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Abstract—The last years have seen a vast diversification on
the database market. In contrast to the “one-size-fits-all” para-
digm according to which systems have been designed in the
past, today’s database management systems (DBMS) are tuned
for particular workloads. This has led to DBMSs optimized for
high performance, high throughput read / write workloads in
online transaction processing (OLTP) and systems optimized
for complex analytical queries (OLAP). However, this approach
reaches a limit when systems have to deal with mixed workloads
that are neither pure OLAP nor pure OLTP workloads. In
such cases, multistores are increasingly gaining popularity.
Rather than supporting one single database paradigm and
addressing one particular workload, multistores encompass
several DBMSs that store data in different schemas and allow
to route requests on a per-query level to the most appropriate
system. In this paper, we introduce the multistore ICARUS.
In our evaluation based on a workload that combines OLTP
and OLAP elements, we show that ICARUS is able to speed-up
queries up to a factor of three by properly routing queries to
the best underlying DBMS.

Keywords-Multistore databases, mixed OLTP and OLAP
workload, query routing.

I. INTRODUCTION

Since the introduction of relational database management

systems (DBMSs) in the late 1960’s, they have served – with

few exceptions of niche products – as commonly accepted,

generic platforms for data management in a large variety

of applications. However, with the advent of earmarked

DBMSs and NoSQL data stores a few years ago, the

landscape has changed. Nowadays, DBMSs are either op-

timized for complex analytical queries in Online Analytical

Processing (OLAP) applications or for short read and write

transactions with high throughput in Online Transaction

Processing (OLTP) settings. These earmarked DBMSs are

helpful if applications either come with a pure OLTP or a

pure OLAP workload, but they turn out to be suboptimal

for mixed workloads, containing aspects of both worlds.

Moreover, in applications demanding a large degree of

flexibility, schemaless databases such as key-value stores

have become popular. Other applications rather demand for

graph databases as they need to store and analyze large

graph data structures. As a consequence, the “one-size-fits-

all” approach of traditional DBMSs is no longer suitable [1].

With the advent of new storage technologies and DBMS

architectures such as solid state disks or main memory

databases, the situation has become even more complex.

Different storage technologies also come with different

properties regarding memory bandwidth, capacity, latency,

and throughput. At the same time, there is a significant trade-

off between bandwidth, latency, throughput, and capacity on

one side and price per gigabyte on the other side.

The Cloud with its nearly unlimited capacity and rather

moderate resource costs has led to a new momentum in the

discussion of this trade-off. Rather than optimizing a DBMS

for one of these properties and focusing only on either

OLAP or OLTP, systems tend to support several different

storage technologies and different DBMS architectures at

the same time. This has led to so-called multistores or

polystores. These systems operate different technologies

and DBMSs with different architectures in parallel. When

requests come in, they route them on a per-query basis to

the best suited DBMS, i. e., to the DBMS that provides the

highest throughput and / or the smallest response time.

So far, the selection of an appropriate storage medium

strongly had to consider the data to be stored and the ex-

pected workload, especially the access characteristics (e. g.,

read-only, mostly reads, balanced read / write ratio, high

update frequencies), the frequency in which a data tuple is

accessed, and also the size and amount of data stored in the

database itself. Failure in properly assessing these criteria

has led to deployments that are far from optimal. With

the concept of multistore database systems, the selection

of storage media and database architecture is no longer

necessary at design time. Rather, several different systems

are used jointly, and the optimization (query routing) is done

at run-time by the multistore system. However, the major

challenge in multistores is to have proper characterizations

of the expected workload and, at the same time, a mapping

from the expected queries to the best suited data store.

In this paper, we introduce ICARUS, a prototype of such

a multistore system. ICARUS classifies queries according to

their access pattern into query classes and compiles routing

tables that map query types to data stores. For this, it

probes the underlying stores in order to update the routing

information. We present the design and implementation of

ICARUS. Moreover, we show in an evaluation using semi-

analytical query loads, i. e., query loads that combine OLAP

and OLTP, that it outperforms the individual DBMSs by a

factor of up to three as the latter are optimized for either

workload but cannot cope well with such mixed workloads.
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Figure 1: Average number of DB queries per auction.

The contribution of this paper is threefold: Firstly, we

present the multistore database system ICARUS which au-

tomatically routes queries to the appropriate data store.

Secondly, we propose a benchmark designed for mixed

OLTP and OLAP workloads, based on the concrete use case

of an auctioning company. Thirdly, we show the performance

of ICARUS based on this benchmark and the speedup gained

in comparison with the underlying data stores.

The remainder of this paper is structured as follows: Sec-

tion II provides a motivating example for an application that

comes with mixed workloads. In Section III we introduce

the workload characterization required for query routing.

The system model and architecture of ICARUS is outlined

in Section IV. Our new benchmark for mixed workloads

is introduced in Section V and Section VI presents details

of the evaluation of ICARUS. Section VII discusses related

work and Section VIII concludes.

II. MOTIVATING SCENARIO

Assume, as an example, “Gavel”, an online auction house

which runs millions of auctions per day. Because Gavel gets

1 % of the price of each item sold, their profit depends on the

number and prices of items sold. In order to maximize their

profit, Gavel invests in advertising their auctions which, in

turn, requires sophisticated analyzes of their users’ behavior

and other statistics (e. g., price of the auctions, the users’

biding history, or the users’ history of visited auctions).

Such analytical database queries need to run on the latest

data making an offline database for the analytics infeasible.

This is due to the characteristic feature of auctions being

most interesting right before their end and which leads to

“Number of Queries per Time” charts like Figure 1. If

we further assume that Gavel is currently only available

in Europe, the majority of customers visit their website

between 4 p. m. and 11 p. m. This correlates to the number

of database queries shown in Figure 2.

In contrast to these analyzes, the other queries (∼ 80 %)

are mostly transactional and belong to one of these three

groups: i.) select details of an auction, ii.) create a list of

auctions, iii.) bidding. All three are typically short running
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Figure 2: Average number of auctions in Gavel.

transactions and are slowed down by the analytical queries

required for the advertisement, if submitted to a row-store

DBMS. If, however, a column-oriented DBMS was used,

this would lead to a significant improvement of the analytical

queries at the prize of decelerated transactions. Hence, the

workload can be considered semi-analytical as it mixes

OLAP and OLTP elements and is neither well supported as a

whole by only row-store nor by only column-store DBMSs.

Gavel’s management is now wondering whether the newly

proposed concepts of multistores can help to combine the

advantages of both DBMS types to gain fast execution times

for the transactional as well as for the analytical queries –

by using several systems and by deciding per query where

to route it to.

III. WORKLOAD CHARACTERIZATION

DBMSs can face various types of workloads with different

characteristics. Depending on these characteristics, a query

can be time-consuming when executed on one DBMS while

being very efficiently on another DBMS. Query execution

time can thus vary between several orders of magnitude.

Database workloads can either be characterized as OLTP

or as OLAP. The transition between these two classes

is fluid. While OLTP workloads are normally dominated

by simple, short running transactions only reading and

modifying few records in the database, OLAP workloads

are associated with long running read-only queries which

process huge amounts of data.

The drawback of this classification is that there is a

huge amount of queries which do not fit in one of the

categories. The queries in this blurred transition between

OLTP and OLAP bare a great potential for optimization.

It is also the group of queries with a high demand for

optimization, because they can have a huge impact on the

overall performance of an application.

We therefore propose a third class of workload named

semi-analytical. Thus, we distinguish the following three

workload classes:

Transactional: These queries only process few records

to read, update, or delete their content or they insert new



SELECT ∗ FROM u s e r u WHERE u . i d =5348765;

UPDATE u s e r SET password = ’PASSWORD’
WHERE i d = 5348765;

INSERT INTO b i d ( amount , timestamp , u se r ,
a u c t i o n )

VALUES ( 1 2 . 4 3 , NOW( ) , 5348765 , 87523) ;

Code 1: Transactional Examples: Query a user, setting a

password and placing a bid.

SELECT a . id , a . t i t l e , a . e n d d a t e
FROM a u c t i o n a
WHERE a . c a t e g o r y = ’ 34 ’

AND a . e n d d a t e > NOW( )
ORDER BY e n d d a t e desc LIMIT 100 ;

Code 2: Semi-Analytical Example: The 100 next ending

auctions of a category.

records. Transactional queries only have simple conditions

and only very few joins. Code 1 shows a few examples.

Semi-Analytical: Simple analytical queries like aggre-

gations or counts on the whole table or on groups defined

by simple conditions, like in Code 2. Also transactional

queries having complex conditions belong to this category.

Furthermore, update and delete operations that process more

than a few records belong to this group, too.

Analytical: Complex and potentially long-running

queries that process a huge amount of records. In contrast to

the semi-analytical queries, the queries in this class operate

on many or all records in the database based on complex

conditions. An example can be found in Code 3.

Workloads are characterized by the mix of these three

transaction types. Moreover, the work reported in this paper

is based on the following assumption: In a common enter-

prise application, there is only a relatively small amount

of queries that differ in their structure. Queries with the

same structure are similar in their complexity and therefore

also have similar execution times. Hence, we assume that

there is only a finite number of queries that differ in their

structure. For SQL, this means that we can group all queries

which share the same operation (SELECT, UPDATE, etc.),

that operate on the same columns and tables, and that use

the same operators and functions.

We define a Query Class as a set of queries and statements

which are, according to the assumption, similar in their

structure and execution time.

IV. SYSTEM MODEL AND ARCHITECTURE

Figure 3 shows a logical view of a deployment of ICARUS:

Multiple clients are connected to ICARUS using PolySQL

(ICARUS’ SQL dialect) as query language. ICARUS itself

SELECT u . l a s t name , u . f i r s t n a m e , ( sum ( a .
p r i c e ) ∗ 0 . 0 1 ) as r e v e n u e

FROM u s e r u ,
(SELECT a . u s e r as u s e r , MAX( amount ) as

p r i c e
FROM a u c t i o n a , b i d b
WHERE b . a u c t i o n = a . i d
GROUP BY a . id , a . u s e r

) as a
WHERE a . u s e r = u . i d
GROUP BY u . id , u . l a s t name , u . f i r s t n a m e
ORDER BY r e v e n u e desc LIMIT 100 ;

Code 3: Analytical Example: Top 100 seller by revenue.
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Figure 3: Logical view on the deployment of ICARUS.

is connected to multiple data stores (various DBMSs with

usually different storage engines) and communicates with

them using their specific query language or access method.

When a query is submitted to ICARUS, it determines “the

best” data store where the query should be executed. This

decision is based on a routing table ICARUS maintains.

Finally, ICARUS compiles PolySQL into the specific query

language or access method of the underlying data store.

ICARUS itself consists of three main building blocks: The

Core, the Executor and the Analyzer:

Core: contains the Client Interface, the Router and the

SQL Parser. The Client Interface accepts the queries and

provides a web interface for executing jobs and for moni-

toring the status of the system. The Router is responsible

for sending the jobs to the Executor(s) and for routing the

results back to the Client Interface.

Executor: handles the communication with a data store.

For each data store there is at least one Executor.

Analyzer: is responsible for calculating the routing

table based on the information on previous executions.

ICARUS is designed to allow the Core and the Executor to

be executed on different nodes. Furthermore, each of these

two building blocks can be executed multiple times. This

allows load-balancing and increases the fault tolerance.

The routing table lists all known Query Classes together



Query Class Data Store A Data Store B Data Store C

1 60 % 40 % -

2 - 50 % 50 %

3 - - 100 %

4 33 % 33 % 34 %

Table I: Exemplary routing table. Here, 60 % of all Query

Class 1 queries are executed by Data Store A and

the remaining 40 % by Data Store B, whereas Query

Class 3 is only executed by Data Store C.

with the percentage of SELECT queries that should be routed

to this store. INSERT and UPDATE statements have to be

executed on all data stores and are therefore not listed in

the routing table. Table I shows an example for such a

routing table. The probability for having a query forwarded

to a certain data store solves two problems: First, a certain

parallelism can be exploited. Even if a data store does not

execute the query as fast as the fastest, its capacity can

be used to maximize throughput. Second, by executing the

query also on other data stores, ICARUS is able to adapt

to changes in the execution time. For example, the fastest

data store can get a lesser probability if its execution time

happens to be greater than the second fastest data store.

The Analyzer uses three thresholds to build the routing

table. First, the Short running to long running threshold

(SRLRT ) (in milliseconds) specifies for one Query Class,

with respect to the respective fastest data store for that Query

Class, if it is either short or long running (cf. OLTP vs.

OLAP). For example, if Query Class QC1 needs on average

63 ms to be executed on the – for this Query Class – fastest

data store and SRLRT is specified to be 1000 ms it is

considered as “short running” whereas Query Class QC2

having an average execution time of 1652 ms on its fastest

store is considered as “long running”. The averages are

calculated over a certain period of time using the simple

moving average (SMA) algorithm.

Second and third, the two similar thresholds, namely

Short running similar threshold (SRST ) and Long run-

ning similar threshold (LRST ) are required to allow the

execution of Query Classes not only on their respective

fastest data store. These thresholds specify up to which

execution times data stores are considered for the calculation

of the percentage values. SRST is applied to the previously

as “short running” classified Query Classes and LRST is

applied to the “long running” Query Classes, respectively.

The values of SRST and LRST are specified as percentage

values, more precisely as “additional percentage values”.

The resulting maximum execution time can be calculated

as follows (SRST , LRST respectively):

MaxExecTime = FastestExecTime × (1 + SRST/100)
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Figure 4: Database Schema for the Gavel Benchmark.

Extending the previous example: Let Query Class QC1

require on average 63 ms on data store A, 88 ms on data

store B and 547 ms on data store C. Also let SRLRT =
1000 ms and SRST = 100 % (allow up to twice the fastest

execution time). Then data stores which lead to an execution

time less than 126 ms are considered for the subsequent

calculation of the percentage values. Data stores exceeding

the 126 ms are ignored (here, data store C). If SRST = 0,

then only the fastest data store is considered.

V. GAVEL BENCHMARK

For evaluating the ICARUS system, we have devised a

benchmark from the Gavel scenario outlined in Section II.

The database schema can be found in Figure 4. For each

table – except for the table picture – there is a primary

key index created on the id attribute. The query templates

for the Gavel benchmark can be found on Github 1. The

missing information (e. g., the IDs) are randomly generated.

The number of queries derived from each of the templates

are taken as parameters. The order of the queries is randomly

determined.

For the benchmark, the database is prepared with test data

using the parameters shown in Table II. The five tables of the

Gavel benchmark schema contain around 90 million records

and have – exported as CSV files – a size of 4.5 GB. With

1https://gist.github.com/dbisUnibas/370dfa0a88865e9606fdbb026282e05e



Gavel Dataset

Number of categories 35

Number of users 1 500 000

Number of auctions 750 000

Length of an auction title Between 2 and 8 words

Length of auction description Between 5 and 40 sentences

Number of bids per auction Between 30 and 200

Pictures per auction Between 1 and 6

Duration of an auction 10 days

Maximum age of an auction 4 years

Table II: Properties of the Gavel test data. On average a

“word” contains 6.1 characters and a “sentence”

8.3 words.

ICARUS
ICARUS

Client

MariaDB

SSD

PostgreSQL

HDD

VoltDB

Memory

MonetDB

SSD

Node 2Node 1

Intra-Node

Communication

Inter-Node

Communication

1 Gbit/s

Figure 5: Overview of the evaluation setup with two nodes.

4.3 GB, the majority of the data is held by the bid table.

The size of the data in the other tables are: 695 MB for

auction, 157 MB for user, 124 MB for picture, and

finally 4 KB for category.

VI. EVALUATION

The evaluation of ICARUS has two goals: The first goal

is to find the best configuration of ICARUS and thereby to

show the influence of the various parameters of the ICARUS

system. The results of this parameter evaluation can be

found in Section VI-C. The second goal is to show that

the standard benchmarks TPC-C and TPC-H are not well

suited for multistore DBMSs like ICARUS and that ICARUS

increases the overall performance if compared against its

underlying data stores for the better suited Gavel benchmark

which combines elements from OLTP and OLAP. These

results are discussed in Section VI-D.

A. Evaluation Environment

The evaluation environment depicted in Figure 5 consists

out of two nodes: the node running ICARUS CLIENT per-

forming the benchmarks (Node 1) and the node on which

Gavel Benchmark

Total number of queries 10000

Percentage of Query Types

Read-only queries 75 %

Update queries 10 %

Insert queries 5 %

Semi-Analytical queries 9.8 %

Analytical queries 0.2 %

Read-only Queries

Get a random auction 20 %

Get a random bid 30 %

Get a random user 30 %

Get all bids on a random auction 7 %

Get the currently highest bid on a random auction 7 %

Search for an auction with a random search string 6 %

Update Queries

Change password of a user account 50 %

Change an auction 50 %

Insert Queries

Adding a new auction 50 %

Bid on an auction 50 %

Semi-Analytical Queries

Number of running auctions per category 10 %

The 100 next ending auctions of a category 10 %

Total number of auctions 40 %

Total number of bids 40 %

Analytical Queries

Top 10 auctions of a category by number of bids 25 %

Top 100 seller by number of auctions 25 %

Top 100 seller by revenue 25 %

Top 10 cities by number of customers 25 %

Table III: Properties of the Gavel benchmark.

ICARUS and the data stores are deployed (Node 2). Table IV

summarizes the hardware specifications of the two nodes.

As a general note: If not mentioned otherwise, there is a

warm-up phase executed before the main evaluation run.

B. Data Stores

The four data stores used by ICARUS are: i.) MariaDB 2

version 10.0.29 as a relational DBMS with the MyISAM

storage engine with a dedicated SSD as storage device,

ii.) PostgreSQL 3 version 9.5.5 as a relational DBMS with a

dedicated HDD as storage device, iii.) VoltDB 4 Community

2https://mariadb.org/
3https://www.postgresql.org/
4https://www.voltdb.com/



Hardware Specifications

CPU Intel Xeon E5-2630 v4

RAM Kingston Value RAM (4 x 32GB, DDR4-2133)

OS SSD ADATA SP600 (256GB, M.2 2242)

SSD Samsung 850 EVO Basic (4 x 500GB, 2.5 Inch)

HDD WD Red (2 x 4000GB, 3.5 Inch)

Table IV: Hardware specification of the evaluation setup.
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Figure 6: Execution time of the Gavel benchmark for dif-

ferent numbers of Client Threads.

Edition version 6.6.4 as a relational in-memory DBMS with

the Temp Table Size set to 20 GB, the Query Timeout set to

300 seconds and where every table is of type “replicated”,

and finally iv.) MonetDB 5 version 1.7 as a column-oriented

DBMS working on a dedicated SSD. Please note that

MonetDB has an Optimistic Concurrency Control [2]. To

keep MonetDB consistent with the other stores, we allow

only one writing transaction at a time being executed on

the MonetDB store, independent of the number of Executor

Threads configured.

C. Parameter Evaluation Results

Before the actual performance evaluation, we validate im-

portant parameters of ICARUS using the Gavel benchmark.

These parameters are: 1) the number of clients querying

ICARUS determining the number of clients needed to max

out ICARUS’ capacity, 2) the used Analyzer to compare the

learned with a supervised approach, and 3) the used Router

to verify the query class routing approach.

1) Number of Clients: The ICARUS CLIENT supports

running multiple Client Threads in parallel. This allows to

evaluate how ICARUS performs under concurrent workloads.

These Client Threads take their queries from a query list and

execute them. This allows to compare the runtime of the

benchmark as measurement on how well ICARUS performs

with this number of continuous requests.

5https://www.monetdb.org/
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Figure 7: Comparison of the Provided Query Class Analyzer

and the Learned Query Class Analyzer.

The result in Figure 6 depicts the execution times of the

Gavel benchmark for different numbers of Client Threads.

The evaluation shows that the system on our hardware has a

massive performance increase for the first three threads. This

has two reasons: First, if there is more than one client thread,

ICARUS does not always idle while the ICARUS CLIENT

analyzes the result of an executed query. And second,

multiple read-only queries can be executed on different

stores simultaneously, leading to a better resource utilization

of the whole system.

2) Analyzer: The Analyzer is responsible for building the

routing table based on information about previous execu-

tions. It also provides the logic for assigning Query Classes

to incoming jobs. There are currently two implementations

of ICARUS’ Analyzer interface. The Provided Query Class

Analyzer uses the Query Class provided with the request

for clustering similar queries. Instead, the Learned Query

Class Analyzer clusters the queries based on the accessed

columns, tables and operators and automatically assigns

artificial Query Classes to this groups. Because the provided

Query Classes are correctly assigned for each query in the

benchmark, the Provided Query Class Analyzer can be seen

as a reference.

In Figure 7 the results of the comparison of the two

Analyzer implementations are depicted. They show that for

the Gavel benchmark the Learned Query Class Analyzer is

not inferior in quality compared to the Provided Query Class

Analyzer and therefore confirm our approach.

3) Router: This evaluation compares the two implemen-

tations of ICARUS’ Router interface. While the All Stores

Router simply sends all jobs to all stores, the Query Class

Router forwards the jobs based on the routing table gener-

ated by the Analyzer. For this benchmark we use the Learned

Query Class Analyzer.

Figure 8 depicts the results of the evaluation. As expected,

sending the queries to all stores results in a worse perfor-

mance compared to an intelligent routing.
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Figure 8: Comparison of the Query Class Router and the

All Stores Router.

D. Performance Evaluation Results

In this section we first show on the basis of the routing

tables that the TPC-C and TPC-H benchmarks are not well

suited for multistore DBMSs. Conversely, this also means

that multistore DBMSs do not provide (much) gain for pure

TPC-H or pure TPC-C workloads since then, just one of

the optimized stores underneath can be used, relinquishing

the additional flexibility of the multistore. Following this,

we compare ICARUS against its four underlying data stores

using the Gavel benchmark and show if ICARUS is worth

its costs. Additionally, we show the speedup gained for

deploying ICARUS for different read / write ratios.

For the following performance evaluations ICARUS uses

the Learned Query Class Analyzer together with the Query

Class Router and is queried by seven Client Threads.

1) TPC-C and TPC-H: The routing table of TPC-C (see

Table V) shows that no query is executed using the column-

oriented DBMS MonetDB, whereas for the TPC-H bench-

mark all queries are executed using MonetDB (Table VI).

The reason is that, per design, both benchmarks do not

generate diverse, i. e., mixed workloads. However, multistore

DBMSs like ICARUS require benchmarks generating mixed

workloads to fully utilize different data stores so that they

can benefit from that diversity. For homogeneous workloads,

the overhead added by multistore DBMSs leads to a worse

performance compared to those data stores which are opti-

mized for that specific workload.

As a side note: All values marked in boldface font in

the TPC-C routing table (Table V) would be 100 % if the

threshold SRST = 0.

2) Gavel Benchmark: In contrast to the routing tables

for TPC-C and TPC-H, the table for the Gavel benchmark

depicted in Table VII shows a more diverse workload.

Therefore, the Gavel benchmark is better suited for mul-

tistore DBMSs allowing them to utilize the various data

stores. Since, as mentioned in Section IV, the routing

table only contains read-only Query Classes and two of

Query Class MonetDB PostgreSQL VoltDB MariaDB

1 - 51 % - 49 %

2 - 31 % 38 % 33 %

3 - 33 % 35 % 32 %

4 - 36 % 32 % 32 %

5 - 44 % 56 % -

6 - 49 % - 51 %

7 - 32 % 33 % 35 %

8 - - - 100 %

9 - 31 % 30 % 39 %

10 - 36 % 64 % -

11 - 51 % - 49 %

12 - 36 % 31 % 33 %

13 - 32 % 32 % 36 %

14 - 35 % 32 % 33 %

15 - 51 % - 49 %

16 - 38 % 29 % 33 %

17 - 32 % 30 % 38 %

18 - - - 100 %

19 - 30 % 29 % 41 %

20 - 32 % 30 % 38 %

21 - 39 % 30 % 31 %

22 - 30 % 30 % 40 %

23 - 38 % 31 % 31 %

24 - 38 % 31 % 31 %

25 - 31 % 30 % 39 %

26 - 32 % 30 % 38 %

27 - 31 % 30 % 39 %

28 - 32 % 30 % 38 %

Table V: Routing table for TPC-C and SRST = 100. The

percentage values marked in boldface font would

be 100 % if SRST = 0.

Query Class MonetDB PostgreSQL VoltDB MariaDB

1 to 14 100 % - - -

Table VI: Routing table for TPC-H and LRST = 0. All 14

queries are executed by Monet DB.

Gavel’s SELECT queries belong to the same Query Class,

Table VII has only 13 entries instead of all 18 queries of

the benchmark.

The result of the comparison of ICARUS against its

underlying data stores depicted in Figure 9 shows that

ICARUS is more than two times faster than the fastest of the

underlying data stores, MonetDB. Because the benchmarks

for the individual stores are executed by the ICARUS CLIENT

directly against the respective store, the result shows the real



Query Class MonetDB PostgreSQL VoltDB MariaDB

1 100 % - - -

2 100 % - - -

3 - - 100 % -

4 100 % - - -

5 - - - 100 %

6 100 % - - -

7 100 % - - -

8 100 % - - -

9 100 % - - -

10 - - - 100 %

11 - - - 100 %

12 - 45 % - 55 %

13 100 % - - -

Table VII: Routing table for the Gavel benchmark with

SRST = 100 and LRST = 0.
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Figure 9: ICARUS compared to its underlying data stores

using the Gavel Benchmark.

improvements gained by deploying ICARUS.

Figure 10 shows the speedup gained by deploying ICARUS

instead of using the respective fastest of the underlying data

stores. Each benchmark in this evaluation has a constant

share of 9.8 % semi-analytical and 0.2 % analytical queries

in the workload (same percentages for the individual query

types than for the other Gavel benchmarks). The percentage

of update queries in the workload is increased starting from

0 % to 90 %. The remaining queries in the workload are read-

only queries. The evaluation shows that ICARUS improves

performance also for heavily writing workloads (up to 80 %).

The possible speedup ranges from 1.1 (80 % write queries)

to 3 (0 % write queries). Even for read-heavy workloads (up

to 50 % writing queries), it is more than two times as fast

as the fastest data store.

E. Evaluation Summary

The results show that ICARUS is worth its costs as long as

the workload is diverse enough and is not too write-heavy.
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Figure 10: Speedup with ICARUS compared to the fastest of

its underlying stores for different percentages of

write workload. Semi-Analytical workload is al-

ways 9.8 % and analytical workload is 0.2 %. The

remaining parts of the workload are transactional

read queries.

Furthermore, the queries in the workload have to be derived

from a limited number of Query Classes.

The results show that pure OLTP or OLAP benchmarks

like TPC-C or TPC-H providing homogeneous workloads

are not well suited for multistore DBMSs. In contrast

to them, the Gavel benchmark provides and represents a

good use case and produces a diverse workload. Multistore

DBMSs are much better suited for such diverse workloads

since they can fully utilize the strengths of their differently

optimized underlying data stores. However, the drawback of

the Gavel benchmark is that there are not yet results from

other systems to compare with.

Note that the small fluctuations in the runtime in the above

queries are due to the random ordering of the queries and the

network communication. Therefore, we consider differences

in runtime of less than two seconds as negligible.

VII. RELATED WORK

Recently, two systems have been published that follow a

similar approach as ICARUS. ESTOCADA, introduced in [3],

[4], is a hybrid store which combines multiple data stores

with different data models and allows to query these stores

using a unified API. [5] introduces MuSQLE a multistore

DBMS, like ICARUS, build using Apache Spark [6]. It allows

queries to be executed on and optimized for multiple DBMS

engines (i. e., data store). MuSQLE’s optimizer supports cost

estimation for each individual data store allowing MuSQLE

to speedup up to an order of magnitude by selecting the best

data store for a large set of queries. However, this speedup

is only gained if the data is not located on all data stores,

i. e., it is gained if the data is split by storing the tables

in a specific engine. In contrast to that, ICARUS provides a

speedup up to three times with respect to the fastest store in

the case where the data is stored on all underlying stores.



PelotonDB [7] stores the data tuples which are frequently

accessed within an OLTP workload in a row-layout and the

other tuples in a column-layout. The system therefore also

takes the predicted workload into account.

In [8] three kinds of polyglot database architectures

are described, namely Polyglot Persistence, Lambda Archi-

tecture, and Multi-Model Databases. Polyglot Persistence

databases spread their data over multiple DBMS requiring

an integration layer in the middleware which is responsible

to split the users’ queries into sub-queries for execution and

afterwards to merge the results from the different underlying

DBMSs. The Lambda Architecture combines batch and real-

time stream processing to process data streams. Multi-Model

Databases provide different APIs for different data methods

(e. g., a graph and a document API) to work with the data

while storing the data into a single database.

The lack of a universal query language for relational

and NoSQL data stores is addressed in [9] and [10]. Both

have designed a middleware which provides a REST API

and allows to execute Create-Read-Update-Delete (CRUD)

operations on different NoSQL and relational databases.

Hybrid Data Stores are databases which are using different

storage media simultaneously. HeteroDrive [11] is an exam-

ple for such a system. HybridB tree, introduced in [12], is

a B+ tree based index for SSD / HDD-based hybrid storage

systems which reduces the random writes to the SSD without

sacrificing performance. In [13], caching policies for hybrid

database storage systems consisting of SSDs and HDDs are

introduced.

The term “Hybrid Data Store” is also used for databases

which support a row- and column-oriented data manage-

ment. An example for such a DBMS is SAP HANA [14]. In

[15] a storage advisor for SAP HANA is introduced, which

recommends the optimal store based on the data and query

characteristics. Besides the per-table decision, the tool also

considers horizontal and vertical partitioning of the data

and the placement of the partitions on different stores. [16]

outlines at the example of medical data the challenges that

arise when storing heterogeneous data in the Cloud and

proposes a hybrid row-column database architecture.

HYRISE [17], [18] is also a main-memory hybrid storage

engine. In [19], the developers of HYRISE introduce the

vision of an in-memory database storage architecture that

combines different storage types like row-wise, column-

wise, hybrid partitions and graphs in a single system.

BigDAWG, introduced in [20], is a federated database

system for multiple, disparate data models. It executes

queries using so-called islands of information. Each island

represents a data model, a query language and a set of data

management systems.

SnappyData [21] is a DBMS build on top of Apache

Spark [6] and Apache Geode 6. It provides a unified engine

6http://geode.apache.org/

for streaming, transactions, machine learning and analytics

in a single cluster.

VIII. CONCLUSION

In this paper, we have introduced ICARUS, a novel mul-

tistore database that jointly supports several heterogeneous

data stores. Based on a routing table that contains, per query

type, the best suited underlying data store, ICARUS is able

to properly forward queries for execution. The evaluation of

ICARUS on the basis of the Gavel benchmark that defines a

mixed transaction workload, i. e., a workload motivated by

an auction house scenario that jointly contains OLTP and

OLAP elements, has shown a speedup of up to a factor of

three. This speedup is based on the fact that the underlying

data stores are either optimized for short OLTP transactions

or for long-running OLAP queries – but they are not able to

cope with both at the same time. Therefore, the per-query

routing of ICARUS is able to select, for each query, the best

data store which outperforms the individual stores when used

separately.

In our future work, we plan to relax the constraint of

storing all data on all stores. Combining partial replication

and data partitioning will allow not only to increase the

performance of the individual stores, it will also reduce the

required amount of storage capacity. Moreover, we also plan

to further address the effect of different storage media and

database technologies on the performance of the multistore.

Currently, we are working on support for data stores with

other data models such as, for example, key/value stores. We

also plan to evaluate other combinations of DBMSs to find

the best trade-off between performance and storage costs for

different workloads.
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