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Abstract: Among scaffolds used in tissue engineering, natural biomaterials such as plant-based
materials show a crucial role in cellular function due to their biocompatibility and chemical indica-
tors. Because of environmentally friendly behavior and safety, green methods are so important in
designing scaffolds. A key bioactive flavonoid of the Epimedium plant, Icariin (ICRN), has a broad
range of applications in improving scaffolds as a constant and non-immunogenic material, and in
stimulating the cell growth, differentiation of chondrocytes as well as differentiation of embryonic
stem cells towards cardiomyocytes. Moreover, fusion of ICRN into the hydrogel scaffolds or chemical
crosslinking can enhance the secretion of the collagen matrix and proteoglycan in bone and cartilage
tissue engineering. To scrutinize, in various types of cancer cells, ICRN plays a decisive role through
increasing cytochrome c secretion, Bax/Bcl2 ratio, poly (ADP-ribose) polymerase as well as caspase
stimulations. Surprisingly, ICRN can induce apoptosis, reduce viability and inhibit proliferation
of cancer cells, and repress tumorigenesis as well as metastasis. Moreover, cancer cells no longer
grow by halting the cell cycle at two checkpoints, GO/G1 and G2/M, through the inhibition of NF-«B
by ICRN. Besides, improving nephrotoxicity occurring due to cisplatin and inhibiting multidrug
resistance are the other applications of this biomaterial.

Keywords: Icariin (ICRN); natural product; cancer therapy; tissue engineering; cell cycle; apoptosis

1. Introduction

Nowadays, an international movement has engaged targeting the development of
natural products for biomedical uses in order to decrease or remove the side effects of
non-biological materials [1,2]. A wide-range of naturally occurring materials derived
from plants has been tested for their applications in cell toxicity and medicine [3-5]. The
application of natural materials has been documented in the earliest cultures such as China
and Iran, where they relied on plant-derived compounds for health and medical aims and
healing purposes [6]. The employment of biomolecules for use in various industries has
become an effectual manner in several applications comprising, biocompatible polymers,
nano-structural materials, drug delivery, foods and the pharmacological industries [7-9].
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The growing subject of tissue engineering is very multifaceted and links specialists
from varied arenas of materials engineering, mechanical, medicine, and other subjects of
bio-sciences [10]. A number of scaffolds prepared by diverse materials have been employed
in tissue engineering [9]. Without considering the kind of tissue, several key features
such as biocompatibility, mechanical belongings, and used methodology of synthesis are
important in scaffold designing [11,12]. Normally, classified groups of materials, such as ce-
ramics and polymers are employed in scaffolds research. Natural biopolymers for instance
plant-based materials can show a chief role in cell behavior formation, mostly in regard
to chemical indicators and bio-compatibility [13-16]. However, some factors for example
poor mechanical properties and fast biodegradability reduce their efficacy. However, these
weaknesses could be bypassed using a crosslinking technique with suitable cross linkers or
by a combination of natural polymers. Plants and plant-derived materials are regularly
explored for various biomedical uses [17-20]. Green methods are of special importance
in the design of scaffolds due to their high safety and environmental friendliness [21,22].
The uses of nontoxic production technologies and the usage of natural resources can stop
pollution and really decrease the uses of unsafe things for the assembly of scaffolds [23,24].
Tissue engineering includes a set of biologically active molecules, engineering and bio-
chemical processes, and the production of materials to make, modify, or treat damaged
tissues [25-28].

ICRN is a kind of flavonoid considered as the key bioactive of the Epimedium herb, which
has long been utilized in common Chinese medical research. In primary works, the studies
on ICRN were generally focused on increasing anti-aging and reproductive activities [29,30].
In current years, with the deepening of medical investigations, positive development on bio-
properties of ICRN has been made in immune, cancer, and protective systems [31,32]. So
far, various effects of ICRN were proven in osteoporotic bone regeneration [33], attenuates
pulmonary fibrosis [34], improvement in chronic kidney issues [35], and many more. Given
the beneficial properties of Epimedium, this plant has been included into Chinese pharma-
copeia [36,37]. Therefore, in this review, the most important biomedical and biomaterials
activities of ICRN are taken in to consideration. The following search strategy was con-
ducted. Several relevant literature databases (PubMed, Scopus and Web of Science) were
searched. The relevant works were selected using the following keywords in various
combinations: Icariin, cell cycle, cancer, apoptosis, and angiogenesis.

2. Botanical Origins and Distribution

The genus Epimedium L. from Berberidaceae with chief remedial species, comprises a
total of 71 species universally [38]. Various species of Epimedium have long been recruited
in Chinese medication. Among them, the most popular and commercially important are
Epimedium koreanum Nakai, Epimedium pubescens Maxim., Epimedium brevicornu Maxim.,
Epimedium sagittatum (Siebold & Zucc.) Maxim. and Epimedium wushanense T.S.Ying which
is distributed broadly from Japan to Algeria [39,40]. Epimedium taxa grows mostly on cliffs
under high humidity, and wet lands at height above sea level ranging from 200-3700 m [39].
Epimedium is a slow-growing herb with leathery leaves and its stems extend beneath the
ground. The leaves are different, lengthy-petiolate, ternately divided twice. The pendant-
shaped flowers have lengthy spurs and show a discrepancy in color with colorful flowers
including four sepals and four petaloides. It has been shown that a lot of species of this
plant (Figure 1) have aphrodisiac assets.
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Figure 1. Various species of Epimedium.

3. Traditional Applications and Ethnopharmacology of Epimedium Species

Several species of Epimedium was used in traditional Asian medicine. In China and
Japan, Epimedium sagittatum (Sieb. & Zucc.) Maxim. and Epimedium grandiflorum have been
used to treat impotence, prospermia, hyperdiuresis, osteoporosis, menopause syndrome,
rheumatic arthritis, hypertension, and chronic tracheitis [41]. In Korea, Sam-ji-goo-yeop-
cho, the herb Epimedium koreanum, was traditionally used for impotence, spermatorrhoea
and forgetfulness. Now, the major five Epimedium species, Epimedium brevicornum Maxim,
Epimedium sagittatum (Sieb. and Zucc.) Maxim., Epimedium pubescens Maxim. Epimedium
wushanense T.S. Ying and Epimedium koreanum Nakai are designated as the official sources
of Herba Epimedii in the Chinese Pharmacopoeia (The State Committee of Pharmacopeia,
2005) [42]. Herba Epimedii has a long history as a medicinal plant to treat a wide range of
complaints. As far as we know, the earliest record was in Shen Nong Materia Medica which
was written in the Eastern Han Dynasty. In this famous medical classic, it was stated that the
root and leaves can all be used for treatment, but the details are not very clear. Annotation
of Materia Medica is one of the pharmacopoeias published by the government of the Tang
Dyansty, but the record is also very simple. The characteristics of Herba Epimedii were
exactly stated in the Compendium of Materia Medica that was completed by Li Shi-Zhen
in the Ming Dyansty. It was stated that Herba Epimedii can strengthen bones and muscles,
tonify pneuma, reinforce the liver and kidney, enhance psychic energy. The PRC codex
also records that Herba Epimedii has all these effects and can be used for therapy for some
related diseases. Modern pharmacological research displayed that Herba Epimedii and its
extracts have many kinds of bioactivities that include stimulation of osteoblastogenesis and
suppression of the activity of osteoclasts. It inhibits the invasion and migration of cancer
cells, improves sexual function, enhances memory, increases the activity of phytoestrogens,
promotes the immunological ability and has antiinflammatory properties. So Herba Epimedii
is always used for the treatment of osteoporosis, tumors, erectile dysfunction, Alzheimer
disease and menopausal syndrome in clinical practice [43].

4. Physicochemical Properties

ICRN (C33H49O15, My, = 676.67) is a type of prenylated flavonoid, showing extensive
bioactivities such as antioxidant [44—47], neuroprotective [48-52], and antitumor [53-61]
behavior as well as anti-inflammatory responses [62-68], and can be used to treat erectile
dysfunction [69-72]. It appears it can improve the function of organs including bones and
the heart [73-86]. Itis crystalline and stable at a low temperature (—20 °C) for approximately
two years [87-90]. The chemical structure is depicted in Figure 2. The stock solutions of
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ICRN were usually made in DMF or DMSO (20 mg/mL). The solubility of ICRN in organic
solvent increases as the temperature increases. To prevent degradation, purging inert
gases could be useful. Due to low solubility and stability considerations in water, freshly
prepared solutions in the buffer can be used. Usually, a stock solution in DMSO was
diluted to increase the solubility in a buffer (the ratio of DMSO to PBS can be 1:10 at
pH 7.2) a [87,88,90].

HO

OH

OH

OH OH

Figure 2. Chemical structure of ICRN.

ICRN is a light yellow-to-yellow powder. It is a flammable solid with a predicted
flash point of 300.9 °C and a predicted boiling point of 948.5 °C (at 760 mmHg). It can
be stored at temperature. It is partly miscible with water and soluble in pyridine. In a
DMSO: PBS (PH = 7.2) ratio of 1:10, the solubility is approximately 0.1 mg/mL. The
solubility in DMSO, DME, and ethanol is 50 mg/mL, ~20 mg/mL, and <1 mg/mL
at 25 °C. In solution, it has no turbidity and the color could be in clear from color-
less to dark yellow (Sigma-Aldrich and Santa Cruz safety data sheets). The IUPAC
name is 2-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)-7-[(25,3R,45,55,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-ylJoxy-3-[[(25,3R 4R,5R,65)-3,4,5-trihydroxy-6-methyloxan-2-yl]
methoxy]chromen-4-one, which was computed by LexiChem 2.6.6. To the best of our
knowledge, the chemical, physical, and toxicological properties have not been thoroughly
explored. The known calculated data for the drug likeness of icariin were shown by Lipinski,
the rules and Veber rules components, which revealed only one matched criterion in both
cases (Table 1, Figure 3). According to the rules of Lipinski, the hydrogen bond donor (HBD),
hydrogen bond acceptors (HBA) and octanol-water partition coefficient (log P) should be
less than or equal to 5, 10, and 5, respectively. The molecular weight must be less the 500 [91].
Therefore, logP is only acceptable according to the Lipinski rules component. According to
Veber’s rule, bioavailability is acceptable only when less than ten rotatable bonds (RB) exist
in the molecular structure and the polar surface area (PSA) was less than 140 [92]. Icariin can
be metabolized into nearly 10 constituents. The icaritin and icariside II are the metabolized
forms of icariin in the small intestine, showing lipid-lowering and lipid-regulating effects.
Icariside II can be absorbed in the bloodstream [93]. In many physiological complex systems,
icariin could also improve bioactivity and biocompatibility [94-96].

In UV-visible spectroscopy, the absorption peak of 268 nm can be seen in the curve. In
the FTIR spectrogram, the characteristic peaks at ~1650, 1600, 1510, 1070, and 1260 cm !
can be assigned to free icariin. In differential scanning calorimetry, the endothermic peak at
~250 °C is related to icariin [97].
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Table 1. Identification and drug likeness of icariin.

Identification

Chemical Names Icariin
Molecular Formula C34HypO14

Lipinski rules component

Molecular Weight 674.699
logP 2.682
Hydrogen bond acceptors (HBA) 11
Hydrogen bond donors (HBD) 7
Matching Lipinski Rules 1
Veber rules component
Polar Surface Area (PSA) 214.06
Rotatable Bond (RotB) 10
Matching Veber Rules 0
MW/100
RotB HBA
logP HBD
PSA/10

B substance I Lipinski/Veber rules

Figure 3. The illustration of the compatibility of substance physicochemical properties with Lip-
inski/Veber rules component (National Center for Biotechnology Information (2022). PubChem
Compound Summary for CID 72302. Retrieved from https://pubchem.ncbi.nlm.nih.gov/compound/
72302) (accessed on 1 January 2023).
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5. Bioengineering Application of ICRN
5.1. Bone Tissue Engineering

Bone disorders are becoming usual frequently as the aging community grows, and
bone breaks often moreover happen. The treatment of major bone defects remains a main
challenge [98]. The necessity for osteogenic bone alternatives causes the advancement
of approaches in bone material engineering. A usual material engineering plan typically
contains cells, biomaterials, and bioactive scaffolds [99]. Autologous multipotent cells have
been broadly employed for bone renewal [100]. Though a perfect bone tissue engineering
scaffold must be both osteoconductive and osteoinductive [101], most polymers and metal
scaffolds are only osteoconductive [102,103]. To increase the beneficial properties, biological
factors are generally used by viral gene or protein delivery [104,105]. Even though an
employment of bone morphogenetic proteins (BMPs) has been widely considered for bone
renewal, huge volumes of BMPs are essential and BMP-comprising plans tend to fail in a
certain proportion of cases, thus raising worries over expenses and safety [106,107]. The
high cost and quick ruin of BMPs and other protein drugs [108] bound their experimental
usage, too. Hence, there is a critical need for alternative agents with higher usefulness
and cost-effectiveness. There is a limited amount of information on low molecular weight
agents that effectually enhance bone construction, for instance statins [109] and isoflavone
products [110]. With the advances in separation procedures, it has become more facile
to acquire purified molecules such as ICRN from natural sources instead of using unsafe
materials, which is even expensive.

In a study, ICRN encapsulated with PLGA was implanted in 3-dimensional printed
polycaprolactone/nano-hydroxyapatite scaffolds to simplify in-situ regeneration of bones.
Such a scaffold displayed outstanding mechanical efficiency due to the nano-hydroxyapatite
and revealed sustainable diffusion of ICRN as the polycaprolactone degraded [111]. An-
other study represented that ICRN can activate both ERx (non-genomic estrogen receptor)
and Akt (serine/threonine-specific protein kinase) by increasing rapid induction of insulin-
like growth factor I (IGF-1) signaling in osteoblastic cells for osteogenesis [112]. It is
demonstrated that ICRN promotes and inhibits, respectively, humanoid osteogenic and
adipogenic differentiation of bone marrow mesenchymal stem (BM-MS) cells via activating
of the Wnt/3-catenin pathway mediated by microRNA 23a [113]. In a work, the released
drug from thiolated ICRN /biphasic calcium phosphate scaffolds could increase the mi-
gration, proliferation and osteogenesis of ovariectomized rat BM-MS cells, and upregulate
the angiogenic gene expression in humanoid umbilical vein endothelial cells in vitro [33].
ICRN in combination with other substances can be even more effective. A study by Don
et al. showed that fetal bovine serum exosomes-ICRN more efficiently increased the os-
teoblasts’ proliferation than the time ICRN was used alone [114]. It was shown that ICRN is
considered a factor for knee osteoarthritis by involving four pain-related genes as well [115].

5.2. Cartilage Tissue Engineering

Osteoarthritis is the most public chronic joint sickness and is related with signs for
instance, cartilage damage and deprivation. Cartilage displays too low affinity to self-repair
because of the little regenerative ability of resident chondrocytes and the privation of
vascular, nervous, and lymphatic structures [116]. Existing clinically presented cartilage
treatments consist of autologous chondrocyte implantation, matrix induced autologous
chondrocyte implantation, microfracture, and abrasion arthroplasty. On the other hand,
these plans are only responsible for sub-optimal clinical results and are frequently not
enough for keeping the durable function of articular cartilage [117]. Because of these prob-
lems, studies in recent years were intensive on cartilage engineering which cells, functional
molecules, and scaffolds to lead cartilage creation. Chondrocytes are the best cell resources
for cartilage tissue treatment. Nevertheless, chondrocytes have a tendency to miss their
phenotype and go through hypertrophy upon in vitro growth, that could be described by re-
duced fabrication of proteoglycan and type II collagen, and enhanced secretion of type I and
type X collagens [118]. Hence, existing approaches for applied material engineering scaf-
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folds for preserving the differentiated state of chondrocytes, endorsing cartilage creation,
and the latest works revealed that a suitable scaffold with organized release biomolecules
may perhaps be more in effect [119,120]. Numerous works also revealed that ICRN is able
to enable the chondrogenesis of mesenchymal stem (MS) cells in an accustomed medium,
provide propagation of chondrocytes, keep the phenotype of chondrocytes, stimulate the
secretion of proteoglycan and the collagen matrix and prevent the deprivation of collagen
and proteoglycan [121,122]. Furthermore, in cooperation with exogenous growth regula-
tors, ICRN is low-cost, constant and non-immunogenic [123]. As a result, ICRN has been
widely employed in scaffolds to increase speed tissue regeneration [124]. Some works
proposed that an upper concentration of ICRN can motivate chondrocytes to secrete a
further cartilage matrix within the in effect harmless concentration variety [125]. It was
indicated that ICRN could prevent cell propagation at concentrations above 10 mM [126].

With the aim of enhancing the ICRN loading to retain the enduring biological property
of the scaffolds, ICRN was fused into the hydrogel scaffolds or chemical crosslinking. The
achieved hydrogel scaffolds continued an elongated smooth release of drugs and permitted
the encapsulated chondrocytes to secrete more proteoglycan and the collagen matrix, but
its poisonousness to the encapsulated cells is not adopted for clinical uses [123,127].Some
bioengineering applications of ICRN are listed in Table 2.

Table 2. Bioengineering application of ICRN.

Scope

Applications Ref.

Bone tissue engineering

e  increases rapid induction of IGF-1 signaling in osteoblastic cells and
activate both ERx and Akt in osteogenesis
promotes the osteogenic differentiation of MC3T3-E1 [112]
promotes the healing of calvaria bone in composite scaffold of poly
(lactic-co-glycolic acid) (PLGA) microsphere PLGAus

e  activates Wnt/ 3-catenin pathway mediated by microRNA 23a and

thereby osteogenic differentiation of BM-MSCs [113]

e increases the proliferation of osteoblasts especially when it is combined
with fetal bovine serum exosomes

e induces significantly the osteogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs) by upregulating alkaline phosphatase
activity and the expression of bone sialoprotein II (BSPII) and
runt-related transcription factor-2 (Runx-2)

[114]

° it is used as a factor for knee osteoarthritis by involving four pain-related

genes as well [115]

upregulates the expression of osteogenic genes in BMSCs

enhances the osteogenesis in vivo through the delivery of ICRN by

calcium phosphate cement (CPC) scaffolds [128]
e  promotes bone defect repair by anti-osteoporotic effect through the

systemic administration
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Table 2. Cont.

Scope

Applications Ref.

Cartilage tissue engineering

e  enables the chondrogenic differentiation of MSCs in an
accustomed medium
e induces the propagation of chondrocytes and keeps the phenotype
of chondrocytes
stimulates proteoglycan and collagen matrix secretion
prevents the deprivation of collagen and proteoglycan [122]

Thiolated icariin (ICRN-SH):

e facilitates chondrocyte proliferation
e  maintains chondrocyte phenotype
e  promotes the secretion of the cartilage extracellular matrix

Compared with hyaluronic acid/collagen (HA /Col) hydrogel,

ICRN-HA /Col hydrogel:

e  upregulates remarkably the chondrogenic genes expression

e  enhances the matrix synthesis of sGAG and type II collagen

e  increases the amount of type II collagen in the neo-cartilage layer in vivo
e  upregulates the osteogenic genes, including RUNX2, ALP and OCN at [123]
early stage

makes more calcium deposition

deposited more abundant type I collagen in the newly formed
subchondral bone

e  increases the gene expression and matrix synthesis of type X collagen

1 x 107 M concentration of ICRN in differentiation medium of BMSCs
e  enhances cartilage extracellular matrix synthesis
e  increases significantly the gene expression levels of collagen II and SOX9 [129]
e  promotes more chondrocyte-like rounded morphology in BMSCs
e  inhibits the side effect of growth factor activity by preventing further
hypertrophic differentiation
In the model of osteoarthritis (OA) injected by HA /Poloxamer
407 /ICRN hydrogel:
e  promotes the proliferation and chondrogenesis of BMSCs through the
Wnt/ 3-catenin signaling pathway [130]
e  prevents cartilage destruction by stimulating chondrogenic
differentiation of BMSCs
e  regulates the expression of cytokines such as IL-10 thereby relieving pain
e  motivates chondrocytes to secrete further cartilage matrix within the in [125]

effect harmless concentration variety

6. Cancer Therapy by ICRN
6.1. Apoptosis Induction

The planned cell death that occurs in the organs of the body is called apoptosis.
Biochemical changes including mixing, nuclear disintegration, chromatin density, DNA
cleavage, mRNA decay, and eventually cell shrinkage alter cell morphology and other
characteristics and cause cell death [131]. ICRN and its derivatives exert their apoptotic
effect by activating the innate pathway of apoptosis. ICRN and icaritin increase cytochrome
¢ secretion, Bax/Bcl2 ratio, poly (ADP-ribose) polymerase and caspase stimulation in
various types of cancer cells (Figure 4) [132]. MiR-21 is extremely expressed in numerous
human tumors and can cause cell proliferation, differentiation and apoptosis, and also play
a key role in the formation of metastases in tumors. In a study by Li et al., they showed
that ICRN can stimulate caspase-3 activity, block the expression of miR-21, and induce
cellular apoptosis in ovarian cancerous cells. Wang et al. represented that ICRN inhibits
Bcl-2 protein expression and induces apoptosis in MLTC-1 cells by regulating Bcl-2/Bax
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expression (Figure 4) [133]. In cancer cells, ICRN significantly reduces the expression of
microRNA 21 and the Bcl-2 protein, and increases the expression of PTEN and RECK
protein (Figure 3) [134]. According to Sharma et al., however, ICRN treatment noticeably
leads to CDK2, CDK4, Cyclin D1, Bcl-2, and Beclin-1 downregulation, it up-regulates the
expression ranks of caspase 3 (Figure 4), PARP and p62 [135].

“”'F
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Caspase-9 @ g
@ | / Y
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Figure 4. Cancer therapy by ICRN.

The results of Western blot tests by Fan et al. to evaluate the anti-cancer action of
ICRN in esophageal squamous cells carcinoma (ESCC) showed that ICRN upregulated the
expression of GRP78 ATF4 and CHOP. It also upregulated p-PERK and p-elF2x amounts in
EC109 and TE1 cells in an amount-dependent way as well as increased Puma expression and
decreased Bcl2 expression. In this study, the apoptotic index of ESCC was evaluated after
concentrations of 20, 40 and 80 uM ICRN for 24 h. The results showed an enhancement
in the stimulation of apoptosis with an increasing ICRN dose [136]. Moreover, ICRN
induces the apoptosis process through the upregulation of Bax/Bcl-2 and induce ROS in a
mitochondria mediated way. Notably, the blockage of breast cancer cells invasion through
the abating of NF-kB/EMT activation by ICRN as shown [137]. In another study it was
reported that ICRN inhibits the proliferation and migration of ovarian cancer cells in vitro
and stimulates apoptosis via stopping the PI3K/AKT signaling [138].

6.2. Inhibition of Cancer Cell Proliferation

ICRN stops the cell cycle at the G0/G1 and G2/M phases by inhibiting NF-«B activity
and thus blocks the growth of cancer cells (Figure 4) [132]. Song et al. reported that in vitro,
ICRN induces dose/time dependent cell toxicity to MDA-MB-231, MDA-MB-453, and 4T1
cell lines, and inhibits breast cancer cell proliferation [137]. They also used colony formation
methods to confirm the anti-proliferative effect of ICRN. The ability to form colonies of cells
concentrated with 10 or 20 uM ICRN was considerably repressed and the size of colonies
uncovered to ICRN was reduced in comparison to the control group. ICRN can inhibit
the tumor growing in vivo. To see if the anti-tumor activity of ICRN in vivo is similar to
its effects in vitro, tumor-bearing mice MDA-MB-231 and 4T1 were treated with doses of
20 and 40 mg/kg of ICRN. A therapeutic dosage of 20 mg/kg (p < 0.01) and therapeutic
quantity of 40 mg/kg (p < 0.005) significantly inhibited the growth of the MDA-MB-231
tumor in a dose-dependent way compared to the control group. The mice did not show
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any abnormal alterations in body weight during treatment. Immunohistochemical results
of tumors showed that ICRN inhibits the proliferation of Ki-67-positive cells, increases
caspase-3 expression, induces cell apoptosis, and regulates NF-«B expression. Moreover,
Western blot results of tumors indicated that ICRN increases the SIRT6 expression level,
inhibits NF-kB p65 nuclear expression, and decreases PD-L1 expression. ICRN was similar
in the model of 4T1 tumor-bearing mice, and was able to reduce tumor cell proliferation
and NF-«kB expression levels and stop tumor growth (Figure 4) [137]. A latest work by
Wang et al. on the therapeutic properties of ICRN at concentrations of 25 uM, 50 pM, and
100 uM for 48 h in relation to cancer showed that this biomaterial could be significantly
dose-dependent and inhibit SKOV3 cell proliferation [138].

6.3. Angiogenesis Inhibition

ICRN stops the proliferation, migration and formation of cancer cells. Moreover, it has
anti-angiogenic action in vivo in various tumor models. CD31 is a pan-endothelial indicator
and is expressed on the surface of endothelial cells. ICRN treatment significantly reduced
CD31-positive regions in tumor mice. As is clear, the vascular endothelial growth factor
(VEGF) is an important growing agent that acts as a major controller of angiogenesis. The
consequences of both in vitro and in vivo investigation show that the decrease in VEGF
levels by down regulation of this factor in both ICRN treated groups showed the anti-
angiogenic effect of this biomaterial (Figure 4).

Hypoxia-inducible factor-1oc (HIF-1cx) is a substantial goal in solid tumors therapy and
is induced by hypoxia in a dose-dependent way in cancer cells. It is assumed that Icariside
II (one of the ICRN-derivatives) increases the interaction between HIF-1 and von Hippel-
Lindau (VHL) whereby a decrease in the protein level of HIF-1« occurs (Figure 4) [139].
Additionally, Icariside-II blocks the migration rate in human osteosarcoma cells and the
tube creation rate in humanoid umbilical vein endothelial cells.

RECK is a recently explored tumor-inhibitor gene and is known as a matrix metallo-
proteinase inhibitor, in turn, decreasing the tumor invasion and angiogenesis [140]. The
influence of ICRN on the expression of the RECK protein in A2780 ovarian cancer cells was
tested. The consequences displayed that treatment with ICRN for 2 days at dose of 25 and
50 uM significantly enhanced the expression level of the RECK protein compared to the
control group (Figure 4) [134].

6.4. Metastasis and Migration Inhibition

Metastasis is the movement of a pathogen from a primary site to a secondary site in
the host body. That is very common in the later stages of cancer and occurs through the
blood, lymph, or both. The most common sites of metastasis are the lungs, liver, brain, and
bones. The anti-metastatic activity of ICRN has also been investigated. A study of very
metastatic human lung cancerous cells after treatment with ICRN displayed a reduction
in the capability of these cells to attack and migrate (Figure 4) [141]. Another study on
ICRN indicated that it could suppress the adhesion of lung adenocarcinoma by acting on
vasodilator phosphoprotein (VASP), which is important in cell migration along with tumor
metastasis. This study also showed that this biomaterial inhibits gastric cancerous cell
invasion and cell migration and is the main process for suppressing the expression of genes
associated with Racl and VASP cell motility (Figure 4) [142]. The results of these works
showed that ICRN and its derivatives prevent cancer cell metastasis by regulating proteins
that are critical for cancer metastasis [143,144]. A study by Song et al. found that ICRN
could inhibit the pulmonary metastasis pattern of 4T1 cells in BALB/c mice. Moreover,
lung tissues were examined using H&E staining to estimate the anti-metastatic efficiency of
ICRN. In these tissue sections, H&E staining showed that there were fewer tumor nodules
in the ICRN group compared to the control group [137].
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6.5. Regulation of Immune System

Immunomodulation is thought to revolutionize the treatment of inflammation-related
diseases such as autoimmune diseases, and cancer. [145]. The immune system in these
situations could be either motivated or inhibited by biomaterials. ICRN has been shown to
reduce tumor progress and the ratio of Myeloid-derived suppressor cells (MDSCs) [132].
Liu et al. reported the sex hormone-like properties of ICRN on T-cells immune modulation
in spontaneously hypertensive rats. Their results proved that ICRN can regulate T-cells
differentiation related to blood pressure reduction in SHR rats [146]. According to these
studies, the effect of modulating the immune system of ICRN causes anti-tumor immunity
in killing tumor cells and stunting tumor cells.

In another study, due to the effective inhibitory result of ICRN on the NF-kB signaling
way, the ability of ICRN to suppress the microenvironment of the tumor environment
was investigated. MDSCs, which typically accumulate in tumors, are responsible for
suppressing the immune system’s microenvironment. In the study of the effect of ICRN on
CD4+ and CD8+ T-cells, the results represented that the ratio of tumor infiltration to CD4+
and CD8+ cells was meaningfully enhanced. In addition, it significantly regulated the
proportion of MDSCs in the tumor compared to the control group. In general, ICRN can
improve the microenvironment of the tumor suppressor immune system, thus increasing
the anti-tumor effect [137].

7. Effects of ICRN on Drugs Used in Cancer Therapy
7.1. Multidrug Resistance (MDR) Inhibition

Multidrug Multidrug resistance is a principal concern in community health. It de-
fines a complex phenotype whose principal feature is resistance to a wide-ranging of
structurally unrelated cell toxicity complexes, many of which are anticancer factors [147].
Moreover, MDR could be caused by a species of micro-organism to at least one antimicro-
bial drug in three or more antimicrobial classes [22,24,148]. Some studies were performed
to overcome drug resistance induced by tumor cells with ICRN and its derivatives. A
study on the adriamycin-resistant ADR-resistant human hepatocellular cell line found that
ICRN-derived icarithin can reduce ADR cytotoxicity by decreasing MDR1 gene expression,
decreasing P-gp levels, and increasing intracellular accumulation ADR [149]. PTEN gene
deficiency is present in malignant tumors and tumor cell lines (Figure 4) [150]. Lee et al.
showed that ICRN enhances PTEN protein expression in ovarian cancer cells [134].

7.2. Effects of ICRN on Cisplatin

ICRN, as a major and remarkable flavonoid is utilized in cancer therapy. Cisplatin, as an
efficient chemo-remedial factor, is usually employed to treat several kinds of cancers [151,152].
Nephrotoxicity stimulated by cisplatin extremely limits its clinical uses [153-155].

The mechanism principal for the decrease in cisplatin-induced renal damage using
ICRN was investigated. Treatment of mice with cisplatin cause renal injury, displaying
enhancement in blood urea nitrogen, tubular damage, and apoptosis. These renal alter-
ations could be meaningfully improved by ICRN. The results show that ICRN decreased
the expression of TNF-« and NF-«B, cleaved caspase-3, and Bax, as well as enhanced
the expression of BCL-2 [156]. It is reported that ICRN increases the chemosensitivity of
cisplatin-resistant ovarian cancerous cells by inhibiting autophagy using activation of the
AKT/mTOR/ATG5 way (Figure 5) [157].



J. Funct. Biomater. 2023, 14, 44

12 of 22

o § |
v

Kk (=) | ﬂ t
- C.S._,c-xd Knammaory)
-\, o Response

e o

Figure 5. Effects of ICRN on Cisplatin in cancer therapy.

8. Other pharmacological Effects of ICRN

Natural products have contributed to the improvement of numerous drugs for various
signs. It is becoming clear that many natural products are able to influence receptor
positions on or inside cells, just as a drug must do [158]. Natural-product frameworks
are labelled as privileged constructions. Several in vivo works verified the useful result of
ICRN on reproductive utilities. Treatment of ICRN meaningfully enhances epididymal
sperm counts and testosterone ranks of male rats [71]. ICRN as well effectively enhanced
the erectile action in gelded wistar rats using an enhancing proportion of smooth muscle
and inducible NO-synthase in the corpus cavernosum [159]. ICRN is a main biological
pharmaceutical material with strong cardiovascular protecting roles [160]. Emerging
data in the previous reports revealed that it has numerous atheroprotective roles, by
several mechanisms, comprising decreasing DNA destruction [161], modifying endothelial
dysfunction [162], preventing the propagation and migration of smooth muscle cells [163],
inhibiting macrophage derived foam cell creation and inflammatory responses. [164,165].

Two main hallmarks are regarded as Alzheimer’s disease (AD): extracellular gathering
of amyloid b peptide (Ab) and intraneuronal accumulation of the tau protein as well-
known as neurofibrillary tangles (NFTs) [166]. Guo et al. proposed that ICRN can progress
spatial learning and memory capabilities in rats with brain dysfunction prompted by
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lipopolysaccharide (LPS), a result which could be caused by reduced expressions of TNF«,
IL-1p and COX2 in the hippocampus (Table 3) [167].

Table 3. Other pharmacological effects of ICRN.

Scope Result Ref

Enhancing mild hypothermia-stimulated neuro shielding

Preventing the action of NF-«B in experiential ischemic stroke ]

e  Reversing the (hypoxic-ischemic) HI-induced decrease in
Neuroprotective phosphorylated Akt [169]
e  Activation of cleaved caspase3

e  Debilitate amyloid-f (Ap)-induced neuronal insulin resistance by

PTEN down-regulation [170]

Alleviated the severity of diabetes

The blood glucose ranks were decreased

Serum adiponectin ranks were not changed [171]
The mRNA and protein expression rank of p-AMPK and GLUT-4

proteins were enhanced in the T2DM rats treated with ICRN

° Insulin resistance, left ventricular dysfunction, aberrant lipids deposition,
cardiac inflammation and fibrosis were ameliorated by the treatment
Cardiovascular diseases of ICRN [172]
° The ranks of extracellular matrix proteins of heart tissue
considerably refused

° Preventing isoprenaline-induced Takotsubo syndrome-like cardiac
dysfunction in rats.

° Reduced the ROS ranks and enhanced antioxidant element expression [173]
while decreasing pro-inflammatory factor secretion

e  Inhibiting TLR4/NF-kB signaling path protein expression

Preserved ovarian granulosa cells from d-galactose stimulated aging
Cell viability enhanced and endogenous [3-galactosidase property lower [174]
Promoting DNA damage repair

° Improved the decrease in sperm density, hormone ranks and activities of

"y . e . 175
antioxidant enzymes altered in the nicotine treated mice [175]

Reproductive system

o  Improve follicular development; prevent follicular atresia, thus reducing
the ovarian hypofunction
FSH and LH levels decrease and E2 enhance [176]
AMH and Bcl-2/Bax expression up-regulates in aging female mice
Partly restore ovarian function of aging mice and increase their fecundity

Inhibition proliferation and metastasis

Increases antitumor immunity in triple-negative breast cancer
Inhibitory effect on SIRT6/NF-«B/epithelial-mesenchymal transition
(EMT) signaling pathway

[177]

e  Induces apoptosis of human lung adenocarcinoma cells in a time and
concentration-dependent way in vitro
Activating the mitochondrial apoptotic pathway
Activation of members of the caspase family of proteins

Anti-tumor [178]

e  Tumor necrosis agent-associated apoptosis-stimulating ligand plus ICRN
synergistically stimulated apoptosis in 49% of HCT116 colon cancer cells
Upregulation of cell surface death receptors
Enhancing the production of ROS

[179]
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Table 3. Cont.

Scope

Result Ref

Anti-inflammation

The expression of TDP-43 in chondrocytes reduced
Inhibition the elevation of inflammatory cytokines affected by TDP-43 [180]
Prevents the JNK and p38 MAPK signaling way in-vitro

Promotion of chondrocyte vitality and extracellular matrix synthesis
Inhibition of the expressions of NF-«B and HIF-2« in bone defect mice
Neutralized the activation of IKK (IKK phosphorylation), the
phosphorylation of IkB and NF-«B and the expression of HIF-2o

e  Inhibition of the nucleus transfer of NF-kB and the expressions of MMP9
and ADAMTS5

[181]

o  The pathological alteration, collagen deposition could be significantly
reversed by ICRN treatment
e  Significantly reduced the protein expression of proinflammatory agents
such as nuclear factor-«B, cyclooxygenase-2, interleukin 1- and [182]
prooxidative enzyme (NADPH oxidase-4)
e Increasing the protein expression of antioxidative enzymes (SOD
and CAT)

9. Conclusions

Use of bio-scaffolds in tissue engineering is an inevitable application, but biodegrad-
ability and biocompatibility are the main properties of scaffolds that should be considered.
Animal or plant derived proteins that are recognized as natural biopolymers have criti-
cal impacts on cell behaviors. Interestingly, safer and eco-friendly greener technologies
resulting from plant-based polymers can make promising effects on regenerative medicine
and tissue engineering. ICRN as a reliable plant biomaterial shows many effects in med-
ical treatment such as increasing osteogenesis by induction of IGF-1, also by activating
the Wnt/ 3-catenin pathway and inhibiting adipogenesis. Preventing cell propagation at
concentrations above 10 mM, inducing the apoptosis process through the upregulation of
Bax/Bcl-2, inducing cell apoptosis due to increasing caspase-3 expression, suppressing the
adhesion of lung adenocarcinoma by acting on VASP thereby influencing cell migration
as well as tumor metastasis are the other applications of ICRN. Besides, the elongated
smooth release of drugs giving permission to the encapsulated chondrocytes to secrete
more collagen matrix exemplifies the role of ICRN in bio- and tissue engineering when it is
combined with hydrogel scaffolds. Tumor progression is often linked with a phenotypic
switch from M1 to M2 in tumor associated macrophages (TAMs) in the tumor microenvi-
ronment. Seyedi and her colleagues showed that downregulation of STAT3 resulted in the
switching of M2 to M1 in the tumor microenvironment, in turn causing inhibition of tumor
progression [183]. Moreover, other studies demonstrate the activation of cancer stem cells
by increasing IL6 and MFG-E8 secretion stemming from overexpression of STAT3 in the
tumor microenvironment [184,185]. Hence, the evaluation of ICRN on STAT3 downreg-
ulation in order to switch M2 to M1 in the tumor microenvironment as well as in cancer
stemming cell inactivation can be a promising study in the future. Above all, an emphasis
is placed on the mechanism of ICRN and its future perspective, aiming at providing a
relative theoretical base for the application of ICA in the future biomedical treatment plans.
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