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Abstract— Several studies dealing with ICA-based BCI systems
have been reported. Most of them have only explored a limited
number of ICA methods, mainly FastICA and INFOMAX. The
aim of this paper is to help the BCI community researchers, espe-
cially those who are not familiar with ICA techniques, to choose
an appropriate ICA method. For this purpose, the concept of ICA
is reviewed and different measures of statistical independence are
reported. Then, the application of these measures is illustrated
through a brief description of the widely used algorithms in the
ICA community, namely SOBI, COM2, JADE, ICAR, FastICA
and INFOMAX. The implementation of these techniques in the
BCI field is also explained. Finally, a comparative study of these
algorithms, conducted on simulated EEG data, shows that an
appropriate selection of an ICA algorithm may significantly
improve the capabilities of BCI systems.

I. INTRODUCTION

Brain Computer Interface (BCI) technology is a research

field that has emerged and grown rapidly over the past 15

years (see [44], [31] and [8] for a review). The BCI system

is a set of sensors and signal processing components that

allows acquiring and analyzing brain activities with the goal

of establishing a reliable communication channel directly

between the brain and an external device such as a computer,

neuroprosthesis, etc. More precisely, the basic design and

functioning of any BCI system are depicted in figure 1. The

brain activity is recorded by means of electrodes located on the

scalp (non-invasive BCI systems) or by implanted electrodes

placed, in general, in the motor cortex (invasive BCI systems)

[8]. A preprocessing step is applied to enhance the Signal to

Noise Ratio (SNR) and to remove artifacts, such as power

line noise, electrode movements and broken wire contacts, but

also interfering physiological signals as those related to ocular,

muscular and cardiac activities. Then the feature extraction

step is conducted to detect the specific patterns in brain activity

that encode the user’s commands or reflect the patient’s motor

intentions [44] [31]. The last step is aimed at translating (i.e.

associating) specific features into useful control signals to be

sent to an external device. Several existing brain monitoring

technologies have been tested in BCI fields for acquiring data.

They can be divided in two subcategories: i) non-invasive

procedures such as the ElectroEncephaloGraphy (EEG), Mag-

netoEncephaloGraphy (MEG), functional Magnetic Resonance

Imaging (fMRI), Positron Emission Tomography (PET), and

Near Infrared Spectroscopy (NIRS) and ii) invasive ap-

proaches such as the ElectroCorticoGraphy (ECoG) where the

signal is recorded from intracranial microelectrodes [31]. Up

to now, a majority of practical BCI systems exploit EEG

signals and ECoG signals [44] [31]. Indeed, since MEG,

fMRI and PET are expensive and bulky, and as fMRI, PET

and NIRS present long time constants (they do not measure

neural activity directly but rely on the hemodynamic coupling

between neural activity and regional changes in blood flow),

they cannot be deployed as ambulatory BCI systems. Several

varieties of neurological phenomena are used by BCI systems.

They include EEG rhythms such as Mu, Alpha, Beta, Event-

Related Synchronization/Desynchronization (ERS/ERD) phe-

nomena, P-300 component of the Evoked-Related Potentials

(ERPs), Slow Cortical Potentials (SCPs), Steady-State Visual

Evoked Potentials (SSVEPs), etc. (see [31, table 3] for details).

Fast and reliable signal processing tools for preprocessing the

recorded data and for extracting significant features are crucial

in the development of practical BCI systems. Independent

Component Analysis (ICA) [14] is one of the popular signal

processing tools, which has been widely studied during the

last twenty years. Indeed, a great number of algorithms is

available and ICA received a broad attention in various fields

such as biomedical signal analysis and processing [33], image

recognition [18] and wireless communications [20]. In this
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Fig. 1. Basic design and operation of any BCI system.

paper we focus on the use of ICA in BCI systems. Several

studies dealing with ICA-based BCI systems have been re-

ported during the last decade [31]. Nevertheless, most of these

studies have only explored a limited number of ICA methods,

and mainly FastICA [25] and INFOMAX [30]. In addition, the

performance of ICA algorithms for arbitrary electrophysiolog-

ical sources is still almost unknown. This prevents us from

choosing the best method for a given application, and may

limit the role of these methods in BCI systems. To overcome

these limitations, the purpose of our study is i) to show the
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interest of ICA in BCI, ii) to identify ICA techniques that are

appropriate to BCI, iii) to present a comparative performance

analysis of six algorithms in BCI operational context, and iv)

to build a reference for BCI community researchers, especially

for those who are not experts of ICA techniques.

II. TWO DECADES OF ICA

Hérault and Jutten seem to be the first (around 1983) to use

informally the concept of ICA, especially in order to solve

the BSS problem [4]. A few years later, Comon presents

a mathematical formulation of ICA and shows how Higher

Order (HO) cumulants can be used to solve the problem of

ICA: the HO contrast-based method COM2 arises from this

work (see [14] and references therein). In parallel, Cardoso

and Souloumiac develop the JADE algorithm [10], based

on a Joint Approximate Diagonalization (JAD). While these

two approaches use both Second Order (SO) and Fourth

Order (FO) statistics, other approaches attempt to exploit SO

statistics only. This is made possible thanks to the color of

the sources, assumed unknown but different. Fety is the first to

exploit covariance matrices at two different delay lags [21]; the

complete theoretical background is given only a few years later

by Comon et al. [15]. The same kind of approach is developed

independently several years later by Tong [40], Belouchrani et

al. [7] and Ziehe and Müller [49], who give rise to the so-called

AMUSE, SOBI and TDSEP methods, respectively. In 1999,

Müller et al. propose a modified version of JADE, which uses

the color of sources through both SO and FO statistics. More

recently Albera et al. present an extension of SOBI to FO

statistics [20], called FOBIUM, dealing with ICA especially

in underdetermined contexts (more components than observa-

tions). Authors also propose an algebraic method [1], named

ICAR, using the matrix redundancies of the FO covariance

matrix, well-known as the quadricovariance matrix. As pointed

out by Parra and Sajda in [36], under the assumption of non-

Gaussian, non-white or non-stationary sources, ICA can be

easily reformulated as a generalized eigenvalue problem.

Whereas the previous methods identify simultaneously the

independent components, Delfosse and Loubaton [16] propose

to extract one component at a time, which is now referred to as

deflation procedures. A few years later, Hyvarinen et al. pro-

pose the FastICA method, which iteratively maximizes a FO

contrast. While the first version of this algorithm is of deflation

type, as that of Delfosse and Loubaton [16], Hyvarinen et al.

[25] propose later a ”simultaneous” version of FastICA whose

joint orthonormalization step is similar to the one presented

by Moreau [34]. Instead of exploiting, explicitly or implicitly,

the SO and the FO statistics to solve the problem of ICA,

some approaches use directly the independence assumption. In

fact, Lee et al. present an information maximization approach

[30] based on parameterized probability distributions that

have sub- and super-gaussian regimes to derive a general

learning rule, which is optimized using a natural gradient

algorithm proposed by Amari et al. [3]. Pham proposes to

use non-parametric estimates of the likelihood or the mutual

information [37]. Another algorithm, based on a minimization

of a non-parametric estimator of Renyi’s mutual information

as a criterion for ICA is introduced by Erdogmus et al. [17].

Note that Renyi’s entropy is not yet proved to be better than

Shannon’s to address the BSS problem [41].

The previous list of ICA methods is not exhaustive, which

shows that a great deal has been written on the subject.

However, most of the ICA-based BCI systems presently use

only FastICA [25] or INFOMAX [30]. So, after a brief survey

of the concept of ICA, we propose hereafter to help the BCI

scientists to choose the most appropriate ICA method among

a class of six algorithms, namely INFOMAX [30], FastICA

[25], COM2 [14], JADE [10], SOBI [7] and ICAR [1].

A. The concept of ICA

As it will be presented in section III, ICA is very useful

in the case of non-invasive BCI systems. Such BCI systems

generally exploit EEG which has a high time resolution (below

100 ms). This temporal precision allows to explore the timing

of basic neural processes at the level of cell assemblies.

More particularly, EEG consists of measurements of a set

of N electric potential differences between pairs of scalp

electrodes. The sensors may be either directly glued to the skin

at selected locations right above cortical regions of interest,

as the motor area for instance, or fitted in an elastic cap for

rapid attachment with near uniform coverage of the entire

scalp. Research protocols can use up to 256 electrodes. Then

the N -dimensional set of recorded signals can be viewed as

one realization of a random vector process {x[m]}m∈ . The

ICA of {x[m]}m∈ consists in looking for an overdetermined

(N×P ) mixing matrix A (i.e. P is smaller than or equal to N )

and a P-dimensional source vector process {s[m]}m∈ whose

components are the most statistically independent as possible

so that the linear observation model below holds:

∀m, x[m] = As[m] + ν[m] (1)

where {ν[m]}m∈ is N-dimensional noise vector process

independent from the source process; bold faced lowercases

denote vectors, whereas bold uppercases denote matrices. In

other words, ICA consists of searching for a (N×P ) separator

matrix Wo such that yo[m] = Wo
Tx[m] is an estimate of

the source vector s[m]. It is worth noting that once yo[m] is

computed, only its components of interest for the considered

BCI application have to be selected. This task is dealt with in

section III-E. Now how can one justify model (1) in practice?

Let’s consider the instance of subjects who would learn how

to control the amplitude of Mu waves by visualizing motor

activities, such as smiling, chewing, or swallowing. When

people move their hands a brain wave called the Mu wave

gets blocked and disappears completely. Such a suppression

also occurs when a person watches someone else waving his

hand, but not if he/she watches a similar movement of an

inanimate object. These people could thus learn how to drive

a cursor up or down on a computer screen by controlling

the amplitude of Mu waves. In such an example, when non-

invasive measurements as EEG are used, the surface sensors

record the result of the Mu wave diffusion from the motor

cortex towards the scalp, corrupted by artifacts such as eye

movements. The diffusion of electromagnetic waves in the
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head is now well-known by the biomedical community and

can be modeled as a linear static transformation [2]. As far as

the artifacts are concerned, they can be considered as additive

perturbations whose weightings depend on the physiological

nature of the artifacts. Eventually for this instance, only the

statistical independence between the Mu wave and the other

sources is crucial since only the Mu wave is of interest for this

BCI application. In fact, it can be justified by the physiological

independence between the Mu wave and the other sources such

as ocular and cardiac activities.

B. A class of statistical tools to perform ICA

One of the fundamental questions one should ask oneself

in order to choose the most appropriate ICA method in a BCI

context is how to characterize the statistical independence of

a set of P random signals {yp[m]}m∈ when one realization

of each signal is available.

Entropy and information. First, recall that a random vec-

tor y = [y1, · · · , yP ]T has mutually independent components

if and only if its Probability Density Function (PDF) py can

be decomposed as the product of the P marginal PDFs, pyp
,

where pyp
denotes the PDF of the p-th component yp of y.

Then a natural way of checking whether y has independent

components is to measure a pseudo-distance between py and
∏

p pyp
. Such a measure can be chosen among the large class

of f -divergences. If the Kullback divergence is used, we get

the Mutual Information (MI) of y:

MI(py) =

∫

N

py(u) log

(

py(u)
∏P

p=1 pyp
(up)

)

du (2)

It can be shown that the MI vanishes if and only if the P
components of y are mutually independent, and is strictly

positive otherwise.

Another measure based on the PDF of y is the Differential

Entropy (DE) of y:

S(y) = −

∫

N

py(u) log(py(u)) du = −E[log(py)] (3)

sometimes referred to as Shannon’s joint entropy, where E[·]
denotes the mathematical expectation. This entropy is not

invariant by an invertible change of coordinates, but only by

orthogonal transforms. A fundamental result in information

theory is that the DE can be used as a measure of non-

gaussianity. Indeed, among the random vectors having an

invertible covariance matrix, the Gaussian vector is the one

that has the largest entropy. Then, to obtain a measure of non-

gaussianity of y that is i) zero only for a Gaussian vector,

ii) always positive and iii) invariant by any linear invertible

transformation, one often uses a normalized version of the DE,

called negentropy, and given by:

J(y) = S(z) − S(y) (4)

where z stands for the Gaussian vector with the same mean

and covariance matrix as y. Since MI and negentropy are

simply related to each other [14], estimating the negentropy

allows to estimate the MI. However, even if we have at hand

consistent estimators of PDFs (as Parzen estimators [47]), the

integral computation (3) is time consuming.

The INFOMAX and FastICA methods succeed in avoiding

this exact computation. On one hand, INFOMAX solves the

ICA problem by maximizing the DE of the output of an

invertible non-linear transform of y[m] = W Tx[m] with

respect to W using the natural gradient algorithm [3]. In

practice, non-linearities whose derivative are sub-Gaussian

(resp. super-Gaussian) PDFs are sufficient for sub-Gaussian

(resp. super-Gaussian) sources [30]. On the other hand, in

its deflationary implementation, FastICA extracts the p-th

(1 ≤ p ≤ P ) source by maximizing an approximation of the

negentropy J(w T

p x[m]) with respect to the (N × 1) vector

wp. This maximization is achieved using an approximate

Newton iteration. To prevent all vectors wp from converging

to the same maximum (which would yield several times the

same source), the p-th output has to be decorrelated from the

previously estimated sources after every iteration. A simple

way to do this is a deflation scheme based on a Gram-Schmidt

orthogonalization.

Another way to avoid the exact computation of the negen-

tropy consists in using another measure of statistical indepen-

dence less natural but easier to compute. The contrast function

[14, definition 5] built from the data cumulants satisfies this

condition. Let’s recall the definition of cumulants and let’s

show why they are so attractive tools in the ICA framework.

Cumulants. Let Φx(u)=E[exp(iuTx)] be the first charac-

teristic function of a random vector x. Since Φx(0)=1 and Φx

is continuous, then there exists an open neighborhood of the

origin, in which Ψx(u)=log(Φx(u)) can be defined. Remind

that the r-th order moments are the coefficients of the Taylor

expansion of Φx about the origin; similarly cumulants, denoted

by Ci,j,··· ,ℓ,x, are the coefficients of the second characteristic

function, Ψx. For a N -dimensional random vector x, SO

cumulants can be arranged in a (N×N ) matrix, which is the

well-known covariance matrix, denoted by Rx. In the same

way, it is possible to store the FO cumulants of x in a (N2×N2)

matrix, Qx, called the quadricovariance matrix.

But why are cumulants useful to build a good optimization

criterion dedicated to the extraction of independent compo-

nents? Why are they more appropriate than moments? This

comes essentially from two important properties: i) if at least

two components or groups of components of x are statistically

independent, then all cumulants involving these components

are null. For instance, if all components of x are mutually

independent, then Ci,j,··· ,ℓ,x = δ[i, j, · · · , ℓ] Ci,i,··· ,i,x, where

the Kronecker δ[i, j, · · · , ℓ] equals 1 when all its arguments

are equal and is null otherwise. And ii) if x is Gaussian,

then all its HO cumulants are null. So HO cumulants may

be seen as a distance to normality. Note that moments do not

enjoy these two key properties. On the other hand, moments

and cumulants share two other useful properties. iii) They

are both symmetric arrays, since the value of their entries

does not change by permutation of their indices. Consequently,

Rx and Qx are necessarily symmetric matrices. Lastly, iv)

moments and cumulants satisfy the multi-linearity property

[32]. To illustrate this, let x be a random vector satisfying

x=As, where A is a (N×P ) matrix and s a random vector
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4

with statistically independent components. We know that the

(P×P ) covariance matrix of s, Rs, is diagonal, and that the

covariance matrix of x may be written as:

Rx = ARs AT (5)

Actually, this is nothing else but the expression of the multi-

linearity property at order 2. Similarly at order 4, one can

define a (P×P ) diagonal matrix ζs containing marginal source

cumulants, Cp,p,p,p,s. Then, from properties i), iii) and iv), one

can deduce that Qx has the following algebraic structure:

Qx = (A ⊘ A) ζs (A ⊘ A)
T

(6)

where ⊘ denotes the column-wise Kronecker product [1].

Now, r-th order cumulants can be related to moments of

order smaller than or equal to r using the Leonov-Shiryaev

formula [32]. For instance, for any zero-mean random vector

x symmetrically distributed, we have:

Ci,j,x = E[xi xj ]
Ci,j,k,ℓ,x = E[xi xj xk xℓ] − E[xi xj ]E[xk xℓ]

−E[xi xk]E[xj xℓ] − E[xi xℓ]E[xj xk]
(7)

Now r-th order moments of a stationary-ergodic process do

not depend on time and can be easily estimated using sample

statistics [32]. The SOBI, COM2, JADE ans ICAR methods

perform ICA from the cumulants of the data. More precisely,

SOBI uses the SO cumulants while COM2 and JADE use

both the SO and FO cumulants. As far as ICAR is concerned,

it uses only the FO cumulants of the data. Next, SOBI,

JADE and ICAR take advantage of the algebraic structure

of the covariance (5) and/or quadricovariance matrices (6);

they consider the problem of ICA as a generalized eigenvalue

problem [36], while COM2 explicitly maximizes a contrast

function based on the FO cumulants of the data by rooting

successive polynomials. Finally, SOBI, JADE and ICAR use

the JAD method to extract the independent components.

To conclude this section, let us compare the six previously

seen ICA methods to each other. First, the four cumulant-

based algorithms constitute a semi-algebraic solution to the

ICA problem, in the sense that they terminate within a finite

number of iterations. On the contrary, INFOMAX and FastICA

are iterative methods, whose convergence to local optima is

possible. Moreover, all these methods except ICAR can extract

components whose FO marginal cumulants have different

signs. The latter scenario may occur in biomedical contexts.

Another difference is the need for a spatial whitening (also

called standardization) [14, section 2.2]. This preprocessing,

based on SO cumulants, is mandatory for FastICA, COM2,

JADE and SOBI. It is not necessary but recommended in

INFOMAX, in order to improve its speed of convergence

[25, Chapter 9]. Regarding ICAR, it uses only FO cumulants

without any standardization. Consequently, it is asymptotically

insensitive to the presence of a Gaussian noise with a non-

diagonal covariance matrix. In addition, contrary to the five

other methods, SOBI needs that all sources are not tem-

porally white, which is generally satisfied by BCI systems.

Eventually, these six methods, namely INFOMAX, FastICA,

COM2, JADE, SOBI and ICAR, require the stationarity-

ergodicity assumption to ensure an asymptotical mean square

convergence. However, such an assumption is very rarely

fulfilled in biomedical contexts and a consistence analysis is

difficult in the presence of such complex biomedical signals.

But the good behavior of FastICA, COM2 and JADE given

by recent computer results [29] shows that the stationnarity-

ergodicity assumption is not absolutely necessary. As far as

COM2 and JADE are concerned, even if the sample statistics

do not estimate accurately the cumulants of the data, they still

satisfy reasonably well the above mentioned basic properties

i) to iv).

C. Numerical complexity

This section aims at giving some insights into the numerical

complexity of the six ICA algorithms studied in this paper,

for given values of N , P and data length M . The numerical

complexity of methods is calculated in terms of number of

floating point operations (flops). A flop is defined as a multipli-

cation followed by an addition; according to the usual practice,

only multiplies are counted, which does not affect the order of

magnitude of the computational complexity. Now denote by

f4(P ) = P (P+1)(P+2)(P+3)/24 the number of free entries

in a fourth order cumulant tensor of dimension P enjoying

all symmetries, It the number of sweeps required by a joint

diagonalization process (SOBI, JADE, ICAR) or by contrast

function optimization algorithms (COM2), T the number of

delay lags used in SOBI, J the maximal number of iterations

considered in iterative algorithms (FastICA, INFOMAX), Q
the complexity required to compute the roots of a real 4th

degree polynomial by Ferrari’s technique (we may take Q ≈
30 flops), and B = min{MN2/2+4N3/3+PNM, 2MN2}
the number of flops required to perform spatial whitening.

Then for given values of N , P , M , It, T , J and B, the

computational complexities are given in table I. It is difficult

TABLE I

NUMERICAL COMPLEXITY OF THE SIX ANALYZED ICA METHODS

Algorithms Flops

SOBI TMN2/2 + 4N3/3 + (T − 1)N3/2+

ItP 2[4P (T − 1) + 17(T − 1) + 4P + 75]/2

COM2 B + min{12Itf4(P )P 2 + 2ItP 3+

3Mf4(P ) + MP 2, 13ItMP 2/2} + ItP 2Q/2

JADE B + min{4P 6/3, 8P 3(P 2 + 3)}+

3Mf4(P ) + ItP 2(75 + 21P + 4P 2)/2 + MP 2

ICAR 3Mf4(P )+2N6/3+P 2(3N2−P )/3+N2P+

P 2N3+7P 2N2+ItP 2(4N4−8N3+25N2)/2

FastICA B + J [2P (P + M) + 5MP 2/2]

INFOMAX B + J [P 3 + P 2 + P (5M + 4)]

to compare computational complexities because the input

parameters are different. But one can say that for a comparable

performance, SOBI requires a smaller amount of calculations

(when the requested assumptions are satisfied), the iterative

algorithms INFOMAX and FastICA require generally a larger

amount of calculations, whereas COM2, ICAR, and JADE

appear close to each other in the picture. See [13] [48] for

more details. The number of electrodes used in BCI systems

can vary for example from one electrode [27] to 41 electrodes

[24]. However, in the perspective of using BCI systems in
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ambulatory conditions, a reduction of the number of sensors

N is necessary. Regarding the number of samples M , we

can say that M is generally low (between 300 snapshots

to 5000 snapshots). Most BCI systems exploit four types of

neurophysiological signals, namely P-300 ERP, SSVEP and

EEG rhythm. These signals have generally a short time support

(a few seconds) with a sampling rate that generally varies

between 100 Hz and 1000 Hz. As an example, the numerical

complexity of the six studied algorithms is calculated in our

experiment (described in section IV), where the ICA technique

is used to extract and denoise the Mu activity. The input

parameters of table I are N = 6, P = 3, M = 5120 (trial

duration equal to 20s with sampling rate of 256 Hz), T = 5,

Q = 30, It = 6 for SOBI, It = 4 for COM2, It = 7 for

JADE, It = 11 for ICAR, J = 60 for FastICA, J = 31 for

INFOMAX, f4(P ) = 15 and B = 184608. These parameters

have been chosen so as to allow each algorithm to perform

reasonably well. Thus the numerical complexity of SOBI,

COM2, JADE, ICAR, FastICA and INFOMAX is about 5.105,

5.105, 5.105, 5.105, 3.106 and 3.106, respectively. Clearly,

for this specific example, SOBI, COM2, JADE, and ICAR

require a smaller amount of calculations, whereas INFOMAX

and FastICA need a larger amount of calculations.

III. WHY ICA-BASED BCI SYSTEMS: A BIBLIOGRAPHICAL

SURVEY

Promising results have been reported in biomedical signal

processing using ICA techniques. They include fetal ECG

extraction, Evoked Potentials (EP) enhancement, categorized

brain signals detection, spindles detection and estimation, and

EEG/MEG artifacts reduction. Therefore, it appears natural to

consider ICA techniques as a potential tool for building BCI

systems. Four types of neurophysiological signals have been

mainly investigated in this context: the P-300 ERP, the SSVEP,

the EEG oscillation rhythms and the ERS/ERD phenomenon.

The aim of this section is to provide an overview of ICA-

based BCI systems, to show how the ICA technique can be

applied and how the informative independent components can

be automatically chosen.

A. P-300 evoked potentials

P-300 is a positive ERP, which occurs over the parietal

cortex with a latency of about 300 ms after rare or task-

relevant stimuli. The P-300 can be obtained in all stimulus

modalities (auditory as well as visual and somatosensory

modalities) and can even be produced by the omission of

a stimulus in a regular train of stimuli [35]. The P-300 has

useful properties, which make it very interesting for BCI

applications. For example: i) the P-300 is parietally maximal,

with amplitude inversely related to the relative probability of

the evoking stimulus, and directly related to its task relevance,

and ii) the latency of the P-300 correlates to some extent with

categorization or evaluation of the stimulus and consequently

is related to the task-difficulty [35]. Due to the poor SNR as

well as to the presence of artifacts (such as ocular, muscular

and cardiac activities), the P-300 wave can be buried in the

signal collection. Hence, the main objective when applying

ICA to P-300-based BCI systems is two-fold: i) to denoise

the EEG signal in order to enhance the SNR of the P-300 and

ii) to separate ERP responses to target and non-target ones.

The first point was considered by Bayliss and al. in [5].

Authors described an experiment demonstrating the existence

of a P-300 wave when facing red stoplights and the absence of

this signal when facing yellow stoplights in a virtual driving

environment. The P-300 wave occurs if the red stoplights are

less frequent than the yellow stoplights and the subject is asked

to stop his virtual car at the red light. The data were recorded

from eight electrodes (Fz, Cz, CPz, Pz, P3, P4 as well as

two vertical EOG channels). Bayliss et al. pointed out that

most of artifacts were due to eye movements. They showed

that an ICA technique was able to separate the background

EEG signal and eye movements from the P-300 signal. Indeed,

after training the mixing matrix A of equation (1) on the first

seven trials, matrix A was then used to find sources of the red

or yellow lights. Note that the decision whether the obtained

source represents a P-300 ERP or not was set by correlation

with the red and yellow light signal references obtained, from

prior controlled experiment, by averaging the EEG recorded in

red light and yellow light trials, respectively (when the subject

ran a red light, the trial was canceled). Authors showed that

the ICA performance was similar to that obtained by a robust

Kalman filter.

In [45], Xu et al. dealt with the second point and proposed

to enhance the P-300 wave detection in the P-300 speller

paradigm (described in [19]) used to record the database IIb of

BCI Competition 2003 [9]. Briefly, the experiment consisted

in displaying a (6 × 6) grid containing letters on a computer

monitor. The user was asked to select a letter in an alphabet

and to count the number of times that a row or column

containing the letter flashes. Flashes occurred at about 10 Hz

and the desired letter flashed twice in every set of twelve

flashes. As classical methods for enhancing the detection of

P-300 components are time consuming, authors proposed to

use an ICA technique in the training phase . The 64-raw EEG

channels were first filtered through a 2-8 Hz bandpass filter,

the data dimension was reduced from 64 to 22 by means of

PCA, then ICA was applied on the dimension reduced data

to derive a (22 × 22) mixing matrix, A. Thus the trained

matrix A was used in the testing phase in order to identify

the target P-300 responses. The key issue of this study is the

selection of the meaningful Independent Components (ICs).

Indeed, according to the a priori physiological knowledge,

authors proposed two additional post-processing steps, namely

the temporal manipulation of ICs and the spatial manipulation

of ICs (see [45, section II] for details). They showed that the

proposed algorithm for P-300 detection based on ICA provided

a perfect accuracy (100%) in the competition.

B. Auditory event-related potentials

The Auditory Event-Related Potential (AERP) is the brain

response time-locked to an auditory stimulus. AERPs are very

small electrical potentials [35] (2-10 µv for cortical AERPs

to much less than 1 µv to the deeper structures). Their

low voltage combined with relatively high background EEG
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activity and other artifacts requires the use of highly sensitive

amplifiers and robust signal processing techniques for denois-

ing and for extracting significant features. The use of AERPs

in BCI systems is motivated by some particular problems

encountered in communication with patients suffering from

severe motor disabilities. In some severe cases, the eyes are

completely immobile and the pyramidal cells of the motor

cortex are degenerated. Thus, the BCI paradigms using the

visual modality or the imagined-movements signals become

too limited. Hill et al. presented in [24] an experiment on

healthy subjects, based on AERPs, to develop BCI systems. In

their study, two auditory stimuli were presented to 15 healthy

untrained subjects: i) the right-ear sequence consisted of eight

beeps (pure frequencies) at 1500 Hz (non-target) and 1650 Hz

(target) and ii) the left-ear sequence consisted of seven beeps

at 800 Hz (non-target) and 880 Hz (target), starting 70 ms after

the onset of the right-ear sequence. EEG signals were recorded

using 39 electrodes and eye movements were recorded by

means of an electrode positioned on the side and slightly

below the left eye. All trials were first visually inspected to

reject those corrupted by large artifacts. The retained trials

were then classified using a Support Vector Machine (SVM)

technique. To evaluate the performance of the classifier, the

retained trials from a single subject were split up into ten

non-overlapping partitions of equal size: each partition was

used in turn as a test set for evaluating the performance of the

classifier trained on the other 90% of the trials. Before starting

the SVM classifier, ICA was applied to the training set and

a (40 × 40) mixing matrix A was obtained. This matrix was

used to extract ICs of both the training set and the testing

set. The SVM classifier was then trained and tested. Authors

compared the performance of the classifier with and without

ICA. They reported that ICA generally improves the result up

to 14 %.

C. Steady-state visual evoked potentials

The visual system can be studied non-invasively by record-

ing scalp EEG overlying the visual cortex. These potentials

constitute the Visual Evoked Potentials (VEPs) and reflect the

output features of the entire visual pathway [35]. The SSVEP

is the response of a continuous rapid visual stimulus [35].

Typically, the visual stimulus is generated using a frequency

of 9 Hz to 17 Hz (Fs) flashing lights. This high simulation

rate allows saving time and thereby makes SSVEP attractive

for BCI applications. The Fourier analysis is one of the

conventional methods used for studying the SSVEP. Indeed,

a typical power spectrum of SSVEP wave, introduced by Fs

Hz stimulation, presents fundamental harmonics and second

harmonics at Fs and 2Fs, respectively. However, due to the

small amplitude of SSVEPs these harmonics can be drowned

in background EEG rhythm. To accurately detect the frequency

of occurrence of SSVEP, an appropriate bipolar derivation

should be selected. Wang et al. proposed, using ICA, a method

for selecting both the signal channel and the reference [43]

which enhances the SNR. In their experiment, a blinking

Light-Emitting Diode (LED) modulated by a square wave

was used as the stimulator with stimulation frequencies rising

from 9 Hz to 17 Hz. One-minute-long data were recorded,

in each test with different simulation frequencies, from 13

channels located between Pz and Oz (electrodes positioned

over visual cortex). ICA was then applied to EEG signals

and 13 ICs were derived, and the associated mixing matrix

was then estimated. The power spectrum of each IC was

analyzed and the four most significant powers at stimulation

frequency were supposed to be related to SSVEP signals and

the remaining powers were considered as the contribution of

background noise. Two groups of EEG signals were then

reconstructed from the source mixture and these two kinds

of sources , namely the SSVEP and background activity

groups, respectively. Thus, one bipolar derivation with higher

correlation of background activity and lower correlation of

SSVEP signal was selected as the optimal derivation. Authors

also showed that their method had been successfully applied

to a BCI-based environmental controller presented in [22].

D. Mu rhythm and other activities from sensorimotor cortex

EEG contains a fairly wide frequency spectrum. Never-

theless, the relevant frequency range from the psychophys-

iological viewpoint lies between 0.1 Hz and 100 Hz [35].

Six important waves are categorized by their frequency band

or their location: Alpha (8-13 Hz), Beta (14-30 Hz), Theta

(4-7.5 Hz), Delta (0.1-3.5 Hz), Gamma (above 30 Hz), and

Mu, which is in the same frequency band as Alpha (the

most common frequency of the Mu rhythm is 10 Hz), but

Mu wave has a spacial distribution essentially confined to

the precentral-postcentral region (activity focused over motor

cortex). Several factors suggest that the EEG rhythms could

be good signal features for BCI systems. Indeed, all waves

are usually associated with specific activity. For example,

Beta rhythm is associated with active thinking and attention,

the Theta rhythm is associated with emotional processes, the

posterior Alpha rhythm is temporally blocked by an influx of

light (opening the eye) and other mental activities ( [35]) and

Mu is affected by movements or movement imagery. The reac-

tivity of EEG by short-term attenuation and intensification of

power in particular frequency bands is labeled Event-Related

Desynchronization (ERD) and Event-Related Synchronization

(ERS), respectively. Several studies using ICA to extract one

specific feature or feature subsets, have been conducted. We

decided to present in detail two studies.

The first one [39] is a pilot study aimed at classifying

motor imagery for BCI systems, using ICA as a spatio-

temporal filter. More precisely, the study was focused on the

Mu rhythm which decreases or desynchronizes with movement

or movement imagery (an ERD appears in contralateral brain

region). Authors conduct an experiment where the subject

was asked to imagine right or left-hand movement according

to a timetable. EEG were recorded using 59 electrodes but

only those located around sensorimotor cortex were used

in the study. After a preprocessing step, ICA was used to

extract ICs related to the left and the right motor imagery

task. The estimated mixing matrix was then sorted based on

the norm of columns in ascending order. Authors applied

two source analysis methods to reconstruct equivalent neural
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sources corresponding to the motor imagery (see [39, section

2.3] for details). Note that only the first IC, corresponding

to the first column of the ordered matrix, was used in the

source analysis step. Authors showed that mixing ICA plays

an important role in extracting a useful feature that identifies

the imagined hand movement. A promising classification rate

(about 80 %) of left or right-hand movement imagery was

obtained on human subject studies, based only on a single

trial and without any training procedure.

The second study [27] is interesting because ICA was

applied to only one recording channel. The 2003 international

BCI competition database III [9] was exploited by authors to

show that a rhythmic activity between 8 Hz and 12 Hz can

be extracted in the case of hand imagined movements. The

goal of the study was to control a feedback bar by means

of imagined left or right-hand movements. ICA was then

applied, as above-mentioned, on each EEG signal recorded

from three electrodes C3, Cz and C4. Authors calculated the

Fourier Transformation (FT) of each column of the obtained

mixing matrix and extracted all components corresponding to

columns exhibiting a peak in the 8-12 Hz frequency band. The

chosen ICs were then projected to the measurement space and

summed. Authors showed, by applying this technique on the

EEG recorded from C3, Cz and C4 electrodes, that an ERD

of activity in the 8-12 Hz band can be clearly identified.

E. How to select the informative independent components?

One of the challenging tasks in BCI is to reliably detect,

enhance, and localize very weak brain activities corrupted by

noise and various interfering artifacts of physiological and

non-physiological origin. The applications presented before

show that ICA is a promising approach for improving BCI sys-

tems. In fact, for these applications, ICA has been successfully

applied for providing feature subsets with high classification

accuracy. However, one important problem that arises when

ICA is used in practical BCI systems, is to automatically

select and classify independent sources of interest. Several

experimental advances in BCI select manually the relevant

ICs or estimate the cross-correlation between ICs and the

reference signals corresponding to the specific features. To

transform these experimental advances into viable BCI sys-

tems, an automatic on-line selection of the relevant ICs is

necessary. The solution to these problems can be decomposed

into two stages. In a first step, the recorded brain signals

are decomposed into useful signal and noise subspaces using

standard techniques like PCA, Factor Analysis (FA), Singular

Value Decomposition (SVD), nonlinear adaptive filtering, etc.

Since the methods used in the first step always contain the

risk of including ICs that do not represent the components of

interest (other physiological artifacts, such as eye movements,

cardiac activities,...), a second step allowing to automatically

select only the component of interest is needed. For this

purpose, Wang et al. [42] develop two algorithms. In the

first one, in order to assist the user in choosing the related

P300 components, they propose: i) to increase the target and

non-target ratio in the training data, ii) to create a template

as a topography which presents maximal signal intensity at

the vertex region and iii) to use the correlation between the

template and each column of the inverse unmixing matrix. In

the second algorithm, authors show that if a priori knowledge

about the spatial projections of some sources is available,

then it can be incorporated into the ICA model by means

of constraints on some columns of the mixing matrix; this

provides an assistance to the component selection (see [26]

for details).

Another method allowing to select the components of inter-

est consists in exploiting the spectral information of particular

sources. As in the case of BCI systems using the EEG rhythm,

we have some ideas about the spectral information on the

relevant components we wish to extract. For example, in [27],

authors select the source of interest by using a mere FT of

each column of the obtained mixing matrix. All components

corresponding to columns with a peak in the 8-12 Hz fre-

quency band are selected and projected to the measurement

space.

IV. COMPARATIVE PERFORMANCE ANALYSIS IN BCI

CONTEXT

A. Data generation

The main goal of this subsection is to explain how to

obtain realistic data for comparing ICA methods in the context

of BCI systems based on the Mu rhythm (see section III-

D) when seven surface electrodes are used to achieve EEG

recordings (see figure 2(a)). In such a context, as depicted in

section II-A, the surface observations can be considered as a

noisy mixture of one source of interest, namely the Mu wave,

and artifact sources such as the ocular and cardiac activities.

The intracerebral Mu wave, located in the motor cortex (see

figure 2(b)), is simulated using the parametric model of Jansen

[28] whose parameters are selected to derive a Mu-like activity.

The ocular and cardiac signals are issued from our polysomno-

graphic database [38]. Concerning the additive noise, it is

modeled as the sum of the instrumental and physiological

noises. A Gaussian vector process is used to simulate the

instrumental noise while a brain volume conduction of 200

independent EEG sources, generated using the Jansen model

[28], is simulated in order to produce a surface background

EEG activity. Finally, the mixing matrix is defined as the

concatenation of a two column matrix, modeling the head

volume conduction [2] of the Mu and ocular sources, and a

unit weighting vector associated with the cardiac source, which

implies that the surface electrodes are uniformly corrupted by

the cardiac activity.

B. Performance criterion

Two separators, W(1)
o and W(2)

o can be compared with the

help of the criterion introduced by Chevalier [12]. The quality

of the extracted component is directly related to its Signal

to Interference-plus-Noise Ratio (SINR). More precisely, the

SINR of the p-th source at the i-th output of the separator

Wo = [w(1)
o , . . . ,w(P )

o ] is defined by:

SINRp[w
(i)
o ] = πp

|w(i)
o

Tap|
2

w(i)
o

TRνp
w(i)

o

(8)
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Fig. 2. (a) The international 10-20 electrode placement system and (b) surface
of left cerebral hemisphere, viewed from the side.

where πp represents the power of the p-th source, w(i)
o the

i-th column of the separator Wo and Rνp
is the total noise

covariance matrix for the p-th source, corresponding to the

estimated data covariance matrix Rx in the absence of the

component p. On the basis of these definitions, the restitution

quality of the p-th source at the output of the separator Wo is

evaluated by computing the maximum of SINRp[w
(i)
o ] with

respect to i where i (1 ≤ i ≤ P ). This quantity is denoted by

SINRMp. The performance of a source separator Wo is then

defined by the following line vector SINRM(Wo):

SINRM(Wo) = (SINRM1[Wo], . . . ,SINRMP [Wo]) (9)

In a given context, a separator W(1)
o is better than an-

other one W(2)
o for retrieving the source p, provided that

SINRMp[W
(1)
o ] > SINRMp[W

(2)
o ]. The criterion given by

(9) allows for a quantification of the component analysis per-

formed by ICA algorithms. However, the use of this criterion

requires to know its upper bound, which is achieved by the

optimal source separator, in order to completely evaluate the

performance of a given ICA method. It is shown in [12]

that the optimal source separator corresponds to the separator

Wo(SMF) whose columns are the Spatial Matched Filters

(SMF) associated with the different sources. It is defined to

within a diagonal matrix and a permutation by Wo(SMF)=
R−1

x A where A is the the true mixture.

C. Computer results

To conduct a comparative performance study of the six

ICA algorithms presented in section II-B, two experiments

are envisaged from the data described in section IV-A. We

just focus on the ability of the six algorithms to extract the

Mu source which is considered as the informative component

in the case of the Mu rhythm based BCI application. All

results reported hereafter are obtained by averaging over 200

realizations. Moreover, INFOMAX is implemented with a

prior spatial whitening step.

1) Influence of the data length for a fixed SNR: In this

experiment, we set the SNR to 5 dB for each source. The

SINRMp (1 ≤ p ≤ 3) at the output of the six ICA methods,

namely SOBI, COM2, JADE, ICAR, FastICA and INFOMAX,

is computed as a function of the number of samples (with a

sampling rate of 256 Hz). Figure 3(a) displays the obtained

results corresponding to the Mu source. We observe the good

behavior of COM2, JADE and FastICA. ICAR is slightly less

effective to reconstruct the Mu source and needs more samples

to converge to the optimal solution. One of the reasons could

be the fact that ICAR require that all sources are non-Gaussian.

But the estimated PDF of the simulated Mu source is close to

the Gaussian PDF, especially when the number of snapshots

is low. Another reason is the fact that the sign of the FO

marginal cumulant of the Mu source is different from the sign

of the two other FO marginal source cumulants, which is not

supported a priori by ICAR. Finally, whereas INFOMAX

seems to require a very large amont of samples to converge,

the separator estimated by SOBI appears to be biased for this

simulation scenario.

2) Influence of the SNR: In this section we study the

behavior of the six ICA methods as a function of the SNR,

which is assumed to be the same for each source. The number

of samples is set to 5120, which correlates to 20 secondes.

Figure 3(b) illustrates that, when varying the SNR from -20

to 14 dB, COM2, JADE and FastICA exhibit quasi-optimal

performance. Regarding SOBI and ICAR algorithms, they are

less effective in comparison to the three previous methods

for all values of SNR. Moreover, ICAR seems to be a little

effective than SOBI beyond -2 dB and the inverse appears to

be true below -2 dB (see figure 3(c) which is the zoom in of

the figure 3(b)). The INFOMAX algorithm behaves like the

COM2, JADE and FastICA for SNR values lower than -6 dB

but, as depicted in figure 3(c), its performance is similar with

SOBI beyond -6 dB.
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Fig. 3. Evolution (in dB) of SINRM of sources as: (a) a function of data
length with a SNR equal to 5 dB (b) as a function of SNR. Figure (c)
represents the zoom in of figure (b)) for SNR between -5 dB and 5 dB.

V. CONCLUSION

BCI allows a person to control external devices using

electrophysiological phenomena such as evoked or sponta-

H
A

L
 a

u
th

o
r m

a
n
u
s
c
rip

t    in
s
e
rm

-0
0
2
0
2
7
0
6
, v

e
rs

io
n
 1



9

neous EEG features (P300, EEG rhythm, SSVEP, etc.). EEG

signals generally contain an unknown mixture of components

representing brain processes. They are often contaminated by

artifacts either physiological, such as ECG, EMG, or non-

physiological (power line supply, electrode displacement, etc.).

Thus, reliable signal processing tools for both preprocessing

and extracting significant features are crucial in BCI systems.

Previous works on biomedical signals showed that ICA holds

great promises for blindly separating artifacts from relevant

signals and for decomposing mixtures into subcomponents that

may index electrophysiological activities of interest. In addi-

tion, all studies emphasize the fact that ICA provides feature

subsets with higher classification accuracy than original EEG

signals.

Nevertheless, the application of ICA in the field of BCI

systems is at its beginning. Indeed, the majority of studies

reported in the literature are conducted on healthy subjects

and the fact that ICA-based BCI systems provide good results

with healthy subjects does not necessary guarantee a success

with target user groups. In addition, the automatic selection of

the informative component would allow an on-line ICA-based

BCI, but it is not an easy task. Some recent studies detailed in

this paper show that ICA can be used in an automated fashion.

But up to now, most BCI systems using an automated selection

of the informative independent components have been tested

only in laboratories with well defined protocols.

Another limitation of the studies dealing with ICA-based

BCI seems to be the fact that most of them have only explored

a limited number of ICA algorithms, namely FastICA and

INFOMAX. This last point is investigated in the present

article and six classical ICA methods are presented. Then

a numerical complexity study, a comparative performance

analysis on electrophysiological data, reproducing real scalp

EEG recordings, is conducted. The obtained results show

that the numerical complexity can largely vary, depending on

the ICA algorithm that has been used whereas the algorithm

behavior depends both on the number of snapshots and on the

value of the SNR. More precisely, SOBI, COM2, JADE and

ICAR provide a smaller amount of calculations in comparison

to FastICA and INFOMAX. Regarding performance, COM2,

JADE and FastICA lead to the best results. Thus, taking into

account both numerical complexity and performance, COM2

and JADE seem to be the best methods in our BCI simulation.

Another result, already obtained in one of our previous

works [29], shows that the performance of ICA algorithms

also depends on the physiological nature of the source that

is extracted. All these results strengthen us in our conviction

that the choice of an appropriate ICA method can significantly

improve the performance of ICA-based BCI systems. With this

goal, it is important to collect as much statistical/physiological

prior information as possible on sources, such as their tem-

poral color, their non-gaussianity, the sign of their marginal

cumulants, or the nature of the additive noise.
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