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Abstract

Numerical icing simulations on finite wings are performed using a quasi-3D

approach. The solution method consists of computations of the flowfield using

the Hess-Smith panel method, droplet trajectories, droplet collection efficiencies,

convective heat transfer coefficients and finally ice accretion rates and ice shapes.

Inputs to the problem are the ambient temperature Ta , freestream velocity V∞,

liquid water content of air ρa , droplet diameter dp, total icing time texp, angle of

attack α and the wing geometry. Droplet trajectories are calculated by integrating

the differential equations of motion for the droplets over time. Droplet impact

locations and collection efficiencies are thus determined. Convective heat transfer

coefficients are calculated using empirical relations and the solutions of the 2-D

integral boundary layer equations. Extended Messinger Method is employed for

the prediction of the ice accretion rates. At low temperatures and liquid water

contents rime ice occurs and the ice thickness is obtained using an algebraic

equation. At higher temperatures and liquid water contents, glaze ice forms for

which the energy and mass conservation equations are combined to yield a first

order ordinary differential equation, solved numerically. In this case, a thin layer

of water is present over a layer of ice and effects of runback water are accounted

for. A computer code is developed using the outlined theory, which is validated

with experimental ice shapes reported in the literature. Ice shapes are obtained for

a wing having taper, twist, dihedral and sweep.

Keywords: ice accretion simulation, Messinger Method, droplet collection

efficiency, rime ice, glaze ice.
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1 Introduction

Ice accumulation on parts of the airframe during flight is one of the fundamental

problems of aviation. Ice growth on wings, tail surfaces, fuselage, etc. result in

severe performance degradation. For example, modification of the wing shape due

to ice accumulation results in lift reduction together with increases in drag and

weight. Ice formation on control surfaces and stabilizers results in serious and

unpredictable degradations in the control characteristics of airplanes. Therefore, it

is important to be able to simulate the effects of icing on performance and flight

characteristics.

Messinger’s study [1] is an important milestone in numerical ice accretion

simulation. Increases in capacities and speeds of digital computers in the 1970s

allowed theoretical and numerical researchers to analyze realistic geometries such

as airfoils, wings and helicopter rotor blades.

In a review paper, Gent et al. [2] present the background and the status of

analysis developed to address the problem of icing on aircraft. Methods for

water droplet trajectory calculation, ice accretion prediction and aerodynamic

performance degradation are discussed.

Myers [3] presents a one-dimensional mathematical model describing ice

growth, which is an extension of the original Messinger model. It is shown that

the model can also be extended to two and three-dimensions and it is the two-

dimensional extension that is employed in the current study.

Potapczuk and Bidwell [4] report an effort to develop a three-dimensional ice

accretion modeling. Three-dimensional flowfield methods and particle trajectories

are combined with two-dimensional ice accretion calculations.

Mingione et al. [5] discuss a three-dimensional ice accretion code. Ice accretion

on the NASA MS-317 30◦ swept wing and on the Agusta A109 air intake

protection grid are evaluated.

In this article, Section 2 summarizes the approaches used for problem formula-

tion and the solution method. Methods used for computing the flowfield, droplet

trajectories, collection efficiencies and convective heat transfer coefficients are

explained. Extended Messinger Method is outlined in the same Section. Section 3

is devoted to code validation and presentation of the results. Finally, Section 4

summarizes the study and makes recommendations for future work.

2 Problem formulation and solution method

2.1 Flowfield solution

In order to determine the pressure distribution around the wing and provide the

air velocities required for droplet trajectory calculations, 3-D Hess-Smith panel

method is employed [6]. The pressure distribution around the wing is also used

for boundary-layer calculations in order to determine the convective heat transfer

coefficients.
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2.2 Droplet trajectories and collection efficiencies

The following assumptions are made for the formulation of the 3-D equations of

motion for the water droplets:

• Droplet sizes are small, hence remain spherical,

• The flowfield is not affected by the presence of the droplets,

• Gravity and aerodynamic drag are the only forces involved.

These assumptions are valid for dp ≤ 500 µm. The governing equations are:

mẍp = −Dcosγ1, (1)

mÿp = −Dcosγ2, (2)

mz̈p = −(Dcosγ3 + mg), (3)

where

γ1 = tan−1 ẋp − Vx

Vrel

, γ2 = tan−1 ẏp − Vy

Vrel

, γ3 = tan−1 żp − Vz

Vrel

, (4)

Vrel =

√

(ẋp − Vx)2 + (ẏp − Vy)2 + (żp − Vz)2, (5)

D = 1/2ρV 2
relCDAp. (6)

Vx , Vy and Vz are the flowfield velocity components at the droplet location

obtained from the flowfield solution, while ẋp, ẏp, żp, ẍp, ÿp and z̈p are the

components of the droplet velocity and acceleration. Ap is the droplet cross-

sectional area. The drag coefficients of the droplets are calculated using the

following drag law [2]:

CD = 1 + 0.197Re0.63 + 2.6 × 10−4Re−1.34, Re ≤ 3500,

CD = (1.699 × 10−5)Re1.92, Re > 3500,
(7)

where Re = ρVreldp/µ is the Reynolds number based on droplet diameter dp

and relative velocity Vrel. The droplet impact pattern on the wing determines the

amount of water that impinges on the surface and the region subject to icing. The

local collection efficiency is defined as the ratio, of the area of impingement to

the area through which water passes at some distance upstream of the wing. The

three-dimensional collection efficiency can be defined as β = Ao/A, where Ao

is the area constituted by four droplets in the release plane, while A is the area

of impingement constituted by the same four droplets neighboring a control point.

Figure 1 shows the computed particle trajectories and how the collection efficiency

is calculated.

2.3 Convective heat transfer coefficients

After flowfield and droplet trajectory calculations, the wing is divided into span-

wise strips. Boundary-layer and icing calculations are performed for each of these
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Figure 1: Particle trajectories and collection efficiency calculation.

strips using 2-D approaches. The current study employs a 2-D Integral Boundary

Layer Method for the calculation of the convective heat transfer coefficients. With

this method, the laminar and turbulent boundary layer properties are calculated

fairly accurately provided that the crossflow velocity component due to 3-D effects

is not too high compared to the streamwise component. Transition prediction is

based on the roughness Reynolds number, Rek = ρUeks/µ , where ks is the

roughness height and Ue is the velocity of the external flow at the roughness

location. For laminar flow (Rek < 600), formulation of Smith and Spalding is

used to calculate the convective heat transfer coefficient [2]:

hc =
0.296kU1.435

e
√

ν
∫ s

0 U1.87
e ds

, (8)

where, k is the thermal conductivity of air obtained by assuming constant Prandtl

number and viscosity obtained from Sutherland’s law as a function of ambient

temperature. Streamwise distance along the wing strip starting at the stagnation

point is denoted bys. For turbulent flow (Rek ≥ 600), the method of Kays and

Crawford is employed [2]. Accordingly, the turbulent momentum thickness is

given by:

θ =
0.036ν0.2

U3.29
e

(∫ s

str

U3.86
e ds

)0.8

+ θtr, (9)

where θtr is the laminar momentum thickness at transition location. Skin friction

coefficient is found from the Makkonen relation [2]:

Cf

2
=

0.1681

[ln(864θ/ks + 2.568)]2
. (10)
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The Stanton number can be calculated from [2]:

St =
Cf /2

Prt +
√

(Cf /2)/Stk
. (11)

The roughness Stanton number is calculated from [2]:

Stk = 1.92Re−0.45
k Pr−0.8. (12)

Finally, turbulent convective heat transfer coefficient is found from [2]:

hc = StρUeCpa. (13)

The roughness height is calculated from ks = 0.00117KV∞KLWCKTa Kdp c̄, where

KV∞ , KLWC, KTa and Kdp are empirical factors accounting for freestream velocity,

liquid water content, ambient temperature and droplet size effects [7]. The mean

aerodynamic chord of the wing is denoted by c̄.

2.4 Extended Messinger method

Icing prediction is based on phase change or the Stefan problem. The Stefan

problem is governed by four equations: heat equations in the ice and water, a mass

balance and a phase change condition at the ice/water interface [3]:

∂T

∂t
=

ki

ρiCpi

∂2T

∂y2
, (14)

∂θ

∂t
=

kw

ρwCpw

∂2θ

∂y2
, (15)

ρi
∂B

∂t
+ ρw

∂h

∂t
= ρaβV∞ + ṁin − ṁe,s, (16)

ρiLF

∂B

∂t
= ki

∂T

∂y
− kw

∂θ

∂y
, (17)

where θ and T are the temperatures, kw and ki are the thermal conductivities, Cpw

and Cpi are the specific heats and h and B are the thicknesses of water and ice

layers, respectively. In equation (16), ṁin and ṁe,s are runback and evaporating

(or sublimating) water mass flow rates, respectively. On the other hand, ρi and LF

denote the density of ice and the latent heat of solidification of water, respectively.

Ice density is assumed to have different values for rime ice, ρr and glaze ice, ρg .

The coordinate y is normal to the surface. In order to determine the ice and water

thicknesses together with the temperature distribution at each layer, boundary and

initial conditions must be specified. These are based on the following assumptions:

• Ice is in perfect contact with the wing surface (surface temperature is

assumed to be equal to the ambient temperature, Ts = Ta):

T (0, t) = Ts . (18)
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• The temperature is continuous at the ice/water boundary and is equal to the

freezing temperature, Tf :

T (B, t) = θ(B, t) = Tf . (19)

• At the air/water (glaze ice, y = B +h) or air/ice (rime ice, y = B) interface,

heat flux is determined by convection Qc = hc(Ts−Ta), heat from incoming

droplets Qd = ρaβV∞Cpw(Ts − Ta), heat brought in by runback water

Qin = ṁinCpw(Tf − Ts), evaporation Qe = χeeo(Ts − Ta) or sublimation

Qs = χseo(Ts − Ta), aerodynamic heating Qa = rhcV∞
2/2Cpa , kinetic

energy of incoming droplets Qk = ρaβV∞
3/2, and latent heat release Ql =

ρrLF ∂B/∂t:

Glaze ice : − kw
∂θ

∂y
= (Qc + Qe + Qd ) − (Qa + Qk + Qin),

Rime ice : − ki

∂T

∂y
= (Qc + Qs + Qd ) − (Qa + Qk + Qin + Ql).

(20)

Evaporation and sublimation coefficients are expressed as:

χe =
0.622hcLE

CpaPtLe2/3
, χs =

0.622hcLS

CpaPtLe2/3
, (21)

and Pt is the total pressure of the freestream flow.

• The wing surface is initially clean:

B = h = 0, t = 0. (22)

2.4.1 Rime ice growth and temperature profile

Rime ice thickness follows from the mass balance in equation (16), since water

droplets freeze entirely on impact:

B(t) =
ρaβV∞ + ṁin − ṁs

ρr

t . (23)

2.4.2 Glaze ice growth

Glaze ice thickness is obtained by time-integration of the ordinary differential

equation obtained by combining mass and energy equations:

ρgLf

∂B

∂t
=

ki(Tf − Ts)

B
+ kw

(Qc + Qe + Qd ) − (Qa + Qk)

kw + h(Qc + Qe + Qd )/(Ts − Ta)
− Qin. (24)

It is assumed that, all unfrozen water runs back to the neighboring downstream cell

for the upper surface, while all water sheds for the lower surface [8]. To calculate

the glaze ice thickness, equation (24) is integrated numerically, using a Runge–

Kutta–Fehlberg method. Water layer thickness for glaze ice conditions is found
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Table 1: Parameter values used in the calculations.

Symbol Definition Value

Cpa Specific heat of air 1006 J/kg.K

Cpi Specific heat of ice 2050 J/kg.K

Cpw Specific heat of water 4218 J/kg.K

eo Saturation vapor pressure constant 27.03

g Gravitational acceleration 9.81 m/s2

ki Thermal conductivity of ice 2.18 W/m.K

kw Thermal conductivity of water 0.571 W/m.K

Le Lewis number 1/Pr

LF Latent heat of solidification 3.344 × 105 J/kg

LE Latent heat of evaporation 2.5 × 106 J/kg

LS Latent heat of sublimation 2.8344 × 106 J/kg

Pr Laminar Prandtl number of air 0.72

Prt Turbulent number of air 0.9

r Adiabatic recovery factor 1/2: laminar flow

1/3: turbulent flow

µw Viscosity of water 1.795 × 10−3 Pa.s

ρr Density of rime ice 880 kg/m3

ρg Density of glaze ice 917 kg/m3

ρw Density of water 999 kg/m3

from the following expression:

h =
(ρaβV∞ + ṁin − ṁe)

ρw

(t − tg) −
ρg

ρw

(B − Bg). (25)

where Bg is the rime ice thickness at which glaze ice first forms, and tg is the

corresponding time given as:

Bg =
ki(Tf − Ts)

(ρaβV∞ + ṁin − ṁs)LF + (Qa + Qk + Qin) − (Qc + Qe + Qd)
,

(26)

tg =
ρr

(ρaβV∞ + ṁin − ṁs)
Bg. (27)
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(a) (b)

Figure 2: Ice shapes on a 30◦ swept wing having NASA MS-317 section.

Table 2: Icing conditions for the cases presented in Figures 2 and 3.

Variable Value (Figure 2) Value (Figure 3)

Angle of attack, α 0◦ 4◦

Freestream velocity, V∞ 74 m/s 129 m/s

Wingroot chord length, cr 0.9 m 1 m

Wing span, b 7.3 m 8 m

Taper ratio, λ 1 0.5

Leading edge sweep, 
le 30◦ 10◦

Dihedral angle, Ŵ 0◦ 4◦

Geometric twist, θ 0◦ 4◦

Ambient temperature, Ta −18.1◦C −12.6◦C

Exposure time, texp 390 s 120 s

Droplet size, dp 20 µm 20 µm

Liquid water content, ρa 1 g/m3 1 g/m3

3 Validation of the method, results and discussion

Figure 2 shows the ice shapes and comparisons with numerical and experimental

data in the literature for a 30◦ swept NASA MS-317 wing. Icing and geometrical

conditions for this case are given in the second column of Table 2. As can be

seen, a typical rime ice shape is obtained and it is in very good agreement with

the experimental and the numerical ice shapes reported in the literature. Also, the

extent of the iced region is well predicted.
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(a) entire wing (b) wingroot

(c) midspan (d) wingtip

Figure 3: Ice shapes on a 10◦ swept wing having NACA 0012 section.

Figure 3 shows the results for a wing with taper, twist, dihedral and sweep

having NACA 0012 section. This wing is representative of wings that one would

see on real airplanes. Icing and geometrical conditions for this case are given in

the third column of Table 2. As expected, there is a spanwise variation of both

the ice thickness and the iced region. At the wingroot, the ice is thin but extends

through a wide portion of the leading edge. On the other hand, at the wingtip,

the ice is thicker but is confined to a narrower region of the leading edge. These

inferences are in qualitative agreement with the results reported by Özgen et al. [9].

As reported in [9] smaller wing sections yield higher collection efficiencies, hence

leading to thicker and more severe icing. The ice shape in Figure 3b suggests that

there is glaze ice formation, at least on some parts of the wing.

4 Conclusions and recommendations for future work

Ice accretion predictions on finite wings have been performed using a quasi-3D

approach. Results indicate that the strip approach is capable of predicting ice
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shapes with success, although the boundary-layer and thermodynamical models

used are 2-D. The tool can be used for preliminary design purposes for the

selection of a de/anti-icing system or for certification.

The current tool can be developed to a full 3-D code by implementing a

3-D boundary-layer solver and a thermodynamical model. This will be at the

expense of computational complexity and increased run time. Then, the user has

to decide what to use such a tool for and trades between simplicity, good accuracy

versus complexity, improved accuracy need to be considered. However, if more

complex geometries like intakes or highly swept wings are to be studied, then

these improvements are almost imperative. As a further improvement, a more

sophisticated liquid water model can be introduced, like those described by Fortin

et al. [8] and Myers et al. [10].
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