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Independent component analysis (ICA) has become a widely used method for extracting

functional networks in the brain during rest and task. Historically, preferred ICA

dimensionality has widely varied within the neuroimaging community, but typically

varies between 20 and 100 components. This can be problematic when comparing

results across multiple studies because of the impact ICA dimensionality has on the

topology of its resultant components. Recent studies have demonstrated that ICA can

be applied to peak activation coordinates archived in a large neuroimaging database (i.e.,

BrainMap Database) to yield whole-brain task-based co-activation networks. A strength

of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap

can be used to quantitatively assess tasks and cognitive processes contributing to each

component. In this study, we investigated the effect of model order on the distribution

of functional properties across networks as a method for identifying the most informative

decompositions of BrainMap-based ICA components. Our findings suggest dimensionality

of 20 for low model order ICA to examine large-scale brain networks, and dimensionality

of 70 to provide insight into how large-scale networks fractionate into sub-networks.

We also provide a functional and organizational assessment of visual, motor, emotion,

and interoceptive task co-activation networks as they fractionate from low to high

model-orders.

Keywords: meta-analysis, co-activations, BrainMap, intrinsic connectivity networks, functional brain networks,

functional connectivity, resting state networks, independent component analysis

INTRODUCTION

Independent component analysis (ICA) offers a methodology

for investigating functional brain connectivity of intrinsic neu-

ral networks in human neuroimaging data (Beckmann, 2012;

Calhoun and Adali, 2012). This exploratory approach provides

an alternative to hypothesis-driven connectivity techniques (e.g.,

seed-based correlation analyses; Biswal et al., 1995) by identify-

ing independently distributed spatial patterns depicting source

processes in multivariate data (McKeown and Sejnowski, 1998;

Biswal and Ulmer, 1999; Hyvärinen and Oja, 2000; Beckmann

et al., 2005; Calhoun et al., 2008). Over the last few years,

improvements in ICA techniques (Long et al., 2007; Sohn et al.,

2012), as well as their widespread application to functional mag-

netic resonance imaging (FMRI) data in healthy (Damoiseaux

et al., 2006; Kiviniemi et al., 2009; Biswal et al., 2010; Allen et al.,

2011; Mowinckel et al., 2012) and clinical populations (Greicius

et al., 2004, 2007; Seeley et al., 2007; Sorg et al., 2007; Jafri et al.,

2008; Wolf et al., 2008; Mohammadi et al., 2009; Zhang et al.,

2009; Qi et al., 2010; Li et al., 2012; Zhou et al., 2012), have

substantially enhanced our knowledge of resting state functional

connectivity (Ding et al., 2011; Allen et al., 2012; Calhoun et al.,

2012; Jones et al., 2012; Bridwell et al., 2013).

Recent evidence has shown that these intrinsic connectivity

networks (ICNs) can also be extracted from a large neuroimaging

database of task-based co-activation patterns (Fox and Lancaster,

2002) both by region-seeding (Toro et al., 2008) and by ICA

(Smith et al., 2009; Laird et al., 2011a). An advantage of studying

task co-occurrence networks derived from the BrainMap database

is that the BrainMap behavioral taxonomy (Fox et al., 2005;

Laird et al., 2005) for describing functional neuroimaging tasks

allows quantitative classification and relatively automated inter-

pretation of the functional significance of these networks (Laird

et al., 2011b). This was demonstrated by Smith et al. (2009)

when the behavioral metadata of BrainMap-based ICNs was used

to describe the functional nature of corresponding resting-state

networks, and again in Laird et al. (2011a) when providing a

full functional explication of BrainMap ICA networks at a stan-

dard low model order (d = 20). This use of BrainMap metadata

allows for a substantially more rich characterization of ICNs than

previously possible. The BrainMap approach differs from anal-

ysis of data acquired during the task-free resting state, where

network functional characterization relies heavily on subjective

visual inspection to draw upon similarity to published task-based

results.
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In both resting state FMRI and task-based meta-analytic data,

ICA is carried out at a given model order to identify a set of

d (d = dimensionality) spatial components and their associated

time courses or database weighting vectors. Although automated

methods for model order estimation in resting state FMRI data

have been developed (Beckmann and Smith, 2004; Himberg et al.,

2004; Li et al., 2007), these methods can be somewhat arbitrary

and usually depend upon a number of factors (e.g., field strength,

number of time points, number of subjects, and data quality), in

which their application may not be robust enough to rely on for

all implementations of ICA. Model order selection has a signif-

icant impact on the spatial organization of resultant ICNs since

networks at low model orders are fractionated into sub-networks

as model order increases (Kiviniemi et al., 2009; Smith et al., 2009;

Abou Elseoud et al., 2010). Across varying dimensionalities, ICA

of resting state FMRI data has consistently revealed a hierarchical

modularity to functional brain organization, in agreement with

results from graph theoretic approaches (He et al., 2009; Meunier

et al., 2009). Our focus in the present study is how ICA model

order may be leveraged in analyses of task co-activation networks

to more fully investigate this hierarchical modularity.

The functional assessment of network fractionation across

task-based ICA components is also strongly influenced by model

order selection, since this parameter affects spatial topogra-

phy, which in turn impacts classification of the behavioral

domains and paradigms associated with the networks at any

given model order (Smith et al., 2009). Previous analysis of

BrainMap co-activation networks was performed at model orders

of 20 and 70 components, to simplify comparisons with prior

analyses of resting state FMRI data at these dimensionalities

(Smith et al., 2009; Laird et al., 2011a); however, differentia-

tion of preferred model orders is needed before a more complete

examination of network fractionation can be made. Here, we

present a data-driven method for identifying BrainMap-based

ICA decompositions that provide increased explication for func-

tional decoding of task co-activation networks. In addition, we

examine the functional organization as well as the topology of

the resultant ICNs as they fractionate from low to high model

orders.

MATERIALS AND METHODS

GENERATION OF INTRINSIC CONNECTIVITY NETWORK MAPS

Peak activation coordinates were extracted from 8,637 functional

neuroimaging experiments archived in the BrainMap database

(Fox and Lancaster, 2002; Laird et al., 2005, 2009, 2011a; http://

brainmap.org) and smoothed (FWHM = 12 mm) to create mod-

eled activation images. Spatial ICA was applied to this 4D

dataset (space × experiment ID) using MELODIC (multivari-

ate exploratory linear optimized decomposition into independent

components; Beckmann et al., 2005) provided by FSL (FMRIB

Software Library; Smith et al., 2004; Woolrich et al., 2009;

Jenkinson et al., 2012). ICA was performed at multiple dimen-

sionalities, creating sets of 20–200 independent components, at

intervals of 10 (Figure 1). At each model order, ICA maps were

converted to z statistic images via a normalized mixture model

fit, thresholded at z > 4, and viewed on a Talairach space template

image (Kochunov et al., 2002).

METADATA MATRICES

Each set of published coordinates of experimental task activa-

tion locations in the BrainMap database is associated with a

highly organized taxonomy of metadata that describes infor-

mation about the scanned subjects (e.g., behavioral condi-

tions, experiment design, and imaging analysis parameters).

Behavioral domain and paradigm class are two metadata fields

that have been found to contain the most explanatory power

of functional characterization per component (Laird et al.,

2011a). There are currently 75 available paradigms classifying

the experimental task employed during functional image acqui-

sition (Turner and Laird, 2012), and 50 behavioral domains

describing the categories of cognitive processes isolated by an

experimental contrast (Fox et al., 2005; http://brainmap.org/

scribe). To systematically identify the paradigms and behav-

iors associated with BrainMap ICA components at a given

model order, a matrix (125 metadata classes × d compo-

nents) was created for each ICA decomposition, which quantifies

the relationship between a given component and the behav-

ioral domains or paradigms (Smith et al., 2009; Laird et al.,

2011a). In doing so, the matrix M was computed, which is an

e × d matrix whose e rows (one for each experiment) and d

columns (one for each ICA component) describe the weight-

ings of each component for each of the original activation

images,

M = VdMd (1)

where Vd includes the d largest singular values of the “temporal”

(experiment ID) modes and Md is the mixing matrix of size d × d.

We then extracted the n (behavioral domain and paradigm meta-

data classes) × e (experiment ID) matrix P from the BrainMap

archive to form the final matrix of metadata classes vs. ICA

components,

Pd = PM (2)

The resultant metadata matrix measures how strongly each

behavioral domain and paradigm relate to the individual com-

ponents at a specified model order, which informs interpretation

of the functional properties for the ICNs. Repeating these steps

(Figure 1, Steps 2–4) across multiple ICA model orders from

d = 20 to 200 yielded 19 ICA decompositions, and hence 19

metadata matrices, provided a quantitative representation of the

dynamic functional nature of ICNs across a wide range of model

orders.

HIERARCHICAL CLUSTERING ANALYSIS

In our previous study, we established that hierarchical cluster-

ing analysis (HCA) of the metadata matrix at d = 20 provided

a data-driven method for establishing groupings of similar tasks

and behaviors (Laird et al., 2011a). Here, we propose that HCA be

used to introduce a metric for discriminating across ICA model

order. As described above, a metadata matrix was created for

a specified model order that assigned weights of the strength

of each functional metadata class to each ICN. HCA was then

performed on this metadata matrix, yielding a dendrogram that
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FIGURE 1 | The BrainMap ICA processing stream included four steps.

Step 1: Peak activation coordinates from 8,637 experiments in the BrainMap

database were smoothed at a FWHM of 12 mm to create a 4D modeled

activation map (space × experiment ID). Step 2: ICA was applied to the 4D

data using FSL’s MELODIC at a model order of d to create a set of d spatial

components. Step 3: Metadata matrices were created at each d weighting

how strongly each component related to the behavioral domain and paradigm

metadata classes in BrainMap (125 metadata classes × d components). Step

4: HCA was performed on metadata matrices, and the CCc of the resultant

dendrogram was computed to determine the fit of the clustering for that

model order. These 4 steps were repeated for a range of d, from 20 to 200 in

intervals of 10.

allowed visualization of groups of similar metadata classes for that

model order, where each branch in the dendrogram represents

a single paradigm or behavioral domain (Figure 1, Step 4). We

then computed the cophenetic correlation coefficient (CCc) for

the dendrogram:

CCc =

∑

i < J(Yij − y)(Zij − z)
√

∑

i < J(Yij − y)2
∑

i < J(Zij − z)2
(3)

where Yij is the distance between objects i and j (where i and

j are the indices of the values in the d × 125 metadata matrix)

in Y, Zijis the cophenetic distance between objects i and j in Z

(the height of the node at which these two points are first joined

together in the dendrogram), and y and z are the averages of Y and

Z, respectively. By definition, the cophenetic correlation coeffi-

cient for a cluster tree is the linear correlation coefficient between

the cophenetic distances obtained from the tree, and the origi-

nal distances (or dissimilarities) used to construct the tree (Sokal,

1962), where values close to 1 indicate a high-quality solution.

The CCc of metadata clustered dendrograms were recorded across

model order, as opposed to network clustered dendrograms, to

maintain a comparison of models with a consistent number of

branches.

In this context, we employed the CCc to assess how well

each set of d clustering results reflected its corresponding

metadata matrix for a given model order. We hypothesized

that computing the cophenetic correlation coefficient across a

range of models orders would provide insight into how well

the distributions of functional properties fit co-activation net-

works across different ICA decompositions. This method was

based on the assumption that high CCc values results in more

informative ICA decompositions of task-based intrinsic con-

nectivity networks. HCA was performed in MATLAB (The

Mathworks Inc., Natick, Massachusetts) on the 19 metadata

matrices (one for each model order) using the single linkage

algorithm with 1 − r as the distance between clusters, where r

is the Pearson’s correlation coefficient, and unthresholded clus-

ter distances, similar to the procedure developed by Laird et al.

(2011a).
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RESULTS

SIGNIFICANT MEAN VOLUME AND Z-SCORE OF ICNs

ICA was performed on the BrainMap database to identify task co-

activation networks at model orders of d = 20–200, in intervals of

10. We investigated the impact of model order on the BrainMap-

based ICA spatial component maps. Across each dimensionality,

the average number of significant voxels and the average z-score

of significant voxels were computed for each thresholded com-

ponent (z > 4). As expected, these values showed substantial

changes as a result of altering model order. The average number of

significant voxels per component showed a logarithmic decrease

(R2
= 0.996) as model order increased (Figure 2). This result was

expected since increasing model order forces ICA to separate or

fractionate large spatial components into smaller components.

The average component z-score increased nearly linearly (R2
=

0.975) as model order increased. Our overall observation was that

as the number of components increased, the average volume of

individual components decreased, resulting in a higher concen-

tration of significant activity spanning across fewer voxels. Similar

results were observed by Abou Elseoud et al. (2010) when inves-

tigating ICA model order of intrinsic connectivity networks in

resting state FMRI data.

HIERARCHICAL CLUSTERING OF BRAINMAP COMPONENT METADATA

Metadata matrices were computed at each model order to

quantify the impact of the BrainMap behavioral domains and

paradigms for every network component. Hierarchical clustering

was performed on these metadata matrices, and the cophenetic

correlation coefficient was subsequently computed across the 19

dendrograms from d = 20–200. The observed CCc values are

plotted in Figure 3, and ranged from a minimum of 0.438 to a

maximum of 0.519, with a mean of 0.473 ± 0.020. ICA model

orders corresponding to the two highest CCc values were identi-

fied at d = 20 (CCc = 0.5119) and d = 70 (CCc = 0.5198), while

d = 50 and d = 190 networks were observed to correspond to the

lowest CCc values. The dendrograms for these two highest (i.e.,

FIGURE 2 | The mean number of significant voxels (z > 4) of ICA

components decreased as model order increased (solid, bold), while

the mean z-score of significant voxels in ICA components increased

almost linearly (R2
= 0.975) as model order increased (dashed line).

more clear distribution of functional properties for ICNs) and

two lowest (i.e., less interpretable division of functional properties

for ICNs) decompositions are shown in Figure 4. The pairwise

relationships between any two variables (i.e., metadata classes) are

illustrated, where each branch of the dendrogram represents an

individual metadata class (i.e., behavioral domain or paradigm)

in the BrainMap database. In general, the dissimilarity scale, or

y-axis, of a dendrogram ranges from 0 to 1 where lower branch-

ing points indicate high similarities among clusters and are thus

most desirable. Visual inspection of these graphs indicates that

the two dendrograms with the most branching points low on the

dissimilarity scale exemplify a good clustering solution that fit the

metadata matrices well, while the two dendrograms with higher

branching points do not, in agreement with the more quantitative

differences in CCc values.

INTRINSIC CONNECTIVITY NETWORK FRACTIONATION

Our results indicated that high quality decompositions were

obtained at ICA model orders of d = 20 and d = 70, as these

yielded CCc values that were two standard deviations higher than

the mean. Thus, we sought to investigate general trends in the

functional significance of how BrainMap-based ICNs fraction-

ate from large-scale networks to smaller sub-networks specifically

as a result of increasing model order from d = 20 to d = 70.

The spatial topographies of these ICA components are shown

in Figure 5. HCA was performed on the metadata matrices to

determine similarity across behavioral domains and paradigms;

in this stage, we transposed the matrices and repeated the analysis

to quantify similarity across networks at each of the two best-fit

model orders, similar to the procedure developed by Laird et al.

(2011a).

Figure 6A illustrates the behavioral network groupings at d =

20 where each dendrogram branch corresponds to an individual

non-artifactual ICA network. Visual inspection of dendrogram

indicated that the decomposition included three clear groupings

of networks that were highly similar in terms of their behavioral

FIGURE 3 | Cophenetic correlation coefficients (CCc ) were computed

for the BrainMap metadata matrices across ICA model orders. CCc

values indicate how well the HCA results fit the corresponding BrainMap

metadata. The ICA model orders yielding the two highest CCc values were

generated with metadata from the d = 20 (CCc = 0.5119) and d = 70

(CCc = 0.5198) decompositions.
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FIGURE 4 | Hierarchical clustering dendrograms are shown for ICA

model orders of 20, 50, 70, and 190. Model orders of 20 and 70

resulted in the two highest CCc values, while d = 50 and d = 190

resulted in the lowest CCc values. The dissimilarity scale (y-axis) of

each dendrogram indicates how strongly the behaviors and paradigms

were found to cluster together. High branching points along the

dissimilarity axis in the d = 50 and d = 190 dendrograms indicate

less agreement across variables, whereas lower branching points in

the d = 20 and d = 70 networks indicate a more tightly clustered

solution.

metadata (not their spatial topography), and one set of dissimilar

networks (seen on the far right). Previous HCA results revealed

that these four d = 20 network groupings can be classified on the

basis of their associated mental processes: (1) emotional and inte-

roceptive processes that included networks for limbic and medial

temporal areas, subgenual anterior cingulate cortex (ACC) and

orbital frontal cortex (OFC), bilateral basal ganglia and thala-

mus, bilateral anterior insula and anterior cingulate cortex (blue

networks; ICA-201 − ICA-205); (2) motor and visuospatial inte-

gration, coordination, and execution that included premotor and

supplementary motor cortices, DLPFC and posterior parietal

cortices, hand areas of the primary sensorimotor cortices, and

superior parietal lobule (green networks; ICA-206 − ICA-209);

(3) visual perception, including visual association cortices, as well

as lateral and medial posterior occipital cortices (cyan networks;

ICA-2010 − ICA-2012); and (4) higher cognitive processes that

included the default mode network, cerebellar network, right-

lateralized fronto-parietal cortices, auditory cortices, mouth areas

of the primary sensorimotor cortices, and left-lateralized fronto-

parietal cortices (warm-colored networks; ICA-2013 − ICA-2018).

The last two ICA components (ICA-2019, ICA-2020) were deemed

to be artifacts characterized by uniform metadata distributions

(Laird et al., 2011a).

Figure 6A illustrates that the motor and visuospatial net-

works were found to be more similar to the visual perception

networks than to the emotional and interoceptive networks, as

indicated by their different branching heights. In addition, the

divergent cognitive networks were observed to be strongly dis-

similar across components, compared to each other as well as to

other groupings of networks. Visual inspection of the dendro-

gram observed at d = 70 (Figure 6B) exhibited grossly similar

clustering structure to that of d = 20, but included subtle organi-

zational differences indicative of functional network fractionation

properties. We employed the fslcc tool available in FSL (Jenkinson

et al., 2012), as a means to track network fractionation from

20 components to 70 components. Cross-correlation values were

computed between every network in the d = 20 decomposition

with every network in the d = 70 decomposition. A high corre-

lation value indicated a strong correspondence between spatial

topographies across model order. Using these values, each high-

model order network was grouped with its highest corresponding

low-model order “parent” network, with exception to 3 artifac-

tual networks characterized by implausible activation patterns. As

seen by the color-coding scheme defined for the d = 20 networks,

the majority of d = 70 networks in Figure 6B remained clustered

with networks matching their original d = 20 group, but these

groups were fractionated into multiple smaller sub-groups, sug-

gesting fractionation as a result of non-homogenous behavioral

functions. Figure 6B illustrates how the visuomotor networks

(green) were split into three separate sub-groups of varying num-

bers of networks (MV1, MV2, MV3), while the emotional and

interoceptive networks (blue) were divided into two sub-groups

(Emo/Int1, Emo/Int2). The higher cognitive networks (warm col-

ors) were fractionated into three sub-groups (Cog1, Cog2, Cog3),

while the visual networks (cyan) remained intact and were not

sub-divided (Vis).

VISUOMOTOR FRACTIONATION

Figure 7A delineates how the visuomotor networks at d = 20

(ICA-206, ICA-207, ICA-208, ICA-209; green) split into three dis-

tinct and non-overlapping sub-groups for separate motor and

visuospatial processes at d = 70. According to this higher model
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FIGURE 5 | The spatial topography of ICA model orders yielding high

quality decompositions identified by producing the highest CCc values

at d = 20 and d = 70. The d = 20 components are presented in the same

order as provided in Laird et al., 2011a. The d = 70 components mirror the

hierarchical network organization of their respective model order, beginning

with the most similar components followed by the least similar. ICA maps

were converted to z statistic images via a normalized mixture model fit,

thresholded at z > 4, and viewed in standard (Talairach) brain space.

Orthogonal slices of the representative point in space are shown for each

component.
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FIGURE 6 | HCA of BrainMap-based ICNs at d = 20 and d = 70 provide

insight into how low-model order networks fractionate into

high-model order sub-networks. (A) Network clustering of the d = 20

decomposition revealed three clear groupings of highly similar networks:

emotional and interoceptive networks (blue), motor and visuospatial

networks (green), and visual networks (cyan). The remaining components

were associated with higher cognitive processes (warm colors). The

cognitive networks were behaviorally dissimilar across components and

other network groups, as indicated by high branching points in its

dendrogram. (B) Network clustering of the d = 70 decomposition exhibited

generally similar network organizational properties with the d = 20

dendrogram, but included subtle fractionation properties indicative of

non-homogenous behavioral functions. The left–to–right ordering of

networks in the above dendrograms are the same as presented in

Figure 5. Vis, visual; M/V, motor and visuospatial; Cog, cognitive; Emot/Int,

emotional and interoceptive.

order decomposition, the networks that included the DLPFC

and posterior parietal cortices (Figure 6B, cluster MV1) and the

premotor and supplementary motor cortices (Figure 6B, cluster

MV2) were shown to exhibit strong visuospatial properties and

thus found to be more similar to the visual perception networks.

These visuospatial tasks included saccades/anti-saccades, mental

rotation, visual pursuit and visual distraction. In contrast, the

networks associated with motor processing were clustered into

a different group (Figure 6B, cluster MV3). These included sub-

networks of the hand areas of the primary sensorimotor cortices

and superior parietal lobule, and were generally associated with

finger tapping, flexion/extension, pointing, and grasping.

EMOTIONAL AND INTEROCEPTIVE FRACTIONATION

A strong dichotomy was present within the emotional and inte-

roceptive sub-networks at d = 70 as shown in Figure 7B. Instead

of observing a simple splitting in which individual d = 20 net-

works (ICA-201, ICA-202, ICA-203, ICA-204, ICA-205; Figure 6

blue) were represented in only one high-model order cluster, we

observed a more mixed and complex degree of fractionation. The

d = 20 emotion/interoceptive grouping of networks split into two

main clusters at d = 70 in which both clusters were comprised

of sub-networks from nearly all five of the original d = 20 com-

ponents. Specifically, the d = 20 subcortical network (ICA-203)

fractionated into four different d = 70 sub-networks (including

separate components for putamen, thalamus, and basal ganglia),

which thematically were associated with tactile paradigms and

interoceptive processes. Overall, examination of the functional

nature of this complex dichotomy of emotional and interocep-

tive networks revealed one cluster of sub-networks (Figure 6B,

cluster Emo/Int1) was associated with internal, emotional, and

introspective behaviors requiring little muscle activity, such as

emotional picture discrimination, deception, resting state, anxi-

ety, and thirst stimulation paradigms. In contrast, the other clus-

ter of sub-networks (Figure 6B, cluster Emo/Int2) was related to

more external stimuli or behaviors requiring muscle control over

physical functions, such as micturition and bladder tasks, pain,

thermal and tactile stimulation, TMS, and action preparation.

COGNITIVE FRACTIONATION

With respect to the higher cognitive networks (warm colors),

we observed d = 70 segregation of networks into three distinct

clusters. One sub-network grouping (Figure 6B, cluster Cog1)

was associated with decomposition of the right-lateralized fronto-

parietal network (ICA-2015) into three sub-networks, which

relate to the behavioral functions of reasoning, attention, inhi-

bition, and working memory. A second cognitive subgroup

(Figure 6B, cluster Cog2) included one right-lateralized fronto-

parietal sub-network and three sub-networks representing frac-

tionated components of the default mode network (ICA-2013),

associated with theory of mind and social cognition tasks. Lastly,

the d = 20 networks for auditory, speech, and language processes

(ICA-2016, ICA-2017, ICA-2018, respectively) segregated into the

same cluster at d = 70 (Figure 6B, cluster Cog3), preserving

functional groupings seen at the lower model order.

VISUAL FRACTIONATION

In contrast to the extensive splitting of the visuospatial, emo-

tional/interoceptive, and cognitive network groupings, the visual

networks (ICA-2010, ICA-2011, ICA-2012; cyan) remained highly

similar and relatively intact across model orders (Figure 6B, clust

Vis), with some minor splitting of single components at other

locations in the dendrograms that were related to correspon-

dences between the visual association areas with higher cognitive

functions.

DISCUSSION

Previously, we demonstrated that the combined application of

ICA and hierarchical clustering analysis (HCA) to task activa-

tion patterns archived in the BrainMap database identify and

guide functional interpretation of intrinsic connectivity networks

(Laird et al., 2011a). This has been shown for a standard low

model decomposition (i.e., d = 20). Here, we applied the same
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FIGURE 7 | Topological fractionation of select BrainMap-based ICNs

are shown from low (d = 20) to high (d = 70) model orders. The

spatial cross correlation between the d = 20 and d = 70 networks are

indicated below each respective d = 70 network. (A) The Motor/

Visuospatial networks, which were grouped into one cluster at d = 20

(green ICNs in Figure 6), split into three separate clusters at d = 70.

Metadata associated with these ICNs indicated that two clusters were

more closely related to visuospatial tasks while the other cluster was

highly linked motor tasks. (B) The Emotion/Interoception networks (blue

ICNs in Figure 6) showed a more complex fractionation at d = 70

when splitting into two main clusters. Both of these clusters contained

sub-networks from nearly all of their d = 20 ICNs; however, the

metadata associated with these d = 70 ICNs showed a clear division in

functional characterization into an initial cluster linked to internal and

emotional processes and another cluster linked to external and physical

processes.

methodology at a range of model orders from d = 20–200, in

intervals of 10, to assess the effects of ICA dimensionality. We used

the cophenetic correlation coefficient as a general statistic to char-

acterize how distributions of functional properties fit brain net-

works across a range of decompositions. In doing so, we identified

two model orders that provide the most interpretable segregation

of BrainMap behavioral domain and paradigm labels, thereby

maximizing the ability of behavioral meta-data to inform co-

activation networks in the BrainMap context. Moreover, we found

that this network-based clustering method provided insight into

how large-scale networks fractionate into finer sub-networks

when transitioning from low order decompositions (e.g., d = 20)

to higher order decompositions (e.g., d = 70).

MODEL ORDER SELECTION AND AGREEMENT WITH RESTING STATE

DATA

The cophenetic correlation coefficient was found to vary as model

order was increased or decreased. Each model order results in dif-

ferent patterns of network spatial topographies, which influences

the weightings that correspond to how strongly each behavioral

domain or paradigm is associated with the ICA components.

The resultant metadata matrices subsequently vary across model

order, yielding dendrograms than can be differentiated in terms

of their goodness of fit to the clustered data matrices. Our

findings suggest that the 20- and 70-component ICA decomposi-

tions of BrainMap co-activation networks, when complemented

with their metadata for functional interpretation, yielded more

informative networks than other model orders in the tested range.

We do not assert that we have unequivocally proven that, for

example, a model order of 50 is “superior” compared to a model

order of 20. On the contrary, examination of the spatial topogra-

phies and associated metadata for networks across all model

orders tested were found to be interpretable. Furthermore, we

believe that rather than focus on a single decomposition, multiple

iterations of ICA at different model orders are necessary to truly

understand the complexity of intrinsic connectivity networks in

both task-based and resting state neuroimaging data. That is, we

endorse the practice of performing analyses that include decom-

positions across multiple model orders in order to draw more

meaningful network inferences. However, the full and complete

assessment of network fractionation across 19 decompositions

(2090 total ICA components) is simply impractical. At this time,

we lack the summary statistics and visualization capabilities for

disseminating that level of data complexity. Thus, our goal in the
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present study was to provide an approach to identify a subset of

model orders to facilitate cross-decomposition comparisons via

a quantitative clustering-based metric. We intend to utilize these

results to guide the next stage of our investigation of fractiona-

tion of BrainMap co-activation networks, which will focus on a

more highly detailed explication of sub-network functional orga-

nization at d = 70. Given the results of the present study, we are

less likely to pursue further analyses at d > 120; although, there

is some interest in assessing if model fit continues to decline past

d = 200.

Notably, previous studies investigating ICA model order of

resting state fMRI data indicated similar results recommend-

ing 20 components for a low model order decomposition and

around 70 components for a high model order decomposition

(Abou Elseoud et al., 2010, 2011). Abou Elseoud et al. (2010)

reached this conclusion by evaluating various topological prop-

erties and consistency measures (e.g., volume, mean z-score,

stability, repeatability) of ICA decompositions across a wide range

of model orders. We did not initially anticipate that our metric

for more interpretable model orders of task-based co-activation

networks would yield identical results to that for resting state net-

works. However, in light of the strong correspondence between

spatial topographies across these data sets, it is reasonable to

observe similar correspondence in model order considering that it

has been posited that resting state networks do reflect functional,

task-based networks (Fox and Raichle, 2007; Smith et al., 2009).

One notable difference was observed between the present

study and the related work by Abou Elseoud et al. (2010). In their

results, they observed significant increases in z-score only up to

model order 80, while our results revealed a linear increase in

z-score values up to the d = 200 decomposition. This may reflect

an aspect of data features wherein BrainMap task activation pat-

terns no longer behave similar to resting state FMRI data. Our

approach of blurring thousands of reported stereotactic coordi-

nates of activation locations to create pseudo-activation images

results in large, sparse data sets, which may be more favorable

than BOLD FMRI for high model order ICA decompositions. At

high dimensionalities, ICA tends to over-fit BOLD FMRI time-

series data, in which the noise inherently associated with FMRI

signal overpowers the true physiological neuronal co-oscillations

(Li et al., 2007; Abou Elseoud et al., 2010). Thus, in addition to

the number of studies employed in our analyses, task-activation-

derived ICNs may be intrinsically more powerful and capable

of finer division (i.e., higher model orders) than resting state

derived ICNs.

CONSISTENCY OF BRAINMAP-BASED ICNs

A number of factors might have influence on the spatial topogra-

phy of resultant ICA decompositions, which would affect further

clustering and functional interpretation conclusions.

Thus, we performed a number of additional analyses to exam-

ine the consistency of our results. First, we performed ICA (d =

20) on the same 8,637 experiments in a randomized order. Using

a spatial cross correlation analysis, the original ICNs and the ran-

domized ICNs were nearly identical, indicating that the spatial

maps are not dependent upon the order or experiment input.

Furthermore, varying the FWHM of the Gaussian parameter by

applying the Eickhoff et al. (2009) smoothing algorithm when

creating the 8,637 activation images resulted in ICNs with simi-

lar topography. In terms of clustering approaches, we investigated

the use of other linkage methods (e.g., average linkage) and

observed consistent similar groupings of networks and overall

higher CCc values with similar CCc peaks. However, the results

of using this algorithm showed very little variance in CCc values

(mean = 0.68 ± 0.009) across model orders, indicating that it is

less sensitive to model order.

Additional analyses were performed on 10 random subsets of

90% of the experiments in the BrainMap database at the time

of the initial analysis. Following the same procedure as outlined

in Figure 1 up to d = 100, the peaks in the CCc values initially

observed at d = 20 and d = 70 components continued to be

observed in 10 random subsets of 90% when averaging across all

samples, although the observed peak at d = 70 was not as robust

as the peak at d = 20, as the results were somewhat plateaued

from d = 50 to 70 (Figure 8). Overall, results from these addi-

tional analyses followed a similar trend as shown in Figure 3,

and suggest that d = 20 and d = 70 exemplify appropriate model

orders for further functional interpretation in BrainMap-based

ICN analyses.

Lastly, we acknowledge the possibility that substantial changes

in the selection of published studies archived in BrainMap would

result in relatively different decompositions of ICNs depending

on the cognitive aspects of experiments added to the sample (e.g.,

a large increase in interoceptive experiments would produce an

ICA decomposition more weighted toward ICNs associated with

interoceptive processes).

INTRINSIC CONNECTIVITY NETWORK FRACTIONATION

Comparing dendrograms for low- and high-model order decom-

positions (Figure 6) allowed visual conceptualization of the dif-

ferences between networks associated with homogenous and

heterogeneous functions. Generally, low-model order networks

associated with low-level perceptual function showed little break-

down into sub-networks at a higher model order, such as for

FIGURE 8 | Additional analyses were performed on 10 random subsets

of 90% of the experiments in the BrainMap database at the time of the

initial analysis following the same procedure as outlined in Figure 1

(up to d = 100). The CCc values resulting from the 90% subsets follow a

similar trend as shown in Figure 3 when averaging across all subsets.
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visual and auditory perception. However, multimodal networks

associated with higher-level processes tended to display a high

amount of fractionation into multiple sub-networks according

to breakdown of their constituent functions. Similar results have

previously been found in high-model order ICA decompositions

of resting state FMRI, in agreement with this result (Kiviniemi

et al., 2009; Smith et al., 2009; Abou Elseoud et al., 2010, 2011).

Overall, we observed that the 3 d = 20 visual networks were

subdivided into 9 sub-networks at d = 70, 4 visuomotor net-

works were fractionated into 13 sub-networks, 5 emotional and

interceptive networks into 20 and 6 cognitive networks into 23

sub-networks. This translates to an average of 3 d = 70 sub-

networks for every visual network, 3.25 for visuomotor, 4 for

emotional/interoceptive, and 3.83 for cognitive, which suggests

that for these exemplar model orders, the emotional and inte-

roceptive networks were found to fractionate at the highest rate.

When comparing fractionation properties from d = 20 to d = 70

networks across groupings, we found the visuomotor network

split into non-overlapping visual and motor sub-networks to be

clear and reasonable. However, the emotional and interoceptive

splitting into 2 clusters that included contributions from nearly all

original d = 20 networks will require more examination to fully

understand. For this fractionation, the separation between sub-

groups was comparatively increased in terms of distance along

the dendrograms x-axis, which likely reflects a stronger dissimi-

larity and more fundamental dichotomy between emotional and

interoceptive processes.

Lastly, the cognitive networks differed from both the visuo-

motor and the emotional/interoceptive fractionation schemes in

that complex sub-groups were observed, but demonstrated fewer

overlapping contributions than the emotional/interoceptive sub-

networks. In comparison to the d = 20 organization, we found

that many cognitive d = 70 sub-networks remained highly dis-

similar, with the exception of the relatively homogenous and

intact grouping for speech, audition, and language (Figure 6B,

cluster Cog3). The right-lateralized fronto-parietal sub-networks

(Figure 6B, cluster Cog1) were observed to split from the cogni-

tive networks which were grouped with visual and visuospatial

sub-networks, thus indicating greater homogeneity in functions

associated with visual attention and reasoning. Similarly, the

default mode sub-networks were segregated from their d = 20

cognitive neighbors and more strongly associated with emotional

and introspective behaviors at d = 70 (Figure 6B, cluster Cog2).

In turn, there was a group of strongly interoceptive sub-networks

related to bladder control and external stimulation that were frac-

tionated from their original emotional grouping at d = 20 to

become more highly dissimilar to other sub-groups (Figure 6B,

cluster Emo/Int2), thus positioning them near the remaining dis-

similar cognitive sub-networks. These dendrogram shifts between

d = 20 and d = 70 illustrate the functional impact of model

order selection in ICA-based investigations of task co-activation

networks.

USE RECOMMENDATIONS AND FUTURE DIRECTIONS

The network images and associated BrainMap metadata gener-

ated in this study have been made available for download (brain-

map.org/icns) to serve as a shared resource for the neuroscience

community. Currently BrainMap ICA components are provided

at dimensionalities of 20 and 70, which may useful in the interpre-

tation of the functional significance of future resting state results.

For resting state networks that are not a close match with the

20- or 70-dimension BrainMap networks, the Mango/BrainMap

behavioral analysis tool can be used to identify significant behav-

iors within a ROI or network mask (Lancaster et al., 2012).

Additionally, BrainMap ICNs could serve as seed regions or masks

for future resting state analyses in efforts to avoid the inher-

ent problems associated with double dipping (Kriegeskorte et al.,

2009). Future work in this area will involve a thorough analysis

of BrainMap-based ICNs at additional model orders to provide

better insight to the hierarchical organization of these functional

networks.

LIMITATIONS

The results observed in the present study are based on the premise

that the cophenetic correlation coefficient of metadata matri-

ces provides a meaningful metric to discriminate between ICA

model orders. We based this assertion on the fact that the CCC

measures fit between matrix data and corresponding cluster-

ing solution. However, this procedure is highly dependent on

BrainMap’s taxonomy, including the design and implementation

for how BrainMap personnel manually code studies from the

literature. This is most critical for the metadata fields of behav-

ioral domain and paradigm, since our study is based on these

taxonomic classifiers.

These results are additionally dependent on the heterogeneity

of experiments in the BrainMap database. There is an uneven dis-

tribution of experiments archived in BrainMap in which 74% of

experiments elicit cognitive processes, 26% are emotion related

processes, 23% of experiments are perception related, 21% are

associated with action paradigms, and 3% with interoceptive

fields. It is not uncommon for these experiments to be coded

with more than one behavioral domain, thus explaining for the

proportions of behaviors summing greater than 1.

Since the present results are thus limited to the current instan-

tiation of the BrainMap database, future work may involve repli-

cation of the results following extension and/or refinement of

the BrainMap metadata taxonomy. The importance of functional

neuroimaging ontologies cannot be underestimated, as evidenced

by this and other studies. Currently, statistical methodologies

for large-scale meta-analysis and data mining investigations are

being developed for the BrainMap Project. But even with excel-

lent analysis strategies, meta-analytic results are critically affected

by standards and conventions for neuroinformatics and psy-

choinformatics. Efforts to improve the BrainMap ontology are

currently underway and likely will have an impact on the func-

tional interpretation of not only task co-activation networks,

but also functional brain networks derived from meta-analytic

connectivity modeling (Laird et al., 2009; Eickhoff et al., 2010;

Robinson et al., 2010; Zald et al., 2012) and connectivity-based

parcellation (Eickhoff et al., 2011; Bzdok et al., 2013; Cieslik et al.,

2013). Alternatively, a similar analysis could be carried out in

a different task-based meta-analysis database of neuroimaging

results, such as NeuroSynth (http://neurosynth.org; Yarkoni et al.,

2011). Although recent text-based topic modeling of NeuroSynth
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data has yielded similar intrinsic connectivity networks to those

seen here (Poldrack et al., 2012), to our knowledge the issue of

model order has not yet been addressed in this context.

CONCLUSION

We investigated the effects of BrainMap metadata distribution

of functional properties across intrinsic connectivity networks

as a method for identifying model orders that provide the most

interpretable segregation of BrainMap behavioral domain and

paradigm labels, thereby maximizing the ability of behavioral

meta-data to inform BrainMap based co-activation networks.

Results of our analyses indicated that ICA performed at a model

order of d = 20 and d = 70 provides network metadata matrices

with increased CCc fit. At d = 70, we found that the emotional

and interoceptive networks fractionated at the highest rate into

the largest number of sub-networks. We observed complex frac-

tionation properties for cognitive and emotional/interoceptive

networks and relatively simpler fractionation for visuomotor pro-

cesses, while the visual perception networks remained relatively

intact. These results suggest that selecting ICNs from a single

model order may provide limited information, while interpret-

ing ICNs across multiple model orders yields more dynamic

information about the functional organization and hierarchical

modularity of the human brain.
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