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Abstract
Conflict-Based Search (CBS) and its enhancements,
Meta-Agent CBS and bypassing conflicts are amongst the
strongest newly introduced algorithms for Multi-Agent
Path Finding. This paper introduces two new improve-
ments to CBS and incorporates them into a coherent,
improved version of CBS, namely ICBS. Experimen-
tal results show that each of these improvements fur-
ther reduces the runtime over the existing CBS-based ap-
proaches. When all improvements are combined, an even
larger improvement is achieved, producing state-of-the
art results for a number of domains.

Introduction and Overview
A Multi-Agent Path Finding (MAPF) problem is defined by
a graph, G = (V,E) and a set of k agents labeled a1 . . . ak,
where each agent ai has a start position si ∈ V and a goal
position gi ∈ V . At each time step an agent can either move
to an adjacent location or wait in its current location. The
task is to plan a sequence of move/wait actions for each agent
ai, moving it from si to gi such that agents do not conflict,
i.e., occupy the same location at the same time, while aiming
to minimize a cumulative cost function. MAPF has practical
applications in video games, traffic control, robotics etc. (see
Sharon et al. 2013; 2015 for a survey).

In this paper we focus on solving MAPF problems op-
timally, i.e., where the cost of the resulting plan must be
minimized. There is a range of algorithms that optimally
solve different variants of MAPF using various search tech-
niques [Standley, 2010; Wagner and Choset, 2011; Sharon et
al., 2013] or by compiling it into other known NP-hard prob-
lems [Surynek, 2012; Yu and LaValle, 2013; Erdem et al.,
2013]. Each of these solvers has pros and cons, with no uni-
versal winner. Which algorithm performs best under what cir-
cumstances is an open research question.

Conflict-Based Search (CBS) [Sharon et al., 2012a; 2015],
is a very effective optimal MAPF solver. CBS has two-levels.
The low-level finds optimal paths for the individual agents.
If the paths include conflicts, the high level, via a split ac-
tion (described below), imposes constraints on the conflicting
agents to avoid these conflicts.

Two improvements to CBS were suggested. First, Meta-
agent CBS (MA-CBS) [Sharon et al., 2012b; 2015] general-
izes CBS by merging small groups of agents into meta-agents

when beneficial. The main merge policy is to merge agents
for which the number of conflicts seen so far exceeds a given
threshold B; for good choices of B, MA-CBS reduces the
runtime. Second, the bypass (BP) improvement to (MA)CBS
(i.e., CBS with or without applying the optional merge action)
was recently suggested [Boyarski et al., 2015]. (MA)CBS ar-
bitrarily chooses paths in the low-level. When BP is added on
top of (MA)CBS we first try to find an alternative path (by-
pass) for one of the conflicting agents thus avoiding the need
to perform a split and to add new constraints. (MA)CBS+BP
further reduces the running time. A variant of CBS that solves
MAPF suboptimally also appeared [Barer et al., 2014].

In this paper we introduce Improved-CBS (ICBS) which
further adds two new improvements to (MA)CBS+BP. Each
of these improvements is strongly tied to one of the former
improvements (MA and BP) as follows:

• (1) Merge and restart. (MR) In MA-CBS, agents are
merged locally at each node of the search tree. Instead,
when a decision to merge is made, we suggest to restart
the search from scratch, with the new merged meta-agent
treated as a single agent for the entire search tree.

• (2) Prioritizing conflicts. (PC) (MA)CBS (even with
BP added) arbitrarily chooses which conflict to split.
Poor choices may increase the size of the high-level
search tree. To remedy this, we prioritize the conflicts
according to three types: cardinal, semi-cardinal and
non-cardinal. Cardinal conflicts always cause an in-
crease in the solution cost, so ICBS chooses to split
cardinal conflicts first. Additionally, bypasses to cardi-
nal conflict cannot exist. Therefore, the optional BP im-
provement [Boyarski et al., 2015] should only be applied
for semi- or non-cardinal conflicts.

All four enhancements to CBS (i.e., MA-CBS, BP, PC and
MR) are optional and can be added separately or in conjunc-
tion with the others, except for MR which is only relevant to
MA-CBS. In this paper we show how to combine them all
into a coherent improved version of CBS, namely ICBS.

Experimental results show that MR and PC each provide
a significant speedup over the previous best CBS variant,
namely (MA)CBS+BP [Boyarski et al., 2015]. Even further
speedup is achieved when both improvements are combined
and ICBS outperforms other related algorithms in many cases
where previous variants of CBS performed poorly.
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Algorithm 1: High-level of ICBS
1 Main(MAPF problem instance)
2 Init R with low-level paths for the individual agents
3 insert R into OPEN
4 while OPEN not empty do
5 N ← best node from OPEN // lowest solution cost
6 Simulate the paths in N and find all conflicts.
7 if N has no conflict then
8 return N.solution // N is goal

9 C ← find-cardinal/semi-cardinal-conflict(N ) // (PC)
10 if C is not cardinal then
11 if Find-bypass(N , C) then // (BP)
12 Continue

13 if should-merge(ai, aj) then // Optional, MA-CBS:
14 aij = merge(ai,aj)
15 if MR active then // (MR)
16 Restart search

17 Update N.constraints()
18 Update N.solution by invoking low-level(aij)
19 Insert N back into OPEN
20 continue // go back to the while statement

21 foreach agent ai in C do
22 A← Generate Child(N, (ai, s, t))
23 Insert A into OPEN

24 Generate Child(Node N , Constraint C = (ai, s, t))
25 A.constraints← N.constraints+ (ai, s, t)
26 A.solution← N.solution
27 Update A.solution by invoking low level(ai)
28 A.cost← SIC(A.solution)
29 return A

The Conflict Based Search Algorithm (CBS)
A sequence of individual agent move/wait actions leading an
agent from si to gi is referred to as a path, and the term solu-
tion refers to a set of k paths, one for each agent. A conflict
between two paths is a tuple 〈ai, aj , v, t〉 where agent ai and
agent aj are planned to occupy vertex v at time point t. A
solution is valid if it is conflict-free. The cost of a path is the
number of actions in it (including wait), and the cost of a so-
lution is the sum of the costs of its constituent paths.

In CBS, agents are associated with constraints. A con-
straint for agent ai is a tuple 〈ai, v, t〉 where agent ai is pro-
hibited from occupying vertex v at time step t. A consistent
path for agent ai is a path that satisfies all of ai’s constraints,
and a consistent solution is a solution composed of only con-
sistent paths. Note that a consistent solution can be invalid if
despite the fact that the paths are consistent with the individ-
ual agent constraints, they still have inter-agent conflicts.

The high-level of CBS searches the constraint tree (CT).
The CT is a binary tree, in which each node N contains: (1)
A set of constraints imposed on the agents (N.constraints),
(2) A single solution (N.solution) consistent with these con-
straints, (3) The cost of N.solution (N.cost).

The root of the CT contains an empty set of constraints.
A successor of a node in the CT inherits the constraints of
the parent and adds a single new constraint for a single agent.

Figure 1: An MAPF instance and two possible CTs

N.solution is found by the low-level search described below.
A CT node N is a goal node when N.solution is valid, i.e.,
the set of paths for all agents has no conflicts. The high-level
of CBS performs a best-first search on the CT where nodes
are ordered by their costs (N.cost).

Processing a node in the CT: Given a CT node N , the
low-level search is invoked for individual agents to return
an optimal path that is consistent with their individual con-
straints in N . Any optimal single-agent path-finding algo-
rithm can be used by the low level of CBS. We used A* with
the true shortest distance heuristic (ignoring constraints).1

Once a consistent path has been found (by the low level)
for each agent, these paths are validated with respect to the
other agents by simulating the movement of the agents along
their planned paths (N.solution). If all agents reach their
goal without any conflict, N is declared as the goal node,
and N.solution is returned. If, however, while performing
the validation, a conflict is found for two (or more) agents,
the validation halts and the node is declared as non-goal.

Resolving a conflict - the split action: Given a non-goal
CT node, N , whose solution, N.solution, includes a conflict,
〈ai, aj , v, t〉, we know that in any valid solution at most one
of the conflicting agents, ai or aj , may occupy vertex v at
time t. Therefore, at least one of the constraints, 〈ai, v, t〉 or
〈aj , v, t〉, must be satisfied. Consequently, CBS splits N and
generates two new CT nodes as children of N , each adding
one of these constraints to the previous set of constraints,
N.constraints. Note that for each (non-root) CT node the
low-level search is activated only for one agent – the agent
for which the new constraint was added.

CBS Example: Pseudo-code for CBS is shown in Algo-
rithm 1. It is explained by the example in Figure 1(I). The
mice need to get to their respective pieces of cheese. The
shaded lines (9-20) are all optional (except for part of line
9; find-conflict is mandatory) and include: the merge action
for the optional MA-CBS (lines 13-20), the BP improve-

1Ties between low-level nodes are broken using a conflict-
avoidance table (CAT) [Standley, 2010] which keeps track of the
conflicts between agents. Paths with fewer conflicts are preferred.
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ment (lines 11-12) as well as the two new improvements (PC:
lines 9-10, MR: 15-16), each discussed in its own section
below. The corresponding CT is shown in Figure 1(II). The
root (R1) contains an empty set of constraints and the low-
level returns path P1 = 〈S1, A,C,G1〉 for agent a1 and path
P2 = 〈S2, B, C,G2〉 for agent a2 (line 2). Thus, the total
cost of R1 is 6. R1 is then inserted into OPEN and will be
expanded next. When validating the two-agents solution (line
6), a conflict 〈a1, a2, C, 2〉 is found. As a result, R1 is de-
clared as non-goal. R1 is split and two children are generated
(via the generate-child() function, also shown in Algorithm 1)
to resolve the conflict (line 22). The left child U adds the con-
straint 〈a1, C, 2〉 while the right child V adds the constraint
〈a2, C, 2〉. The low-level search is now invoked (line 27) for
U to find an optimal path for agent a1 that also satisfies the
new constraint. For this, a1 must wait one time step at S1 and
the path 〈S1, S1, A,C,G1〉 is returned for a1. The path for a2,
〈S2, B,C,G2〉, remains unchanged in U . Since the cost of a1
increased from 3 to 4 the cost of U is now 7. In a similar way,
the right child V is generated, also with cost 7. Both children
are added to OPEN (line 23). In the final step U is chosen for
expansion, and the underlying paths are validated. Since no
conflicts exist, U is declared as a goal node (lines 6-8) and its
solution is returned.

Meta-agent merging improvements
In this section we deal with improvements that are based on
merging agents into a meta-agent. We first describe the basic
merge operation and then provide our new improvement.

Previous work: MA-CBS
MA-CBS(B) [Sharon et al., 2012b; 2015] generalizes CBS
by adding the option to merge the conflicting agents ai and
aj into a meta-agent (Lines 13-20) instead of the split action.
A meta-agent is logically treated as a single composite agent,
whose state consists of a vector of locations, one for each in-
dividual agent. A meta-agent is never split in the subtree of
the CT below the current node; it may, however, be merged
with other (meta)agents into new meta-agents. The follow-
ing actions are performed for a new meta-agent. (1) The con-
straints from the two merged agents are unified (Line 17, see
[Sharon et al., 2012b; 2015] for details). (2) We now call the
low-level search again for this new meta-agent only (Line
18), as nothing has changed for the other agents that were
not merged. In fact, the low-level search for a meta-agent of
size M faces an optimal MAPF problem for M agents, and is
solved with any coupled MAPF solver (e.g., A*).
Merge policy: The optional merge action is performed
only if the should-merge() function returns True (Line 13).
Many merging policies are possible for the should-merge()
function. [Sharon et al., 2012b; 2015] presented a simple,
experimentally-effective merge policy. Two agents ai and aj
are merged into a meta-agent aij if the number of conflicts
between ai and aj seen so far during the search exceeds a pre-
defined parameter B. Otherwise, a regular split is performed.
This merge policy is denoted by MA-CBS(B). MA-CBS was
shown to outperform CBS (without the merge option).

ICBS Improvement 1: Merge and Restart
Drawback
Merging agents into meta agents reduces the size of the CT
at the cost of higher computational effort by the low-level
solver. In MA-CBS this tradeoff is handled ad-hoc by requir-
ing B splits before performing a merge. Nevertheless, MA-
CBS may still duplicate much search effort.

As an example, consider a problem with only two agents
(a1, a2). Suppose the agents were merged after encounter-
ing B conflicts and performing B split actions. At this point
OPEN contains B + 1 CT nodes. A merge action may now
be activated in all these nodes as the number of seen conflicts
between these agents already exceeds B. As a result, exactly
the same merge action (with the same meta-agent low-level
searches) will be duplicated B + 1 times for all these nodes
when they appear at the top of OPEN. Each of these merges
produces identical CT nodes, i.e., one meta-agent a1,2 and no
constraints (as all internal constraints between a1 and a2 are
deleted; see [Sharon et al., 2015] on merge action details).2

Remedy
Had we known that a pair of agents are due to be merged, sig-
nificant computational effort would have been saved by per-
forming the merge ab-initio, at the root node of the CT. This
“clairvoyant” merging policy is clearly observed to dominate
MA-CBS(B) in auxiliary experiments we performed for vari-
ous values of B. Naturally, “clairvoyant” is not realizable. In-
stead, we suggest a simple ad-hoc merge policy with a good
balance between simplicity and effectiveness. Once a merge
decision has been reached inside a CT node N , discard the
current CT and restart the search from a new root node, where
these agents are merged into a meta agent at the beginning of
the search. We call this the merge and restart (MR) scheme.
It is optionally applied in lines 15-16 of Algorithm 1.

MR is simple to implement, and saves much effort dupli-
cated in the multiple CT nodes. In our example we would
initially still generate B + 1 copies of the same problem,
but then restart and only solve one instance of the problem
for the meta-agent, thereby reducing the low-level effort for
meta-agent a1,2 by a factor of B. In contrast, MR might lose
information when more agents are considered. For example,
if our problem also contained a third agent a3, which already
conflicted with a1 before the formation of meta-agent a1,2
then split actions between a1 and a3 were also performed.
Once a1 and a2 are merged, the entire process restarts and all
constraints imposed on a3 may have to be rediscovered.

Nevertheless, in most cases the gains outweigh the addi-
tional overhead. As it is very hard to model these quantities
theoretically, we tested MR empirically (Section ), and indeed
it speeds up the search by a significant factor.

Improvements on the split action
CBS is very sensitive to the paths found by the low level and
to the conflicts chosen for the splits. To this end we first sum-

2Duplicate detection and pruning can be applied in this extreme
example because it only includes agents a1 and a2. But in general,
when other agents exist this is not possible.
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Figure 2: (I) MAPF instance (II) CT (III) Alternative CT

marize a previously published improvement (BP) and then
introduce the new improvement (PC).

Previous work: the bypass improvement (BP)
[Boyarski et al., 2015] introduced the bypass improvement

(BP), which improves the low-level paths in a number of
ways, thereby reducing the CT size. Here, we summarize the
simplest variant and use it to build the final Improved-CBS.

Drawback
Consider Figure 2(I). Suppose that at the root of the CT
(R1) the low-level is first activated for a2 and that path
P2 = 〈S2, B,D, F,G2〉 is found. a1 uses the conflict avoid-
ance table (CAT, described above) and finds path P1 =
〈S1, A,C,E,G1〉. There are no conflicts between these two
paths and R1 is declared as the goal as shown in Figure 2(II).

Now suppose that a1 goes first and finds path P ′1 =
〈S1, B,D, F,G1〉. Suppose that a2 then finds path P ′2 =
〈S2, B,D,E,G2〉 as shown in the root (R2) of Figure 2(III).
At R2 two conflicts are found C1 = 〈a1, a2, B, 1〉 and C2 =
〈a1, a2, D, 2〉. Suppose that C1 is chosen for a split at R2. The
left child M is generated with path P1 = 〈S1, A,C,E,G1〉
(cost 8) and both conflicts (C1 and C2) are resolved. But M
includes another conflict C3 = 〈a1, a2, E, 3〉. Since a1 must
be at E at time step 3 then in its left child O, a1 is forced to
wait and a cost of 9 is achieved. In its right child P a2 will
choose path P2 = 〈S2, B,D, F,G2〉 which is the goal node.

We showed two scenarios. In the first, a single CT node
was generated while in the second scenario 5 CT nodes were
generated only due to poor choices of the paths at the root.

Remedy: Bypassing Conflicts
It is sometimes possible to prevent a split action and bypass
the conflict by modifying the chosen path of one of the agents.
For this we first make the following definitions.
(1) For each CT node N we use N.NC to denote the total
number of conflicts of the form 〈ai, aj , v, t〉 between the paths
in N.solution. Calculating N.NC is trivial.
(2) A path P ′i is a valid bypass to path Pi for agent ai with
respect to a conflict C = 〈ai, aj , v, t〉 and a CT node N , if
the following conditions are satisfied: (i) Unlike Pi, P ′i does
not include conflict C, (ii) cost(P ′i ) = cost(Pi) and (iii) Pi

and P ′i are both consistent with N.constraints.

(3) Adopting path P ′i by a CT node N means replacing Pi

with a valid bypass P ′i for agent ai.
(4) Adopting a valid bypass may introduce more conflicts
compared to the original path and potentially lead to worse
overall runtime. Thus, we only allow adopting bypasses that
reduce N.NC. These are called helpful bypasses.

Bypassing conflicts (BP): For a given CT node N , BP
peeks at either of the immediate children of N in the CT (by
invoking generate−child(), presented in Algorithm1). If the
path of a child includes a helpful bypass for the conflict of N
this path is adopted by N without the need to split N and add
new nodes to the CT. This can potentially save a significant
amount of search due to a smaller size CT. BP is optionally
added to the CBS pseudo code (lines 11-12 in Algorithm 1).

Example: consider again the root R2 of Figure 2(III). R2
is split into two nodes as described above. In the left child M
agent a1 finds path P1 = 〈S1, A,C,E,G1〉. However, R2
can adopt path P1 for agent a1. P1 is a valid bypass because
it does not include conflict C1 = 〈a1, a2, B, 1〉 which caused
the split. In addition, it is a helpful bypass because R2.NC =
2 (conflicts C1 and C2) but after adopting the path from M ,
R2.NC will decrease to 1 (conflict C3). Now, instead of a CT
with 5 nodes we get a CT with only 3 nodes.

While processing a node N , BP incurs no extra overhead
due to peek operations. Basic CBS generates both children
and adds both to OPEN. In the worst case when both peek op-
erations fail, BP does exactly the same as CBS, i.e., generates
and adds these children to OPEN. But if one of these nodes is
found helpful then BP adds no new nodes to OPEN and might
even avoid the need to generate and run a low-level search for
the 2nd child if the first child includes a helpful bypass.

Additionally, note that node N in its ”new suit”, i.e., after
adopting a path, will now be the best node in OPEN and will
be chosen for expansion next.3 Therefore, if it has a helpful
child again then BP will be repeated here. In fact, the next
real split will occur only when a bypass call fails.

ICBS Improvement 2: Prioritize Conflicts (PC)
Drawbacks of (MA)CBS and (MA)CBS+BP
To guarantee optimality, CBS expands nodes in a best-first
order according to the cost function. While A* expands all
nodes with f < C∗ (= the optimal solution cost) to guaran-
tee optimality of the solution no such mandatory nodes are
known for CBS. Consequently, CBS (even with BP) is very
sensitive to the conflicts chosen to split on, as these can sig-
nificantly influence the number of CT nodes. In its basic form,
CBS arbitrarily picks a conflict for splitting (e.g., the first one
seen). This can lead to poor performance and CBS can be
stuck in an area with similar cost as demonstrated below.

Remedy: Splitting cardinal conflicts first
To address this drawback we distinguish between three types
of conflicts and show that prioritizing them may immediately
increase the solution cost in the sub-tree below the current
node thereby significantly reducing the size of the CT.

3A mechanism like immediate expand [Stern et al., 2010] which
bypasses OPEN can be efficiently activated here.
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• (1) Cardinal conflict. A conflict C = 〈a1, a2, v, t〉 is
cardinal for a CT node N if adding any of the two con-
straints derived from C (〈a1, v, t〉, 〈a2, v, t〉) to N and
invoking the low-level on the constrained agent, the cost
of its path is increased when compared to its cost in N .
An equivalent definition is that C is cardinal if all the
consistent optimal paths for both a1 and a2 include lo-
cation v at time step t. For example, in Figure 1(I) the
conflict 〈a1, a2, C, 2〉 is cardinal. None of the agents has
a path to its goal of length 3 which doesn’t pass through
C in time step 2. Therefore, one of these agents must
travel more than three steps in order to resolve this con-
flict.
• (2) Semi-cardinal conflict. A conflict C = 〈a1, a2, v, t〉

is semi-cardinal for a CT node N if adding one of
the two constraints derived from C increases N.cost
but adding the other leaves N.cost unchanged. Equiv-
alently, C is semi-cardinal if all the consistent optimal
paths of one agent include location v at time step t, but
the other agent has such a path that does not include v
at time step t. For example, the conflict 〈a1, a2, B, 1〉
in Figure 1(I) is semi-cardinal (assuming the paths are
P1 = 〈S1, B,C,G1〉 and P2 = 〈S2, B,C,G2〉). a2
must use B at time step 2, but a1 can choose A instead.
• (3) Non-cardinal conflict. A conflict C = 〈a1, a2, v, t〉

is non cardinal for a CT node N if neither of the two
constraints derived from C causes an increase of N.cost.
For example, in Figure 1(I), if the dotted lines (path
through D) are enabled then the conflict 〈a1, a2, B, 1〉
is non-cardinal. Now agent a2 can choose to go via node
D at the same cost.

We now make the following observations: (1) If a cardinal
conflict exists for CT node N then the cost of a valid solution
below N must be greater than N.cost. (2) In any best-first
search increasing a lower bound of a node in OPEN is bene-
ficial as this lower bound is more informed.

Prioritization of conflicts (PC):
This new improvement works as follows. When a node N
with N.cost = c is chosen for expansion by CBS, we ex-
amine all its conflicts. If a cardinal conflict is encountered,
it is immediately chosen for the split action. This generates
two children with cost > c. In this case if another node N ′

in OPEN has cost c, then N ′ can be immediately chosen for
expansion next without further developing nodes below N .4
In contrast, if a cardinal conflict exists but instead we choose
a semi-cardinal or a non-cardinal conflict, we may generate
a large subtree below N with the same cost c. Furthermore,
the cardinal conflict will reappear in all of the nodes in the
subtree below N until it is chosen and resolved.

To illustrate this, consider again Figure 1(I) (assuming the
paths chosen at R1 are P ′1 = 〈S1, B,C,G1〉 and P2 =
〈S2, B,C,G2〉). Two conflicts exist in the root node: a semi-
cardinal conflict C1 = 〈a1, a2, B, 1〉 and a cardinal conflict
C2 = 〈a1, a2, C, 2〉. If C2 were chosen (Figure 1(II)) the

4Based on this, our optimized implementation pushes N back
into OPEN with the new cost without even generating the two chil-
dren. This proved beneficial in our experiments.

costs increase immediately and the left child is declared as
the goal. In contrast, Figure 1(III) illustrates the case where
C1 is chosen. In a simple implementation, it will be chosen
as it is seen first. In its left child M the constraint (a1, B, 1)
is added and a1 will choose the path P1 = 〈S1, A,C,G1〉.
However, the cardinal conflict C2 still exists and will be again
chosen for a split. There are 5 nodes in the corresponding CT
(Figure 1(III)). In contrast, the CT of Figure 1(II) has 3 nodes.

If no cardinal conflicts exist, the next preference is to
choose semi-cardinal conflicts. Here, we know that the cost
of at least one child will immediately increase. Finally, if only
non-cardinal conflicts exist, one of them is chosen arbitrarily.

PC is shown in line 9, where we seek a cardinal/semi-
cardinal conflict. [Boyarski et al., 2015] suggested to apply
BP for every conflict. However, in this paper we note that
valid bypasses (with the same cost) can only be found for
semi- or non-cardinal conflicts but not for cardinal conflicts.
Therefore, in ICBS BP is applied more conservatively: with a
cardinal conflict, we jump to line 13 and BP is not activated.
Otherwise (only semi- or non-cardinal conflicts were found)
we continue with the pseudo code allowing to perform BP on
the chosen conflict.

Identifying a cardinal conflict using MDDs
The multi-value decision diagram MDDc

i
[Sharon et al.,

2013] is a DAG which compactly stores all possible paths
of given cost c for a given agent ai while completely ignor-
ing the other agents. Nodes of the MDD can be distinguished
by their depth below the source node. Every node at depth t
of MDDc

i corresponds to a possible location of ai at time t
that is on a path of cost c from si to gi. MDDc

i has a sin-
gle source node at level 0, corresponding to agent ai located
at si at time t0, and a single sink node at level c, which cor-
responds to agent ai located at gi at time tc. The nodes of
MDD3

1 which corresponds to paths of length 3 for agent a1
have a small black circle in their lower part in Figure 1(I).
Observation: If, for a CT node N with N.cost = c, there
exists a cardinal conflict C of the form 〈ai, aj , D, t〉, then the
widths of MDDci

i and MDD
cj
j at time-step t must be 1.

Therefore, to find cardinal conflicts in CT node N we
iterate over all conflicts C in N and test each conflict
C = 〈ai, aj , D, t〉 for cardinality by building MDDci

i and
MDD

cj
j (ci is the cost of path of ai in N.cost) and check-

ing whether their width at depth t is 1. This is repeated un-
til a cardinal conflict is found or all the conflicts in N have
been checked. If no cardinal conflict is found, a semi cardinal
conflict is chosen if it was encountered during the iteration.
Otherwise, a non-cardinal conflict is arbitrarily chosen.

Maintaining and checking all MDDs incurs an overhead
per CT node. But, this pays off in dense environments with
many bottlenecks where many cardinal conflicts exist.5
Meta-agent conflicts. Building an MDD for meta-agents is
expensive. Therefore in our implementation for MA-CBS we
first build MDDs for meta-agents of size 1 (individual agents)
which participate in a conflict. If a cardinal conflict was not

5In a practical implementation MDDs can be reused from parents
when applicable. In addition, to find a cardinal conflict quickly, we
check MDDs of agents in decreasing order of the number of conflicts
in which they participate.
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Figure 3: CBS variants: (a) success rate (b) runtime and nodes. MA-CBS variants: (c) success rate (d) runtime and nodes

found, we then try to find cardinal or semi-cardinal conflicts
for larger meta-agents. We do this by logically generating the
two children of the conflict and observing their costs.

Experimental Results
We performed extensive experiments on many possible pa-
rameter settings of the environment and of internal algorith-
mic parameters. We report representative results. First, we
concentrate on each of our improvement alone compared to
previous CBS solvers. We then take our best CBS variant
(ICBS) and compare it to other known MAPF solvers.

The code for all the experiments was written in C# and all
our experiments were conducted on Amazon Elastic Compute
Cloud C4 servers running Microsoft Windows Server 2012
R2. Each High frequency Intel Xeon E5-2666 v3 (Haswell)
processor operates at 2.9GHz, and has 3.33GB of RAM.

Each improvement vs. baseline
Our first experiment compares PC and MR against the cor-
responding baseline, i.e., CBS+BP and MA-CBS+BP, re-
spectively.6 Figure 3(a) shows the success rate (=number of
instances solved by each algorithm within 5 minutes) for
CBS, CBS+BP, CBS+PC and CBS+PC+BP (both improve-
ments) on 8x8 4-connected grids with 15% obstacles aver-
aged on 100 random instances.7 CBS+PC clearly outperforms
CBS+BP [Boyarski et al., 2015], the previous best CBS vari-
ant. CBS+PC+BP even further increases the success rate. Fig-
ure 3(b) presents a table with the runtime (in ms) and num-
ber of generated CT nodes averaged over those instances that
were solved by all the algorithms (=success rate of CBS).
CBS+BP (=previous state-of-the-art CBS solver) serves as
the baseline (the ’BP’ column) and the other columns present
percentages (%) relative to CBS+BP . Clearly CBS+PC and
CBS+PC+BP outperform CBS+BP by up to a factor of 5 on
this set. The improvement in nodes is nicely reflected in the

6We followed Sharon et al. [2013; 2015] and for this experiment
we activate the Independence Detection framework [Standley, 2010]
in a preprocessing level and identify problem instances for which
the agents are dependent. These were called type 1 experiments by
Sharon et al. [2013; 2015].

7The starting positions for agents were chosen randomly and
their goal positions were chosen by a 100000-step random walk
from the starting position.

runtime (e.g., 17% vs. 21%). This suggests that the overhead
per node for PC and for BP is minor.

Figure 3(c,d) shows the success rate and runtime/nodes
results when comparing MA-CBS(64)+BP to MA-CBS(64),
MA-CBS(64)+MR and MA-CBS(64)+BP+MR on a 20x20
empty grid. Here too, the percentages are relative to MA-
CBS(64)+BP. Again, the advantage of adding MR can be
clearly seen in all measures. Importantly, note that here, the
runtime improvement of MR is larger than the improvement
in nodes. This is because by restarting, MR cancels many CT
nodes that have heavy computations.

Comparison with other algorithms

Figure 4: Comparison of all algorithms, DAO maps

Finally, based on extensive experiments we fine-tuned
a number of leading algorithms with the best parameters.
We compare ICBS(25) (=MA-CBS(25)+BP+PC+MR), to the
following other MAPF solvers: (1) MA-CBS(25)+BP, the
best former CBS variant. (2) MA-CBS(25) (3) EPEA* [Fel-
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ner et al., 2012; Goldenberg et al., 2014], an enhanced ver-
sion of A* designed for cases with large branching fac-
tors, the best A* variant. (4) ICTS+p [Sharon et al., 2013;
2011], the best ICTS variant.

Figure 4 presents the success rate (left) and runtime
(right) for the three standard benchmark maps (brc202d:top,
ost003d:middle, den520d:bottom) of the game Dragon Age:
Origins (DAO) [Sturtevant, 2012] that were used by Sharon
et al. [2013; 2015], 100 instances per map.8

In all three maps, ICBS is clearly the best CBS variant and
it clearly outperforms the previous best CBS variant, namely
MA-CBS+BP. ICBS is also the best algorithm amongst the
ones compared here in runtime. ICBS is also the best in suc-
cess rate for brc202d and for den520d. In ost003d there is a tie
between ICBS, EPEA* and ICTS in the success rate. In this
map the number of conflicts is very large due to open spaces
(see [Sharon et al., 2015]). Thus, the previous CBS variants
spawn a very large CT in this map and were worse than the
other algorithms. But, ICBS provides a great improvement
and was able to tie with the other algorithms on this map. It
is important to note that no MAPF solver is best across all
circumstances and all topologies.

Conclusions and Future Work
When CBS is used, adding all our improvements proved ben-
eficial. ICBS is the best or ties with other solvers as demon-
strated empirically on standard benchmarks. Future work
will: (1) Further study the attributes and the relations between
these enhancements. (2) Find a better merge policy than a
fixed B parameter. (3) Compare and better understand the
pros and cons of the various MAPF algorithms under differ-
ent circumstances.
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