection IBP reduction method and its implementation in

the Singular-GPI-Space framework for massively parallel computations, the analytic

IBP reduction coefficients were calculated for the integrals with ISP up to the degree 4 in

the sector (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) in ref. [33].2 The size of the IBP reduction coefficients

with respect to a Laporta basis is 2.4GB (with all parameters analytic).

When reducing target integrals to the Laporta basis, we found some “mixed” denom-

inator factors in the coefficients, which are mixtures of the spacetime parameter ε and

kinematic variables. They are listed in the following:

3s12ε− s23ε− s12 + s23,

3s12ε− s23ε− 4s34ε− 3s45ε+ s23 + s34,

3s12ε+ 4s23ε+ s34ε− 3s45ε− s23 − s34,
3s12ε+ 8s23ε− 3s45ε− s12 − 4s23 + s45,

4s12ε+ s23ε− s45ε− 2s12 − s23 + s45

(4.5)

As we have observed in ref. [33], if we reduce the target integrals to the UT basis, the

size of coefficients is reduced to 712MB. More importantly, the IBP reduction coefficients

with respect to UT basis have no “mixed” poles and all kinematic denominators are symbol

letters. The irreducible factors in the IBP reduction coefficients with respect to the UT

basis are given as,

ε− 1, 2ε− 1, 3ε− 1, 4ε− 1, 4ε+ 1, s12, s15, s15 − s23,
s23, s12 + s23, s12 − s34, s12 + s15 − s34, s15 − s23 − s34, s34,

s23 + s34, s12 − s45, s23 − s45, s12 + s23 − s45, s12 − s15 + s23 − s45,
s12 − s34 − s45, s12 + s15 − s34 − s45, s45, s15 − s23 + s45, s34 + s45,

s215s
2
12 + s223s

2
12 − 2s15s23s

2
12 − 2s223s34s12 + 2s15s23s34s12 − 2s215s45s12

+ 2s15s23s45s12 + 2s15s34s45s12 + 2s23s34s45s12 + s223s
2
34 + s215s

2
45 + s234s

2
45

− 2s15s34s
2
45 − 2s23s

2
34s45 + 2s15s23s34s45

(4.6)

We see that except for the factors only in ε, all other factors are (powers of) even symbol

letters. (The symbol letters of all two-loop five-point massless topology were obtained in

ref. [74].) Note that the last factor above is the Gram determinant G(1, 2, 3, 4). Since

G(1, 2, 3, 4) = ε25 ≡ −16(εµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 )2 (4.7)

and ε5 is a symbol letter, the last factor G(1, 2, 3, 4) is a power of a symbol letter. In addition

to the computation in ref. [33], we further checked the IBP reduction of the integrals with

ISP up to the degree 5 for the same diagram, and this pole structure property still holds.

2We note that during the preparation of this manuscript, the degree-5 analytic IBP reduction of the

same diagram, was calculated in a recent paper [16] by the reduction of a new type of IBP system in the

block triangular form [40].
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At this point, it is interesting to compare the pole structure in the UT basis with the

same double pentagon diagram reduced in the basis choice of ref. [45]. In ref. [45] there

are 7 nonlinear irreducible factors in the IBP reduction denominators, such as −1 + s34 +

s45 + s34s45, −s23− s45− s23s45 + s245, s15− s23 + s23s34− s15s45 + s34s45, . . . (s12 is set to

be 1). Except the Gram determinant G(1, 2, 3, 4), the other 6 nonlinear factors in ref. [45]

are not symbol letters.

Despite the fact that the size of the coefficients is already simplified by about 3 times,

if we change the basis from Laporta to UT, the coefficients are still huge with a size of

712MB. We now apply our improved Leinartas’ algorithm to shorten these coefficients with

respect to the UT basis. The size of the coefficients is magically shortened to only 24MB

(19MB in indexed form). Compared with the 2.4GB IBP reduction file we started out

with, those IBP reduction coefficients are made simpler by over 100 times!3

As a comparison, without using the UT basis, our algorithm can also reduce the IBP

coefficients size from 2.4 G to 864 MB. However, the reduction ratio is not as dramatic and

the running time is much longer.

In appendix B we present a visual impression about how powerful our algorithm is: a

5-page-long coefficient is shortened to only 9 lines.

4.3 An elliptic example: two-loop four-point with a top quark loop and a pair

of external massive legs

Our algorithm also works well for cases without the existence of a UT basis. In this sub-

section, we present an elliptic example, the double box diagram with one massive internal

loop and two massive external lines. The diagram is shown in figure 3.

The kinetic conditions are p21 = p22 = 0, p23 = m2, 2p1 · p2 = s, 2p2 · p3 = t −m2 and

2p2 · p3 = m2 − s− t. The propagators are

D1 = (l1 + p2)
2 −m2

t , D2 = l21 −m2
t , D3 = (l1 + p1 + p2)

2−m2
t ,

D4 = (l1 + l2)
2 −m2

t , D5 = l22, D6 = (l2 − p1 − p2)2, D7 = (l2 + p3)
2 −m2,

D8 = (l1 + p2 − p3)2−m2, D9 = (l2 − p2 + p3)
2

(4.8)

The parameters are ε, s, t,m2,m2
t . It is clear that there are fully massive sunset sub-

diagrams in this topology and the UT basis does not exist.

We have reduced integrals in the sector (1, 1, 1, 1, 1, 1, 1, 0, 0), with the ISP degree up

to 5 to the Laporta basis, using FIRE6. The size of the resulting coefficients is in total

175 MB.

In applying our algorithm to shorten these coefficients, it is important to pull the

nonlinear factors out and do the partial fractions over the linear factors. After applying

our algorithm, the size of simplified coefficients is reduced to only 24 MB. This is also a

significant simplification, by about 7 times in byte-size.

This example indicates that although one should prefer a UT basis in doing partial

fraction, for diagrams without the existence of UT basis, this algorithm is still powerful.

3The resulting indexed partial fraction result can be downloaded from

https://www.dropbox.com/s/wku5o20g0vaggtl/xb deg4 UT pfd.zip.
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Figure 3. Elliptic double box.

example sequential parallel (32 cores) memory for just

runtime memory runtime memory reading input file

� xbox1m (Laporta) 929 s 67 MB 74 s 171 MB 38 MB

xbox1m (UT) 1073 s 53 MB 48 s 151 MB 30 MB

� dpentagon (Laporta) – – 137 h 44.3 GB 9.63 GB

dpentagon (UT) 1672 min 5.39 GB 99 min 10.24 GB 2.45 GB

� dbox elliptic (Laporta) 304 min 1.24 GB 41 min 2.18 GB 495 MB

Table 1. Runtime and memory used in algorithm 5.

4.4 Performance of the algorithm

In this section, we summarize the computing resources used for our examples, and the

reduction ratio in different formats.

In all examples a Singular implementation of algorithm 5 with the improvements

described in Remarks 3.11 and 3.13 was used. Table 1 shows the resources used for applying

the algorithm to all matrix entries one after the other or in parallel using 32 cores. Due

to the simple form of parallelism, the computation will scale similarly up to the number of

entries.

When comparing the time taken for each decomposition step, we found that the short

numerator decomposition (algorithm 4) needs 60–95 % of the total runtime.

Especially for large numerators and small (by degree) denominator factors, partial

fraction decomposition can drastically reduce the size of IBP-matrices, as can be seen in

table 2. Since most of the irreducible factors in the denominators are linear, it makes sense

to leave any nonlinear factors untouched in the algorithm. In the tables in this subsection,

the symbol “�” means that we leave the nonlinear factors untouched in our partial fraction

algorithm. The phrase “(Laporta)” or “(UT)” means that we are dealing with coefficients

in a Laporta integral basis or a UT basis, respectively.

The use of a UT basis typically leads to a shorter runtime (table 1) and also reduces

the size of the output (table 2). Finally, instead of writing out the denominator, we can

just store in the data structure the indices i and exponents ei of the irreducible factors

qi appearing in each denominator together with all factors qi, which also reduces the size

(last column in table 2).
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example input output output (indexed)

� xbox1m (Laporta) 9.51 MB 2.91 MB (30.7%) 2.75 MB (29.0%)

xbox1m (UT) 9.04 MB 1.80 MB (19.9%) 1.53 MB (16.9%)

� double pentagon (Laporta) 2.42 GB 864 MB (35.7%) 851 MB (35.2%)

double pentagon (UT) 712 MB 28.0 MB (3.93%) 19.8 MB (2.78%)

� dbox elliptic (Laporta) 175 MB 24.1 MB (13.8%) 23.3 MB (13.3%)

Table 2. Size comparison of input/output of algorithm 5.

example input (zipped) output (zipped) output (indexed, zipped)

� xbox1m (Laporta) 2.90 MB 829 KB (28.6%) 815 KB (28.1%)

xbox1m (UT) 2.43 MB 369 KB (15.2%) 351 KB (14.5%)

� double pentagon (Laporta) 648 MB 216 MB (33.3%) 215 MB (33.2%)

double pentagon (UT) 212 MB 4.42 MB (2.09%) 3.99 MB (1.89%)

� dbox elliptic (Laporta) 50.5 MB 7.60 MB (15.0%) 7.51 MB (14.9%)

Table 3. Size comparison of input/output of algorithm 5 after zipping.

We also find an interesting phenomenon that zipping both the input and output files

in some examples leads to a further increase of the relative size reduction (see table 3).

5 Summary and discussion

In this manuscript, we develop an improved Leinartas’ algorithm of multivariate partial

fraction and present an modern implement of this algorithm, to simplify the complicated

analytic IBP reduction coefficients in multi-loop computations. We show that for cases

with the existence or without the existence of the UT basis, our algorithm works well to

reduce the IBP reduction coefficients size.

We observe that in the cases we studied, the IBP reduction coefficients in the UT

basis have simple structures: (1) the spacetime dimension parameter D factorizes out in

the denominators (2) the rest irreducible factors in the denominators are a subset of the

symbol letters. Thus usually the UT basis provides a simpler denominator factor list,

and our algorithm works particularly well with shorter running time and higher reduction

ratio. In complicated examples, our algorithm achieves dramatic size reduction in the

coefficients of IBPs.

We expect that our algorithm will have broad applications in the multi-loop IBP com-

putations, to get easier-to-use analytic reduction results and make the numeric evaluation

much faster.

We present a Singular library for our algorithm of multivariate partial fraction. It

can be used for simplifying IBP coefficients in general purposes. Furthermore, we expect

that the partial-fraction library can be used to simplify multiloop integrand and the tran-

scendental function coefficients in scattering amplitudes, as the partial-fraction examples

shown in [51]. We expect that this library can be combined with current finite field and
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rational reconstruction packages [9, 27, 29–31] for multiloop scattering amplitude computa-

tions. Our library would also find applications in analytic computations outside scattering

amplitudes, in broader research areas in theoretical physics.

Besides this partial fraction library, in the future we will also develop an arithmetic

library to perform arithmetic computations of ration functions in partial fraction form and

keep the output in partial fraction form.

It would also be interesting to study the IBP reduction coefficients in a UT basis in

details. After partial fraction, it seems that each team in a coefficient looks much simpler. It

is then of theoretical interests to relate these terms to the leading singularities of Feynman

integrals.
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A Manual of the partial fractioning Singular library

In this section, we give a short outline of how to use the features of the Singular library

pfd.lib. Together with a complete documentation, it can be downloaded from

https://raw.githubusercontent.com/Singular/Singular/spielwiese/Singular/LIB/pfd.lib

and should be placed within the user’s Singular search path. The latest release of Singu-

lar can be downloaded from the Singular website https://www.singular.uni-kl.de.4 The

website also provides an online documentation of Singular and all libraries distributed

with the release.

After starting up Singular, the library can be loaded by typing LIB "pfd.lib"; at

the Singular promt. The main algorithm for partial fraction decomposition can be ac-

cessed via the procedure pfd. This procedure takes as input two polynomials (numerator

and denominator) and returns a partial fraction decomposition encoded as a list. The first

entry is a list containing the denominator factors, the second entry is a list of summands,

each of which is encoded as a list of numerator, indices of denominator factors and expo-

nents of denominator factors. The decomposition can be displayed using the procedure

displaypfd, and checked with the procedure checkpfd, which verifies whether a ratio-

nal function (first argument) is mathematically equal to a decomposition returned by pfd

4A separate download will not be necessary in the future, since the library will be part of the next release

of Singular (version 4.1.4).
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(second argument) and returns a boolean (see Example A.1). An example of how to use a

procedure can be displayed by typing example <name-of-procedure>; at the Singular

prompt.

Example A.1 (pfd). In the following example, we calculate a partial fraction decompo-

sition of the rational function (x2 + 3xy− y2)/((x+ 1) · (2x+ y)) ∈ Q(x, y) with respect to

the graded reverse lexicographic ordering:

> LIB "pfd.lib";

> ring r = 0,(x,y),dp;

> poly f = x^2+3xy-y^2;

> poly g = (x+1)*(2x+y);

> list d = pfd(f,g);

> displaypfd(d);

(1/2)

+ (9/2y+9) / (q2)

+ (-y-5) / (q1)

+ (-9) / (q1*q2)

where

q1 = x+1

q2 = 2x+y

> checkpfd(list(f,g),d);

1

In the first line we create the underlying polynomial ring by specifying the characteristic of

the coefficient field (0 for Q), the names of the variables and a monomial ordering (dp for

the graded reverse lexicographic ordering). Note that the result produced by the algorithm

depends on the ordering.

The second argument (the denominator polynomial) can alternatively be given in fac-

torized form (as a list of a Singular ideal generated by irreducible non-constant polyno-

mials and an intvec containing the exponents), in case the denominator factors are known

to the user. As an example

> pfd(x+2*y, (x+y)^2*(x-y)^3);

is equivalent to

> pfd(x+2*y, list(ideal(x+y,x-y), intvec(2,3)));

Using the procedure pfdMat, we can calculate the decompositions of a matrix of ratio-

nal functions. The computation is done in parallel, relying on the library parallel.lib.5

By default, pfdMat also calls checkpfd for each decomposition and ignores nonlinear de-

nominator factors (as described in section 4).

The input of pfdMat is the name of a .txt-file (as a Singular string), which contains

the matrix as a list of lists (row by row) enclosed in the symbols “{” and “}”, and separated

5A version relying on parallelism implemented via the Singular/GPI-Space framework [75] is under

development. This version will allow the use of our algorithm on HPC clusters.
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by commas (see Example A.2). Each rational function has to be an expression of the form

“a”, “(a)/(b)”, “(b)^(-n)” or “(a)*(b)^(-n)”, where “n” stands for a positive integer

and “a”, “b” stand for arbitrary polynomials (using the operators “+”, “-”, “*”, “^” and

brackets “(”,“)”). A minus sign “-” followed by such an expression is also allowed. Note

that the library also has options to use the Singular binary serialization data format .ssi

for highly efficient input and output from within Singular.

There are four optional arguments which determine whether checkpfd should be ap-

plied (-1: exact test, 0: do not apply checkpfd, positive integer: do this amount of

probabilistic tests, default value is -1), whether nonlinear factors should be extracted (1

or 0, default value 1), whether additional output files should be created (integer from 1

to 4, default value 1) and whether the algorithm should be run in parallel over all matrix

entries (1 or 0, default value 1). The options should be specified in this order. The third

optional argument (integer from 1 to 4) controls the output files created:

1: The output, that is, the matrix containing the decompositions, is stored in a .txt-file

in indexed form (as described in section 4). The denominator factors are saved in a

separate file and a logfile is created, which protocols runtimes and memory usage.

2: Additionally, the decompositions are saved in non-indexed form.

3: Additional .ssi-files containing the input and output matrix as well as some inter-

mediate results are created.

4: Additionally to mode 3, for every rational function, the result of pfd is immediately

saved in a seperate .ssi-file. (This creates a file for every matrix entry.)

For more details refer to the documentation of the library.

Before calling pfdMat, a polynomial ring must be defined (as in Example A.1) such

that the variable names match the names used in the input file. Furthermore, with the

command setcores(n); the number of processor cores used for the parallelization can be

set to an integer n. By default, all cores are used.

Example A.2 (pfdMat). Suppose the file test.txt in the search path contains the string

“{{(x+y)/(x^2-x*y), -(x^2*y+1)/y, x^2}, {(x+y+1)/(y^2), 0, (x^2*y-y^3)^(-1)}}”
representing a 2×3 matrix of rational functions. We then can calculate the decompositions

of the 6 matrix entries (in parallel on 4 cores) as follows:

> LIB "pfd.lib";

> setcores(4);

> ring r = 0,(x,y),dp;

> pfdMat("test.txt");

The procedure pfdMat creates two output files: test_pfd_indexed.txt containing the

matrix of partial fraction decompositions as the string

“{{(2)/(q2) + (-1)/(q1), (-x^2) + (-1)/(q3), (x^2)},
{(1)/(q3) + (x+1)/(q3^2), (0), (1)/(q3*q4^2) + (2)/(q2*q4^2)}}”

and test_denominator_factors.txt containing the factors q1, q2, q3, q4 in the form

“q1 = x; q2 = x-y; q3 = y; q4 = x+y;”.

As explained above, pfdMat has four optional arguments with default values -1,1,1,1. If
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the third argument is set to 2 as in “pfdMat("test.txt",-1,1,2,1);”, an additional file

test_pfd.txt is created, which contains the result in non indexed form as the string

“{{(2)/((x-y)) + (-1)/((x)), (-x^2) + (-1)/((y)), (x^2)},
{(1)/((y)) + (x+1)/((y)^2), (0), (1)/((y)*(x+y)^2) + (2)/((x-y)*(x+y)^2)}}”.

Remark A.3. In an IBP-matrix, typically the total number of distinct irreducible factors

occurring in the denominators of all the rational functions is fairly small (e.g. for the double

pentagon example in UT-basis, there are only 25 different irreducible denominator factors

occurring in the 26 × 108 = 2808 matrix entries). The procedure pfdMat uses this fact

to speed up the factorization of the denominators by dividing by factors obtained from

factorizing “simpler” polynomials in order to factorize the larger polynomials.

B An explicit example of the size reduction

In this appendix, we explicitly show an IBP reduction coefficient, before and after our

partial fraction computations to see the size reduction.

This example is from the 2-loop 5-point nonplanar double pentagon IBP reduction

(figure. 2). We choose a UT basis Ii, i = 1, . . . , 108. The integral to be reduced is

I[1, 1, 1, 1, 1, 1, 1, 1,−2,−1, 0],

I[1, 1, 1, 1, 1, 1, 1, 1,−2,−1, 0] =

108∑
i=1

ciIi . (B.1)

Because of the UT basis, the coefficients shown in (B.1) are simpler than the coefficients in

FIRE basis. However, the coefficients are still very complicated. We pick up the particular

coefficient c107 as an example. Before the partial fraction, in the usually combined form,

we have a huge expression of c107. It is can listed in about five pages as:

c107 = (− 64εs15
3s45

7 − 16s15
3s45

7 + 64εs34
3s45

7 + 16s34
3s45

7 − 4εs12s15
2s45

7

− s12s152s457 − 4εs12s34
2s45

7 − s12s342s457 − 192εs15s34
2s45

7 − 48s15s34
2s45

7

− 48εs23s34
2s45

7− 12s23s34
2s45

7− 48εs15
2s23s45

7− 12s15
2s23s45

7 + 12εs12s15s23s45
7

+ 3s12s15s23s45
7 + 192εs15

2s34s45
7 + 48s15

2s34s45
7 + 8εs12s15s34s45

7 + 2s12s15s34s45
7

−12εs12s23s34s45
7−3s12s23s34s45

7+96εs15s23s34s45
7+24s15s23s34s45

7−64εs15
4s45

6

− 16s15
4s45

6 + 128εs34
4s45

6 + 32s34
4s45

6 + 248εs12s15
3s45

6 + 62s12s15
3s45

6

−196εs12s34
3s45

6−49s12s34
3s45

6−320εs15s34
3s45

6−80s15s34
3s45

6−352εs23s34
3s45

6

− 76s23s34
3s45

6 + 12εs12
2s15

2s45
6 + 3s12

2s15
2s45

6 − 12εs12
2s23

2s45
6 − 3s12

2s23
2s45

6

+ 96εs15
2s23

2s45
6 + 24s15

2s23
2s45

6 − 96εs12s15s23
2s45

6 − 24s12s15s23
2s45

6

+ 8εs12
2s34

2s45
6 + 2s12

2s34
2s45

6 + 192εs15
2s34

2s45
6 + 48s15

2s34
2s45

6

+ 144εs23
2s34

2s45
6 + 36s23

2s34
2s45

6 + 640εs12s15s34
2s45

6 + 160s12s15s34
2s45

6

+ 264εs12s23s34
2s45

6 + 54s12s23s34
2s45

6 + 784εs15s23s34
2s45

6 + 172s15s23s34
2s45

6

+ 80εs15
3s23s45

6 + 20s15
3s23s45

6 + 176εs12s15
2s23s45

6 + 44s12s15
2s23s45

6

− 24εs12
2s15s23s45

6 − 6s12
2s15s23s45

6 + 64εs15
3s34s45

6 + 16s15
3s34s45

6

− 692εs12s15
2s34s45

6 − 173s12s15
2s34s45

6 − 12εs12s23
2s34s45

6 − 3s12s23
2s34s45

6

− 240εs15s23
2s34s45

6 − 60s15s23
2s34s45

6 − 20εs12
2s15s34s45

6 − 5s12
2s15s34s45

6

+ 28εs12
2s23s34s45

6 + 7s12
2s23s34s45

6 − 512εs15
2s23s34s45

6 − 116s15
2s23s34s45

6
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− 440εs12s15s23s34s45
6 − 98s12s15s23s34s45

6 + 64εs34
5s45

5 + 16s34
5s45

5

+ 252εs12s15
4s45

5 + 63s12s15
4s45

5− 376εs12s34
4s45

5− 94s12s34
4s45

5− 64εs15s34
4s45

5

− 16s15s34
4s45

5 − 560εs23s34
4s45

5 − 116s23s34
4s45

5 − 360εs12
2s15

3s45
5

− 90s12
2s15

3s45
5 + 24εs12

2s23
3s45

5 + 6s12
2s23

3s45
5 − 48εs15

2s23
3s45

5

− 12s15
2s23

3s45
5 + 156εs12s15s23

3s45
5 + 39s12s15s23

3s45
5 + 256εs12

2s34
3s45

5

+ 64s12
2s34

3s45
5 − 192εs15

2s34
3s45

5 − 48s15
2s34

3s45
5 + 672εs23

2s34
3s45

5

+ 144s23
2s34

3s45
5 + 1056εs12s15s34

3s45
5 + 264s12s15s34

3s45
5 + 1164εs12s23s34

3s45
5

+ 231s12s23s34
3s45

5 + 1088εs15s23s34
3s45

5 + 236s15s23s34
3s45

5 − 12εs12
3s15

2s45
5

− 3s12
3s15

2s45
5 + 32εs12

3s23
2s45

5 + 8s12
3s23

2s45
5 − 32εs15

3s23
2s45

5 − 8s15
3s23

2s45
5

− 368εs12s15
2s23

2s45
5 − 92s12s15

2s23
2s45

5 + 236εs12
2s15s23

2s45
5 + 59s12

2s15s23
2s45

5

− 4εs12
3s34

2s45
5 − s123s342s455 + 320εs15

3s34
2s45

5 + 80s15
3s34

2s45
5

− 144εs23
3s34

2s45
5 − 36s23

3s34
2s45

5 − 732εs12s15
2s34

2s45
5 − 183s12s15

2s34
2s45

5

− 832εs12s23
2s34

2s45
5 − 184s12s23

2s34
2s45

5 − 1152εs15s23
2s34

2s45
5

− 240s15s23
2s34

2s45
5 − 884εs12

2s15s34
2s45

5 − 221s12
2s15s34

2s45
5

−464εs12
2s23s34

2s45
5−80s12

2s23s34
2s45

5−416εs15
2s23s34

2s45
5−104s15

2s23s34
2s45

5

− 2208εs12s15s23s34
2s45

5 − 468s12s15s23s34
2s45

5 + 80εs15
4s23s45

5 + 20s15
4s23s45

5

− 264εs12s15
3s23s45

5 − 66s12s15
3s23s45

5 − 220εs12
2s15

2s23s45
5 − 55s12

2s15
2s23s45

5

+ 4εs12
3s15s23s45

5 + s12
3s15s23s45

5 − 128εs15
4s34s45

5 − 32s15
4s34s45

5

− 200εs12s15
3s34s45

5 − 50s12s15
3s34s45

5 + 60εs12s23
3s34s45

5 + 15s12s23
3s34s45

5

+ 192εs15s23
3s34s45

5 + 48s15s23
3s34s45

5 + 988εs12
2s15

2s34s45
5 + 247s12

2s15
2s34s45

5

+ 128εs12
2s23

2s34s45
5 + 32s12

2s23
2s34s45

5 + 512εs15
2s23

2s34s45
5 + 104s15

2s23
2s34s45

5

+ 796εs12s15s23
2s34s45

5 + 175s12s15s23
2s34s45

5 + 16εs12
3s15s34s45

5 + 4s12
3s15s34s45

5

− 20εs12
3s23s34s45

5 − 5s12
3s23s34s45

5 − 192εs15
3s23s34s45

5 − 36s15
3s23s34s45

5

+ 1308εs12s15
2s23s34s45

5 + 303s12s15
2s23s34s45

5 + 632εs12
2s15s23s34s45

5

+ 122s12
2s15s23s34s45

5 − 184εs12s34
5s45

4 − 46s12s34
5s45

4 + 64εs15s34
5s45

4

+16s15s34
5s45

4−256εs23s34
5s45

4−52s23s34
5s45

4−372εs12
2s15

4s45
4−93s12

2s15
4s45

4

− 12εs12
2s23

4s45
4 − 3s12

2s23
4s45

4 − 72εs12s15s23
4s45

4 − 18s12s15s23
4s45

4

+ 368εs12
2s34

4s45
4 + 92s12

2s34
4s45

4 − 192εs15
2s34

4s45
4 − 48s15

2s34
4s45

4

+ 912εs23
2s34

4s45
4 + 180s23

2s34
4s45

4 + 240εs12s15s34
4s45

4 + 60s12s15s34
4s45

4

+ 1520εs12s23s34
4s45

4 + 308s12s23s34
4s45

4 + 208εs15s23s34
4s45

4 + 52s15s23s34
4s45

4

+ 232εs12
3s15

3s45
4 + 58s12

3s15
3s45

4 − 52εs12
3s23

3s45
4 − 13s12

3s23
3s45

4

+ 148εs12s15
2s23

3s45
4 + 37s12s15

2s23
3s45

4 − 384εs12
2s15s23

3s45
4 − 96s12

2s15s23
3s45

4

− 124εs12
3s34

3s45
4 − 31s12

3s34
3s45

4 + 192εs15
3s34

3s45
4 + 48s15

3s34
3s45

4

− 544εs23
3s34

3s45
4 − 124s23

3s34
3s45

4 + 572εs12s15
2s34

3s45
4 + 143s12s15

2s34
3s45

4

− 2284εs12s23
2s34

3s45
4 − 463s12s23

2s34
3s45

4 − 1392εs15s23
2s34

3s45
4

− 264s15s23
2s34

3s45
4 − 1160εs12

2s15s34
3s45

4 − 290s12
2s15s34

3s45
4

−1668εs12
2s23s34

3s45
4−321s12

2s23s34
3s45

4+512εs15
2s23s34

3s45
4+92s15

2s23s34
3s45

4

− 2708εs12s15s23s34
3s45

4 − 605s12s15s23s34
3s45

4 + 4εs12
4s15

2s45
4 + s12

4s15
2s45

4

− 28εs12
4s23

2s45
4 − 7s12

4s23
2s45

4 + 176εs12s15
3s23

2s45
4 + 44s12s15

3s23
2s45

4

+ 588εs12
2s15

2s23
2s45

4 + 147s12
2s15

2s23
2s45

4 − 156εs12
3s15s23

2s45
4

− 39s12
3s15s23

2s45
4 − 64εs15

4s34
2s45

4 − 16s15
4s34

2s45
4 + 48εs23

4s34
2s45

4

+ 12s23
4s34

2s45
4 − 1128εs12s15

3s34
2s45

4 − 282s12s15
3s34

2s45
4 + 920εs12s23

3s34
2s45

4

+ 218s12s23
3s34

2s45
4 + 720εs15s23

3s34
2s45

4 + 156s15s23
3s34

2s45
4

+ 832εs12
2s15

2s34
2s45

4 + 208s12
2s15

2s34
2s45

4 + 1508εs12
2s23

2s34
2s45

4

+ 317s12
2s23

2s34
2s45

4 + 416εs15
2s23

2s34
2s45

4 + 80s15
2s23

2s34
2s45

4
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+ 2628εs12s15s23
2s34

2s45
4 + 501s12s15s23

2s34
2s45

4 + 560εs12
3s15s34

2s45
4

+ 140s12
3s15s34

2s45
4 + 460εs12

3s23s34
2s45

4 + 79s12
3s23s34

2s45
4−624εs15

3s23s34
2s45

4

− 132s15
3s23s34

2s45
4 + 1124εs12s15

2s23s34
2s45

4 + 317s12s15
2s23s34

2s45
4

+ 2424εs12
2s15s23s34

2s45
4 + 510s12

2s15s23s34
2s45

4 − 252εs12s15
4s23s45

4

− 63s12s15
4s23s45

4 + 292εs12
2s15

3s23s45
4 + 73s12

2s15
3s23s45

4 + 80εs12
3s15

2s23s45
4

+ 20s12
3s15

2s23s45
4 + 16εs12

4s15s23s45
4 + 4s12

4s15s23s45
4 + 500εs12s15

4s34s45
4

+ 125s12s15
4s34s45

4 − 36εs12s23
4s34s45

4 − 9s12s23
4s34s45

4 − 48εs15s23
4s34s45

4

− 12s15s23
4s34s45

4 + 332εs12
2s15

3s34s45
4 + 83s12

2s15
3s34s45

4 − 324εs12
2s23

3s34s45
4

−81s12
2s23

3s34s45
4−176εs15

2s23
3s34s45

4−32s15
2s23

3s34s45
4−400εs12s15s23

3s34s45
4

− 88s12s15s23
3s34s45

4 − 668εs12
3s15

2s34s45
4 − 167s12

3s15
2s34s45

4

− 228εs12
3s23

2s34s45
4 − 57s12

3s23
2s34s45

4 + 64εs15
3s23

2s34s45
4 + 4s15

3s23
2s34s45

4

− 1068εs12s15
2s23

2s34s45
4 − 219s12s15

2s23
2s34s45

4 − 664εs12
2s15s23

2s34s45
4

− 106s12
2s15s23

2s34s45
4 − 4εs12

4s15s34s45
4 − s124s15s34s454 + 4εs12

4s23s34s45
4

+ s12
4s23s34s45

4 + 160εs15
4s23s34s45

4 + 40s15
4s23s34s45

4 + 316εs12s15
3s23s34s45

4

+ 43s12s15
3s23s34s45

4 − 1228εs12
2s15

2s23s34s45
4 − 307s12

2s15
2s23s34s45

4

− 300εs12
3s15s23s34s45

4 − 39s12
3s15s23s34s45

4 + 120εs12
2s34

5s45
3 + 30s12

2s34
5s45

3

+ 384εs23
2s34

5s45
3 + 72s23

2s34
5s45

3 − 184εs12s15s34
5s45

3 − 46s12s15s34
5s45

3

+ 632εs12s23s34
5s45

3 + 134s12s23s34
5s45

3 − 192εs15s23s34
5s45

3 − 36s15s23s34
5s45

3

+ 244εs12
3s15

4s45
3 + 61s12

3s15
4s45

3 + 4εs12
3s23

4s45
3 + s12

3s23
4s45

3

+ 124εs12
2s15s23

4s45
3 + 31s12

2s15s23
4s45

3 − 120εs12
3s34

4s45
3 − 30s12

3s34
4s45

3

− 656εs23
3s34

4s45
3 − 140s23

3s34
4s45

3 + 616εs12s15
2s34

4s45
3 + 154s12s15

2s34
4s45

3

−2256εs12s23
2s34

4s45
3−444s12s23

2s34
4s45

3−288εs15s23
2s34

4s45
3−48s15s23

2s34
4s45

3

−176εs12
2s15s34

4s45
3−44s12

2s15s34
4s45

3−1512εs12
2s23s34

4s45
3−306s12

2s23s34
4s45

3

+ 464εs15
2s23s34

4s45
3 + 92s15

2s23s34
4s45

3 − 504εs12s15s23s34
4s45

3

− 150s12s15s23s34
4s45

3 − 56εs12
4s15

3s45
3 − 14s12

4s15
3s45

3 + 52εs12
4s23

3s45
3

+ 13s12
4s23

3s45
3 − 112εs12

2s15
2s23

3s45
3 − 28s12

2s15
2s23

3s45
3 + 360εs12

3s15s23
3s45

3

+ 90s12
3s15s23

3s45
3 + 160εs23

4s34
3s45

3 + 40s23
4s34

3s45
3 − 680εs12s15

3s34
3s45

3

− 170s12s15
3s34

3s45
3 + 1940εs12s23

3s34
3s45

3 + 437s12s23
3s34

3s45
3

+ 800εs15s23
3s34

3s45
3 + 152s15s23

3s34
3s45

3 − 688εs12
2s15

2s34
3s45

3

− 172s12
2s15

2s34
3s45

3 + 3184εs12
2s23

2s34
3s45

3 + 652s12
2s23

2s34
3s45

3

− 320εs15
2s23

2s34
3s45

3 − 56s15
2s23

2s34
3s45

3 + 2480εs12s15s23
2s34

3s45
3

+ 452s12s15s23
2s34

3s45
3 + 544εs12

3s15s34
3s45

3 + 136s12
3s15s34

3s45
3

+ 1032εs12
3s23s34

3s45
3 + 198s12

3s23s34
3s45

3 − 352εs15
3s23s34

3s45
3

− 76s15
3s23s34

3s45
3 − 1072εs12s15

2s23s34
3s45

3 − 160s12s15
2s23s34

3s45
3

+ 1808εs12
2s15s23s34

3s45
3 + 428s12

2s15s23s34
3s45

3 + 8εs12
5s23

2s45
3

+ 2s12
5s23

2s45
3 − 276εs12

2s15
3s23

2s45
3 − 69s12

2s15
3s23

2s45
3 − 496εs12

3s15
2s23

2s45
3

− 124s12
3s15

2s23
2s45

3 − 32εs12
4s15s23

2s45
3 − 8s12

4s15s23
2s45

3 + 248εs12s15
4s34

2s45
3

+ 62s12s15
4s34

2s45
3 − 348εs12s23

4s34
2s45

3 − 87s12s23
4s34

2s45
3 − 160εs15s23

4s34
2s45

3

− 40s15s23
4s34

2s45
3 + 1420εs12

2s15
3s34

2s45
3 + 355s12

2s15
3s34

2s45
3

− 1688εs12
2s23

3s34
2s45

3 − 398s12
2s23

3s34
2s45

3 − 144εs15
2s23

3s34
2s45

3

− 12s15
2s23

3s34
2s45

3 − 1336εs12s15s23
3s34

2s45
3 − 262s12s15s23

3s34
2s45

3

− 348εs12
3s15

2s34
2s45

3 − 87s12
3s15

2s34
2s45

3 − 1536εs12
3s23

2s34
2s45

3

− 336s12
3s23

2s34
2s45

3 + 224εs15
3s23

2s34
2s45

3 + 32s15
3s23

2s34
2s45

3

− 808εs12s15
2s23

2s34
2s45

3 − 178s12s15
2s23

2s34
2s45

3 − 2064εs12
2s15s23

2s34
2s45

3

− 348s12
2s15s23

2s34
2s45

3 − 124εs12
4s15s34

2s45
3 − 31s12

4s15s34
2s45

3
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J
H
E
P
1
2
(
2
0
2
0
)
0
5
4

− 212εs12
4s23s34

2s45
3 − 41s12

4s23s34
2s45

3 + 80εs15
4s23s34

2s45
3 + 20s15

4s23s34
2s45

3

+ 1428εs12s15
3s23s34

2s45
3 + 297s12s15

3s23s34
2s45

3 − 588εs12
2s15

2s23s34
2s45

3

− 231s12
2s15

2s23s34
2s45

3 − 676εs12
3s15s23s34

2s45
3 − 133s12

3s15s23s34
2s45

3

+ 264εs12
2s15

4s23s45
3 + 66s12

2s15
4s23s45

3 − 112εs12
3s15

3s23s45
3 − 28s12

3s15
3s23s45

3

+ 36εs12
4s15

2s23s45
3 + 9s12

4s15
2s23s45

3 − 8εs12
5s15s23s45

3 − 2s12
5s15s23s45

3

− 676εs12
2s15

4s34s45
3 − 169s12

2s15
4s34s45

3 + 184εs12
2s23

4s34s45
3

+ 46s12
2s23

4s34s45
3 + 68εs12s15s23

4s34s45
3 + 17s12s15s23

4s34s45
3

−320εs12
3s15

3s34s45
3−80s12

3s15
3s34s45

3 + 412εs12
3s23

3s34s45
3 + 103s12

3s23
3s34s45

3

+ 148εs12s15
2s23

3s34s45
3 + 13s12s15

2s23
3s34s45

3 − 116εs12
2s15s23

3s34s45
3

− 53s12
2s15s23

3s34s45
3 + 180εs12

4s15
2s34s45

3 + 45s12
4s15

2s34s45
3

+ 216εs12
4s23

2s34s45
3 + 54s12

4s23
2s34s45

3 + 268εs12s15
3s23

2s34s45
3

+ 91s12s15
3s23

2s34s45
3 + 1072εs12

2s15
2s23

2s34s45
3 + 244s12

2s15
2s23

2s34s45
3

+ 72εs12
3s15s23

2s34s45
3 − 30s12

3s15s23
2s34s45

3 − 484εs12s15
4s23s34s45

3

− 121s12s15
4s23s34s45

3 − 160εs12
2s15

3s23s34s45
3 − 4s12

2s15
3s23s34s45

3

+ 444εs12
3s15

2s23s34s45
3 + 135s12

3s15
2s23s34s45

3 − 92εs12
4s15s23s34s45

3

− 35s12
4s15s23s34s45

3 − 256εs23
3s34

5s45
2 − 52s23

3s34
5s45

2 − 792εs12s23
2s34

5s45
2

−162s12s23
2s34

5s45
2 + 192εs15s23

2s34
5s45

2 + 36s15s23
2s34

5s45
2 + 120εs12

2s15s34
5s45

2

+30s12
2s15s34

5s45
2−336εs12

2s23s34
5s45

2−72s12
2s23s34

5s45
2+448εs12s15s23s34

5s45
2

+ 88s12s15s23s34
5s45

2 − 60εs12
4s15

4s45
2 − 15s12

4s15
4s45

2 + 8εs12
4s23

4s45
2

+ 2s12
4s23

4s45
2 − 52εs12

3s15s23
4s45

2 − 13s12
3s15s23

4s45
2 + 176εs23

4s34
4s45

2

+ 44s23
4s34

4s45
2 + 1520εs12s23

3s34
4s45

2 + 332s12s23
3s34

4s45
2 + 208εs15s23

3s34
4s45

2

+ 28s15s23
3s34

4s45
2 − 544εs12

2s15
2s34

4s45
2 − 136s12

2s15
2s34

4s45
2

+ 2144εs12
2s23

2s34
4s45

2 + 440s12
2s23

2s34
4s45

2 − 320εs15
2s23

2s34
4s45

2

− 56s15
2s23

2s34
4s45

2 + 400εs12s15s23
2s34

4s45
2 + 76s12s15s23

2s34
4s45

2

+ 552εs12
3s23s34

4s45
2 + 114s12

3s23s34
4s45

2 − 1064εs12s15
2s23s34

4s45
2

− 218s12s15
2s23s34

4s45
2 − 192εs12

2s15s23s34
4s45

2 − 24εs12
5s23

3s45
2 − 6s12

5s23
3s45

2

+ 12εs12
3s15

2s23
3s45

2 + 3s12
3s15

2s23
3s45

2 − 132εs12
4s15s23

3s45
2 − 33s12

4s15s23
3s45

2

−624εs12s23
4s34

3s45
2−156s12s23

4s34
3s45

2−176εs15s23
4s34

3s45
2−44s15s23

4s34
3s45

2

+ 728εs12
2s15

3s34
3s45

2 + 182s12
2s15

3s34
3s45

2 − 2500εs12
2s23

3s34
3s45

2

− 577s12
2s23

3s34
3s45

2 + 48εs15
2s23

3s34
3s45

2 + 24s15
2s23

3s34
3s45

2

− 1028εs12s15s23
3s34

3s45
2 − 173s12s15s23

3s34
3s45

2 + 428εs12
3s15

2s34
3s45

2

+ 107s12
3s15

2s34
3s45

2 − 1980εs12
3s23

2s34
3s45

2 − 423s12
3s23

2s34
3s45

2

+ 128εs15
3s23

2s34
3s45

2 + 20s15
3s23

2s34
3s45

2 + 356εs12s15
2s23

2s34
3s45

2

+ 41s12s15
2s23

2s34
3s45

2 − 748εs12
2s15s23

2s34
3s45

2 − 79s12
2s15s23

2s34
3s45

2

− 120εs12
4s15s34

3s45
2 − 30s12

4s15s34
3s45

2 − 216εs12
4s23s34

3s45
2 − 42s12

4s23s34
3s45

2

+ 848εs12s15
3s23s34

3s45
2 + 188s12s15

3s23s34
3s45

2 + 876εs12
2s15

2s23s34
3s45

2

+ 111s12
2s15

2s23s34
3s45

2 + 20εs12
3s15s23s34

3s45
2 − 19s12

3s15s23s34
3s45

2

+ 132εs12
3s15

3s23
2s45

2 + 33s12
3s15

3s23
2s45

2 + 180εs12
4s15

2s23
2s45

2

+ 45s12
4s15

2s23
2s45

2 + 48εs12
5s15s23

2s45
2 + 12s12

5s15s23
2s45

2− 304εs12
2s15

4s34
2s45

2

− 76s12
2s15

4s34
2s45

2 + 668εs12
2s23

4s34
2s45

2 + 167s12
2s23

4s34
2s45

2

+ 388εs12s15s23
4s34

2s45
2 + 97s12s15s23

4s34
2s45

2 − 792εs12
3s15

3s34
2s45

2

− 198s12
3s15

3s34
2s45

2 + 1536εs12
3s23

3s34
2s45

2 + 372s12
3s23

3s34
2s45

2

− 128εs12s15
2s23

3s34
2s45

2 − 68s12s15
2s23

3s34
2s45

2 + 528εs12
2s15s23

3s34
2s45

2

+ 72s12
2s15s23

3s34
2s45

2 + 56εs12
4s15

2s34
2s45

2 + 14s12
4s15

2s34
2s45

2

+ 732εs12
4s23

2s34
2s45

2 + 171s12
4s23

2s34
2s45

2 − 28εs12s15
3s23

2s34
2s45

2
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J
H
E
P
1
2
(
2
0
2
0
)
0
5
4

+ 29s12s15
3s23

2s34
2s45

2 + 224εs12
2s15

2s23
2s34

2s45
2 + 56s12

2s15
2s23

2s34
2s45

2

− 240εs12
3s15s23

2s34
2s45

2 − 132s12
3s15s23

2s34
2s45

2 − 232εs12s15
4s23s34

2s45
2

− 58s12s15
4s23s34

2s45
2 − 828εs12

2s15
3s23s34

2s45
2 − 159s12

2s15
3s23s34

2s45
2

+ 192εs12
3s15

2s23s34
2s45

2 + 108s12
3s15

2s23s34
2s45

2 − 380εs12
4s15s23s34

2s45
2

− 95s12
4s15s23s34

2s45
2 − 92εs12

3s15
4s23s45

2 − 23s12
3s15

4s23s45
2 + 4εs12

4s15
3s23s45

2

+ s12
4s15

3s23s45
2 − 24εs12

5s15
2s23s45

2 − 6s12
5s15

2s23s45
2 + 364εs12

3s15
4s34s45

2

+91s12
3s15

4s34s45
2−228εs12

3s23
4s34s45

2−57s12
3s23

4s34s45
2−40εs12

2s15s23
4s34s45

2

− 10s12
2s15s23

4s34s45
2 + 124εs12

4s15
3s34s45

2 + 31s12
4s15

3s34s45
2

− 276εs12
4s23

3s34s45
2 − 69s12

4s23
3s34s45

2 + 160εs12
2s15

2s23
3s34s45

2

+ 52s12
2s15

2s23
3s34s45

2 + 448εs12
3s15s23

3s34s45
2 + 124s12

3s15s23
3s34s45

2

− 104εs12
5s23

2s34s45
2 − 26s12

5s23
2s34s45

2 − 536εs12
2s15

3s23
2s34s45

2

− 146s12
2s15

3s23
2s34s45

2 − 504εs12
3s15

2s23
2s34s45

2 − 126s12
3s15

2s23
2s34s45

2

+ 252εs12
4s15s23

2s34s45
2 + 75s12

4s15s23
2s34s45

2 + 416εs12
2s15

4s23s34s45
2

+ 104s12
2s15

4s23s34s45
2 − 80εs12

3s15
3s23s34s45

2 − 32s12
3s15

3s23s34s45
2

− 100εs12
4s15

2s23s34s45
2 − 37s12

4s15
2s23s34s45

2 + 104εs12
5s15s23s34s45

2

+ 26s12
5s15s23s34s45

2 + 64εs23
4s34

5s45 + 16s23
4s34

5s45 + 440εs12s23
3s34

5s45
+ 98s12s23

3s34
5s45 − 64εs15s23

3s34
5s45 − 16s15s23

3s34
5s45 + 312εs12

2s23
2s34

5s45
+ 66s12

2s23
2s34

5s45 − 344εs12s15s23
2s34

5s45 − 74s12s15s23
2s34

5s45
− 216εs12

2s15s23s34
5s45 − 42s12

2s15s23s34
5s45 − 408εs12s23

4s34
4s45

− 102s12s23
4s34

4s45 − 64εs15s23
4s34

4s45 − 16s15s23
4s34

4s45 − 1288εs12
2s23

3s34
4s45

−298s12
2s23

3s34
4s45+64εs15

2s23
3s34

4s45+16s15
2s23

3s34
4s45−152εs12s15s23

3s34
4s45

−14s12s15s23
3s34

4s45+120εs12
3s15

2s34
4s45+30s12

3s15
2s34

4s45−720εs12
3s23

2s34
4s45

− 156s12
3s23

2s34
4s45 + 464εs12s15

2s23
2s34

4s45 + 92s12s15
2s23

2s34
4s45

+ 576εs12
2s15s23

2s34
4s45 + 144s12

2s15s23
2s34

4s45 + 424εs12
2s15

2s23s34
4s45

+ 82s12
2s15

2s23s34
4s45 + 408εs12

3s15s23s34
4s45 + 78s12

3s15s23s34
4s45

+ 744εs12
2s23

4s34
3s45 + 186s12

2s23
4s34

3s45 + 344εs12s15s23
4s34

3s45
+ 86s12s15s23

4s34
3s45 − 240εs12

3s15
3s34

3s45 − 60s12
3s15

3s34
3s45

+ 1344εs12
3s23

3s34
3s45 + 324s12

3s23
3s34

3s45 − 224εs12s15
2s23

3s34
3s45

− 68s12s15
2s23

3s34
3s45 + 36εs12

2s15s23
3s34

3s45 − 27s12
2s15s23

3s34
3s45

−120εs12
4s15

2s34
3s45−30s12

4s15
2s34

3s45 + 504εs12
4s23

2s34
3s45 + 114s12

4s23
2s34

3s45
− 120εs12s15

3s23
2s34

3s45 − 18s12s15
3s23

2s34
3s45 − 324εs12

2s15
2s23

2s34
3s45

− 57s12
2s15

2s23
2s34

3s45 − 788εs12
3s15s23

2s34
3s45 − 221s12

3s15s23
2s34

3s45
− 360εs12

2s15
3s23s34

3s45 − 78s12
2s15

3s23s34
3s45 − 124εs12

3s15
2s23s34

3s45
+ 5s12

3s15
2s23s34

3s45 − 288εs12
4s15s23s34

3s45 − 60s12
4s15s23s34

3s45
+ 120εs12

3s15
4s34

2s45 + 30s12
3s15

4s34
2s45 − 520εs12

3s23
4s34

2s45
− 130s12

3s23
4s34

2s45 − 340εs12
2s15s23

4s34
2s45 − 85s12

2s15s23
4s34

2s45
+ 180εs12

4s15
3s34

2s45 + 45s12
4s15

3s34
2s45−584εs12

4s23
3s34

2s45−146s12
4s23

3s34
2s45

+ 528εs12
2s15

2s23
3s34

2s45 + 144s12
2s15

2s23
3s34

2s45 + 424εs12
3s15s23

3s34
2s45

+ 118s12
3s15s23

3s34
2s45 − 96εs12

5s23
2s34

2s45 − 24s12
5s23

2s34
2s45

− 340εs12
2s15

3s23
2s34

2s45 − 97s12
2s15

3s23
2s34

2s45 + 8εs12
3s15

2s23
2s34

2s45
+ 2s12

3s15
2s23

2s34
2s45 + 732εs12

4s15s23
2s34

2s45 + 195s12
4s15s23

2s34
2s45

+ 152εs12
2s15

4s23s34
2s45 + 38s12

2s15
4s23s34

2s45 − 32εs12
3s15

3s23s34
2s45

− 20s12
3s15

3s23s34
2s45 − 328εs12

4s15
2s23s34

2s45 − 94s12
4s15

2s23s34
2s45

+ 96εs12
5s15s23s34

2s45 + 24s12
5s15s23s34

2s45 − 60εs12
4s15

4s34s45 − 15s12
4s15

4s34s45
+ 120εs12

4s23
4s34s45 + 30s12

4s23
4s34s45 + 60εs12

3s15s23
4s34s45 + 15s12

3s15s23
4s34s45
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J
H
E
P
1
2
(
2
0
2
0
)
0
5
4

+ 88εs12
5s23

3s34s45 + 22s12
5s23

3s34s45 − 212εs12
3s15

2s23
3s34s45

− 53s12
3s15

2s23
3s34s45 − 244εs12

4s15s23
3s34s45 − 61s12

4s15s23
3s34s45

+ 244εs12
3s15

3s23
2s34s45 + 61s12

3s15
3s23

2s34s45 + 68εs12
4s15

2s23
2s34s45

+ 17s12
4s15

2s23
2s34s45 − 176εs12

5s15s23
2s34s45 − 44s12

5s15s23
2s34s45

− 92εs12
3s15

4s23s34s45 − 23s12
3s15

4s23s34s45 + 116εs12
4s15

3s23s34s45
+ 29s12

4s15
3s23s34s45 + 88εs12

5s15
2s23s34s45 + 22s12

5s15
2s23s34s45 − 96εs12s23

4s34
5

− 24s12s23
4s34

5 − 96εs12
2s23

3s34
5 − 24s12

2s23
3s34

5 + 96εs12s15s23
3s34

5

+ 24s12s15s23
3s34

5 + 96εs12
2s15s23

2s34
5 + 24s12

2s15s23
2s34

5 + 288εs12
2s23

4s34
4

+ 72s12
2s23

4s34
4 + 96εs12s15s23

4s34
4 + 24s12s15s23

4s34
4 + 288εs12

3s23
3s34

4

+ 72s12
3s23

3s34
4 − 96εs12s15

2s23
3s34

4 − 24s12s15
2s23

3s34
4 − 288εs12

2s15s23
3s34

4

− 72s12
2s15s23

3s34
4 − 384εs12

3s15s23
2s34

4 − 96s12
3s15s23

2s34
4 + 96εs12

3s15
2s23s34

4

+ 24s12
3s15

2s23s34
4 − 288εs12

3s23
4s34

3 − 72s12
3s23

4s34
3 − 192εs12

2s15s23
4s34

3

− 48s12
2s15s23

4s34
3 − 288εs12

4s23
3s34

3 − 72s12
4s23

3s34
3 + 288εs12

2s15
2s23

3s34
3

+ 72s12
2s15

2s23
3s34

3 + 288εs12
3s15s23

3s34
3 + 72s12

3s15s23
3s34

3− 96εs12
2s15

3s23
2s34

3

− 24s12
2s15

3s23
2s34

3 + 96εs12
3s15

2s23
2s34

3 + 24s12
3s15

2s23
2s34

3

+ 480εs12
4s15s23

2s34
3 + 120s12

4s15s23
2s34

3 − 96εs12
3s15

3s23s34
3 − 24s12

3s15
3s23s34

3

− 192εs12
4s15

2s23s34
3 − 48s12

4s15
2s23s34

3 + 96εs12
4s23

4s34
2 + 24s12

4s23
4s34

2

+ 96εs12
3s15s23

4s34
2 + 24s12

3s15s23
4s34

2 + 96εs12
5s23

3s34
2 + 24s12

5s23
3s34

2

− 192εs12
3s15

2s23
3s34

2− 48s12
3s15

2s23
3s34

2− 96εs12
4s15s23

3s34
2− 24s12

4s15s23
3s34

2

+96εs12
3s15

3s23
2s34

2+24s12
3s15

3s23
2s34

2−96εs12
4s15

2s23
2s34

2−24s12
4s15

2s23
2s34

2

− 192εs12
5s15s23

2s34
2 − 48s12

5s15s23
2s34

2 + 96εs12
4s15

3s23s34
2 + 24s12

4s15
3s23s34

2

+ 96εs12
5s15

2s23s34
2 + 24s12

5s15
2s23s34

2)/(8(4ε+ 1)s12s23s45
2(s12 − s45)(s34 + s45)

(s12 + s15 − s34)(s12 + s23 − s45)(s12 − s34 − s45)(−s15 + s23 + s34)(−s15 + s23 − s45))
(B.2)

After running our algorithm, c107 is reduced to about 9 lines long:

c107 =
3s23s34

2(4ε+ 1)s12s45(−s15 + s23 + s34)
− 3s34

2(4ε+ 1)s12s45
+

15s15
2 − 15s15s34

8s23s45(−s12 − s15 + s34)

+
s23s34

2

s452(s45 − s12)(−s15 + s23 + s34)
− 2s23s34

2

s12s452(−s15 + s23 + s34)

+
s23s34 + s34

2

s45(s45 − s12)(−s15 + s23 + s34)
− 11s23s34

2s12s45(−s15 + s23 + s34)

− 15s15s34
8s23s45(−s12 + s34 + s45)

+
s15 − s23 − s34

s45(−s12 − s23 + s45)
+

2s15 − 2s34
s12s23

+
15s15 − 15s34

8s23(−s12 − s15 + s34)
− 7s23

2s12(−s15 + s23 + s34)

− 15s23
4(−s12 − s15 + s34)(−s15 + s23 + s34)

− s15
2s12(−s12 − s23 + s45)

+
s23 − s45

2s12(s15 − s23 + s45)
+

15s15
8s45(−s12 − s15 + s34)

+
15

4(−s12 − s15 + s34)

+
7s34

4s23(−s12 − s23 + s45)
− 5s34

4(s45 − s12)(−s12 − s23 + s45)
− 15s34

8s23(−s12 + s34+s45)

+
1

2(−s12 − s23 + s45)
+

4s34
s12s45

− 11s34
4s45(s45 − s12)

− 15

8(−s12 + s34 + s45)
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+
5

4(s45 − s12)
+

4

s12
− 3s34

2

s452(−s15 + s23 + s34)
+

s34
4s45(−s15 + s23 + s34)

+
s45

2(s34 + s45)(s15 − s23 + s45)
+

3s34
s452

− 1

2(s34 + s45)
− 1

4s45
(B.3)

For this particular coefficient, we achieve a byte size reduction of a factor from 249464 bytes

to 15192 bytes, which is 6% of the original size. Besides the reduction of the byte-size, we

see that the highest total degree of the numerator of c107 also significantly decreased from

11 to 3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[75] J. Boehm, W. Decker, A. Frühbis-Krüger, F.-J. Pfreundt, M. Rahn and L. Ristau, Towards

massively parallel computations in algebraic geometry, Found. Comput. Math. (2020)

[arXiv:1808.09727].

– 38 –

https://doi.org/10.1016/S0550-3213(01)00074-8
https://arxiv.org/abs/hep-ph/0101124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0101124
https://doi.org/10.1007/JHEP04(2020)167
https://arxiv.org/abs/2002.09492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.09492
https://doi.org/10.1103/PhysRevLett.122.121603
https://arxiv.org/abs/1812.08941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08941
https://doi.org/10.1007/JHEP05(2018)164
https://arxiv.org/abs/1712.09610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09610
https://doi.org/10.1007/s10208-020-09464-x
https://arxiv.org/abs/1808.09727

	Introduction
	IBP and master integrals
	Integration-by-parts identities and master integrals
	Differential equation and UT basis
	Symbol of a transcendental function

	Improved Leinartas' algorithm and modern implementation
	Examples
	A baby example: nonplanar two-loop four-point with an external massive leg
	A cutting-edge example: nonplanar two-loop five-point 
	An elliptic example: two-loop four-point with a top quark loop and a pair of external massive legs
	Performance of the algorithm

	Summary and discussion
	Manual of the partial fractioning Singular library
	An explicit example of the size reduction

