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IC Thermal Analyzer for Versatile 3-D Structures Using
Multigrid Preconditioned Krylov Methods

ABSTRACT

Thermal analysis is crucial for determining the propagation
of heat and to track the formation of hot spots in advanced
integrated circuit technologies. At the core of the thermal
analysis for the integrated circuits is the numerical solution
of the heat equation. Prior academic thermal analysis tools
typically compute temperature by applying finite difference
methods on uniform grids with time integration methods
having fixed time step size. Additionally, the linear systems
arising from the discretized heat equation are solved using
direct methods based on matrix factorizations. Direct
methods, however, do not scale well as the problem size
increases. Moreover, most of the tools support only 2-D
or a limited number of 3-D technologies. To address these
issues, this paper presents a novel thermal analyzer with the
ability to model both 2-D and 3-D circuit technologies. The
analyzer solves the heat equation using the finite element
method for the spatial discretization coupled with implicit
time integration methods for advancing the solution in
time. It also offers fully adaptive spatio-temporal refinement
features for improved accuracy and computational efficiency.
The resulting linear systems are solved by a multigrid
preconditioned Krylov subspace iterative method, which
gives superior performance for 3-D transient analyses. The
analyzer is shown to accurately capture the propagation
of heat in both the horizontal and vertical directions of
integrated systems.

Keywords

Transient thermal analysis, Integrated circuits, Finite
element method, Adaptive spatio-temporal refinement,
Multigrid, Krylov solvers

1. INTRODUCTION
For advanced CMOS technologies below the 90 nm

node, heat issues, incurred due to higher power, lead to
performance degradation and excessive leakage currents [1].
Device technologies, such as FinFET and SOI, have been
introduced to suppress leakage currents in order to maintain
silicon technology scaling. However, they can be more
susceptible to thermal issues due to self-heating and the
low thermal conductivity of their constituent materials [2].
Designs of “post-Dennardian” scaling also face challenges of
exponentially increasing power density [3, 4]. Emerging
3-D technologies (i.e., multi-tier systems with vertical
interconnections) also suffer from thermal issues since 3-D
ICs have complex heat dissipation paths and more active
regions than a single tier in a package [1, 5, 6].

To deal with these challenges, early stage thermal
characterization of ICs, (e.g., microarchitectures of
processors) and the corresponding physical structures are
required to provide a starting point for efficient thermal
design eliminating thermal hazards. Fine-grain, or high
resolution 3-D transient thermal analysis tools are promising
for the simulation of modern and future ICs. Existing
tools, e.g., [7, 8, 9, 10, 11], can be used to detect the
formation of hot spots both in steady-state and transient
regimes. These tools use compact models to describe heat
transfer and are efficient only for a narrow class of problems,
namely, simple small-scale problems where the spatial and
time discretization remain fixed, resulting in linear systems
that do not change at each time step. Additionally, they
cannot accurately model various 3-D structures of future
ICs. Therefore, this paper introduces a versatile thermal
analyzer, which can accurately capture the flow of heat in
the various 3-D structures of an IC.

The contributions of this paper to the problem of thermal
analysis for 2-D and 3-D circuits are:

• the ability to model complex 2-D and 3-D circuit
geometries,

• the fully automated mesh generation of such circuit
geometries from a corresponding floorplan description,

• the use of second order accurate numerical schemes,

• the solution of the resulting linear systems using
advanced preconditioned iterative methods,

• and the support of fully adaptive spatio-temporal
refinement.

The proposed thermal analyzer uses the finite element
method (FEM) [12] in conjunction with an implicit time
stepping scheme to solve the heat equation. The FEM
is a standard numerical technique that is well-suited
to accurately capture the flow of heat in the complex
geometries of an IC. The computation of transient thermal
profiles with sufficient granularity requires the solution of
a large, sparse linear system at each time step, which is
then solved using multigrid preconditioned Krylov subspace
methods [12, 13]. Such preconditioned iterative solvers offer
faster solution times and use less memory [14] than sparse
direct methods based on matrix factorizations [9]. The
iterative solver also offers the potential for linear scaling
with problem size.

Additionally, the proposed thermal analyzer offers fully
adaptive spatio-temporal refinement features. This added
flexibility gives our method computational advantages over
other analyzers as discussed in Section 5.2. The main benefit
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Figure 1: Comparison of thermal analyzers.

of adaptive spatial refinement is that smaller problems can
be solved without a loss of accuracy. In addition, with
adaptive time stepping methods, the simulator can apply
larger time steps during the periods of low (or no) power
dissipation and smaller time steps to accurately capture
the transient thermal effects during rapid changes in the
power and temperature profile. This adaptation does not
require user intervention and is inherently performed by our
technique.

The rest of the paper is organized as follows. Section 2
discusses related works and the motivation for the proposed
analyzer. Section 3 introduces the thermal model and FEM
for computing transient thermal profiles of a given 2-D
or 3-D IC. Section 4 describes the implementation details,
which include a description of the iterative solver and
preconditioner, and the adaptive spatio-temporal features.
Section 5 presents the results of the numerical experiments
and a discussion of the advantages of the proposed method.
Section 6 offers some concluding remarks.

2. RELATED WORK AND MOTIVATION
Thermal analysis tools for integrated circuits have been

previously introduced, for instance HotSpot 6.0 [9], 3D-ICE
[10], and ISAC(2) [7]([15]). In ISAC, the heat equation
is discretized using finite difference methods. Hotspot and
3D-ICE both invoke the analogy between heat flow, driven
by temperature differences, and electrical current flow driven
by voltage differences. The electro-thermal duality supports
compact thermal models based on difference formulas. Such
a spatial discretization can also be viewed as a finite
difference method defined by the floorplan of the circuit.
In each of these tools, the transient temperature profiles are
computed using a time integration method. This process
requires solving a linear system of equations at each time
step. These tools offer fast transient thermal analysis,
but are effective only for a limited range of problems,
specifically, simple circuit geometries that lead to small-scale
linear systems that do not change at each time step, i.e.,
the spatial and time discretizations are fixed. Practically,
these tools can model 2.5-D geometries, where each layer of
material cannot be freely discretized in the vertical direction.
Such simplified models however, limit the applicability of
these tools, where large-scale systems and 3-D systems are
analyzed.

In any thermal analysis tool, both speed and accuracy
of the computations are crucial. Furthermore, the thermal
analysis of 3-D circuits must accurately capture and
model the various substructures of the circuit, for example
through-silicon vias (TSVs), which behave as heat conduits
within the circuit stack. Two main ways to improve
computational speed while not sacrificing the accuracy of
computations, are adaptive mesh refinement and adaptive
time stepping methods [7, 15]. The benefit of adaptive over
uniform spatial refinement is that the same level of accuracy

for the solution can be obtained at a lower computational
cost. Similarly, adaptive time integration methods allow for
fewer (and larger) time steps, without sacrificing accuracy.

T: Computation time
1: Slow 2: Moderate 3: Fast

Parallel*

S/A: Solvers and Accuracy
Linear model*, Nonlinear model*

Second order schemes*, Iterative solvers*

A: Adaptivity
Uniform spatial grid*, Nonuniform spatial grid*

Adaptive spatial refinement*, Adaptive temporal refinement*

P: Problem complexity
1: 2-D 2: 2.5-D 3: 3-D

Atomic*

E: Ease of use
1: Hard 2: Medium 3: Easy

Visualization*

S: Supported structure of ICs
Planar IC*, Stacking tiers*

Substructure (TSV, microfluid)*, Package/Board Level*

Table 1: Definitions of notation used

A visual comparison of the computational features of the
proposed analyzer against other available thermal analysis
tools is shown in Fig. 1. The figures are generated based on
the point system outlined in Table 1. Each tool is compared
based on the following set of attributes: computation time,
the solver used and accuracy of the tool, adaptivity features,
the handled problem complexity, ease of use, and the circuit
structures that are supported. For each property a tool
possesses for a given attribute, a point is awarded.

Note that the proposed analyzer covers the largest area
of the hexagon, and therefore exhibits the broadest set of
computational capabilities. The only other tool that shares
the same range of fully adaptive spatio-temporal refinement
features is ISAC. Hotspot only offers adaptive time stepping
on uniformly refined spatial grids. However, both ISAC
and Hotspot employ explicit time stepping schemes and
as a result their step size selection is constrained by the
spatial discretization. This gives our proposed analyzer an
advantage since we employ unconditionally stable implicit
time stepping schemes, which do not impose any constraints
on the time step size [16], apart from.

Additionally, the proposed analyzer employs
preconditioned iterative methods for the solution of
linear systems arising from the discretized problem. Both
Hotspot and 3D-ICE use the Super-LU solver, a direct
method that scales poorly with problem size. ISAC uses
geometric multigrid solvers. The proposed analyzer uses
state-of-the-art multigrid preconditioned iterative methods
which converge rapidly, yielding improved solution times
and iteration counts than the previously mentioned solvers.

More importantly, the proposed analyzer is the first
academic tool with the capability to realistically model both
2-D and 3-D structures, such as multiple tiers, TSVs, and
finned heat sinks. In this way, our analyzer offers a more
comprehensive set of computational features with a more
robust solution methodology, which allows for more complex
and advanced thermal analyses to be performed.

3. THERMAL MODEL
Let T (x, t) denote the temperature (in [K]) at time t

and spatial point x = (x, y, z) in an IC. The temporal
and spatial evolution of the temperature are governed by



the heat equation with appropriate boundary and initial
conditions, specifically,

(ρcp)
∂T (x, t)

∂t
−∇ · (κ∇T (x, t)) = f(x, t) in Ω, (1a)

κ∇T · n = η(Ta − T ) on ∂Ω, (1b)

T (x, 0) = Ta. (1c)

The physical domain of the circuit is denoted by Ω and
its boundary by ∂Ω. The function ∇T = (Tx, Ty, Tz) is the
temperature gradient and ∇ · T = Tx + Ty + Tz denotes
the divergence operator, where, for example, Tx = ∂T

∂x
denotes the partial derivative with respect to x. The
physical parameters are the density ρ [kg/m3], specific heat
cp [J/kgK], thermal conductivity κ [W/mK], and thermal
transmissivity η [W/m2K] at the boundaries. The function
f(x, t) [W/m3] is the power density dissipated by the
active layer of the system. The Robin boundary condition
described by (1b) represents Newton’s law of cooling, i.e.,
the heat flux at the boundary is proportional (with constant
heat transfer coefficient η) to the difference between the
ambient temperature Ta and the temperature at the wall ∂Ω.
In our model, the Robin boundary conditions are applied to
the top and bottom of the circuit. The four lateral walls
are considered adiabatic, so that there is zero flux (η = 0)
at these boundary faces, although the proposed method
can handle Robin conditions over the entire boundary ∂Ω.
Furthermore, in this paper, we assume the parameters ρcp,
κ, and η are fixed with respect to temperature. The values
of ρcp and κ are assumed, however, to be different specific to
the disparate floorplan components of the circuit, including,
for example, TSVs and finned heat sinks.

The heat equation (1) is solved numerically using the
FEM [12]. The FEM first partitions the domain into
a union of non-overlapping smaller elements Ω = ∪kΩk.
The elements Ωk are typically tetra or hexahedra with
a characteristic length h called the mesh width. The
finite element solution is computed by interpolating the
discrete nodal values at the vertices of the partitioned
domain. Specifically, the solution has the form Th(x) =
∑n

j=1 Tjφj(x), where Tj ≈ T (xj) are the n unknown nodal

values, and φj(x) is a global Lagrangian basis function that
equals 1 at node xj and zero at every other node.

The n unknown nodal values {Tj}
n
j=1, also called degrees

of freedom (DOF), can be collected into a column vector
τh = [T1, . . . , Tn]

T . This vector of unknowns is determined
by solving a set of n linear equations in n unknowns. For
the steady state of (1a) (i.e., setting ∂T

∂t
= 0), this set of

equations has the form

Kτh = fh. (2)

The size of the coefficient matrix K ∈ R
n×n grows as the

mesh is refined (n → ∞ as h → 0). The entries of the matrix
K and the vector fh for the steady state of (1a) are

Kij =

∫

Ω

κ∇φj · ∇φi dx+

∫

∂Ω

ηφjφi dS, (3)

fh,i =

∫

Ω

fφi dx+ Ta

∫

∂Ω

ηφjφi dS. (4)

Note that by the definition of the basis functions the matrix
K is sparse, since Kij 6= 0 if and only if node i is connected
to node j. The matrix K and vector f are assembled by

looping over the elements and computing these integrals via
appropriate quadrature rules.

For transient problems ( ∂T
∂t

6= 0), after discretizing in
space using the FEM, the heat equation (1) becomes a
system of n initial value problems (IVPs) of the form

M τ̇h +Kτh = fh, (5)

where M is a mass matrix with entries Mij =
∫

Ω
φjφi dx.

To solve this system of IVPs the time derivative can
be approximated, for instance, by a first or second order
backward difference formula (BDF method). For further
details on various time integration methods see, e.g., [16].

Regardless of the time stepping scheme, a large, sparse
linear system must be solved at each time step.

Higher order methods, such as a second order BDF
method, can take larger time steps than the first order
method with the same level of temporal accuracy and
appreciable computational savings in time. We demonstrate
the computational gains of using this higher order formula
in Section 5.

The repeated assembly and solution of these linear
systems accounts for the majority of the computational
effort in transient thermal analysis. Strategies to address
this issue have been considered before, for example in [11],
where Alternating Direction Implicit (ADI) methods are
used. If the resulting linear system does not change between
time steps, i.e., there is no spatial refinement or adaptive
time stepping, a single LU factorization of the system matrix
can be computed at the first step, and then at subsequent
time steps the solves are performed using backward and
forward substitution with the factors. This is how transient
simulations in Hotspot are computed and is one of the
reasons for the fast solve times [9]. However, this is also the
primary limitation of that strategy. In order to account for
all the spatio-temporal changes there must be a sufficiently
refined spatial grid and small time step size throughout the
entire simulation, which can be a severe restriction and cause
excessive computational overhead and accuracy issues.

Alternatively, with adaptive spatio-temporal features, the
resulting linear systems must be solved at each time step.
However, the size of the resulting linear systems and the
number of time steps, (i.e., the number of repeated linear
solves) are typically much smaller that in Hotspot [9]
leading to potentially significant computational savings. In
addition, such an approach systematically supports more
complex structures that better fit the physical structure of
planar or 3-D integrated systems (cf. Section 5).

4. IMPLEMENTATION DETAILS
This section describes the implementation details of the

thermal analyzer. In Section 4.1 the tool flow is presented.
In Section 4.2, a description of the hierarchical XML file
which encodes the geometry and thermal properties of the
IC is provided. In Section 4.3, the FEM implementation
used in the analyzer is presented and in Section 4.4 the
corresponding linear solver is discussed. In Sections 4.5
and 4.6, the adaptive spatio-temporal refinement features
of the method are described.

4.1 Tool Flow
The proposed thermal analyzer has five main stages in

the tool chain: structure definition, mesh generation, mesh
optimization, thermal simulation by the FEM solver, and



visualization. In the structure definition stage, the users
can describe the circuit geometry in an .xml file, which has
a hierarchical structure similar to the design hierarchy of
the IC. This hierarchical structure allows the user to provide
detailed information needed for the simulation, or to select
the required granularity level for the simulation. In the
mesh generation stage, the mesh file, which discretizes the
computational domain for the thermal analysis, is generated
using the well-known open-source mesh tool GMSH [17].
However, the mesh generated by GMSH is not appropriate
for the IC structure due to duplicated definition of physical
volumes. Thus, in the mesh optimization stage, we
developed a new tool to surpass these limitations, which
removes the duplicate definitions of the physical volumes
generated by GMSH and addresses floating point rounding
problems for the nodal coordinates of the mesh.

The created mesh is an input to the FEM solver in
the thermal simulation stage. The power density source
function is provided from a power trace file. The power trace
file is generated by architecture simulators coupled with
power trace converters, or power estimators for ICs, such
as PrimetimePX. In the visualization stage, all the results
are plotted in Paraview [18], an open-source visualization
tool, which allows the users to view cross-sectional views of
the IC to observe the full 3-D thermal flow simulated by the
proposed analyzer.

4.2 Versatile Structures in XML
The hierarchical structure of the IC is encoded in an

XML file, which gives the added benefit of describing the
subdomain structures of the circuit. We have extended
the open source XML parser [19] such that the physical
traits and thermal properties of the disparate components
of the circuit are modeled to automatically generate the
computational mesh and initialize the FEM solver for
thermal simulations.

The proposed analyzer differs from previous academic
and open-source tools, in that the mesh generation process
is completely automated and able to represent advanced
structures such as TSVs and microbumps. It natively
supports 3-D structures by defining multiple-tiers in the
vertical direction. The analyzer also has the ability to
support more complicated structures, such as heat sinks
with fins. Furthermore, users have the ability to create
their XML files defining the physical dimensions and
thermal properties of their own circuit and then generate
the corresponding computational domain. Further details
relating to the usage of the XML structure are provided in
the Appendix.

4.3 FEM Implementation
The core of the thermal simulator is implemented in

C++ using functionalities of the finite element library
OOMPH-Lib (Object Oriented Multi-Physics Library),
developed at the University of Manchester [20]. Several
new features are implemented to support the capabilities
of the proposed thermal analyzer. The physical domains
can be discretized using either first order bi-linear elements
or second order bi-quadratic elements. The time integration
methods employed by the analyzer are first and second order
implicit backward differentiation formulas. In experiments,
the asymptotic order of the spatial discretization and the
time integration method are matched. The computations

with a first order scheme, i.e., with bi-linear elements and
a first order BDF method, offer slightly faster simulation
times but at the cost of lower accuracy. Thermal analysis for
complex structures, however, requires second order methods
for satisfying accuracy as shown in Section 5.1. Though the
implementation of the thermal analysis uses a previously
developed FEM library, a number of new functionalities and
adaptations are made. In particular, the capability to read
in and supply power density values from user supplied power
trace files is new as well as the implementation of the Robin
boundary conditions (1b).

4.4 Linear Solver
The software library platform used to build the simulator

is designed to solve more complicated nonlinear problems
and employs Newton’s method to solve the nonlinear
systems of equations arising from the finite element
discretizations. In our case, the problem is linear and the
Newton iteration converges in one step. Though it may seem
counterintuitive to solve a linear problem using a nonlinear
solver, in reality the problem parameters are temperature
dependent, i.e., cp = cp(T ), κ = κ(T ), making the
proposed model in (1) nonlinear. Although this kind of
model is beyond the scope of this paper and is left as
future work, the built in nonlinear functionality allows the
proposed methodology to be extended to cope with the more
physically relevant cases of temperature-dependent thermal
parameters and large temperature differences in 3-D.

The resulting linear systems, i.e., (2) for steady-state
analysis, or the time discretized version of (5) for transient
analysis, are large, sparse and symmetric positive definite
(SPD). Therefore, preconditioned Krylov subspace iterative
methods are used as the solver. Specifically, the Krylov
solver is the conjugate gradient (CG) method [21] with
an algebraic multigrid (AMG) preconditioner [22]. The
preconditioned CG method is the solver of choice for SPD
linear systems. The method only requires computationally
inexpensive sparse matrix-vector products. Moreover, the
CG method is based on a three-term recurrence to create
the orthogonal Krylov basis, i.e., only three vectors need
to be stored at each iteration of the algorithm, giving the
CG algorithm linear storage costs. The fixed storage costs
of the conjugate gradient method make this technique more
suitable for solving the resulting linear systems than sparse
direct methods based on matrix factorizations. To improve
the convergence of the CG method, it is preconditioned with
the AMG method with standard Ruge-Stüben coarsening
[23]. These solves are implemented by calling the software
library hypre [24].

4.5 Adaptive Mesh Refinement
Temperatures can vary significantly across the area of

a circuit. To accurately model features of the thermal
profile, the computational grid must be sufficiently refined
locally. For uniformly refined meshes, achieving this level
of accuracy requires globally small mesh sizes, resulting
in unnecessarily large linear systems, and longer solve
times. To minimize computational effort without losing
accuracy, the mesh can be adaptively refined only where
the temperature varies significantly, i.e., where there are
large temperature gradients. The elements to be refined
are determined from computed error estimates depending
on the temperature gradient.



In the proposed method, these estimates are computed by
the Z2 error estimator [25]. The idea behind this estimator
is to compute a more accurate representation of the heat flux
(or gradient) of the finite element solution, i.e., ∇T̃h. The
more accurate flux is computed by projecting the computed
finite element flux function, ∇Th =

∑n
j=1 Tj∇φj(x), onto

a set of continuous basis functions defined on small patches
of the domain. The mesh is refined if the difference in the
fluxes is greater than a user prescribed tolerance εmax, i.e.,
|∇T̃h −∇Th| > εmax. In addition, already refined elements
can be merged (unrefined) when the error estimate satisfies

|∇T̃h − ∇Th| < εmin, where εmin is the user prescribed
minimum error tolerance. This functionality is extremely
useful in maintaining accuracy of the solution while keeping
a moderate size of the linear systems.

Note that when spatial adaptivity is used, more than one
linear system is solved at each time step. This situation
is because the fully adaptive spatio-temporal method first
advances the solution to the next time step, i.e., T k

H → T k+1
H ,

where H denotes the mesh width on the initial coarser grid.
At this point, the error estimate for T k+1

H is computed. If

the refinement of the initial coarse grid solution T k+1
H is

warranted by this estimate, the grid is refined, otherwise
this solution is accepted and the simulation proceeds with
T k+1
H . If the grid is refined, the problem needs to be

reassembled and solved to obtain the solution T k+1
h , where

Th now denotes the solution on the adaptively refined grid.
This procedure is then repeated for all time steps. This
reassembly moderately increases the computational cost per
time step, but offers flexibility of finding the optimal spatial
discretization which produces the solution of the problem
with a prescribed level of accuracy.

4.6 Adaptive Time Stepping
Another important technique for increasing the

computational efficiency of transient thermal simulations
is adaptive time stepping. In these methods, the time
step size ∆t is either increased or decreased based on the
local truncation error estimate of the time integrator. Let
e denote the local truncation error (LTE) [16] and εt a
prescribed LTE tolerance. Then, a standard estimate for
computing the adaptive time step is

∆tnew =

(

εt
‖e‖2

)1/(α+1)

∆t, (6)

where α is the order of the time integration method and

‖e‖2 =
√

1
n
(
∑n

i e2i ) is the standard Euclidean norm.

5. RESULTS AND DISCUSSION
In this section, the features of the proposed thermal

analyzer are demonstrated in several numerical experiments.
The first experiment gives an error analysis and run-time
comparison between direct and iterative solvers as the mesh
is uniformly refined for an illustrative 3-D problem. This
example demonstrates the faster solution times possible
using iterative methods and shows the gain in accuracy
possible, while solving smaller linear systems, using second
order methods.

The second set of experiments demonstrates the
performance of the analyzer for realistic 3-D circuit
geometries that cannot be tackled or solved accurately by
the existing solvers. For these test problems, the various

features of the analyzer, i.e., the adaptive spatio-temporal
refinement capabilities are shown. All of the experiments
are performed on an Intel i7 4790 processor with 32 GB
DRAM and the CentOS 7 operating system. The computed
thermal profiles are visualized in the open-source software
Paraview [18].

5.1 Numerical Experiments
For the error and run-time analysis, the heat equation (1a)

is solved with (ρcp) = κ = 1 on a unit cube. To compute
the error, the solution is assumed to have the form

T (x, y, z, t) = αe−βte−((x−1/2)2+(y−1/2)2+(z−1/2)2)/σ, (7)

with (α, β, σ) = (10, 0.01, 0.05). For this problem, the
temperature at the boundary is fixed (as opposed to flux
boundary conditions). The heat equation (1a) is solved
using the procedure outlined in Section 3 for five time steps
with ∆t = 0.001 seconds. The power source function is given

by f(x, t) = ∂T (x,t)
∂t

−∇· (∇T (x, t)). The error, eh = T −Th

is then computed for a sequence of uniformly refined grids.

dofs h t = 0.001 t = 0.005 Setup (s)
error iter time (s) error iter time (s)

29791 2−5 0.00886943 18.9 0.00793845 0.060 1.29

D 250047 2−6 0.00222486 2573 0.00193098 1.62 10.3

29791 2−5 0.00886943 2 0.19 0.00770112 2 0.19 1.68

I 250047 2−6 0.00222486 3 1.28 0.00193098 3 1.27 11.32

Table 2: Uniform refinement error and run-time

analysis for 1st order scheme.

dofs h t = 0.001 t = 0.005 Setup (s)
error iter time (s) error iter time (s)

250047 2−5 0.000129 5533 0.000130 3.0 50

D 2048383 2−6 - - - - -

250047 2−5 0.000129 3 3.2 0.000130 2 3.0 53.7

I 2048383 2−6 1.62968e-5 3 28 1.62967e-5 3 28 436

Table 3: Uniform refinement error and run-time

analysis for 2nd order scheme.

For this problem, both first and second order schemes are
compared. The results of the error and run-time analysis
as the mesh is refined uniformly for first and second order
methods are given in Tables 2 and 3, respectively.

In these tables, the setup time for both methods, as
well as the solution times at the first and final time steps
are reported. The intermediate solution times for both
methods are similar to their respective final solution times.
For iterative solvers the number of iterations to converge
to a relative residual tolerance of 10−6 is given. Note
that the solution time at the first time step, where the
LU factorization is computed using a direct method, is
orders of magnitude larger than for iterative methods. In
particular, observe that for first order schemes, the linear
solve at the first time step for a linear system with 250,047
unknowns takes 1.28 seconds to solve using the proposed
preconditioned iterative solver and over 2500 seconds using
a direct method. Note that for second order methods this
result is further exaggerated. The linear system with over
2 million degrees of freedom takes 28 seconds to solve using
preconditioned iterative methods, whereas the direct solver
is unable to even compute the LU factorization. This clearly
illustrates the advantage of using iterative solvers, especially
for linear systems arising from 3-D problems.

Furthermore, note that as the mesh is refined for both
first and second order methods, the subsequent solves using
the upper and lower triangular factors at each time step are
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Figure 2: Numerical results.

of the same order as the iterative solvers. Based on these
results, in Fig. 2, the extrapolated total simulation time as
the number of time steps increases is shown. The red and
blue lines denote, respectively, the simulation times for the
direct and iterative solvers. It is important to observe that
as the problems are refined, the blue lines are below the red
lines, i.e., the iterative methods are faster. Moreover, due
to the constant solve time per time step, iterative methods
offer the possibility for linear scaling as the number of
time steps increases, in contrast to direct methods where
the solution times grow superlinearly. Furthermore, note
that higher order methods exhibit significantly lower errors
for smaller sized linear systems. In particular, the linear
system corresponding to the 2nd order scheme with 250,047
unknowns yields an error that is an order of magnitude
lower than the 1st order scheme. As a result, all further
simulations are run using second order numerical schemes.

5.2 3-D Thermal Analysis
In this section, two experiments are presented that

illustrate the features and functionalities of the analyzer.
The first experiment considers a simple case study based
on the Nehalem processor, the microarchitecture of which
is assumed to be implemented at a 45 nm technology node
[26]. To generate the power trace of this microarchitecture,
we used the Sniper multicore simulator 6.1 [27] to simulate
benchmarks of Splash-2 [28] and Parsec-2.1 [29]. McPAT
1.0 [30] converts the trace to power trace as input for
the thermal simulation. Corresponding parameters of the
physical structure and thermal coefficients are obtained
from [31, 9, 32]. The structure of the circuit in this case
study consists of 5 material layers, an active layer with
different subdomains defined by the Nehalem architecture,
a silicon substrate layer, TIM layer, spreader, and a
heat sink. In this problem, a simple circuit geometry is
assumed so that the computational domain is a rectangular
cuboid. These experiments also illustrate the fully adaptive
spatio-temporal features of the model.

In the second experiment, a similar but more realistic
structure is considered. This circuit has the same 5 layer
structure, however this time both the heat spreader and
heat sink are larger than the active and silicon substrate
layers and overhang the circuit. Additionally, the heat sink
is endowed with fin structures. This highlights the versatility
of the analyzer to model complex 3-D structures, which is
not available in existing thermal analysis tools.

5.2.1 Rectangular Cuboid Circuit

For this set of experiments, the thermal simulation was
first run using a fixed time step size ∆t = 10−6 s for 500
time-steps (tend = 0.0005 s) with a fixed grid, consisting

(a) Coarse grid solution (b) Coarse grid solution

(c) Adaptively refined solution (d) Adaptively refined solution

Figure 3: Rectangular cuboid thermal profiles.

of 25,725 unknowns. This simple, small-scale problem
serves as an illustrative example for demonstrating the
adaptive capabilities of the proposed analyzer. Each circuit
component of the chip is considered to operate at full
power capacity when active. Snapshots of the bottom face
of the active layer (located in the bottom layer) at time
t = 2.5e − 4 s and t = 5.0e − 4 s are plotted in Figs. 3(a)
and 3(b), respectively.

The same simulation is also performed, again with 500
time-steps of fixed step size ∆t = 10−6 s, however for
this case the grid was adaptively refined. The refinement
parameters are ǫmax = 10−2 and ǫmin = 10−6. The initial
coarse mesh was the same as the first simulation, consisting
of 25,725 temperature unknowns. At the final time step, the
adaptively refined grid consists of 59, 023 unknowns. The
adaptively refined thermal map at times t = 2.5e− 4 s and
t = 5.0e−4 s are plotted in Figs. 3(c) and 3(d), respectively.
As expected, the refinement occurs in regions of the circuit
where the power and variation in temperature are highest.

Lastly, the same structure is simulated to a final time
tend = 5.0e− 4 s on a fixed grid but with adaptively chosen
time-steps. The fixed grid is the same as the first simulation,
consisting of 25,725 unknowns. The reduction in the number
of total time steps taken is presented in Table 4 for two
different temporal error tolerances. The more the error
tolerance is relaxed, the fewer time steps are taken, yielding
improved simulation times. The minimum and maximum
temperatures are also reported, illustrating that even with
the large reduction in the number of time steps, which is
provided by the adaptive time stepping of the the proposed
method, there is essentially no loss of accuracy.

εt Time steps [Tmin, Tmax]

10−3 50 [318.00, 326.98]
10−4 396 [318.00, 326.88]

Table 4: Decrease in the number of adaptive time

steps for different temporal error tolerances.
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5.2.2 Fin Structure

For this experiment, a realistic circuit geometry is
investigated. A thermal simulation is run for 1000 seconds
with fixed ∆t = 1 s on a fixed grid consisting of 72,445
unknowns. The larger time steps and simulation time are
chosen to fully demonstrate the vertical propagation of heat
in the IC over a longer period of time. This experiment
accurately shows the detailed vertical flow of heat in the
circuit and package, which other current thermal analysis
tools have difficulty modeling. The results at the end of the
simulation are plotted in Fig. 4. Three views of the circuit
are provided. The bottom view in Fig. 4(b) illustrates the
formation of a hot spot in the active layer of the chip. The
top view of the circuit in Fig. 4(a) shows how the heat from
this hotspot has propagated through to the fins of the heat
sink. Lastly, a cross-section along the x-direction of the
circuit in Fig. 4(c) shows the vertical propagation of the
hotspot in the interior of the circuit. Often the heat sink
is modeled as several thermal resistors connected in parallel
and collapsed at a single node on the outer face of the heat
sink. Such a model cannot capture the diffusion of heat
within the volume of the heat sink, which is depicted in
Fig. 4(c).

5.2.3 TSV Structure

The analyzer can model detailed heat characteristics of
vertical channels. Here is an example of a thermal simulation
performed on part of a 3-D circuit with signal TSVs. Fig. 5
shows an example of 16 TSVs in 45 nm technology. The
simulation is executed with a time step ∆t = 10−6 s for 500
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Figure 5: A TSV example.
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Figure 6: A package example.

time steps, where each TSV act as vertical signal channel
and has its own switching activity during the thermal
simulation. In Fig. 5(a), the metal filling of the TSVs
(assumed to be copper in this example) is shown by the
red color and the liner of the TSVs (SiO2 in this example)
is depicted by the blue color. Inverters are assumed to drive
the TSVs and the load of each TSV is also a 1x drive strength
inverter. Fig. 5(b) shows a cross-section of the resulting
thermal map. This example demonstrates that the flow of
heat within each TSV (which depends on the corresponding
switching activity) is captured, instead of treating this part
of the 3-D stack as a homogeneous material with an effective
thermal conductivity (which depends on the number of
TSVs within this part of the circuit). Consequently, our
tool accurately describes the thermal behavior of any TSV
distribution, also enabling appropriate thermal analysis of
3-D ICs.

5.2.4 Complex Structure

Fig. 6 shows an example of the Intel Xeon processor
(Nehalem Architecture) in a FCLGA (flip-chip land grid
array) package referring to the thermal reference guide [33].
Figs. 6(a)-6(c) show the assembly of a heat sink with 72
fins and TG (thermal grease), a CPU die, and package
components. The thermal simulation for this IC was
performed with ∆t = 1 s for 500 time steps. Fig. 6(d)
shows a cross-section along x= 7.2 mm of the IC at the final
time step of the simulation. The thermal map shows the
secondary heat dissipation path of the package-PCB, which
further illustrates the capabilities of the proposed analyzer
to model complex heat dissipation paths.

6. CONCLUSION
In this paper, we presented a flexible thermal simulator

based on the FEM which uses fast multigrid preconditioned
Krylov subspace iterative solvers. The preconditioned
iterative solvers offer near linear scaling in simulation times
as the mesh is refined. Users can easily configure the
simulator with the desired 3-D structure of an IC with
various physical parameters and import the corresponding



power information from microarchitecture simulators and
power estimators. By deploying spatio-temporal adaptivity,
the proposed method provides accurate thermal profiles
within acceptable computation times.
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APPENDIX

A basic description of a component by using our XML
tool is given in Code A1. The structure description has
a basic name and three major definitions: <component> for
hierarchical definition of sub-domain components, <posi-

tion> for definition of position and geometry, and <parame-

ter> for physical parameters in running thermal simulation.
The main component of the example is “name0”, which
defines position and parameter. Meanwhile, “name0” has
two sub-domain components“subname1”and“subname2”to
define“name0”. Note that if the sub-domain of name0 is not
defined by either ”subname1” or “subname2”, the undefined
domain will be automatically defined by “name0”. Since
”subname1” and “subname2” are in the same level of the
hierarchy, the definition of both domains should be mutually
exclusive to avoid duplicate definitions.

Code A1: Basic XML example
<name0>

<component>
<subname1>

<component></component>
<position></position>
<parameter></parameter>

</subname1>
<component></component>
<position></position>
<parameter></parameter>

<subname2>
</subname2>

</component>
<position></position>
<parameter></parameter>

</name0>


