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Abstract. A major problem in application of independent com-
ponent analysis (ICA) is that the reliability of the estimated inde-
pendent components is not known. Firstly, the finite sample size
induces statistical errors in the estimation. Secondly, as real data
never exactly follows the ICA model, the contrast function used in
the estimation may have many local minima which are all equally
good, or the practical algorithm may not always perform properly,
for example getting stuck in local minima with strongly suboptimal
values of the contrast function. We present an explorative visual-
ization method for investigating the relations between estimates
from FastICA. The algorithmic and statistical reliability is inves-
tigated by running the algorithm many times with different ini-
tial values or with differently bootstrapped data sets, respectively.
Resulting estimates are compared by visualizing their clustering
according to a suitable similarity measure. Reliable estimates cor-
respond to tight clusters, and unreliable ones to points which do
not belong to any such cluster. We have developed a software pack-
age called Icasso to implement these operations. We also present
results of this method when applying Icasso on biomedical data.

INTRODUCTION

Independent component analysis (ICA) is a general-purpose statistical model
that has been used in many applications, see [7] for a review. In data analysis
applications, it is hoped that the independent components reveal something
interesting of a multi-dimensional data set. Some recent applications include
brain imaging applications [10, 12, 20] and bioinformatics [9].

A major problem in application of ICA to data analysis is that the re-
liability of the estimated independent components is not known. The ICA



algorithm gives a specified number of components, but it is not known which
ones are to be taken seriously. In fact, most algorithms give different com-
ponents when run multiple times. This is in stark contrast to such methods
as principal component analysis, whose results are unique. One reason for
this is that most algorithms only find a local minimum of the objective or
“contrast” function they are trying to optimize.

Algorithmic uncertainty is only part of the problem. Even with algo-
rithms which are deterministic and always find the global optimum of their
objective function, the valid interpretation of the results need some analysis
of the statistical reliability or significance of the components. There are two
different reasons for this. Firstly, as real data never exactly follows the ICA
model, the contrast function used in the estimation may have many local
minima which are all equally good. The independent components are simply
not well-defined in this case. Secondly, even in the extreme where the data is
exactly generated according to the ICA model, the finite sample size induces
statistical errors in the estimation—this is the case where classical analysis
of statistical significance and confidence intervals would be needed [13].

Here, we present a tool for investigating the reliability of the indepen-
dent components. The method is based on estimating a large number of
independent components, and visualizing their clustering in the signal space.
Each estimated independent component is one point in the space. If an in-
dependent component is reliable, (almost) every run of the algorithm should
produce a point that is very close to the ideal component corresponding to the
cluster center. Thus, reliable independent components correspond to tight
clusters, and unreliable ones correspond to points which do not belong to any
cluster.

We investigate both algorithmic and statistical reliability by running the
ICA algorithm many times with different initial values, or with different
bootstrapped data sets, respectively. Obviously, randomization for ICA has
previously been used ad hoc1 (see also [13]). Our focus is on constructing
a comprehensive set of methods supported by explorative data analysis and
visualization.

Furthermore, we are able to combine information from several runs of the
algorithms and obtain a set of components (or cluster centers) that is better
than any of component sets provided by a single run. Note also that even
if we were able to compare the sets using a global goodness measure (such
as the squared reconstruction error in k-means), and choose the set that is
the best, we would thus gain no information on the reliability on each cluster
center or independent component.

We have developed a software package called Icasso2 to implement these
operations and visualize the results.

1R. Vigário, personal communication, 2003
2The MATLAB package is available at http://www.cis.hut.fi/jhimberg/icasso



METHODS

In the following sections, we explain the technical details of each phase that
is implemented in Icasso, a tool that is specialized for studying independent
component estimates. The same approach basically holds for comparing ran-
domized estimates originating from some other method when a similarity
measure between the estimates is available.

In general, Icasso consists of the following steps:

1. Parameters for the estimation algorithm(s) are selected: e.g., for Fast-
ICA the estimation approach (symmetrical or deflatory), contrast func-
tion, etc.

2. The estimation is run M times using the selected training parameters.
Each time the data is bootstrapped and/or the initial conditions of the
estimation algorithm are changed.

3. The estimates are clustered according to their mutual similarities. In
principle, the clustering method can be freely selected. We apply ag-
glomerative clustering with average-linkage criterion.

4. The clustering is visualized as a 2-D plot. The user investigates how
dense the clusters are. The clustering of the estimates is expected
to yield information on the reliability (robustness) of estimation. A
compact cluster emerges when a similar estimate repeatedly comes up
despite of the randomization.

5. The user can retrieve the estimates belonging to certain cluster(s) for
further analysis and visualization.

To complete steps 1–3 the user simply sets the FastICA parameters and
launches a resampling and clustering application. In step 4, the user explores
the clustering by launching an interactive visualization application. The user
may examine the quality of the clusters and rank them accordingly. Subse-
quently, Icasso visualizes the similarity matrix between all the estimates and
their partition into clusters in a single graph. Thus, the user can examine
relationships between estimates and clusters in detail. In step 5, the user
can retrieve any set of estimates that belong to certain cluster(s). After this,
it is up to the user’s needs what to do with the results. For example, one
can form the average or the centrotype of the estimates belonging to a single
compact cluster. This can be considered to be a more reliable estimate of a
component than an estimate from a single run of ICA algorithm.

Our criteria for selecting the specific methods for Icasso were that i)
methods for completing each subtask are well-known, ii) they support visu-
alization and explorative data-analysis, and iii) in order to avoid redundant
work, existing, publicly available building blocks should be used.3

3We use FastICA Toolbox 2.1 and SOM Toolbox 2.0 [18] for MATLAB, both freely
available from http://www.cis.hut.fi/research/software.shtml



Generating the estimates and comparing them

We consider the standard linear, noise-free ICA model x = As of independent
sources s and a mixing matrix A. However, what is often estimated in prac-
tice, is the demixing matrix W for s = Wx, where W is a (pseudo)inverse
of A [7].

The algorithm is run M times on data X = [x1 x2 . . .xN ] consisting of
N samples of k-dimensional vectors. The estimates of demixing matrices
Ŵi from each run i = 1, 2, . . . , M are collected into a single matrix Ŵ =
[ŴT

1 ŴT
2 · · ·ŴT

M ]T . If ni independent components are estimated on each

round, we get K =
∑

i ni estimates, and the size of Ŵ will be K × k.
We can resample independent component estimates by a) Randomizing

the initial condition: FastICA is run M times for the same data X, so that for
each run the algorithm starts from a new random initial condition; b) Boot-

strapping: FastICA is run M times. The initial condition is kept the same
in every run, but the data is bootstrapped every time; and c) Bootstrapping

with randomized initial condition as a combination of a) and b).
A natural measure of similarity between the estimated independent com-

ponents is the absolute value of their mutual correlation coefficients rij ,
i, j = 1, . . . , K. Straightforward calculations show that they can be obtained

as elements of R = ŴΣŴ
T

where Σ is the covariance matrix for X. The
final similarity matrix has then elements

σij = |rij |. (1)

Later, we use clustering methods and validity indices that expect dissimilar-
ities (distances) in their standard form. We transform the similarity matrix
into a dissimilarity matrix with elements dij . A simple way to make this
transformation is obviously [4]:

dij = 1 − σij . (2)

Clustering the estimates

We can partition the set of all estimates C into L disjoint clusters C =
⋃L

m=1 Cm using some basic clustering algorithm and the dissimilarity mea-
sure in Eq. 2. Agglomerative hierarchical clustering is a well-known method
for a modest number of objects [4, 5]). The tree-like hierarchy (dendrogram)
produced by agglomeration is intuitively appealing in the sense that all clus-
ters implied by lower levels of the tree are always subsets of clusters at the
higher levels. As a result, the user is able to explore and compare the dif-
ferent level(s) of clustering that are readily computed. The simplest way
to obtain a partition of L clusters from a dendrogram is to cut it at level
where L clusters are present. There are numerous reviews and studies on
the multitude of agglomeration strategies and cluster validity indices, see,
e.g., [1, 2, 4, 5, 11]. Unfortunately, there is no easy way of selecting the
optimal agglomeration strategy for a specific data, and the selection must be



based on problem specific considerations. The same applies also to selecting
a clustering validity index for determining a “natural” number of clusters [2].
Three basic agglomeration strategies that operate directly on the similarity
matrix are single-link (SL), complete-link (CL), and group average-link (AL).

Icasso uses AL as default choice of agglomeration strategy. This is be-
cause, firstly, SL is in general reported to be more sensitive for noise than
AL and CL. Secondly, in our experiments with the benchmark data revealed
that when L < k, CL starts to join clusters inconsistently.

We introduce a conservative cluster quality index Iq in Eq. 3 that reflects
the compactness and isolation of a cluster. It is computed as the difference
between the average intra-cluster similarities and average extra-cluster simi-
larities:

Iq(Cm) =
1

|Cm|2

∑

i,j∈cm

σij −
1

|Cm||C−m|

∑

i∈Cm

∑

j∈C
−m

σij , (3)

where C−m = C − Cm. Eventually Iq(Cm) is one for an ideal cluster when
Eq. 1 is used to compute σij , and decreases when Cmbecomes less compact
and isolated.

We prefer leaving the final selection of the number of clusters L to the
user who can interactively explore the results produced by different levels
of dendrogram. It is reasonable to start studying the clustering from the
number of clusters L equal to the data dimension k and investigate the values
of cluster quality index in rank order, see Fig. 1(a).

There are also quantitative indices for suggesting the clustering that best
fits to the “natural” structure of the data. We considered five such validity
indices that can be computed knowing only the dissimilarity matrix: R-index
(IR) referred in [8] and four of the Dunn-like indices in [2]. Empirical studies,
e.g., [1, 2, 11] yield often different results depending on the character of the
benchmarking data used without no clear indication of general superiority.
Our own experiments on these indices did not suggest any definitive winner
either. Currently, Icasso computes and shows R-index in its user interface,
but we note that such an index should be used only by side of the explorative
investigation.

Visualization beyond the dendrogram

Icasso provides also a tool for getting a detailed look into the clustering results
and relations between the clusters and individual estimates. The result of
the hierarchical clustering is typically presented as a dendrogram, but also
other types of visualization exist. Here, each estimate i is plotted as a point
on the display, and a convex hull bounds the estimates belonging to the same
cluster [5]. This presentation allows visualizing similarities like σij = |rij |
rather explicitly: the points are connected with lines whose thickness/color
represent the similarities between them. See Fig. 1(b).

We apply projection methods related to multidimensional scaling (MDS)
as suggested in [5] to approximate the original dissimilarities between esti-



mates by Euclidean distances in two dimensions. This should result in a
projection, where the smaller a convex hull is, the more compact the corre-
sponding cluster is. An ideal cluster should contract into a single point.

For this purpose, we compared the linear metric MDS (MMDS) [16], and
two non-linear methods: Sammon’s projection [15], and Curvilinear Compo-
nent Analysis (CCA) [3]. In addition to visual comparison, we used a trust-
worthiness index proposed in [17]. Spatial proximity is one of the strongest
visual indicators of grouping [21]. In order to be trustworthy, a projection
should be such that one can trust the visual proximity as an indicator of
similarity. The trustworthiness index in [17] is a function of the visual neigh-
borhood size, and it must be evaluated for the neighborhood sizes of interest:
according to [17] it is especially important that the trustworthiness is retained
for small neighborhoods.

According to our experiments, CCA produces more trustworthy projec-
tions than MMDS and Sammon’s method on the benchmarking data for dis-
similarity measure in Eq. 2. We considered also Self-Organizing Map (SOM)
based visualization since it is reported to be more trustworthy than many
MDS-like methods [14, 17]. However, we abandoned SOM since its regular
grid visualization forces the lines of the similarity graph to shadow each other
more than they do on a non-uniform projection.

The projection can be further controlled by modifying Eq. 2 suitably, e.g.,

d∗ij =
√

1 − σij . (4)

This spreads the distribution of the distances so that differences in size among
the most compact clusters can be seen better. For this reason, Icasso uses
transformation in Eq. 4 instead that of Eq. 2 for making the visualization,
though the resulting projection is slightly less trustworthy on the bench-
marking data. Using Eq. 4 can be additionally motivated by the fact that
for two normalized zero mean vectors ui and uj their correlation coefficient
rij = uT

i uj and their Euclidean distance ‖ ui − uj ‖∝
√

1 − rij [14]. How-
ever, for |rij | the same transformation is not guaranteed to give a distance
matrix that would exactly originate from Euclidean distances between points
in R

k.

EXPERIMENTAL RESULTS

We experimented with a biomedical benchmarking data set described in more
detail in [19]. The data consist of preprocessed signals originating from 122-
channel whole-scalp magnetoencephalographic (MEG) measurements from
brain. The original signals are band-pass filtered between 0.5 . . .45 Hz, and
the data dimension (k) is reduced from 122 to 20 using principal component
analysis in order to reduce noise and overlearning [6]. The recording lasts
about 2 minutes and contains 17730 samples. The measurements from the
brain are disturbed by signals originating from various sources: heart beat,
eye blinks and saccade, and other muscular activity—and a digital watch.



We run Icasso five times using three different settings. Setting I: random
initial conditions, kurtosis as contrast function; II: as I, but hyperbolic tan-
gent as the contrast function; and III: as I, but using both bootstrapping and
random initial conditions. Each time number of randomizations (M) was 15,
and the symmetrical approach was used in FastICA.

In the following, we present results for a particular test run from setting I.
First, we select the number of clusters L = k = 20. Fig. 1(a) shows the quality
index Iq of ranking for the clusters whose relations are visualized in Fig. 1(b).
Note how the diameter of the convex hulls representing the clusters grows
when the value of quality index Iq decreases.

We notice a knee in the graph presenting the ranked Iq when moving from
cluster #10 to #12 in Fig. 1(a). Also, the clustering validity index IR has a
local minimum for L = 13, see Fig. 3(b). Convex hulls marked A and B show
how clusters are merged if L = 13 is selected instead. The estimated source
signals for centrotypes associated to the most robust clusters #1–11 (being
outside of convex hulls A and B), are presented in quality rank order in Fig. 2.
From the previous studies, we know that source estimates #1 and #2 corre-
spond to eye movements, #3 to heart and #7 to the digital watch. Sources
#5 and #6 are related to muscular activities due to biting. As a result,
known, strong artifacts are all ranked to the top which is quite reasonable.
In repeated experiments, all top 4 estimates were always ranked 1–4 with
the first and the second only occasionally changing places. The next seven
estimates remained usually in top 11, except that estimates #5–6 related to
biting became less reliably estimated, especially in setting II. Consequently,
source #4 is extremely interesting since it is clearly well estimated—even in
repeated experiments and in other settings—but the physiological explana-
tion, if any, is not yet known. Explanations for source estimates #8–11 are
not known to the authors, either.

Fig. 3(a) shows trustworthiness of CCA, MMDS, and Sammon’s projec-
tion averaged for setting I. The closer the value of the index is to one, the
more trustworthy the projection is for that neighborhood size. It can be
seen that CCA outperforms the other methods for our benchmarking test on
small to modest neighborhoods that are of special interest according to [17].
In settings II and III, the ranking of the projection methods remains the
same.

Fig. 3(b) shows an example of disagreement between the clustering indices
in the test run. Index IR suggests 9 clusters to be the “best” level, yet another
local minimum is seen in 13 clusters, supported by the vote of Dunn-like index
ν31 for 12 clusters. On the other hand, index ν32 suggest L = 21 which is
close to the original data dimension. In repeated experiments, including other
settings, ν32 typically favors selecting close to L = k while IR and ν31 favor
fewer clusters—but there is no general tendency of IR favoring the smallest
number of clusters, as in this case. Two other Dunn-like indices ν11 (the
original Dunn’s index) and ν12 were not applicable at all: they suggested
always 2 clusters in every experiment.
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Figure 1: The cluster ranking and the similarity graph for L = 20. Panel (a)
shows the quality index Iq in rank order. Panel (b) shows similarity graph of the
estimates. Clusters are indicated by convex hulls. Labels 1–20 correspond to panel
(b). Convex hulls A and B show how clusters agglomerate further if L = 13 is
set instead of L = 20. For practical reasons, the tool uses certain heuristics for
suppressing lines. For example, if σij is smaller than a specified threshold (here
0.1) the line is not drawn.
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Figure 2: Estimated sources corresponding to centrotypes of clusters #1–11 in
Fig. 1.

CONCLUSIONS

We have developed an interactive visualization method and software package
for analyzing the reliability (robustness or significance) of estimated inde-
pendent components. The basis of the method is running an ICA algorithm
many times, and looking at the clustering of the estimated components in the
signal space. Basically, each tight cluster corresponds to a component that
can be considered reliable. Reliability has two aspects, algorithmic and sta-
tistical, which can be probed by running the algorithm with different initial
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Figure 3: Projection and clustering validity indices. Panel (a) presents the trust-
worthiness of CCA, Sammon’s projection and MMDS presented as a function of
neighborhood sizes 1–40. CCA* is obtained when Eq. 2 was used, the rest of the
graphs result from using Eq. 4. Panel (b) shows three different clustering validity
indices (ν31, ν32 and IR) computed for 2 . . . 22 clusters induced by the hierarchical
clustering. Circle shows the “best” partition according to the index. Note that
the best clustering is obtained from the minimum IR and maximum ν31 and ν32,
respectively.

values or bootstrap samples, respectively.
Finding clusters in the high-dimensional signal space involves fixing the

number of clusters to be modeled, as well as the values of other internal
parameters. Automatic determination of optimal values for these parame-
ters is a most difficult theoretical problem; ultimately, the optimal values
also depend on application-specific and subjective considerations. Therefore,
we propose an interactive method based on visualization of the clustering
structure.

The methods developed here could be applied to investigate the reliability
of many other algorithms as well, such as algorithms for estimating cluster
centerpoints (in the original data).
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