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Abstract

Independent Component Analysis (ICA) plays an important role in biomedical engineering. Indeed,

the complexity of processes involved in biomedicine and the lack of reference signals make this blind

approach a powerful tool to extract sources of interest. However, in practice, only few ICA algorithms

such as SOBI, (extended) InfoMax and FastICA are used nowadays to process biomedical signals. In this

paper we raise the question whether other ICA methods could be better suited in terms of performance

and computational complexity. We focus on ElectroEncephaloGraphy (EEG) data denoising, and more

particularly on removal of muscle artifacts from interictal epileptiform activity. Assumptions required by

ICA are discussed in such a context. Then fifteen ICA algorithms, namely JADE, CoM2, SOBI, SOBIrob,

(extended) InfoMax, PICA, two different implementations of FastICA, ERICA, SIMBEC, FOBIUMJAD,

TFBSS, ICAR3, FOOBI1 and 4-CANDHAPc are briefly described. Next they are studied in terms of

performance and numerical complexity. Quantitative results are obtained on simulated epileptic data

generated with a physiologically-plausible model. These results are also illustrated on real epileptic

recordings.
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I. INTRODUCTION

The removal of muscular artifacts from ElectroEncephaloGraphic (EEG) data is a crucial

preprocessing step for further analysis of EEG in the diagnosis of epilepsy from Video-EEG

recordings. Indeed, in the particular context of epilepsy, EEG signals of interest, such as interictal

spikes or ictal discharges, may be corrupted by muscular or myogenic activity arising from the

contraction of head muscles. As already reported [45], these artifacts are difficult to remove. This

is especially due to i) their high amplitude (possibly several times larger than the EEG signal),

ii) the large frequency range of their components and iii) their variable topographical distribution.

Due to the complexity of the involved physiological processes and the lack of reference signals,

researchers have mostly considered Blind Source Separation (BSS) techniques to solve the EEG

denoising problem [29], [30], [42], [51], [52].

Among BSS approaches, Independent Component Analysis (ICA) is one of the most famous,

especially in biomedical engineering [1], [21]. It was historically the first to be applied to

EEG denoising for muscular activity [45], [47], [53]. Indeed, by assuming that EEG data can

be modeled as a noisy static mixture of mutual independent sources associated with different

physiological phenomena, ICA is generally considered as a powerful tool for extracting the EEG

signals of interest [31], [32], [48]. However to date, only a few ICA algorithms such as SOBI

[5], [58], (extended) InfoMax [39], [43] and FastICA [14, ch.6] are used in practice to process

biomedical signals.

In this paper, we have examined whether other ICA methods perform better or enjoy lower

computational complexity, especially for the removal of muscle artifacts from interictal epilep-

tiform activity. We first discuss the EEG denoising problem and the assumptions required by

ICA. Second, classical statistical tools are provided in order to understand how the ICA concept

can be implemented. Next, representative methods of two classes, including the most used ICA

techniques in signal processing, are briefly described and studied in terms of performance and

numerical complexity: techniques based on the Differential Entropy (DE) such as (extended)

InfoMax [39], [43], PICA [35] and two different implementations of FastICA [14, ch.6] versus

cumulant-based methods. Among cumulant-based techniques, representative algorithms of three

subfamilies are studied: i) the techniques using only SO statistics of the data such as SOBI

[5], [58], SOBIrob [6], TFBSS [24], ii) the algorithms based on SO and FO statistics such as
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JADE [9], CoM2 [13], and iii) the methods requiring only HO statistics such as ERICA [19],

SIMBEC [20], FOBIUMJAD [22], [23], ICAR3 [2], [3], FOOBI1 [38], 4-CANDHAPc [33], [34].

Quantitative results are obtained on simulated epileptic data generated with a physiologically-

plausible model [16]–[18]. These results are also illustrated on real data recorded in a patient

with epilepsy.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Let’s model the EEG signal recorded from N electrodes as one realization of an N -dimensional

random vector process {x[k]}. Each random vector x[k] can then be written as the following

noisy static mixture of statistical random processes called sources:

x[k] =A(e)s(e)[k] +A(b)s(b)[k] +A(m)s(m)[k] + n[k]

x[k] =As[k] + n[k] (1)

where {s(e)[k]}, {s(b)[k]}, {s(m)[k]}, {n[k]} are random vector processes representing the Pe

epileptic activity sources, the Pb background activity sources, the Pm muscular activity sources

and the N -dimensional instrument noise, respectively. The mixing matrices A(e), A(b) and A(m)

model the transfer from all possible sources of activity within the brain to scalp electrodes.

The assumption of static linear model comes from the mathematical formulation of the

EEG/MEG forward problem. More precisely it comes from the use of the quasi-static formulation

of Maxwell’s equations, called Poisson’s equations, in order to compute the electrical transfer

between the cortex and the scalp [50]. Indeed, the time-derivatives of the associated electric fields

are sufficiently small to be ignored in classical Maxwell’s equations. As far as the statistical

properties of vector random process {s(e)[k]}, {s(b)[k]}, {s(m)[k]} and {n[k]} are concerned,

we can assume that they are independent as they correspond to different physiological/physical

phenomena. Nevertheless, such an assumption is not valid within each vector random processes

regarding its components. In particular, the Pe epileptic activity sources of {s(e)[k]} may be

statistically mutually dependent. Eventually, the {n[k]} vector random process can be assumed

to be Gaussian as most of instrument noises.

Consequently, by using ICA, at best we can hope to identify three vector subspaces corre-

sponding to the epileptic sources, the muscular sources and the background sources, respectively,

but not exactly the Pe + Pb + Pm sources involved in equation (1). Note that this subspace
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identification is sufficient for the EEG denoising problem since we don’t want to exactly extract

the Pe epileptic sources; in fact, we just want to remove the contribution of the muscular and

background activities from the scalp data. Indeed, once the epileptic source subspace is identified

by applying ICA to the scalp data, we get an estimate of A(e)s(e)[k] for every time index m,

say an estimate of the denoised scalp data. Nevertheless, as shown in section V, the estimation

of the three subspace dimensions remains a difficult issue.

III. STATISTICAL TOOLS AND ICA METHODS

A. Statistical tools characterizing mutual independence

Let’s recall how to characterize the statistical independence of a set of P random signals

{yp[k]}m∈◆ and how to use it in order to blindly separate mixed mutually independent sources.

A random vector y = [y1, · · · , yP ]
T has mutually independent components if and only if its

Probability Density Function (PDF) py can be decomposed as the product of the P marginal

PDFs, pyp , where pyp denotes the PDF of the p-th component yp of y.

Then a natural way of checking whether y has independent components is to measure a

pseudo-distance between py and
∏

p pyp . Such a measure can be chosen among the large class

of f -divergences. If the Kullback divergence is used, we get the Mutual Information (MI) of y

[14]:

MI(y) =

∫

❘P

py(u) log

(

py(u)
∏P

p=1 pyp(up)

)

du (2)

It can be shown that the MI vanishes if and only if the P components of y are mutually

independent, and MI is strictly positive otherwise.

Another measure based on the PDF of y is the DE of y:

S(y) = −

∫

❘P

py(u) log(py(u)) du = −E[log(py(y))] (3)

sometimes referred to as Shannon’s joint entropy, where E[·] denotes the mathematical expecta-

tion. This entropy is not invariant by an invertible change of coordinates, but only by orthogonal

transforms. A fundamental result in information theory is that the DE can be used as a measure

of non-gaussianity. Indeed, among the random vectors having an invertible covariance matrix,

the Gaussian vector is the one that has the largest entropy. Then, to obtain a measure of non-

gaussianity of y that is i) zero only for a Gaussian vector, ii) always positive and iii) invariant
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by any linear invertible transformation, one often uses a normalized version of the DE, called

negentropy, and given by [14, ch.3]:

J(y) = S(z)− S(y) (4)

where z stands for the Gaussian vector with the same mean and covariance matrix as y. Since

MI and negentropy are simply related to each other [13], estimating the negentropy allows to

estimate the MI. However, even if consistent estimators of PDFs exist (e.g. Parzen estimators

[55]), the computation of integral (3) is time consuming, and often prohibitive.

A way to avoid the exact computation of the negentropy consists in using another measure

of statistical independence that is less accurate but easier to compute. The contrast function

[13, definition 5] built from the data cumulants satisfies this condition. From now on, we shall

assume that all random variables are real. If we consider Φx(u) = E[exp(iuTx)] as the first

characteristic function of a random vector x, since Φx(0)=1 and Φx is continuous, then there

exists an open neighborhood of the origin, in which Ψx(u)= log(Φx(u)) can be defined. The

r-th order moments are the coefficients of the Taylor expansion of Φx about the origin, up to

a multiplicative coefficient ir/r!. Similarly cumulants, denoted by Ci,j,···,ℓ,x, are the coefficients

of the second characteristic function, Ψx, up to a multiplicative coefficient of the same form

[14, ch.3]. It is noteworthy that the components of the (N ×N ) well-known covariance matrix

of an N -dimensional random vector x exactly match the Second Order (SO) cumulants of x.

By analogy, the (N2 ×N2) matrix containing the Fourth Order (FO) cumulants of x is usually

called the quadricovariance matrix.

Cumulants are more appropriate than moments for ICA context. Indeed, cumulants enjoy

two important properties. First, if at least two components or groups of components of x are

statistically independent, then all cumulants involving these components are null. For instance, if

all components of x are mutually independent, then Ci,j,···,ℓ,x = δ[i, j, · · · , ℓ] Ci,i,···,i,x, where the

Kronecker δ[i, j, · · · , ℓ] equals 1 when all its arguments are equal and is null otherwise. Second,

if x is Gaussian, then all its Higher Order (HO) cumulants, i.e. cumulants of order strictly

greater than two are null. So HO cumulants may be seen as a distance to normality. Note that

moments do not enjoy these two key properties. Moments and cumulants share two other useful

properties. On the one hand, they are both symmetric arrays, since the value of their entries

does not change by permutation of their indices. Consequently, covariance and quadricovariance
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matrices are necessarily symmetric. On the other hand, moments and cumulants satisfy the

multi-linearity property [44], which is illustrated in [32, equ. (5) and (6)]. In practice, cumulants

can be estimated using both the Leonov-Shiryaev formula [40] and sample statistics [44]. More

precisely, the Leonov-Shiryaev formula allows us to relate any qth order cumulant to moments

of order lower than or equal to q. For example, the SO and FO cumulants of any zero-mean

random vector x symmetrically distributed are given by:

Cn1,n2,x = E[xn1
xn2

]

Cn1,n2,n3,n4,x = E[xn1
xn2

xn3
xn4

]− E[xn1
xn2

]E[xn3
xn4

]

−E[xn1
xn3

]E[xn2
xn4

]− E[xn1
xn4

]E[xn2
xn3

]

And a consistent estimate of q-th order moments of any stationary ergodic process is given by

sample statistics. Hence the above relations allow to define consistent estimates of cumulants,

called κ−statistics [44].

B. Classical ICA techniques

The InfoMax [39], [43] and FastICA [14, ch.6] methods avoid the exact computation of the

integral given in (3). In fact, InfoMax solves the ICA problem by maximizing the DE of the

output of an invertible non-linear transform of y[k] = W Tx[k] with respect to W using the

natural gradient algorithm [4]. In practice, non-linearities whose derivative are sub-Gaussian

(resp. super-Gaussian) PDFs are sufficient for sub-Gaussian (resp. super-Gaussian) sources [39].

Regarding the deflationary implementation of FastICA, referred as to FastICAdef in the sequel,

the p-th (1 ≤ p ≤ P ) source is extracted by maximizing an approximation of the negentropy

J(w T

p x[k]) with respect to the (N × 1) vector wp. This maximization is achieved using an

approximate Newton iteration, which actually reduces to a variable-step gradient algorithm. To

prevent all vectors wp from converging to the same maximum (which would yield several times

the same source), the p-th output is decorrelated from the previously estimated sources after

every iteration using a simple Gram-Schmidt orthogonalization. A non-deflation implementation

of FastICA, referred as to FastICAsym in the following, which simultaneously extracts all sources,

also exists. The joint orthogonalization is similar to that originally proposed in [12], [46].

In order to cover a wide range of source distributions (i.e. symmetric, assymmetric and mul-

timodal), authors in [35] propose the Pearson-based ICA method, named PICA. This algorithm
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solves the ICA problem by maximizing the DE via a maximization of the likelihood of the

separator W . In this approach, the parametric Pearson model is used to model the source

distributions. Parameters of this model can be computed using the statistical moments up to the

fourth order [35]. In addition to the easy and fast computation of these parameters, Pearson

parametric model also shows a good robustness against outliers. Finally, either the relative

gradient [8], the natural gradient [4] or the fixed-point [28] algorithms can be used in order

to maximize the used maximum likelihood function.

Cumulants can be used instead of non-linearities matched to the PDFs of the sources as

proposed in [19]. According to [19], a solution to the ICA problem is nothing else than a saddle

point of the obtained cumulant-based DE cost function. This is the principle of the Equivariant

Robust ICA (ERICA) algorithm [19], which uses a quasi-Newton approach to get the saddle

point. Authors show that its convergence is isotropic and independent of the source statistics.

In addition, the SIMBEC (SIMultaneous Blind signal Extraction using Cumulants) algorithm

proposed in [20] optimizes the maximum likelihood criterion using a gradient algorithm on the

Stiefel manifold. This is done by resorting to a cumulant index-based objective function and

consequently no a priori on the sources densities is required [20]. This function satisfies two

important properties. First, it is real positive and its minimum value occurs when the normalized

random variables follows a Gaussian distribution. Second, it is strictly convex with respect to

the linear combination of the independent sources. Then, SIMBEC solves the ICA problem by

looking for the maxima of that cumulant index-based objective function [20, Theorem 1].

The JADE [9], CoM2 [13], SOBI [5], [58], SOBIrob [6], FOBIUMJAD [23], TFBSS [24],

ICAR3 [3], FOOBI1 [38] and 4-CANDHAPc [34] methods also perform ICA using cumulants

of the data [14]. SOBI, SOBIrob and TFBSS use SO cumulants, CoM2 and JADE use both the

SO and FO cumulants, and FOBIUMJAD, ICAR3, FOOBI1 and 4-CANDHAPc only use the FO

cumulants of the data. Next, JADE, SOBI, SOBIrob, TFBSS, FOBIUMJAD, ICAR3, FOOBI1

take advantage of the algebraic structure of the covariance and/or quadricovariance matrices

by reformulating the ICA problem as a joint diagonalization problem [10], [41], while CoM2

explicitly maximizes a contrast function based on the FO cumulants of the data by rooting

successive polynomials. Note that the JAD method [10] was originally used to implement the

JADE, SOBI, SOBIrob, TFBSS, FOBIUMJAD, ICAR3 and FOOBI1 algorithms. Eventually 4-
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CANDHAPc makes use of the canonical decomposition [15] of a third order array having one

unitary loading matrix. Such a decomposition is achieved by alternating between solving the

Procrustes problem [25] and the computation of rank-one matrix approximations. Note that both

SOBI approaches and the TFBSS method jointly diagonalize time delayed and time-frequency

covariance matrices of the standardized data, respectively.

In an attempt to analyze more specifically the differences between these ICA methods, the

following remarks can be made. First of all, contrary to the other algorithms, CoM2, along

with the seven methods based on a joint diagonalization scheme are semi-algebraic, i.e. they

are based on a finite sequence of optimization problems for which an algebraic solution is

available. No particular initialization is required contrary to the other iterative approaches, and,

in practice, they converge to the global solution even if no theoretical global convergence

proof is yet available today. Moreover, contrary to the other methods, FOBIUMJAD, ICAR3,

FOOBI1 and 4-CANDHAPc require that all sources have FO marginal cumulants with the

same sign. Unfortunately, such an assumption is not always realistic in biomedical contexts

[49]. Another difference is the need for a spatial whitening (also called standardization) [13,

section 2.2] [14]. This preprocessing, based on SO cumulants, is mandatory for JADE, CoM2,

SOBI, SOBIrob, PICA, for both implementations of for FastICA and TFBSS. Although it is

not necessary, spatial whitening is highly recommended in InfoMax in order to improve its

speed of convergence [57]. Regarding ERICA, SIMBEC, FOBIUMJAD, ICAR3, FOOBI1 and

4-CANDHAPc, they can work with HO cumulants without any standardization. In such a case,

they are then asymptotically insensitive to the presence of a Gaussian noise with a non-diagonal

covariance matrix. Nevertheless, preliminary computer results showed that a whitening should

be used for the seven latter methods in the context of EEG denoising. We think that such a

preprocessing forces the estimated mixing matrix to be well-conditionned while the original

one is clearly underdetermined according to equation (1). Our best results were obtained for

a standardization without any reduction of dimension. It is noteworthy that contrary to the

other whitening-based approaches, the whitening of SOBIrob is made using non-zero delayed

covariance matrices. SOBIrob is then asymptotically insensitive to the presence of a temporally

white noise. Moreover, contrary to the other methods, SOBI and SOBIrob need that all sources

have different spectra. As far as TFBSS is concerned, it requires that all sources are non-
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stationnary but ergodic. Eventually, all methods except TFBSS, rely on the stationarity-ergodicity

assumption to ensure an asymptotical mean square convergence of statistical estimators. Such

an assumption is very rarely fulfilled in the context of EEG signals and a consistence analysis is

difficult in the presence of such complex biomedical signals. Nevertheless the good behavior of

some of these techniques on biomedical data shows that the stationnarity-ergodicity assumption

is not absolutely necessary. Regarding the cumulant-based methods, even if sample statistics do

not estimate accurately the cumulants of the data, they still satisfy reasonably the basic properties

enjoyed by cumulants (see section III-A).

IV. NUMERICAL COMPLEXITY OF ICA ALGORITHMS

Although the ultimate goal of comparing denoising approaches is to evaluate the quality of

methods as reflected by the reconstructed signals, it is also interesting to assess the numerical

complexity of these methods. Numerical complexity is defined here as the number of floating

point operations required to execute an algorithm (flops). A flop corresponds to a multiplication

followed by an addition. But, in practice, only the number of multiplications is considered since,

most of the time, there are about as many (and slightly more) multiplications as additions. In

order to simplify the expressions, the complexity is generally approximated by its asymptotic

limit, as the size of the problem tends to infinity. We shall subsequently denote, with some small

abuse of notation, the equivalence between two strictly positive functions f and g:

f(x) = O[g(x)] or g(x) = O[f(x)] (5)

if and only if the ratio f(x)/g(x) tends to 1 as x → ∞. In practice, knowing whether an algorithm

is computationally heavy is as important as knowing its performances in terms of SNR. Yet,

despite its importance, the numerical complexity of the ICA algorithms is poorly addressed

in the literature. This section first addresses the complexity of some elementary mathematical

operations needed by ICA algorithms. Then, the numerical complexity of various ICA algorithms

are reported and compared to each other as a function of the number of sources.

Many ICA algorithms use standard Eigen Value Decomposition (EVD) or Singular Value

Decomposition (SVD), for instance when a whitening step is required to reduce the dimensions

of the space. In addition to these decompositions, many other elementary operations are also
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considered such as solving a linear system, matrix multiplication, joint diagonalization of several

matrices and computation of cumulants in the particular case of cumulant-based algorithms.

• Let A and B be two matrices of size (N×P ) and (P×N ), respectively. Then the numerical

complexity of their product G = AB is equal to N2P flops, since each element of G

requires P flops to be computed. The latter amount can be reduced to (N2 + N)P/2 =

O[N2P/2] flops if G is symmetric.

• The solution of a N ×N linear system via the LU decomposition requires approximately

O[4N3/3] flops.

• The numerical complexity of the SVD of A = UΛV T is given by O[2N2P + 4NP 2 +

14P 3/3] when it is computed using the Golub-Reinsch algorithm [26]. This amount can

be considerably reduced to O[2N2P ] when A is tall (i.e. N≫P ) using Chan’s algorithm

[11], known to be suitable in such a case.

• The numerical complexity of the EVD G = LΣLT is O[4N3/3] flops.

As mentioned previously, all considered methods in this paper use a whitening step. Therefore

computing the numerical complexity of this step is mandatory in our evaluation study. The so-

called spatial whitening of the observed data consists of applying a linear transform so that the

latent variables (sources) become as decorrelated as possible in the new coordinate system. To

do so, this linear transformation is computed as the inverse of the square root of the EVD of

the covariance matrix of the observations, [14, ch.1].

Hence and according to table I, the numerical complexity of this whitening step is equal

to KN2/2 + 4N3/3 + PNK flops, where K denotes the number of data samples. However,

for the special case N ≪ K, this linear transformation can be efficiently computed using the

SVD of the data matrix X as proposed by Chan [11]. Then, the numerical complexity of such

computation is reduced to O[2KN2] flops. As a result, when the minimal numerical complexity

of the whitening step is considered, it is equal to min(KN2/2+4N3/3+PNK+, 2KN2) flops.

Some ICA algorithms [5], [9], [24], [37] are based on the joint orthogonal approximate

diagonalization of a set {Gm} of M matrices of size (N×N ). Recall that the joint orthogonal

diagonalization problem is defined as the search for a unitary linear transformation that jointly

diagonalizes the target matrices Gm. A Jacobi-like algorithm such as JAD [10] is commonly used

for joint orthogonal diagonalization. Its numerical complexity is equal to IN(N − 1)(4NM +
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17M + 4N + 75)/2 flops if the M matrices Gm are symmetric where I stands for the number

of executed sweeps.

Finally, regarding cumulant estimation, the computation of the 2q-th order cumulant of a

N -dimensional random process requires (2q − 1)K flops where K stands for the data length.

Consequently, the number of flops required to compute the 2q-th order cumulant array exploiting

all its symmetries is then given by (2q− 1)Kf2q(N) flops where f2q(N) denotes the number of

its free entries and is given as a function of N , for q = 1, 2, 3, by:

f2(N) =
N2 +N

2
= O[

N2

2
]

f4(N) =
1

8
N(N + 1)(N2 +N + 2) = O[

N4

8
]

f6(N) =
N6

72
+

N5

12
+

13N4

72
+

N3

4
+

22N2

72
+

N

6

= O[
N6

72
]

Table I summarizes the numerical complexity of the elementary operations considered in this

paper.

Numerical complexity (flops)

G = AB N2P

Lin. system solving 4N3/3

SVD of A 2N2P + 4NP 2 + 14P 3/3

EVD of A 4N3/3

JAD [10] (Symmetric case) IN(N−1)(4NM+17M+4N+

75)/2

Estimation of the 2q-th (2q − 1)Kf2q(N)

order cumulants array

EVD - based whitening KN2/2 + 4N3/3 + PNK

SVD - based whitening O[2KN2]

TABLE I

NUMERICAL COMPLEXITY OF ELEMENTARY OPERATIONS GENERALLY USED IN THE ICA METHODS. A AND B ARE TWO

MATRICES OF SIZE (N×P ) AND (P×N ), RESPECTIVELY. I AND M STAND FOR THE NUMBER OF EXECUTED SWEEPS AND

THE NUMBER OF MATRICES TO BE JOINTLY DIAGONALIZED, RESPECTIVELY. f2q(N) DENOTES THE NUMBER OF FREE

ENTRIES IN THE 2q-TH ORDER CUMULANT ARRAY.
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Based on the complexity of these elementary operations, the numerical complexity of each of

the fifteen ICA methods we have selected is given in table II. Again, we insist that a whitening

procedure has been applied in all methods.

V. PERFORMANCE ANALYSIS ON SIMULATED DATA

Two experiments are considered in this section to evaluate the fifteen ICA algorithms in

the context of epileptic signals (interictal spikes) corrupted by muscle artifacts. The first one

uses synthetic spike-like epileptic EEG signals generated by realistic biomathematical models

in order to quantify the performance of the methods. In the second experiment, real data are

processed in order to get qualitative results. In the first experiment, the behavior of ICA methods

is studied as a function of the Signal to Noise Ratio (SNR), for a fixed data length of K = 8192

samples, which corresponds to 32 seconds. All reported results are obtained by averaging over

50 realizations the outputs of the performance criterion subsequently defined.

A. Data generation

The main purpose of this subsection is to explain how we obtain synthetic but realistic data

for quantifying the performance of the methods. The simulated 32-channels EEG data (one

observation is displayed in figure 1) are generated with a spatio-temporal model developed by

our team [16]–[18]. In this model, EEG sources were represented as a dipole layer distributed

over the cortical surface. The geometrical description of the cortical surface was achieved by

using a mesh made of 19626 triangles (mean surface of 4.8 mm2) obtained from the segmentation

of the gray-white matter interface from a patient 3D T1-weighted MRI. Each triangle of the mesh

was associated to an elementary current dipole. The dipole was placed at the barycenter of the

triangle and oriented perpendicular to its surface. The moment of each dipole was weighted

by a coefficient proportional to the area of the corresponding triangle. In addition, each dipole

was assumed to correspond to a distinct cortical neuronal population. Its time course, which

represents the time-varying dynamics of the associated population, was provided by the output

of a neuronal population model [54], in which parameters can be adjusted to generate either

background-like activity or interictal-spikes. In this model the source of these epileptic activities

was manually delineated on the mesh as a set of contiguous triangles. Dipoles associated with

triangles within the patch were assigned highly correlated interictal spike activities (i.e. transient
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Computational complexity

N : number of EEG electrodes, P : number of sources, iti, i ∈ {1, · · · , 12}: number of iterations in PICA, InfoMax,

FastICAsym, FastICAdef , ERICA, SIMBEC, 4-CANDHAPc, Q: required complexity to compute the roots of a real

4-th degree polynomial by Ferrari’s technique in CoM2, Lw , Nt, Nf , M1 and M2: smoothing window’s length,

number of time bins, number of frequency bins, number of matrices referred to the time-frequency point wherein

sources are of significant energy and number of matrices among those M1 ones with only one active source in the

considered time-frequency point, respectively, in TFBSS, δωi
= 1 if i ∈ {2, · · · , 6} and δωi

= 0 otherwise.

SOBIrob MKN2/2+5M2N3−M3N3/3+2MN2P +MP 2N+MP 2+(MP 2+4P 3/3)J1+MP +MN2+

2N3/3 +NP + (3N − P )P 2/3 + IP (P − 1)(17M + 75 + 4P + 4PM)/2

SOBI min{KN2/2 + 4N3/3 + PNK, 2KN2}+ 4N3/3 + (M − 1)N3/2 + IP (P − 1)(17(M − 1) + 75 +

4P + 4P (M − 1))/2

TFBSS min(KN2/2+4N3/3+PNK+, 2KN2)+2P log2P +P +(K+Lw+log2(Lw))NtNfP (P +1)/2+

2M1P
3/3 + 3T2 + IP (P − 1)(4PM2 + 17M2 + 4P + 75)/2

PICA min(KN2/2 + 4N3/3 + PNK, 2KN2) + (P 3 + (K + 1)P 2 + 3PK)it1

InfoMax min(KN2/2 + 4N3/3 + PNK, 2KN2) + (P 2 + P 3 + 4P + 5KP )it2

FastICAdef min(KN2/2 + 4N3/3 + PNK, 2KN2) + (2(P − 1)(P +K) + 5KP (P + 1)/2)it3

FastICAsym min(KN2/2 + 4N3/3 + PNK, 2KN2) + 2N3/2 + (16P 3/3 + P 2 + 3KP 2)it4

CoM2 min(KN2/2 + 4N3/3 + PNK, 2KN2) + IP 2Q/2 + min(12If4(P )P 2 + 2IP 3 + 3Kf4(P ) +

KP 2, 13IKP 2/2)

JADE min(KN2/2 + 4N3/3 + PNK, 2KN2) + 3Kf4(P ) +KP 2 +min(4P 6/3, 8P 3(P 2 + 3)) + IP (P −

1)(75 + 21P + 4P 2)/2

ERICA min(KN2/2+4N3/3+PNK+, 2KN2)+PNT +9PN2+ 11
3
N3+N2+N + it7(PNT +5P 2T +

4PT + 3P 2 + 3P 3 + P 2N)

SIMBEC min(KN2/2 + 4N3/3 + PNK+, 2KN2) +N2T + 5P 2 + 9PN2 + 11
3
N3 +N2 +N + it5(PNT +

δω2
(NPT + NP + P 2N + P 3) + δω3

(2PT + NPT + NP + P 2N + P 3) + δω4
(2PT + 3NPT +

2NP 2 + P 3) + δω5
(5PT + 3NPT +NP 3 +NP + 2P 2N + P 3) + δω6

(7PT + 5NPT + 4NP 2 +

P 2N + P 3) + 12P 2 + 12P 2N + 22
3
P 3 +NP )

FOBIUMJAD min(KN2/2+4N3/3+PNK+, 2KN2)+3MLf4(N)+2N6/3+P 2(3N2−P )/3+(M−1)N6/2+

IN2(N2 − 1){4N2(M − 1) + 17(M − 1) + 4N2 + 75}/2 + 2N3P

ICAR min(KN2/2+4N3/3+PNK+, 2KN2)+K(3f4(N)+2N6/3+P 2(3N2−P )/3+N2P +(8NP 2+

11N3/3+N2+N)N+N2P 2(N−1)+IP (P −1)(75+9N(N−1)+8PN(N−1)+4P )+IN(N−

1)(4N2 + 21N + 75)/2

FOOBI1 min(KN2/2+4N3/3+PNK+, 2KN2)+3Lf4(N)+2N6/3+P 2(3N2 −P )/3+N2P +N2P 2 +

2P (P +1)N4 +min{7M3m
2
3 +11m3

3/3, 3M3m
2
3}+ IP (P −1)[4P 2 +21P +75]/2+N2P (P +1)+

min{6N3P, (2N3/3 + (3N − 1)/3)P}

4-CANDHAPc min(KN2/2 + 4N3/3 + PNK+, 2KN2) + 97
72
N6 +N2P 2 + (3N2P 2 + 8

3
PN3 + 10PN + 35

3
P 3 −

2
3
P )it12 + P (IN(N − 1)(8N + 90))/2

TABLE II

NUMERICAL COMPLEXITY OF FIFTEEN ICA ALGORITHMS

September 23, 2012 DRAFT



SUBMITTED TO THE SPECIAL ISSUE OF THE BULLETIN OF THE POLISH ACADEMY OF SCIENCES 14

interictal spikes) using an appropriate setting of coupling parameters between populations. All

other dipoles of the cortical mesh were assigned a null activity. From this setup, we built a

spatio-temporal source matrix S(e) containing the time-varying activities of all cortical epileptic

dipoles. The p-th line of this matrix contains the time-course of the p-th dipole within the patch.

According to section II, matrix S(e) also represents one realization of the vector random process

{s(e)[k]} (1).

Scalp EEG data were then generated using a realistic head model representing the brain, the

skull and the scalp [27]. From this head model, the forward problem was then numerically solved

for each triangle within the patch using a boundary element method (ASA, ANT, Enschede,

Netherlands) to obtain the leadfield matrix A(e) of equation (1). This mixing matrix gives the

contribution of each dipole of the patch at the level of 32 scalp electrode positions (19-20

standard 10-20 electrodes plus additional electrodes at FC1, FC2, FC5, FC6, CP1, CP2, CP5,

FT9, FT10, P9, P10 and POZ). The (N ×K) matrix X(e) of scalp epileptic data is thus given

by X(e) = A(e) S(e). In this paper we considered a single patch, made of 100 contiguous

triangles (5 cm2) located in the left superior temporal gyrus, where the activities of dipoles

within the patch were highly correlated. In addition, for each experiment and each trial, EEG

muscle activity was extracted from real 32-channel EEG data in order to generate the matrix

X(b,m) = A(b) S(b) +A(m) S(m) +N of noisy scalp background and muscular activities, given

in (1). More precisely, each trial of EEG muscle activity was normalized with respect to the

channel showing the maximal power. Then, different levels of amplitude of noisy background

and muscular activities were added to the simulated spike activities to get noisy simulated signals

with different SNR values.

B. Performance criterion

The performance of the fifteen ICA methods has been evaluated by computing the following

Normalized Mean-Squared Error (NMSE):

NMSE =
N
∑

n=1







∑L

ℓ=1

∑K

k=1

(

x
(e)
n [k]− x̂

(e,ℓ)
n [k]

)2

L
∑K

k=1 x
(e)
n [k]

2






(6)

where {x
(e)
n [k]} is the n-th row of the X(e) matrix defined in section V-A, {x̂(e,ℓ)

n [k]} is the

reconstructed surface EEG after denoising from the ℓ-th run, L is the number of Monte Carlo
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runs, K is the data length and N is the number of electrodes. More particularly, the independent

components extracted by each method from the ℓ-th run are classified in a descending order

according to their respective autocorrelation values. As the autocorrelation of muscle artifacts is

relatively low with respect to that of epileptic spikes, the independent components representing

muscle artifacts are expected to be among the last components. In turn, components of interest

are classified among the first components, which facilitates their visual selection. Then, the signal

vector {x̂(e,ℓ)[k]} is reconstructed by keeping only the components accounting for the sources

of interest (epileptic spikes).

C. Effect of SNR

The objective of this experiment is to i) evaluate the impact of SNR on the quality of source

extraction and ii) to compare the numerical complexity of the fifteen algorithms. The data length,

K, is fixed to 8192 samples, the SNR values are equal to −30, −25, −20, −15, −10 and −5 dB,

and the number P of sources varies, in the range P ∈ {2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32}. For

conciseness, we display in Figure 1 an example of EEG signals denoised by only three methods,

namely TFBSS, CoM2 and InfoMax. In the original un-noisy EEG (figure 2, left), the spike-like

activity was clearly visible at electrode T3 (facing the patch), whereas it is entirely buried in

noisy data (figure 2, column 2). The spike activity at electrode T3 was well reconstructed with

TFBSS, InfoMax and CoM2. However, for InfoMax and CoM2, the diffusion of this activity on

other channels was slightly different than in original data. This difference is more visible when

the TFBSS method is considered.

Figures 2 and 3 show the variations of NMSE and the numerical complexity of the fifteen

methods as a function of SNR, respectively. Note that, in the following, the NMSE and the

numerical complexity are only illustrated by choosing the value of P yielding the best NMSE. In

addition, the methods are classified into two main categories: i) methods with classical standard-

ization, namely JADE, CoM2, SOBI, SOBIrob, PICA, FastICAsym, FastICAdef and TFBSS, and

ii) methods using a standardization without any reduction of dimension, namely FOBIUMJAD,

FOOBI1, ICAR3, 4-CANDHAPc, InfoMax, ERICA and SIMBEC.

From Figure 2, we can observe that JADE, CoM2, SOBI, SOBIrob, PICA, FastICAsym and

FastICAdef have a quasi-similar behaviour, whatever the SNR value. FOOBI1, ICAR3 and 4-

CANDHAPc are slightly less effective than the seven previous methods, especially in the case
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of high SNR values (-10 and -5 dB). Regarding the FOBIUMJAD and TFBSS algorithms they

clearly show a poorer performance than that of the other algorithms. The SIMBEC method

performs similarly to InfoMax for SNR values equal or higher than -20 dB and presents the best

performance for an SNR lower than -20 dB. The ERICA method exhibits a performance similar

to that of most of other algorithms for an SNR ranging from -30 dB to -25 dB, but becomes

less efficient as the SNR of simulated data increases. Results obtained on methods of second

category tend to demonstrate that using a standardization without any reduction of dimension as

a preprocessing step forces the estimated mixing matrix to be well-conditionned.

The computational complexity (figure 3) is calculated by fixing the intrinsic parameters of each

method according to those chosen to compute the NMSE criterion. In general, we can observe

that, for each method, the numerical complexity is roughly stable, whatever the SNR values. More

precisely, FOBIUMJAD, TFBSS and SIMBEC methods require the largest number of calculations.

These three methods are followed by PICA, ERICA, SOBI, SOBIrob, JADE, FastICAsym and

FOOBI1. Regarding the remaining algorithms (CoM2, FastICAdef , ICAR3, 4-CANDHAPc and

InfoMax), and more particularly CoM2, ICAR3, and InfoMax, they require a smaller amount of

calculations. These results can partially be explained by the number of independent components

P needed by each method to reach the best NMSE. Figure 4 indicates for each trial and for three

SNR values (−30, −15 and −5 dB) the number P required by each method to obtain the best

performance. We observe that all methods of the first category (JADE, CoM2, SOBI, SOBIrob,

PICA, FastICAsym, FastICAdef and TFBSS), ERICA, SIMBEC and InfoMax generally require

the extraction of P = 32 independent components to obtain the best performance, whereas most

of methods of second category, namely FOBIUMJAD, FOOBI1, ICAR3 and 4-CANDHAPc need

a smaller number of independent components to reach an equivalent performance.

The NMSE and the numerical complexity calculations of the fifteen methods indicate, in

the simulated context of epileptic signals (interictal spikes) corrupted by muscle artifacts, that:

i) InfoMax generally presents the best performance in the sense of NMSE criterion, ii) CoM2

offers the best NMSE versus numerical complexity compromise, and iii) FOBIUMJAD and

TFBSS provide the worse results in terms of performance and computational complexity.
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VI. APPLICATION TO REAL DATA

In this section we propose to test the feasibility of ICA algorithms on real data. For conciseness,

only results given by TFBSS, CoM2 and InfoMax are shown. It is worth noting that these

three methods were marked out by their results on simulated EEG data in terms of NMSE and

numerical complexity in the previous section. The three methods were applied to the denoising

of interictal spikes in a patient suffering from drug-resistant partial epilepsy. As part of his

presurgical evaluation, this patient underwent two sessions of video-EEG monitoring, brain

Magnetic Resonance Imaging (MRI), as well as interictal and ictal Single-Photon Emission

Computed Tomography (SPECT) acquisition. During video-EEG monitoring, scalp-EEG data

were acquired from 32 electrodes (19-20 standard 10-20 electrodes plus additional electrodes at

FC1, FC2, FC5, FC6, CP1, CP2, CP5, FT9, FT10, P9, P10 and POZ) at a sampling frequency

of 256 Hz.

These data were reviewed in order to isolate three epochs: i) two epochs containing a clean

spike (figure 5, first and second column), and ii) one epoch including spikes hidden in muscle

activity with very high level of noise (figure 5, third column). The same procedure as for

simulated data was applied to reconstruct the denoised EEG signals. In addition, to evaluate

the qualitative performance of the three methods, a source localization was performed on the

two original cleaned signals (considered as a reference), on the noisy data, as well as on the

latter data denoised by TFBSS, CoM2 and InfoMax, respectively. The recent 4-ExSo-MUSIC

algorithm [7] was used to achieve the source localization. Figure 5 illustrates that interictal spikes

were visible at electrodes F8, T4, FC5, and FT10 of the two epochs of clean data (columns 1

and 2), whereas they were hidden in the noisy data (column 3). Clearly, the three ICA-methods

enhance the interictal spikes at F8, T4, FC5, and FT10 electrodes and do not increase the

diffusion of spikes on the remaining electrodes. We also calculated the numerical complexity

of TFBSS, CoM2 and showed (in agreement to the simulated results) that CoM2 required the

smallest amount of calculations (about 8.107 flops), InfoMax used about 4.109 flops and TFBSS

needed a larger amount of calculations (about 2.1012 flops).

Regarding the source localization results (bottom of each column of figure 5), the spikes were

localized in the right anterior temporal region for the first epoch of clean data (column 1) and both

in the right temporal neocortex and in the right insula for the second epoch of clean data (column
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2). Even if these localizations were slightly different, they were in general consistent with the

visual interpretation of T1-weighted MRI data and also corroborated by interictal SPECT data.

For the noisy epoch (column 3), the spike source was incorrectly localized in the left temporal

region. Spike data denoised by CoM2 were localized both in the right temporal neocortex and

in the right insula in agreement with the source localization obtained from the second epoch of

clean data. The localization results at the output of InfoMax and TFBSS were quasi-similar with

those obtained from the second epoch of clean data.

The results obtained on real interictal epileptic spikes suggest that choosing the appropriate

ICA method for processing actual data in the context of interictal epileptic spikes is not an easy

task. Indeed, it is not obvious to know the true epileptic area with a perfect accuracy, since

two clean epochs recorded in the same patient can lead to slightly different source locations.

Consequently, it is clearly not possible to say which ICA method denoises better the epileptic

spikes on real data, since the source localization after each ICA-based denoising is consistent

with that obtained from one of both epochs of clean data. In terms of performance, we can just

say that each of our tested ICA methods is doing its work properly, i.e. it removes successfully

the muscle artifacts without altering the interictal epileptic spikes, and it significantly improves

the quality of the source localization. As far as the numerical complexity is considered, CoM2

would be the most appropriate choice.
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VII. CONCLUSION

Advanced epilepsy research and diagnosis require precise information, which can be extracted

from non-invasive EEG data. However, EEG signals may be unfortunately contaminated by

instrumental noise and various electrophysiological artifacts, such as power line noise, broken

wire contacts, ocular movements and muscular activity. These types of noise and artifacts hide

physiological activities of interest. Among all these artifacts, the muscular activity is particularly

difficult to remove. Previous investigations in the biomedical engineering context showed that

ICA is an efficient approach for the blind extraction of components of interest from a noisy

mixture of sources. Nevertheless, the application of ICA to the extraction of epileptic signals in

the presence of muscular activities is still challenging; it is indeed difficult to access a ground truth

for epileptic sources in order to evaluate the accuracy of ICA. In addition, most of the studies that

have used ICA to analyze and to process epileptic signals have only explored a limited number of

ICA algorithms, namely InfoMax, FastICA and SOBI. These issues are addressed in this paper

through the comparison of fifteen ICA algorithms, both in terms of performance and numerical

complexity. The comparative analysis is first performed on simulated EEG data, reproducing

realistic epileptic EEG signals contaminated by muscle artifacts, in order to quantify the accuracy

of the ICA methods. CoM2 then appears as the ICA method offering the best compromise

between performance and numerical complexity, while TFBSS and FOBIUMJAD offer the worse.

The good behavior of CoM2 is next confirmed on one set of real data. Forthcoming work will

aim first at comparing even more ICA methods, for instance by including improved versions of

the techniques analyzed in [36], [56]. Second, we will acquire dense EEG data (> 128 channels)

in order to analyze the performance of ICA methods as a function of the number of electrodes.
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