
© 2012 Springer Science - Business Media B.V

This document is published in:

J. Grid Computing 10 (2012) 1, pp. 185–209

DOI: 10.1007/s10723-012-9208-5

Ins t i tu t ional Repos i tory

http://dx.doi.org/10.1007/s10723-012-9208-5
http://e-archivo.uc3m.es/

iCanCloud: A Flexible and Scalable Cloud Infrastructure
Simulator

Alberto Núñez · Jose L. Vázquez-Poletti · Agustin C. Caminero · Gabriel G. Castañé · Jesus
Carretero · Ignacio M. Llorente

A. Núñez (B)

Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, Spain
e-mail: alberto.nunez@pdi.ucm.es

J. L. Vázquez-Poletti · I. M. Llorente Dep. de Arquitectura de Computadores y Automática, Facultad de Informática,
Universidad Complutense de Madrid, 28040 Madrid, Spain

J. L. Vázquez-Poletti
e-mail: jlvazquez@fdi.ucm.es

I. M. Llorente
e-mail: llorente@dacya.ucm.es

A. C. Caminero
Dep. de Sistemas de Comunicación y Control, Universidad Nacional de Educación a Distancia, Madrid, Spain
e-mail: accaminero@scc.uned.es

G. G. Castañé · J. Carretero Dep. de Informática, Universidad Carlos III de Madrid, Madrid, Spain

G. G. Castañé
e-mail: ggonzalez@inf.uc3m.es

J. Carretero
e-mail: jcarrete@inf.uc3m.es

Abstract Simulation techniques have become a powerful tool for deciding the best starting con-

ditions on pay-as-you-go scenarios. This is the case of public cloud infrastructures, where a given
number and type of virtual machines (in short VMs) are instantiated during a specified time,
being this reflected in the final budget. With this in mind, this paper introduces and validates
iCanCloud, a novel simulator of cloud infrastruc-tures with remarkable features such as flexibility,
scalability, performance and usability. Further-more, the iCanCloud simulator has been built on the
following design principles: (1) it’s targeted to conduct large experiments, as opposed to oth-ers
simulators from literature; (2) it provides a flexible and fully customizable global hypervisor for
integrating any cloud brokering policy; (3) it reproduces the instance types provided by a given cloud
infrastructure; and finally, (4) it contains a user-friendly GUI for configuring and launching
simulations, that goes from a single VM to large cloud computing systems composed of thousands of
machines.

Keywords Cloud computing · Cloud computing simulator · Cloud hypervisor · Validation ·
Scalability

1

to solve a given computational problem. If the

same software and configurations are needed, the

VMs may be started using the same image. This

way, a machine offered by a computing cloud may

become whatever the user needs, from a stand-

alone computer to a cluster or Grid node.
Nowadays, cloud computing systems are in-

creasing their role due to the fast (r)evolution
of computer networks and communication tech-

nologies. A very clear proof of this fact is that
very important companies like Amazon, Google,
Dell, IBM, and Microsoft are investing billions
of dollars in order to provide their own cloud
solutions [28].

As soon as the scientific community had access
to cloud production infrastructures, the first ap-

plications started to run on the cloud [26, 34]. In
many Research areas, the leap from traditional
cluster and Grid computing to this new paradigm
has been mandatory, being the main reason an
evolution in the computational needs of the ap-

plications [10]. A remarkable fact from this evolu-

tion is that in a pre-cloud environment, hardware
defines the level of parallelism of an application.
In cloud computing, the level of parallelism is
defined by the application itself, as there is no
restriction in the number of machines, and CPU
availability is 100% guaranteed by standard.

There are two main cloud infrastructure types.
On the one hand, private clouds where the
user’s institution maintains the physical infrastruc-

ture. These cloud infrastructures can be built us-

ing virtualization technologies like Nimbus [11],
OpenNebula [20], or Eucalyptus [22]. On the
other hand, public clouds where the cloud service
can be outsourced by paying in a deployed VM
per unit of time basis. Some examples of these
public clouds are ElasticHosts1 and Amazon’s
Elastic Compute Cloud.2

In order to develop new proposals aimed at
different topics related to clouds (for example,
datacenter management [2], or provision of re-

sources [15]), a lot of work and money is required
to set up an adequately-sized testbed including

1http://www.elastichosts.com/
2http://aws.amazon.com/ec2/

different data centers from different organizations

and public cloud providers. Even if automated

tools exist to do this work, it would still be very

difficult to produce performance evaluation in

a repeatable and controlled manner, due to the

inherent variability of the cloud. Therefore, it is

easier to use simulation as a mean of studying

complex scenarios.

This paper presents iCanCloud, a simulation

platform aimed to model and simulate cloud com-

puting systems. This simulator has several design

principles: (1) iCanCloud can conduct large exper-

iments, as opposed to other simulators from liter-

ature; (2) iCanCloud provides a flexible and fully

customizable global hypervisor, which let users

implement any brokering policies; (3) instance

types provided by Amazon are included in the

simulation framework.

The main contributions of this paper are:

(1) the development of iCanCloud, a simulator

for cloud computing environments, which is spe-

cially focused on the simulation of Amazon in-

stance types; (2) the design and implementation

of a flexible hypervisor module that provides an

easy method for integrating both existent and

new cloud brokering policies; (3) the validation

of the simulator, which has been carried out by

conducting a set of experiments on the simula-

tor and comparing them with actual results us-

ing all the instance types provided by Amazon;

(4) the comparison of iCanCloud with a mature

cloud simulator (this being CloudSim [7]), which

highlights iCanCloud’s scalability and capacity to

simulate large size cloud environments.

2 Cloud Simulation Tools in Computer Science

As we mentioned previously, simulations are
essential for carrying out research experiments
in cloud systems. Simulations have been widely
used in different fields of computer science over
the years. For instance, in the networking re-

search area we can find NS-2 [31], DaSSF [18],
OMNET++ [32], and OPNET [23], among oth-

ers. These simulators are focused on network de-

tails, such as network protocols, path discovery,
latencies, or IP fragmentation, but lack the details

1 Introduction

Cloud computing is a paradigm which provides

access to a flexible and on-demand computing

infrastructure, by allowing the user to start a re-

quired number of virtual machines (in short VMs)

2

to simulate virtualization-enabled computing re-

sources and applications.
The work [21] describes SIMCAN, a simulation

platform for modeling HPC architectures. This
platform is aimed to test both existent and new
designs of HPC architectures and applications.
SIMCAN has a modular design that eases the in-

tegration of the different systems on a single archi-

tecture. The design follows a hierarchical schema
that includes simple modules, basic systems (com-

puting, memory managing, I/O and networking),
physical components (nodes, switches, etc) and
aggregations of components.

For Grids, another set of simulators have been
developed, such as GridSim [3], OptorSim [1],
SimGrid [13] and MicroGrid [19], among others.
These tools can simulate brokerage of resources,
or execution of different types of applications on
different types of computing resources, but as
before they lack the details to simulate a cloud
environment.

To the author’s knowledge, the only tools that
can simulate a real cloud system are CloudSim [7],
MDCSim [17], and GreenCloud [16]. In the case
of CloudSim [4], several research articles have
been published with results obtained by using
it [2, 5, 6, 15]. This tool was initially based on a
Grid simulator [4] (this being GridSim [27]). So,
a new layer on top of GridSim was implemented
to add the ability to simulate clouds. For later
versions, in-depth re-implementations took place
including a full implementation of its simulation
kernel so it does not rely on GridSim anymore.

But CloudSim still has some drawbacks. One

of the main drawbacks of CloudSim is related to

the fact that it is written in Java, because Java

can only handle at most 2 GB of memory in 32

bits systems. This fact heavily affects the design

of experiments, which must be large enough to

extract interesting conclusions, but on the other

hand must be small enough to fit into 2 GB of

memory. However, this limitation does not affect

64 bits systems. Conversely, one of the design

principles of iCanCloud is the ability to conduct

large experiments, and this is why iCanCloud is

written in C++. Thanks to this, iCanCloud can

use all the memory available on the machines run-

ning the experiments, for 32 and 64 bits machines.

MDCSim [17] is an event driven simulation—

similarly to CloudSim. The main drawback of
MDCSim is that it is not available for public
download since it is built on CSIM [9], a commer-

cial product.

Regarding GreenCloud [16], this is an ex-

tension to the NS2 [31] network simulator.
GreenCloud is focused on simulating the com-

munications between processes running in a
cloud at packet level. In the same way as NS2,
GreenCloud is written in C++ and OTcl, and
this is a disadvantage of this tool—two different
languages must be used to implement one single
experiment. GreenCloud provides plugins that al-

low the use of physical layer traces which make
experiments more real, for instance, a packet loss
probability in the optical fiber depending on the
transmission range, which can be obtained via
simulation of signal propagation dynamics and
inserted into GreenCloud. iCanCloud in turn pro-

vides in-depth simulation of physical layer enti-

ties such as cache, allocation policies for memory
and file system models, which help iCanCloud
to create truly accurate experiments, although
no power consumption model is in place at the
moment.

One of the key points of cloud computing
is the power consumption of datacenters. Each
simulation tool provides a different support for
this. In CloudSim, no power consumption model
is implemented, but they provide the necessary
functions to allow users implement their own
power consumption models [7]. MDCSim has a
power consumption model based on [35]. In this
model, for a fixed operating frequency, the power
consumption of the server is approximated using
linear functions of the server utilization, which is
calculated taking into account number of nodes,
number of requests and average execution time
of requests [17]. GreenCloud is specially designed
to simulate power consumptions of the datacenter
components (server, switches and links), so that
efficient power consumption strategies can be de-

veloped. The power consumption model is based
on [8], and takes into account all the different
components of a datacenter, such as chassis or
line cards of a switch, or frequency of a CPU.
Regarding iCanCloud, by now it does not provide

3

models for power consumption, although this is

included as future work.
None of the existing cloud simulator tools

(CloudSim, MDCSim and GreenCloud) have a
full GUI. CloudSim has CloudAnalyst [36], which
allows the configuration of high level parameters.
GreenCloud can be set to create trace files to be
read using the network animation Nam [30], but
no configuration can be done using it. As opposed
to them, iCanCloud has a user friendly GUI which
allows users create experiments easily.

Probably the main drawback of CloudSim,
MDCSim and GreenCloud, which is other of the
design principles of iCanCloud, is the fact that
experiments on those simulators can only use
the resources of one machine. For example, one
experiment can only use the processors of one
machine. So, if a cluster of machines is available
to conduct experiments, each experiment must be
executed in one machine. As opposed to them,
iCanCloud has been designed to perform parallel
simulations, so one experiment can be executed
spanning several machines. Thanks to this, if a
cluster of machines is available to conduct exper-

iments, and in the case that an extremely large
experiment is needed, this experiment can use all
the machines in the cluster. The only requirement
to conduct experiments spanning more than one
machine is that machines must have MPI [29]
installed. However, this feature is currently Work-

in-Progress and it is not available yet. Table 1
depicts a summary of the cloud simulation tools
reviewed above.

3 The iCanCloud simulation platform

The ever-increasing complexity of computing sys-

tems has made simulators a very important choice

for designing and analyzing large and complex

architectures. In the field of cloud computing, sim-

ulators become especially useful for calculating

the trade-offs between cost and performance in

pay-as-you-go environments. Hence, this work de-

scribes a flexible and scalable simulation platform

for modeling and simulating large environments

that represent, both actual and non-existent cloud

computing architectures.

iCanCloud is a simulation platform aimed to

model and simulate cloud computing systems,

which is targeted to those users who deal closely

with those kinds of systems. The main objective

of iCanCloud is to predict the trade-offs between

cost and performance of a given set of applications

executed in a specific hardware, and then pro-

vide to users useful information about such costs.

However, iCanCloud can be used by a wide range

of users, from basic active users to developers of

large distributed applications.

Although each user is intersected on different

features provided by the cloud, all of them have

the same objective: optimizing the trade-off be-

tween cost and performance, which is the real

hard task iCanCloud tries to alleviate. Thus, this

simulation platform provides a scalable, flexible,

fast and easy-to-use tool which let users obtain

results quickly in order to help to take a decision

for paying a corresponding budget of machines.

Table 1 Summary of cloud simulators

Parameter CloudSim MDCSim GreenCloud iCanCloud

Platform – CSIM NS2 OMNET, MPI

Language Java C++/Java C++/OTcl C++

Availability Open source Commercial Open source Open source

Graphical support Limited (through None Limited (through Full

Communication models Limited Full

Physical models

CloudAnalyst [36])
Limited

None None

Nam [30])

Full

Available using plugin Full

Models for public

cloud providers None None None Amazon

Support for parallel

experiments No No No WiP

Support for power

consumption modeling Limited Yes Yes WiP

4

The proposed features are desirable for any

simulation platform, but their meaning can be

blurry depending on the context in which they are

used. Scalability means whether the correspond-

ing simulator is able to simulate large-scale sys-

tems without loosing performance. Likewise, per-

formance determines the speed which a simulator

executes a corresponding simulation. In general,

the larger the size of the architecture to be simu-

lated, the greater the time needed to execute the

simulation. Moreover, a flexible simulator must

let users build environments easily, using several

component models with different levels of detail.

In fact, the proposed hypervisor model let users

to integrate any cloud brokering policy to manage

a set of fully customizable VMs. Thus, different

brokering policies can be fully customized by us-

ing this simulation platform.

The simulated cloud computing scenarios are

modeled using a set of existent components

provided by iCanCloud; they represent the be-

havior of real components that belong to real

architectures like disks, networks, memories,

file systems, etc. Those components are hier-

archically organized within the repository of

iCanCloud, which compose the core simulation

engine. Besides designing simulated environments

using components provided by iCanCloud, new

components can be added to its repository. More-

over, iCanCloud allows an easy substitution of

components for a particular component. Those

interchangeable components can differ in level

of detail (to make performance versus accuracy

trade-offs), in the functional behavior of the com-

ponent, or both.

3.1 Features

The most remarkable features of the iCanCloud

simulation platform include the following:

1. Both existing and non-existing cloud com-

puting architectures can be modeled and

simulated.

2. A flexible cloud hypervisor module provides

an easy method for integrating and test-

ing both new and existent cloud brokering

policies.

3. Customizable VMs can be used to quickly

simulate uni-core/multi-core systems.

4. iCanCloud provides a wide range of config-

urations for storage systems, which include

models for local storage systems, remote stor-

age systems, like NFS, and parallel storage

systems, like parallel file systems and RAID

systems.

5. iCanCloud provides a user-friendly GUI to

ease the generation and customization of large

distributed models. This GUI is especially

useful for: managing a repository of pre-

configured VMs, managing a repository of

pre-configured Cloud systems, managing a

repository of pre-configured experiments,

launching experiments from the GUI, and

generating graphical reports. However, exper-

iments can be executed also by using tradi-

tional command line scripts.

6. iCanCloud provides a POSIX-based API and

an adapted MPI library for modelling and

simulating applications. Also, several meth-

ods for modelling applications can be used in

iCanCloud: using traces of real applications;

using a state graph; and programming new ap-

plications directly in the simulation platform.

7. New components can be added to the reposi-

tory of iCanCloud to increase the functional-

ity of the simulation platform.

3.2 iCanCloud Design

The basic idea of a cloud computing system is
to provide users a pseudo-customizable hard-

ware environment where they can execute specific
software. Therefore, in order to model entire
cloud computing systems, the architecture of
iCanCloud has been designed based on this prin-

ciple. Thus, Fig. 1 shows the layered architecture
of iCanCloud.

The bottom of the architecture consists of the

hardware models layer. This layer basically con-

tains the models that are in charge of modeling the

hardware parts of a system, like disk drives, mem-

ory modules and CPU processors. Using those

models, entire distributed systems can be modeled

and simulated. In turn, this section consists of

four groups, where each corresponds to a specific

5

Fig. 1 Basic layered
schema of iCanCloud
architecture

basic system: processing system (CPU), memory

system, storage system, and network system.

The basic system’s API module is directly con-

nected with the hardware models layer. Basically

this module contains a set of system calls which

are offered as an API (Application Programming

Interface) for all applications executed in a VM

modeled using iCanCloud. Thus, those system

calls provide the interface between applications

and the services provided by the hardware models.

Moreover, researchers can write applications to

be simulated in iCanCloud using this API. In or-

der to maintain a certain degree of compatibility,

this API pretends to be a subset of POSIX.

Following, the set of functions provided by this

API is described for each basic system (see Listing 1).

Line 2 of Listing 1 shows a function for

using the CPU service. Basically applications

which request CPU processing must invoke the

iCanCloud_cpu function to specify the corre-

sponding amount of instructions to be executed,

measured in MIs (Million Instructions). The CPU

can contain one or more CPU cores.

The main task of the memory system is to

assign the corresponding amount of memory to

each application that requires it. Thus, this sys-

tem receives requests for memory allocation and

calculates where and how this memory has to be

assigned. This feature is very useful for analyzing

the amount of memory used for each application,

especially in large distributed environments.

In order to interact with the memory system,

applications must use the functions specified in

lines 5 and 6 of Listing 1. Basically this inter-

face consists of two functions. First function,

called iCanCloud_allocMemory, is in charge of

Listing 1 Functions provided by the basic system’s API

6

allocating memory. Second function, called iCan

Cloud_ f reeMemory, is in charge of freeing the

previously allocated memory. Parameter

memorySize indicates the amount of memory

required (measured in bytes) to perform the

corresponding operation.

The storage system is in charge of managing

all accesses to data. The set of functions shown

in lines 9–14 of Listing 1 offers an interface to

interact with the storage system, which basically

consists of a set of functions for managing files.

Functions iCanCloud_open and iCanCloud_

close are in charge of opening and closing respec-

tively a file given its name.

Functions iCanCloud_create and iCanCloud_

delete are in charge of creating and removing

respectively a file given its name.

Finally, function iCanCloud_read is in charge

of reading data in the file specified in the

parameter called fileName. Similarly, function

iCanCloud_write writes data in a given file. The

amount of data to be read or written is specified in

the parameter size. Finally, the parameter of fset

specifies the starting point in the file where re-

quested data is processed.

The network system is in charge of managing

connections with other applications located in re-

mote nodes, and also processing both the received

and sent packets. The network system’s API is

shown in lines 17–20 of Listing 1. Using this in-

terface, applications can manage connections with

remote nodes, and send and receive data through

the network.

Function iCanCloud_createListenConnection

creates an incoming connection from a remote

location. Otherwise, function iCanCloud_create

Connection establishes a connection with a re-

mote application.

Function iCanCloud_sendDataToNetwork

sends data through the network system to a re-

mote location. Similarly, iCanCloud_receiveData

FromNetwork receives data from a remote

location. First function is in charge of sending

data from the application that invokes this

function to a remote application specified in

the message sm. Second function is in charge of

receiving data from a remote application specified

in the message sm.

Besides functions provided by this API,

iCanCloud also provides a high level layer for

developing distributed applications. This layer is

placed in the application component and provides

standard interfaces for executing distributed ap-

plications. Currently iCanCloud has implemented

an interface for executing MPI applications.

Upper layer consists of a VMs repository. This

repository contains a collection of VMs previously

defined by the user. Initially, the iCanCloud sim-

ulator provides few models of existing VMs in

well known clouds like Amazon (EC2). Moreover,

users can add, edit or remove VMs from this

repository. Each VM is modeled by configuring

the corresponding underlying hardware models

for each basic system.

In a cloud system, the VM is the most relevant

component. Similarly in iCanCloud, a VM is a

building block for creating cloud systems. The key

of this simulation platform is modularity, which

let nested complex modules using other mod-

ules previously defined. Thence, the basic idea of

iCanCloud consists on using VMs modules for

building entire cloud computing systems.

In those systems, VMs are in charge of hiding

the hardware details, providing to users a logic

view that corresponds with the user requirements.

Thus, the VMs models defined in this layer use the

previously defined hardware components defined

in the bottom layer.

Otherwise, the application repository con-

tains a collection of pre-defined applications cus-

tomized by users. Similarly to the repository of

VMs, initially this repository provides a set of

pre-defined application models. Those models will

be used in order to configure the corresponding

jobs that will be executed in a specific instance of

a VM in the system. Moreover, new application

models can be easily added to the system, because

iCanCloud provides an API in order to ease the

development of new application models.

Upper layer, called cloud hypervisor, consists

of a module in charge of managing all incom-

ing jobs and the instances of VMs where those

jobs are executed. Once a job finishes its exe-

cution, this module sets as idle the VMs where

that job has been executed, and then re-assign

the available resources in the system to execute

7

the remaining jobs. This module also contains

cost policies in order to assign incoming jobs to a

specific instance calculated by the corresponding

heuristic.

Finally, at the top of the architecture is the

cloud system module. This module contains a

definition of the entire cloud system, which basi-

cally consists on the definition of the hypervisor,

and the definition of each VM that composes the

system.

However, the key innovation of this simulation

framework lies in a modular and flexible design.

Figure 2 shows the UML 2.3 class diagram of the

iCanCloud simulation platform.

This model is split in two different parts. On

the one hand, dark grey squares represent the

hardware part of the cloud environment. On the

other hand, the light grey squares represent those

modules in charge of managing the cloud system.

The VM class acts as a link among the physical

resources of the cloud environment, such as nodes

and networks, and the resources used by users,

giving them an illusion of using directly the phys-

ical resources to execute the corresponding jobs.

Thus, depending of the configuration of each VM,

those are mapped to the physical nodes existent in

the cloud system model. The main module of this

section is the hypervisor, which is the center piece

of the system.

3.3 The Hypervisor Module

The hypervisor module is the master key of the

iCanCloud simulation core. Basically, this module

is in charge of managing the VMs and executing

the jobs defined by users. In order to accomplish

this task, the hypervisor can be fully configured by

integrating customized brokering policies.
Figure 3 shows the global architecture of

a cloud computing system modeled using
iCanCloud. This figure shows three main entities:
users, hypervisor and data centers. The hypervisor
module is in charge of achieving four main tasks:

(1) managing the VMs of the entire cloud system,

(2) managing the list of jobs submitted by users,

(3) scheduling those jobs to be executed in the
corresponding VM instances, and (4) defining
cost policies for each VM instance type. Data
centers represent a set of Virtual Machines,
each one configured with a pre-defined features
such as CPU, storage, memory, and network.
Finally, users are represented as entities that
submit a set of jobs to be executed on specific
VM instances. Those submissions arrive directly

Fig. 2 UML class
diagram of iCanCloud
simulation platform

8

Fig. 3 Global schema of a scenario built using iCanCloud

to the hypervisor module. Then, the list of jobs

is managed by this module to be executed in the

specific VM instances hosted in the corresponding

data center. Once the list of jobs submitted by a

user is completely executed, a report is sent back

to that user.

The main goal of the proposed hypervisor is

two-fold: First, to provide a set of brokering

policies to be customized easily depending of the

system’s requirements. Second, to allow the inte-

gration of custom brokering policies, such as cost-

based policies, execution time-based policies and

resource allocation-based policies.

In order to accomplish those goals, the pro-

posed hypervisor has been designed to provide a

high level of flexibility and usability. This mod-

ule is implemented as an abstract class called

CloudHypervisor. Also, this class provides a very

Listing 2 Interface provided by the CloudHypervisor class

9

intuitive interface to deal with the main tasks for

managing a cloud system. This interface is shown

in Listing 2.

Basically, this interface is divided in two

different parts. First part consists of a set of meth-

ods implemented by CloudHypervisor (see lines

11–16 of Listing 2). Second part consists of a set

of abstract methods that must be implemented

by the corresponding subclass. Thus, in order to

include a new brokering policy, users may just to

create a class that inherits from CloudHypervisor

and then implementing those methods shown in

lines 20–24 of Listing 2. Of course, users may add

new methods in the subclass.

The underlying idea of this subclass is to select

the next job to be executed in the cloud, and the

VM instances where that job will be executed.

Thus, new scheduling policies can be easily inte-

grated into the proposed hypervisor just by im-

plementing the corresponding abstract methods.

Hence, this subclass may also use methods pro-

vided by the hypervisor and the relevant infor-

mation of each job submitted to the system. This

information is basically the number of instructions

to be executed, the size of the data to be read,

and the output data to be written, which can be

retrieved from each job object.

Main data structures are shown in lines 4–7

(see Listing 2). This class has two queues that

contain the jobs submitted. First queue, called

waitingQueue contains those jobs that have been

submitted by users, but have not started its ex-

ecution yet. Second queue, called finishQueue,

contains those jobs that have finished their exe-

cution. The rest of queues must be declared in

the subclass, which depend of the brokering policy

implemented. For instance, using one queue for

each VM instance type, or sharing a single queue

for all jobs.

The method get_job_list() obtains a list of all

submitted jobs; get_job (jobID) obtains the ob-

ject associated with the identifier jobID; similarly,

get_vm (vmID) returns the object corresponding

to the VM vmID; insert_waiting_q (userID, jobID,

vmID) inserts the job jobID, submitted by the

user userID, to be executed in the VM vmID in

waitingQueue; run_job (vmID, jobID) executes

the job jobID in the VM vmID; finally, method

move_qSrc_to_qDst (jobID, qSrc, qDst) moves

the job jobID from the queue qSrc to queue qDst.

The rest of the methods must be imple-

mented in the corresponding subclass, such as

job_has_f inished (jobID, results), which indicates

that the job jobID has finished with the feedback

results; select_job() selects the next job to be exe-

cuted; similarly, select_vm() selects the VM to ex-

ecute next job; job_has_been_inserted() indicates

that a new job has been submitted by a user; Fi-

nally, job_has_f inished(jobID) indicates that job

jobID has finished its execution.

Fig. 4 Basic schema
of the iCanCloud
architecture

10

Figure 4 shows the basic schema of the pro-

posed hypervisor module. Basically, the main

parts of the hypervisor model are:

– Waiting queue: This queue handles jobs that

have been submitted to the system, and are

currently waiting to be executed.

– User-defined queues: Those queues contain

those jobs that are currently being executed

on any VM. Those queues must be declared

on the subclass. Thus, depending of the bro-

kering policy, the number of those queues

may vary.

– Finished queue: This queue handles those jobs

that have finished their execution.

– VMs map: This data structure contains rele-

vant information of all those VMs that have

been started up in the cloud system, such as the

state of each VM, time-frame that each VM

has been in an idle state, current job that is

being executed in each VM, etc.

– List of users: List of users that have submitted

jobs to the cloud system.

– Job scheduling and brokering policy: Policies

required to manage jobs and VMs. Those poli-

cies must be implemented in the corresponding

subclass of CloudHypervisor.

– Cost policy: Policy that establishes a price and

budget to each VM instance type.

Figure 5 shows a sequence diagram of a typical
use case, since a user sends a new job to the cloud
system, until that job is done and the hypervisor
collects the corresponding results.

3.4 iCanCloud Configuration

Creating simulated environments of distributed

systems used to be a tedious and time-consuming

Fig. 5 Sequence diagram of the proposed hypervisor model

11

task. Basically this process consists on writ-

ing configuration files that contains both the

definition of the components involved in the sim-

ulation, and a list of parameters that character-

izes each one for a specific purpose. Moreover,

the greater the size of the system to be mod-

eled, the higher the complexity for modeling it.

Thus, creating simulated environments requires

both considerable amount of time and effort to be

accomplished.

In this section, the process for creating simu-

lated environments in iCanCloud is described in

detail.

Simulated environments in iCanCloud are

configured by using a .ned specification. Basically,

this specification describes how many instances

of each module have to be simulated. Moreover

.ned specification is loaded at the beginning of

the execution, whereof the simulation can be

completely reconfigured without re-compiling the

source code.
Figure 6 represents the steps since a cloud en-

vironment is modeled using the GUI provided by
iCanCloud, until the simulation finishes its execu-

tion and the corresponding report is generated.

Fig. 6 iCanCloud configuration process

In iCanCloud, the definition and configuration

of a modeled cloud system is divided in two

different sections: cloud model definition and

users configuration. First section defines the

configuration of the cloud system. Otherwise, sec-

ond section is in charge of defining the users in the

cloud system, the jobs submitted by each user, and

the VM instances requested to execute those jobs.

First section, denoted as cloud model defi-

nition, consists of two plain-text files: env.ned and

conf ig.ini. File env.ned defines the environment of

the cloud model to be simulated. In other words,

this file contains the name of the VM instances

used in the cloud model, and the number of

each instance to be simulated. This definition is

specified using the NED language, which facili-

tates the modular definition of a distributed sys-

tem. Moreover, NED files can be loaded dynam-

ically into simulation programs, or translated into

C++ by the NED compiler and linked into the

simulation executable. Listing 3 shows a portion

of a env.ned file where the Standard On-Demand

Instances of Amazon EC2 cloud are modeled.

This file shows a cloud model that contains three

types of instances, and a different number of VMs

for each. Specifically, this cloud model, called

cloudMode_AmazonEC2, contains 10K small in-

stances, 2K large instances, and 1K extra large

instances.

Otherwise, file conf ig.ini contains the config-

uration of each VM instance defined in the file

env.ned, and the definition of the cloud hypervi-

sor. Basically, the configuration of each instance

consists on assigning values to the set of parame-

ters of each basic system, such as CPU, memory

and storage. Those parameters can take string,

Listing 3 Definition of Amazon EC2 instances (env.ned)

12

numeric or boolean values, or can contain XML

data trees. Numeric values include expressions

using other parameters and calling C functions,

random variables from different distributions, and

values input interactively by the user. Numeric-

valued parameters can be used to construct

topologies in a flexible way. Listing 4 shows a por-

tion of a conf ig.ini file where the instances defined

in Listing 3 are configured. The configuration of

the hypervisor basically consists on specifying the

hypervisor type used in this simulation. In this

example, the Min-Min_CloudHypervisor is used

(see line 6 of Listing 4).

Second section, denoted as users configuration,

contains information about the users, the list of

jobs submitted to the cloud system, and the set of

VMs requested to execute the previously defined

jobs. Basically, this information is structured in

two different plain-text files: users.cfg and VM-

sConf ig.cfg. Listings 5 and 6 show the syntax used

to create those files.

File users.cfg contains the list of users that are

currently submitting jobs in the modeled cloud

Listing 5 Syntax of file users.cfg

system. Each user must define both a list of

jobs to be executed in the cloud system, and the

corresponding configuration of VMs where each

Listing 4 Configuration of Amazon EC2 instances (config.ini)

13

job must be executed. Thus, this file consists of

different blocks, one for each user. Similarly, each

block contains a set of jobs. Listing 5 shows the

syntax used to create file users.cfg.

Each block in this file begins with the user

ID. In this example, line 1 contains the definition

of first user, denoted as User_1. Moreover, each

block contains a set of jobs, whereof each job must

contain two parts. First part consists of the name

of the job, the type of VM instances where the

job must be executed and the number of VMs

used to execute the job (see line 5 of Listing 5).

In this part, both instance types and the number

of instances may be unset. Then the character ‘?’

is used. In this case, the hypervisor is in charge of

calculating the corresponding instance type or/and

the number of them to execute the corresponding

job.

In fact, in many cases users have no expertise

to select both the instance type and the number

of instances to execute a given job. In such sit-

uations, how many VMs of a particular instance

are required to execute a job? 1000 small instances

are enough? 100 large instances? Thus, depending

of the brokerage policy used by the hypervisor,

users have the option to delegate that responsibil-

ity to the hypervisor, which provides a high level

of flexibility because different policies must be

used to schedule jobs and provisioning the idle

resources if the cloud.

Finally, the second part of the job definition

consists of a list of pairs (parameter’s name, pa-

rameter’s value) corresponding to the set of pa-

rameters of current job. Thus, depending of the

job type, different set of parameters must be

configured.

File VMsConf ig.cfg contains the instance types

and number of VMs existent in the cloud model.

This information is basically an overview of the

information contained in the file env.ned. But,

due to practical reasons, this file has been created

instead of writing a parser to read the env.ned file

and gather such information.

Listing 6 Syntax of file VMsConfig.cfg

Those configuration files are automatically gen-

erated by the iCanCloud GUI (to see some
screenshots check the website http://www.ican
cloudsim.org/). Once the user has configured pro-

perly the simulated cloud environment, this GUI
performs two steps. In the first step, the config-

uration files corresponding to the cloud model
definition are generated: env.ned and conf ig.ini
(see step 1 of Fig. 6). Then, files corresponding
to the user configuration section are generated:
VMsConf ig.cfg and users.cfg (see step 2).

Once those four configuration files are cre-

ated, the iCanCloud simulation is launched, and

then the initialization phase is performed (see

step 3). In this phase, the iCanCloud core en-

gine receives two files as input (env.ned and

conf ig.ini) which contain the definition of the

experiment. The objective of this phase is to use

that information to create the simulated envi-

ronment previously defined in the GUI, which

is performed by the core engine of iCanCloud

(see step 4). Note that different cloud envi-

ronments with different configurations can be

launched without re-compiling the simulation

platform neither changing the source code. Only

the configuration files have to be modified, but

this task is performed automatically by the GUI,

which is totally transparent to the user. Those

files are processed before executing the simulated

environment.
Thus, the simulated cloud environment is gen-

erated, the simulation starts its execution (see step
5). In this step, all data structures are created
and initialized in run-time. The most important
module in this step is the cloud hypervisor. Ba-

sically, this module contains all the information
required to manage completely the cloud sys-

tem. This information is located in the files VM-

sConf ig.cfg and users.cfg. Thus, when the cloud
environment has been initialized, the hypervisor
module reads those files to create and initialize the
corresponding data structures described in Fig. 4
(see step 6).

Then, once the initialization phase has been

fulfilled, the execution of the cloud model starts.

This execution finalizes when all jobs defined in

the file users.cfg have been executed completely.

Then, a report containing the results of the simu-

lation is generated (see step 7).

14

3.5 The iCanCloud Core Engine

The main principle of the iCanCloud simulation

platform is to build a cloud computing system

using Virtual Machines as building blocks, where

each VM is defined by configuring the four basic

systems: CPU, memory, storage and networking.

Therefore, those basic systems are described in

this section.

3.5.1 The CPU System

The computing system has been modeled in iCan-

Cloud using 2 different components: the processor

and the CPU scheduler. The strategy used for

modeling this system is based on calculating the

amount of time needed for executing the specific

instructions invoked by applications. Therefore,

CPUs are parameterized with a specific CPU

processing power measured in MIPS (Million In-

structions Per Second), which is a method of

measuring the raw speed of a computer’s proces-

sors. Similarly, the amount of computing in-

voked by applications is measured in MIs (Million

Instructions).

The processor is the component in charge of

calculating the amount of time spent in executing

instructions invoked by applications. Each proces-

sor consists of a finite set of CPU cores, where the

speed of all those cores is the same that the speed

of its processor. Thus, several applications can

be executed in parallel using the same processor,

even when the number of applications executed

at any given instant is greater than the number of

CPU cores.

Otherwise, the CPU scheduler is the compo-

nent in charge of managing all computing blocks

to be executed in the corresponding CPU cores

efficiently. Thus, this scheduler has been modeled

using the time sharing technique, where several

applications simulate their executions by multi-

plexing the CPU time because the computing

blocks belonging to the simulated applications are

divided in slices. Therefore, in single-core proces-

sors, only one application can be executed at any

given instant.

Currently iCanCloud provides three different

strategies for managing blocks in the simu-

lated CPU scheduler: FIFO, Round-Robin, and

priority-based policy. Moreover, new strategies

can be added to the simulation platform.

3.5.2 The Memory System

The memory system has been modeled using two

different components. On the one hand, a com-

ponent called physic memory is in charge of sim-

ulating the physical characteristics of the mem-

ory. Those characteristics include mainly the size

of the memory space and latency times. On the

other hand, another component called memory

manager is in charge of managing the memory

accesses. Currently, this component manages the

memory accesses needed for applications and disk

cache.

Moreover, the memory system divides the

memory space for two different purposes: mem-

ory used for application space and memory used

for disk cache space. The main tasks performed

by the memory manager are:

– Managing memory accesses from applications.

– Allocating memory pages required by

applications.

– Freeing memory pages requested by

applications.

– Managing a cache system for disk data.

3.5.3 The Storage System

The I/O system is usually a system bottleneck in
most of the computing systems [24]. In iCanCloud,
the storage system has been modeled using three
modules:

– File system.

– Volume manager.

– Disk drives.

File system is in charge of translating data re-

quests from applications to a list of blocks which

contains the requested data.

Volume manager is a software component in

charge of performing read and write operations

of data blocks, sent from file systems. Basically,

this component receives data block requests from

file systems and it must redirect the incoming

data block requests to the disk that contains such

data. Depending of the modeled architecture, this

15

component can use the appropriate strategies for

scheduling data block requests, like FIFO, eleva-

tor algorithm, and CSCAN.

Finally, disk drive is in charge of storing data

blocks. Basically this component calculates the

amount of time spent for processing the data block

operations that came from volume manager.

Additionally, iCanCloud provides several

configurations for using parallel I/O architectures

such as RAID systems and parallel file systems.

3.5.4 The Network System

In iCanCloud, the network system let applications

executed in Virtual machines interchange data

through a communication network.

In order to fulfill this task, the INET framework

has been used. This framework contains modules

for simulating completely a network system, in-

cluding network protocols like TPC or UPD. The

main advantage of this method is the high level

of accuracy obtained, because all elements that

compose a network are simulated. However, the

main drawback is performance, because this high

level of detail needs a considerably CPU power to

be calculated.

Moreover, the INET framework provides a set

of modules such as routers, switches and network

protocols, for building a wide range of networks.

Thus users can build several network architecture

models like LAN (Local Area Networks) and

WAN (Wide Area Network). Moreover, those

networks can be configured as wired and wireless

networks, using Ethernet and Wi-Fi respectively.

3.6 Proof Case: Implementation of Provisioning

and Scheduling Algorithms

To illustrate the usefulness of this work, two

provisioning and scheduling algorithms (namely,

Cloud Min-Min and Cloud Max-Min) are imple-

mented using iCanCloud. The algorithms are di-

vided in two main phases:

1. Provisioning, where a specific type and num-

ber of EC2 instances are deployed.

2. Scheduling, where tasks are matched with

available resources.

In order to perform the provisioning,
[33] i n - troduced a metric named Cost per
Performance (C/P). This metric relates the
needed takes to execute a number of tasks in
Amazon EC2, with the cost required to hire the
machines that pro-duce this execution time.
This way, the best in-frastructure setup would
be that which produced the lowest C/P value.

3.6.1 Cloud Min-Min

In the Cloud Min-Min algorithm, the n tasks with
shortest execution time are taken for obtaining its
best virtual infrastructure deployment. A sweep-

ing is made with different values of n to achieve
the best value for the C/P metric. In the case
of having similar values, decision turns to less
execution time or to less cost. Task scheduling
follows the same procedure as the original Min-

Min algorithm [12].

The pseudocode of this heuristic shown in

Algorithms 1, 2 and 3. Initially, an array of ex-

ecution times is created following Algorithm 1,

which uses the job size in millions of instructions

(MI) and VMs power in millions of instructions

per second (MIPS).

Algorithm 1 Creation of arrays of execution times.

1: Let N = the number of tasks.

2: Let x = the number of instance types of VM.

3: Let Tv = the task execution time vector for

the instance type v.

4: Let job I D = the identificator for a job.

5: Let v = the identificator for a VM.

6: Let vm = a VM.

7: Let job = a job.

8: job List = get_ job_list()

9: for job I D = 0 to job List.size() − 1 do

10: for v = 0 to x − 1 do

11: job = get_ job(job I D)

12: vm = get_vm(v)

13: Tv(job I D) = job .getMI()/vm.getMI PS()

14: end for

15: end for

After that, Algorithm 2 provides the resource

provisioning phase. As the resource provisioning

consists in choosing the best configuration, a loop

is made for using a different number of j tasks

16

Algorithm 2 Resource provisioning phase.

1: Let N = the number of tasks.

2: Let x = the number of instance types of VM.

3: Let Tv = the task execution time vector for

the instance type v.

4: Let Vv,n = the set containing n virtual ma-

chines of a v instance type.

5: Let j = the number of tasks used each loop in

the resource provisioning phase.

6: Let CP = the vector that keeps the C/P met-

ric for each j for all the instance types.

7: Let CPtemp = the temporary vector that keeps

the C/P metric for each instance type for a

given j.

8: Let Pv = the vector that keeps the execution

time for the j tasks with minimum execution

time for the instance type v.

9: Let itype = the instance type of VMs chosen.

10: Let n = the number of VMs chosen.

11: { *** Resource provisioning phase *** }

12: for j = N downto 1 do

13: {Creation of temporal arrays of execution

times}

14: for v = 0 to x − 1 do

15: Tv
temp = Tv

16: end for

17: {Creation of Pv arrays}

18: for k = 0 to j do

19: for v = 0 to x − 1 do

20: insert(Pv[k], min(Tv
temp))

21: remove(Tv
temp, min(Tv

temp))

22: end for

23: end for

24: {Calculate the temporal CP metric}

25: for v = 0 to x − 1 do

26: setN (j, v)

27: CPtemp[v] = time(Vv,n) × cost(Vv,n)

28: end for

29: {Finally, calculate the CP metric}

30: if |min(CPtemp)| > 1 then

31: CP[j] = min(time(Vv,n)) or

min(cost(Vv,n))

32: else

33: CP[j] = min(CPtemp)

34: end if

35: end for

36: createInstances(Vitype,n) producing min(CP)

Algorithm 3 Task scheduling phase.

1: Let minJob I D = the identificator for the job

with the lowest execution time.

2: Let job = the job with the lowest execution

time.

3: Let Vv,n = the set containing n virtual ma-

chines of a v instance type.

4: Let itype = the instance type of VMs chosen.

5: Let T itype = the task execution time vector for

the instance type itype.

6: Let n = the number of VMs chosen.

7: Let vmI D = the identificator of a VM.

8: {Initially, submit the first n jobs to the n VMs}

9: for vmI D = 0 to n do

10: minJob I D = getMin(T itype)

11: job = get_ job(minJob I D)

12: run_ job(vmI D, job)

13: vmI D + +

14: end for

15: {If there are more jobs than VMs, submit jobs

to VMs as VMs become idle}

16: while getJob List().size > 0 do

17: if checkIdleVM(vmI D) == true then

18: minJob I D = getMin(T itype)

19: job = get_ job(minJob I D)

20: run_ job(vmI D, job)

21: end if

22: vmI D = select_vm()

23: end while

from the total tasks N to be scheduled (line 12).

Then, temporal arrays containing the execution

times of tasks in each VM instance are created,

to be used during the execution of the algorithm

(line 14).

Next, another loop creates a vector (Pv) for

each instance type v with the j shortest tasks

(line 20) and removes the shortest task from the

array of execution times of the given v (line 21).

As can be seen in line 20, each Pv is ordered

from the lowest execution time (held at Pv[0]) to

the highest (held at Pv[j − 1]). This line is one of

the few differences between the Cloud Min-Min

algorithm and Cloud Max-Min.

Then, a temporal CP metric is calculated.

This loop is performed to set the number of

instances for each instance type provided by

17

Amazon EC2 so that the j tasks are executed in

parallel (line 26). This followed by the calcula-

tion of C/P metric, which is obtained for each

instance type (line 27). Being the smallest value

for this metric the best one, it may happen that it

is achieved by several combinations of n instances

of type x. At this point with equal C/P values, the

setup is chosen considering the shortest execution

time or the lowest cost (line 31). If there is only

one configuration of instance types yielding the

minimum C/P value, it is chosen as the C/P

metric for this j (line 33).

At the end of the provisioning main loop, there

will be a CP[j] vector that contains the best C/P

values from the previous iterations—this is, for

each number of tasks j considered. To conclude

this algorithm, the infrastructure with n machines

of type x with the minimum C/P value is then

instantiated (line 36).

Finally, the scheduling phase depicted by Algo-

rithm 3 is performed. Initially, the jobs with the n

lowest execution times are submitted to the n VMs

(line 9). If there are more jobs than VMs, jobs are

submitted to VMs as they become idle from the

executions of previous jobs (line 16).

3.6.2 Cloud Max-Min

This algorithm is similar to Cloud Min-Min pre-

sented above, and is not presented in detail for

space limitations. The only differences are (1) in

Algorithm 2, line 20, in which the job with the

lowest execution time is inserted at the end of Pv

array; and (2) in Algorithm 3, lines 10 and 18,

which choose the job with the highest execution

time.

4 Validation of iCanCloud

After a simulator has been developed, imple-

mented, and debugged, it must be tested for cor-

rectness and accuracy. However, determining that

a simulator is absolutely valid over the complete

domain of its whole intended field of applicability

is a very hard and time-consuming task. Thus, the

level of accuracy of a given simulator cannot be

calculated for the entire domain this simulator is

targeted using a single value, because this accu-

racy depends directly of the system to be modeled.
In the paper a validation process has been

conducted to demonstrate the applicability and
usefulness of the iCanCloud simulator. We fo-

cused on a critical application used by the Finnish-

Russian-Spanish future Mission to Mars [14],
which calculates the trajectories of Phobos [25],
the Martian moon. Pertaining to the parameter
sweep execution profile, the application divides
the overall tracing interval in subintervals that are
calculated by the subsequent tasks in the cloud –
thus the tracing interval of a task is not related to
its execution time. The tracing interval processed
by each task is the same and the system performs
dynamic scheduling where a continuous polling of
free cores guarantees a constant resource use.

The present contribution culminates the eval-

uation process that started with the porting of
the application to the Amazon EC2 public cloud
infrastructure, formulation and validation of an
execution model and a metric combining cost
and performance [33]. This is accomplished by
firstly comparing the results obtained from the
mathematical model with those from iCanCloud.
Finally, results from real executions in the
Amazon EC2 infrastructure will be also used for
the comparison.

The Phobos application has been chosen for the
validation of iCanCloud because this application
has undergone a research path as follows. First,
this application has been ported to a cloud system.
Next, a mathematical model of this application
has been developed [33]. And finally, using the
ported application and the mathematical model, a
validation of the iCanCloud simulation has been
performed. Thanks to using this application, a
more detailed validation of the iCanCloud has
been performed, since we compare results from
iCanCloud with actual results from the ported
application and results from the validated math-

ematical model.

As was explained before, the chosen cloud in-

frastructure is Amazon EC2, which has become

the de facto standard public cloud infrastructure

for many scientific applications. The baremetal

infrastructure providing the services is located in

two locations in USA, one in Asia and another

one in Europe. The users may choose from a wide

18

Table 2 Characteristics of the different machine types offered by Amazon EC2. C.U. corresponds to EC2 Compute Units
per core, the equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor

Machine type Cores C.U. Memory (GB) Platform (bit)

Standard on-demand instances

Small (Default) 1 1 1.7 32

Large 2 2 7.5 64

Extra large 4 2 15 64

High CPU on-demand instances

Medium 2 2.5 1.7 32

Extra large 8 2.5 7 64

range of machine images that can be booted in one
of the offered instance types. Depending the cho-

sen instance type, the number of CPU core num-

ber, core speed, memory and architecture differ,
as shown in Table 2. The speed per CPU core
is measured in EC2 Compute Units, being each
C.U. equivalent to a 1.0–1.2 GHz 2007 Opteron or
2007 Xeon processor. Nevertheless, accessing to
an almost infinite computing infrastructure has its
price, which depends on the instantiated VM type
per hour.

The paper which describes the porting of the
Phobos tracing application [33] introduced and
validated an execution model, along with a study
of the best infrastructure setup by means of in-

stance types and number. In order to deal with
the complexity level added by an infrastructure
following a pay-as-you-go basis, the used C/P
metric was defined as:

C/P = CT =
ChTexe I

iN2
c

⌈

Texe I

iNvm Nc

⌉

(1)

where Texe is the task execution time, the values

of I and i correspond to the whole tracing interval

and the tracing interval per task, that is, the grain

of the application. On the other hand, Nvm and Nc
are the number of Virtual Machines and number
of cores per Virtual Machine, as shown in Table 2
along with the machine’s usage price per hour
(Ch). This way, the best infrastructure setup would
be that which produced the lowest C/P value.

Figures 7, 8, 9, 10 and 11 present the results
obtained by executing the model of Phobos appli-

cation along with the results of the same applica-

tion implemented on iCanCloud. Each figure rep-

resents the C/P metric for the experiments, where
the small, large, extra large, high CPU medium
and high CPU extra large instance types provided
by Amazon are used, and number of VMs and
tracing intervals are varied.

Mainly, the most relevant difference between

the iCanCloud and the mathematical model is the

variations obtained when the number of VMs in-

creases. In those results obtained using iCancloud,

we can see that in some cases, using the same

size for the interval (in years) and increasing the

number of VMs, causes an increase in the C/P

metric, which does not happen in experiments

using the mathematical model of Amazon. This is

mainly caused because the cost of the each VM

is measured in completed hours, whereof an hour

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40

0.5 interval years

1 interval year

2 interval years

3 interval years

4 interval years

5 interval years

6 interval years

7 interval years

8 interval yearsC
/P

 M
e
tr

ic

C
/P

 M
e
tr

ic

0

200

400

600

800

1000

1200

1400

Number of Virtual Machines

5 10 15 20 25 30 35 40

Number of Virtual Machines

0.5 interval years

1 interval year

2 interval years

3 interval years

4 interval years

5 interval years

6 interval years

7 interval years

8 interval years

Fig. 7 Simulation versus mathematical model of Phobos using small instances

19

0

50

100

150

200

250

300

350 0,5 interval years

1 interval year

2 interval years

3 interval years

4 interval years

5 interval years

6 interval years

7 interval years

8 interval yearsC
/P

M
e

tr
ic

0

50

100

150

200

250

300

350

C
/P

M
e

tr
ic

5 10 15 20 25 30 35 40

Number of Virtual Machines

5 10 15 20 25 30 35 40

Number of Virtual Machines

0,5 interval years

1 interval year

2 interval years

3 interval years

4 interval years

5 interval years

6 interval years

7 interval years

8 interval years

Fig. 8 Simulation versus mathematical model of Phobos using large instances

cannot be split in fractions. Then, increasing the

number of VMs provides the same execution time,

which produces a increasing of the cost for this

configuration. Logically, the greater number of

VMs used, the greater cost of the system. This

effect only appears when the number of VMs

gets higher. When the number of VMs is low,

the performance gain when more VMs are used

justifies the increase in the cost. Moreover, the

mathematical model does not represent the time

spent on performing I/O operations.
The best results are obtained in those tests that

use small and high CPU medium instances of VMs
(see Figs. 7 and 11). In those cases, the cost of
increasing the number of VMs for reducing the
execution time and then using less complete hours
for the execution is similar to the cost of using less
VMs that requires more complete hours to exe-

cute the testbed. It can be shown by comparing the

simulations and the model, whereof both results

show practically the same shape.
Otherwise, Figs. 8, 9 and 11 show a more no-

ticeable difference between the simulation and the
model. The difference that can be appreciated in
those charts is because the C/P metric values are
low, and then the differences between the simu-

lation and the model are shown as peaks. Those
peaks basically represent the maximum value of
C/P, which means that the time required for ex-

ecuting this testbed consumes a little portion of
the last hour of the total execution time. Thus, it
means that using more VMs the testbed can be
executed without requiring that portion of hour,
and then there is no need of paying for an entire
hour, obtaining a considerable drop in the C/P
value.

0

20

40

60

80

100

120

140

160

180

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

0,5 interval years

1 interval year

2 interval years

4 interval years

C
/P

 M
e
tr

ic

0

20

40

60

80

100

120

140

160

180

Number of Virtual MachinesNumber of Virtual Machines

C
/P

 M
e
tr

ic

0,5 interval years

1 interval year

2 interval years

4 interval years

Fig. 9 Simulation versus mathematical model of Phobos using X-Large instances

20

0

20

40

60

80

100

120

140

160

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Number of Virtual Machines Number of Virtual Machines

0.5 interval years

1 interval year

2 interval years

4 interval years

C
/P

 M
e
tr

ic

C
/P

 M
e
tr

ic

0

20

40

60

80

100

120

140

160
0.5 interval years

1 interval year

2 interval years

4 interval years

Fig. 10 Simulation versus mathematical model of Phobos using high CPU medium instances

We can conclude that both iCanCloud sim-

ulations and the mathematical model show the

same tendency in the trade-offs between cost and

performance. However, simulations show a more

realistic behavior due to more details of the sys-

tem are modeled. The main advantage of simula-

tions versus the mathematical model is accuracy,

and the main drawback is obviously the execution

time, because iCanCloud requires to be executed

in a computer, which is not required by the math-

ematical model.
Figure 12 shows a dispersion chart that com-

pares the results of executing the Phobos applica-

tion in the Amazon EC2 system, against the anal-

ogous model using iCanCloud. In those tests both
different interval years and a different number of
VMs have been used. Results obtained from those
tests executed in Amazon EC2 are represented

using hollow forms. Otherwise, iCanCloud results

are shown using filled forms.

Initially, Phobos application has been launched

using 0.5 interval years (represented as squares).

This chart shows that both the results executed

in the real environment and the results obtained

using iCanCloud follows the same tendency. How-

ever, those experiments that obtains lower C/P

values fits better with the simulation.
Those experiments that use 1 interval year

are represented as triangles. In those cases, the
C/P value obtained is greater than using a 2 in-

terval year. This is due to the behavior of the
Phobos application with different interval years.
This asymmetry was already observed during its
first porting onto the cloud [33].

In general, in those tests that obtain the

lower values of the C/P metric, iCanCloud obtains

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25 30 35 40

Number of Virtual Machines

5 10 15 20 25 30 35 40

Number of Virtual Machines

0,5 interval years

1 interval year

2 interval years

4 interval years

C
/P

 M
e
tr

ic

0

10

20

30

40

50

60

C
/P

 M
e

tr
ic

0,5 interval years

1 interval year

2 interval years

4 interval years

Fig. 11 Simulation versus mathematical model of Phobos using high CPU X-Large instances

21

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 5 10 15 20 25 30 35

Number of VMs

0,5 int.Years (real)

0,5 int.Years (sim)

1 int. Year (real)

1 int. Year (sim)

2 int. Years (real)

2 int. Years (sim)C
/P

 M
e

tr
ic

Fig. 12 Simulation versus Amazon EC2 execution of Pho-
bos using small instances

practically the same results. Otherwise, when the
C/P value increases, there is a slightly difference
between the real system and the simulation. Fi-

nally, all results obtained both from the Amazon
EC2 and iCanCloud follows a saw-tooth wave-

form, which can be also appreciated in the previ-

ous charts shown in Figs. 7–11.

5 Comparison with CloudSim

In order to assess the functionalities of iCanCloud,
a set of experiments has been conducted using it
and CloudSim with the purpose to compare both
simulation tools. We have chosen CloudSim for
this comparison because it is a mature simulation
tool which has already been used in a number of
research works—as Section 2 depicts.

Jobs are modeled in CloudSim by configuring

three parameters: (1) input size, (2) processing

length, measured in Millions of Instructions (MI),

and (3) output size. Input and output sizes refer

to the size of input and output files of the job,

and is a way to infer the time it takes to execute

this job in a cloud resource (whose computing

power is measured in Millions of Instructions

Per Second—MIPS). Similarly, a new application

model has been developed in iCanCloud to exe-

cute the same functionality that those jobs do in

CloudSim. Thus, the configuration of jobs used

in the experiments described in this section is

performed equally in both simulation platforms.

Those experiments use jobs whose input size

is 5 MB, output size is 30 MB, and processing

length is 1,200,000 MI. Also, cloudlets always uti-

lize all the available CPU capacity. These exper-

iments use VMs having 9,500 MIPS, which sim-

ulate a standard small instance type provided by

Amazon EC2. Those experiments have been ex-

ecuted using an ASUS computer, model u33J

Bamboo, which contains a CPU core i3 and 4 GB

of RAM memory.
Figure 13 shows the comparison of perfor-

mance between CloudSim and iCanCloud. Chart
13a shows the execution time of each experiment,
where x-axis shows the number of jobs executed in
each experiment, y-axis shows the number of VMs
and its type, and z-axis shows the time required to
execute each experiment (measured in seconds)
using a log-scale.

500 VMs cloudSim

500 VMs iCanCloud

1K VMs cloudSim

1K VMs iCanCloud

2,5K VMs cloudSim

2,5K VMs iCanCloud
5K VMs cloudSim

5K VMs iCanCloud

500 VMs cloudSim

500 VMs iCanCloud

1K VMs cloudSim

1K VMs iCanCloud

2,5K VMs cloudSim

2,5K VMs iCanCloud
5K VMs cloudSim

5K VMs iCanCloud

1

10

100

1000

10000

100000

1000
10000

50000
250000 Number of JobsNumber ofJobs

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
.)

 i
n

 l
o

g
-s

c
a
le

0

500

1000

1500

2000

2500

3000

1000
10000

50000
250000

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

M
B

)

(a) Execution time (b) Memory consumption

Fig. 13 Performance experiments: iCanCloud versus cloudSim

22

This chart shows that increasing the number of

jobs require more execution time in both simula-

tors, which is obvious. Otherwise, increasing the

number of VMs has a different impact in each

simulator. In iCanCloud, when more than 2500

VMs are used, the number of jobs has not a con-

siderable impact on the execution time. Note that

those experiments executed in iCanCloud have a

uniform-like shape. That means that almost CPU

power consumed by the simulator is processed for

managing VMs. Instead, CloudSim’s performance

depends directly on both parameters (number

of VM and number of jobs). In fact, when the

value of one of those parameters increases, exe-

cution time increases as well. However, besides

some experiments where the number of jobs is

less or equal to 50000, iCanCloud is faster than

CloudSim. Otherwise, in all tests that use 250K

jobs iCanCloud is faster. That means that iCan-

Cloud provides better scalability than CloudSim.

The main reason of this is the initialization phase.

While iCanCloud requires a considerable amount

of time to initialize each component due to the

great level of detail, cloudSim performs this phase

quickly. However, in large-scale simulations, the

time spent in this phase is practically insignificant.
Chart 13b shows the memory consumption of

each experiment. In this chart can be appreci-

ated that iCanCloud requires more memory than
cloudSim. This is caused because iCanCloud uses
a higher level of detail to model each VM instance.
As opposed to iCanCloud, which simulates low
level details of the cloud system being simulated
(as detailed in Section 3), CloudSim does not pro-

vide in-depth simulation details. Up to 1000 VMs,
the amount of memory required by both simula-

tors is similar. But using more than 1000 Vms, the
amount of memory required by iCanCloud grows
much faster than CloudSim.

In general, iCanCloud is faster in large scale

experiments and provides better scalability, but

require more memory than CloudSim.

6 Conclusions and Future Work

In this paper we have introduced the iCanCloud

simulator. Its remarkable flexibility, scalability

and performance have been proven through vali-

dation using an application pertaining to the High

Performance Computing domain.

Having set up a complete simulation frame-

work for cloud infrastructures, the present work

represents a first step of many. As future work,

iCanCloud can be extended in many ways offering

interesting research opportunities. For instance,

other public cloud infrastructures than Amazon

EC2, the one simulated in this paper, could be

added. This way, different providers could be

compared for an optimal execution of studied

applications.

In the present paper we have simulated the ex-

ecution of an application, but iCanCloud could be

extended for simulating complete service levels.

Thanks to the simulator’s modular design, both

Platform as a Service and Software as a Service

levels could be defined. Consequently, research

on SLAs and Access Control strategies could be

conducted using iCanCloud.

As a short term feature, we expect to include

parallel simulations to improve performance of

very large cloud models. Although iCanCloud has

been designed to be parallel, this feature is not

completely implemented yet. Moreover, in the

mid term we are studying the possibility to in-

clude environmental impact in a green computing

context.
Finally, private clouds could be easily simu-

lated with an extension of iCanCloud. One of
the main directions would be to incorporate a
power consumption estimation module (like in
CloudSim [7]), enabling the research on GreenIT
techniques involving cloud computing.

Software Availability

The iCanCloud simulator is Open Source (GNU
General Public License version 3) and it is
available at the following website: http://www.
iCanCloudSim.org/.

Acknowledgements This research was partially sup-
ported by the following projects: Spanish MEC project
TESIS (TIN2009-14312-C02-01), and Spanish Ministry of
Science and Innovation under the grant TIN2010-16497.

23

References

1. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P.,
Stockinger, K., Zini, F.: Simulation of dynamic Grid
replication strategies in OptorSim. In: Proc. of the 3rd
Intl. Workshop on Grid Computing (Grid). Baltimore,
USA (2002)

2. Buyya, R., Beloglazov, A., Abawajy, J.: Energy-
efficient management of data center resources for
cloud computing: A vision, architectural elements, and
open challenges. In: Proc of the Intl. Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA). Las Vegas, USA (2010)

3. Buyya, R., Murshed, M.: GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing.
Concurrency and Computation: Pract. Ex. 14, 1175–
1220 (2002)

4. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and
simulation of scalable cloud computing environments
and the CloudSim toolkit: challenges and opportuni-
ties. In: Proc. of the 7th High Performance Computing
and Simulation Conference (HPCS) (2009)

5. Calheiros, R.N., Buyya, R., De Rose, C.A.F.: A heuris-
tic for mapping virtual machines and links in emulation
testbeds. In: Proc. of the Intl. Conference on Parallel
Processing (ICPP). Vienna, Austria (2009)

6. Calheiros, R.N., Buyya, R., De Rose, C.A.F.: Building
an automated and self-configurable emulation testbed
for Grid applications. Software Pract. Exper. 40(5),
405–429 (2010)

7. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose,
C.A.F., Buyya, R.: CloudSim: A toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Soft-
ware Pract. Exper. 41(1), 23–50 (2011)

8. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A.,
Wang, Q., Gautam, N.: Managing server energy and
operational costs in hosting centers. In: Proc. of the Intl
Conference on Measurements and Modeling of Com-
puter Systems. Banff, Alberta, Canada (2005)

9. CSIM Development Toolkit for Simulation and
Mod-eling: Web page at http://
www.mesquite.com/. L a s t a c - cessed 27 July 2011

10. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud comput-
ing and Grid computing 360◦ compared. In: Proc. Grid
Computing Environments Workshop (2008)

11. Foster, I.T., Freeman, T., Keahey, K., Scheftner, D.,
Sotomayor, B., Zhang, X.: Virtual clusters for Grid
communities. In: Proc. of the Sixth Intl. Symposium
on Cluster Computing and the Grid (CCGRID). Sin-
gapore (2006)

12. Freund, R.F., Gherrity, M., Ambrosius, S.L., Campbell,
M., Halderman, M., Hensgen, D.A., Keith, E.G., Kidd,
T., Kussow, M., Lima, J.D., Mirabile, F., Moore, L.,
Rust, B., Siegel, H.J.: Scheduling resources in multi-
user, heterogeneous, computing environments with
SmartNet. In: Proc. of the 7th Heterogeneous Comput-
ing Workshop (HCW). Orlando, USA (1998)

13. Fujiwara, K., Casanova, H.: Speed and accuracy of net-
work simulation in the simgrid framework. In: Proc. of
the 1st Intl. Workshop on Network Simulation Tools
(NSTools). Nantes, France (2007)

14. Harri, A., Linkin, V., Pichkadze, K., Schmidt, W.,
Pellinen, R., Lipatov, A., Vazquez, L., Guerrero, H.,
Uspensky, M., Polkko, J.: MMPM-Mars MetNet pre-
cursor mission. In: European Geosciences Union Gen-
eral Assembly. Vienna, Austria (2008)

15. Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware
provisioning of cloud resources for real-time services.
In: Proc. of the 7th Intl. Workshop on Middleware
for Grids, Clouds and e-Science. Urbana Champaign,
Illinois, USA (2009)

16. Kliazovich, D., Bouvry, P., Khan, S.U.: Greencloud: A
packet-level simulator of energy-aware cloud comput-
ing data centers. J. Supercomput. (2010). doi:10.1007/
s11227-010-0504-1

17. Lim, S.H., Sharma, B., Nam, G., Kim, E.K., Das, C.R.:
MDCSim: A multi-tier data center simulation, plat-
form. In: Intl. Conference on Cluster Computing and
Workshops (CLUSTER). New Orleans, USA (2009)

18. Liu, J., Nicol, D.M.: DaSSF 3.1 User’s Manual. Dart-
mouth College (2001)

19. Liu, X.: Scalable online simulation for modeling Grid
dynamics. Ph.D. thesis, Univ. of California at San
Diego (2004)

20. Moreno, R., Montero, R., Llorente, I.: Elastic manage-
ment of cluster-based services in the cloud. In: Proc.
of the 1st Workshop on Automated Control for Data-
centers and Clouds (ACDC), held jointly with the Intl.
Conference on Autonomic Computing and Communi-
cations. Barcelona, Spain (2009)

21. Núñez, A., Fernández, J., Garcia, J.D., Garcia,
F., Carretero, J.: New techniques for simulating
high performance MPI applications on large stor-
age networks. J. Supercomput. 51(1), 40–57 (2010).
doi:10.1007/s11227-009-0279-4

22. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L., Zagorodnov, D.: The eucalyp-
tus open-source cloud-computing system. In: Proc. of
the Sixth Intl. Symposium on Cluster Computing and
the Grid (CCGRID). Shanghai, China (2009)

23. OPNET modeller: Web page at http://www.opnet.
com/. Last accessed 18 Sept 2010

24. Patterson, D.A., Gibson, G., Katz, R.H.: A case for
redundant arrays of inexpensive disks (RAID). In: Pro-
ceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, pp. 109–116.
Chicago, IL, USA (1988)

25. Romero, P., Barderas, G., Vázquez-Poletti, J.L.,
Llorente, I.M.: Chronogram to detect Phobos eclipses
on Mars with the MetNet precursor lander. Planet.
Space Sci. 59(13), 1542–1550 (2011)

26. Sterling, T.L., Stark, D.: A high-performance comput-
ing forecast: partly cloudy. Comput. Sci. Eng. 11(4), 42–
49 (2009)

27. Sulistio, A., Cibej, U., Venugopal, S., Robic, B., Buyya,
R.: A toolkit for modelling and simulating data Grids:
an extension to GridSim. Concurrency and Computa-
tion: Pract. Ex. 20(13), 1591–1609 (2008)

24

28. The Economist, A Special Report on Corporate
IT: Web page at http://www.economist.com/special
Reports/showsurvey.cfm?issue=20081025. Accessed 1
Oct 2008

29. The Message Passing Interface (MPI) standard: Web
page at http://www.mcs.anl.gov/research/projects/mpi/.
Last accessed 18 Sept 2010

30. The Network Animator, Nam: Web page at
http://www.isi.edu/nsnam/nam/. Last accessed 27 Jul
2011

31. The Network Simulator, NS-2: Web page at
http://www.isi.edu/nsnam/ns/. Last accessed 18 Sept
2010

32. Varga, A.: The OMNeT++ discrete event simu-
lation system,. In: Proc. of the European Simula-
tion Multiconference (ESM). Prague, Czech Republic
(2001)

33. Vázquez-Poletti, J.L., Barderas, G., Llorente, I.M.,
Romero, P.: A Model for Efficient onboard actual-
ization of an instrumental cyclogram for the Mars

MetNet mission on a public cloud infrastructure. In:
Proc. of PARA: State of the Art in Scientific and Par-
allel Computing (Lecture Notes in Computer Science),
pp. 33–42. Reykjavík, Iceland (2012)

34. Vouk, M.A.: Cloud computing: Issues, research and im-
plementations. In: Proc. of the 30th Intl. Conference on
Information Technology Interfaces (ITI). Dubrovnic,
Croatia (2008)

35. Wang, Z., Zhu, X., McCarthy, C., Ranganathan, P.,
Talwar, V.: Feedback control algorithms for power
management of servers. In: Proc. of the Third Inter-
national Workshop on Feedback Control Implementa-
tion and Design in Computing Systems and Networks
(FeBid). Annapolis, USA (2008)

36. Wickremasinghe, B., Calheiros, R.N., Buyya, R.:
Cloudanalyst: A cloudsim-based visual modeller for
analysing cloud computing environments and appli-
cations. In: Proc. of the 24th Intl. Conference on
Advanced Information Networking and Applications
(AINA). Perth, Australia (2010)

25

