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10Instituto de Investigação em Vulcanologia e Avaliação de Riscos da Universidade dos Açores, Ponta Delgada, Açores, Portugal

Abstract Long-range transported free tropospheric particles can play a significant role on heterogeneous

ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice

nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote

Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic

Ocean. We investigate four specific events to study the ice formation potential by the collected particles with

different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize

particle populations. Both analyses show substantial differences in particle composition between samples

from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated

by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic

material acquired either at the source or during transport. The temperature and relative humidity (RH) at

which ice formed, varied only by 5% between samples, despite differences in particle composition, sources,

and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating

material on the particles. This study underscores and motivates the need to further investigate how

long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

1. Introduction

Atmospheric ice nucleation directly affects the climate system, Earth’s atmosphere, and the hydrological

cycle by impacting precipitation, cloud electrification, and atmospheric radiative transfer [Cantrell and

Heymsfield, 2005]. Greater than 50% of Earth’s precipitation originates via the ice phase [Lau and Wu, 2003]

impacting the global hydrological cycle [Mülmenstädt et al., 2015]. Heterogeneous ice nucleation occurs

due to the presence of ice nucleating particles (INPs) that catalyze freezing at warmer temperatures

(>~238 K) and lower relative humidities with respect to ice (RHice<~150–170%) than necessary for homoge-

neous ice nucleation [Koop et al., 2000]. Heterogeneous ice nucleation plays an important role in the forma-

tion of mixed-phase clouds (coexistence of supercooled liquid droplets and ice crystals) and cirrus clouds

(containing solely ice crystals) by affecting the concentration and shape of ice crystals [Avramov and

Harrington, 2010; Morrison et al., 2012] and, in turn, it influences atmospheric radiative fluxes and the global

energy balance [Kärcher and Ström, 2003; McFarquhar et al., 2007].

High-altitude studies point out the complexity and variety of the composition of INPs in the atmosphere.

Mineral dust particles were observed in the residuals of evaporated ice crystals in cirrus-forming regions

[Cziczo et al., 2013; Cziczo and Froyd, 2014] and in the free troposphere at Mount Werner, Colorado, at

3220m above sea level (asl) [DeMott et al., 2003]. Combinations of natural mineral dust/fly ash and metallic

particles were also identified as INPs in natural and anthropogenic air masses [DeMott et al., 2003;

Richardson et al., 2007]. Residual biological material from evaporated ice crystals was collected with an
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aircraft at high altitude (~8.3 km) over Wyoming [Pratt et al., 2009]. Long-range transported dust and biologi-

cal particles from the Sahara region were found to be potential INPs over the western United States

[Creamean et al., 2013]. Sulfate and organic aerosol were found to play a role in tropical tropopause cirrus

formation [Froyd et al., 2010], while metallic, crustal, and carbonaceous particles were identified as INPs in

the upper troposphere and lower stratosphere [Chen et al., 1998]. Soot and biomass burning particles were

found to be a minor component in cirrus ice residuals [Twohy and Poellot, 2005; Cziczo and Froyd, 2014]

but were found to be a considerable fraction (~27%) in mixed-phase clouds at the Jungfraujoch observatory

(3571m asl) in Switzerland [Cozic et al., 2008]. While another study at the Jungfraujoch observatory found

only a minor fraction (2%) of soot and soot associated with mineral dust in ice residues [Kamphus et al.,

2010], a more recent study also at the Jungfraujoch observatory, during winter time, found that long-range

transported Saharan dust, mixtures of basaltic dust from bedrock, and marine aerosol (sea salt and a

nonfluorescent organic) constitute a major fraction of INPs [Boose et al., 2016]. These studies reveal that

long-range transported particles in the free troposphere lead to a diversity of INP types.

Organic matter is ubiquitous in the atmosphere, accounting for 20–90% of the submicron aerosol mass in

most environments [Kanakidou et al., 2005]. However, the role of organic compounds and their phase state

on heterogeneous ice nucleation is still poorly understood. Ice nucleation studies on particles generated in

the laboratory and collected in the field found that organic, sulfate, or nitrate coating can inhibit or decrease

the ice nucleation ability of particles. Other studies have demonstrated that organic particles can act as INPs,

however, not as efficiently as mineral dust particles [Kanji et al., 2008; Möhler et al., 2008; Knopf et al., 2010;

Murray et al., 2010; Wagner et al., 2012; Wang et al., 2012a, 2012b; Wilson et al., 2012; Baustian et al., 2013;

Knopf et al., 2014; Schill et al., 2014; Kulkarni et al., 2016]. It has been suggested that the presence of coating

material decreases ice formation potential of dust particles, perhaps due to the reactive nature of the coating

altering the INP surface and cloaking the ice nucleation active sites, or changing the water activity [Möhler

et al., 2008; Cziczo et al., 2009; Eastwood et al., 2009; Sullivan et al., 2010; Knopf and Alpert, 2013; Wex et al.,

2014; Kulkarni et al., 2015]. However, coating by biological substances such as some types of proteins and

polysaccharides promotes ice nucleation [Pummer et al., 2015]. A recent study investigated immersion

freezing of dust collected from the ground [Kaufmann et al., 2016b]. The study found that while mineral com-

position impacted freezing ability, it was insufficient to fully explain all of the data. The authors speculated

that either mineral mixtures or dust aging, i.e., acquiring organic coatings, prevented extreme low or high

freezing temperatures typically observed for purified or commercially available minerals. The presence of

organic material further complicates prediction of ice nucleation because it can exhibit amorphous phase

states including liquid, semisolid, and solid (glassy) phases, thereby, at certain thermodynamic conditions,

providing solid surfaces that facilitate immersion freezing (IMF) and deposition ice nucleation (DIN)

[Murray et al., 2010; Wang et al., 2012a; Wilson et al., 2012; Berkemeier et al., 2014; Lienhard et al., 2015]. For

example, glassy aerosol likely influences heterogeneous ice nucleation in tropical tropopause cirrus clouds

[Murray, 2008; Froyd et al., 2010]. Equilibrium time scales for water vapor uptake on laboratory-generated sec-

ondary organic aerosol (SOA) can vary significantly; upon an increase in RH, a glassy organic particle may act

as immersion and deposition INP or it might transition to the liquid phase, the latter process inhibiting het-

erogeneous ice nucleation [Wang et al., 2012a; Berkemeier et al., 2014; Lienhard et al., 2015]. In photochemi-

cally active environments, such as in a pollution plume, organic material typically dominates and coats

aerosol particles, which act as DIN and IMF [Knopf et al., 2010; Wise et al., 2010; Baustian et al., 2012; Wang

et al., 2012b; Knopf et al., 2014], thus warranting further study on the role of aged ambient organic aerosol

to form ice.

During long-range transport, particles experience aging processes including redistribution of organic com-

pounds [Kroll et al., 2009; Dzepina et al., 2015] and hydrophilic material, chemical modification by reaction

with oxidants such as O3, OH, and NO3 [George and Abbatt, 2010; Knopf et al., 2011]; coagulation with other

materials [Chapleski et al., 2016]; and cloud cycling [Hoose et al., 2008]. These processes may affect a particle’s

ability to act as an INP [Cziczo et al., 2009; Wang and Knopf, 2011] by masking the original particle surface

properties. The link between ice nucleation efficiency and particle chemical composition and modifications

to the internal mixing state due to long-range transport remains largely unresolved, in part because of a lack

of field data.

Here we discuss the heterogeneous ice nucleation activity in the DIN and IMF modes by aged particles that

were collected at Pico Mountain Observatory (PMO) at 2225m asl in the North Atlantic Ocean. The remote
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location of PMO allows access to free tropospheric particles that are transported over long distances [China

et al., 2015; Dzepina et al., 2015]. We investigate four particle samples collected at PMO with different air mass

ages and transport patterns. The particles were probed for their physicochemical characteristics and ability to

heterogeneously nucleate ice. INPs were identified and characterized for morphological and elemental

compositions using electron microscopy. The limited number of samples analyzed here provides a valuable

but nonconclusive perspective on the general picture of the role that particles transported over long

distances might have on ice formation, including an understanding of the effects of season and transport

time. However, our analysis still allows us to demonstrate the importance of PMO as a unique remote free

tropospheric sampling site for ice nucleation studies. In addition, our analysis provides preliminary evidence

of how differently long-range transported particles behave in terms of ice formation, with respect to particles

studied previously in the laboratory, near-field experiments, or simply for different environments, thus

warranting further studies.

2. Experimental Methods

2.1. Sampling Site and Sample Collection

PMO is located in the summit caldera of Pico Mountain on Pico Island at 2225m asl, in the Azores, Portugal

(38.47°N, 28.40°W). PMO can be reached only by foot after a strenuous hike, starting at 1225m asl. The

observatory, located far from source emissions and typically above the marine boundary layer, receives air

that has been transported for long distances over the North Atlantic Ocean [Honrath et al., 2004; Kleissl

et al., 2007; China et al., 2015; Dzepina et al., 2015]. As part of a pilot study on ice nucleation, aerosol samples

were collected at PMO during late summer of 2013 on silicon nitride-coated disks (3mm diameter; PELCO®,

Ted Pella, Inc.). The particles were collected on the second stage of a four-stage cascade impactor (MPS-4G1)

with a 50% cutoff diameter of 0.50μm. Particle concentrations were measured using a two-channel (>0.3μm

and>0.4μm) laser particle counter (MetOne GT521). High-volume samplers (EcoTech HiVol 3000) were used

to collect aerosol on quartz filters for chemical characterization. The off-line chemical analysis included

organic carbon (OC) and elemental carbon (EC) contents, using an EC-OC analyzer (Sunset Laboratory Inc.,

Model 4), and quantification of common cations and anions, using an integrated ion chromatography (IC)

system (Thermo Scientific ICS-1100/ICS-2100). We collected additional samples for electron microscopy

analysis on nucleopore filters (100 nm pore, Whatman) and lacey formvar grids (300mesh, Ted Pella, Inc.)

using a custom-made sequential sampler [China et al., 2015]. Table 1 reports the sampling times and

conditions. Additional experimental details are provided in the supporting information.

2.2. Retroplume Analysis

In this study, we used the backward mode of the Lagrangian Flexible Particle (FLEXPART) dispersion model

[Seibert and Frank, 2004; Stohl et al., 2005; Owen and Honrath, 2009] to find the origin of sampled air masses

and their transport trajectories to PMO. Every 3 h, 10,000 passive air parcels were released from PMO and

transported backward in time and space up to 20 days, globally. FLEXPART calculated three-dimensional

matrices of residence times of the air parcels in the output grid cells at the upwind time steps (every 3 h).

The integration of the matrices over time and altitude provided an upwind spatial distribution of the particle

residence times, also referred to as a “retroplume.” This distribution shows the degree of dispersion and

relative contributions from air masses of varying locations and altitudes. In order to estimate air mass ages

Table 1. Sampling Date, Duration, Plume Age, Estimated Mass of Organic Matter, and Concentration and Size of the Particle Population and of the INPs
a

Sample#

Sampling Date

and Times (2013)

Plume Age

(Day) OC/EC

OM

(μgm
�3

) DAeq (μm)

Nd
(× 10

5
mm

�2
) As (mm

2
)

fA
(× 10

�6
) dINP (μm) NINP (L

�1
)

SA1 23 Aug 20:50–22:18 11.6 65.8 1.73 (±0.13) 0.56 (±0.53) 3.0 (±3.3) 0.06 (±0.03) 4.2 (±1.7) NA - 0.06 (±0.13)

SA2 27–28 Aug 19:55–14:15 12.3 36.4 0.97 (±0.16) 0.68 (±1.12) 5.4 (±1.8) 0.15 (±0.02) 4.0 (±0.5) 2.88 (±1.67) 0.03 (±0.20)

SA3 7–8 Sept 16:25–15:32 12.0 24.7 0.19 (±0.13) 0.61 (±0.90) 3.9 (±2.6) 0.23 (±0.06) 10.6 (±2.8) 3.85 (±1.68) 0.01 (±0.04)

SA4 19–20 Sept 16:48–14:00 17.3 6.5 0.02 (±0.14) 1.02 (±1.33) 1.2 (±1.8) 0.10 (±0.05) 14.4 (±8.2) 3.52 (±1.58) 0.01 (±0.01)

a
Ratio of organic carbon and elemental carbon (OC/EC), estimated organic mass (OM), mean area equivalent diameter (DAeq), mean particle number density

(Nd) on the substrate exposed during the ice nucleation experiments, and total surface area of the particles (As) available for ice nucleation, activated fraction
(fA), INP diameter (dINP), and estimated number of INP (NINP) per liter of air (average value from all the experiments) at 223 K. The numbers in parentheses for
OM represent the measurement uncertainty, which includes the blank subtracted values. The numbers in parentheses for the other values represent the standard
deviation for DAeq, Nd, and dINP, and uncertainties for As, fA, and NINP are propagated from DAeq and Nd. For SA1, dINP is not available (NA).
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at PMO, we folded (i.e., multiplied) the retroplume with the concentrations of a pollution tracer (a sampling

process as described in Zhang et al. [2014]), i.e., using the anthropogenic and wildfire CO emission inventories

[Olivier and Berdowski, 2001; Mu et al., 2011]. We estimated air mass ages by calculating the average time of

CO being transported in FLEXPART.

Figure 1 shows the retroplumes for the particle collection periods. The top plots are column-integrated hor-

izontal residence time distributions (from the surface to 15,000m asl), and the bottom plots show the vertical

distribution of the retroplume residence time for the 20 day transport period. The air masses that reached

PMO during the collection period of sample SA1 were transported mostly from North America (especially

Canada) and continuously mixed with boundary layer air for upwind days 10–20 (Figure 1b). Sample SA2

was also affected by North American air masses and possibly by marine air due to an early subsidence

followed by residence for ~7 days at 2–3 km over the Atlantic Ocean (Figure 1f). The air masses corresponding

to SA3 tracked over a wide area of the U.S. and Canada and mixed with boundary layer air through upwind

days 7–20 (Figures 1c and 1g). During upwind days 4–7, SA3, the transported air mass may have interacted

with marine boundary layer air. The air masses during SA4 were the most aged (~17.3 days) with air recircula-

tion over the ocean. In Table 1, we report the average estimated plume age for each sample.

2.3. Ice Nucleation and Water Uptake Experiments

Ice nucleation and water uptake experiments were conducted using a vapor-controlled cryo-cooling stage

consisting of an ice nucleation cell and an optical microscope [Wang and Knopf, 2011; Knopf et al., 2014], simi-

lar to other optical microscope setups [Baustian et al., 2012; Wise et al., 2012; Schill et al., 2014]. Substrates

were placed inside the ice nucleation cell and exposed to humidified nitrogen gas (N2, ultra-high purity)

flowing at 1 standard liter per minute at a constant dew point temperature, Td. The Td was measured by a

chilled mirror hygrometer (GE Sensing) at the outlet of the ice nucleation cell with an uncertainty of

±0.15 K. Once Td was stable, RH with respect to ice, RHice, was increased by cooling the substrate at a rate

of 0.1 Kmin�1 corresponding to an RHice increase of ~1.5–2.3% per minute, reflecting atmospheric conditions

[Kärcher and Ström, 2003]. Particle temperature, Tp, and Td values were used to calculate the RHice [Murphy and

Koop, 2005].

Water uptake experiments were conducted using a magnification of 1130X while ice nucleation experiments

were conducted at 230X. Optical images of the sample, Td, and Tpwere simultaneously recorded every 0.02 K.

Optical images allowed us to identify the changes in particle phase and size during water uptake or ice

nucleation of particles larger than 0.2μm and 1μm using a magnification 1130X and 230X, respectively

[Wang and Knopf, 2011]. A freezing event was considered IMF if water uptake by a particle was observed

Figure 1. Representative FLEXPART retroplumes for the time periods of the samples collection. (top) Residence time integrated over the vertical column and over the

20 day transport time. The places of the white labels indicate the estimated locations of the center of the plume on the transport days (back in time from PMO).

The abundance of residence time at each pixel is color coded by logarithmic grades representing its ratio to the location of maximal integrated residence time

(100%). (bottom) Vertical distribution of retroplume residence time at given upwind times. The black line indicates the mean height of the plume during transport.
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prior to the formation of ice, while it was considered DIN if no water uptake was observed before ice forma-

tion. DIN experiments were performed first at colder temperatures to avoid potential effects on particle

morphology and chemical composition changes during water uptake experiments and IMF at higher

temperatures. We recorded the initial RHice and Tp conditions, i.e., the conditions at which the first particle

was observed to nucleate ice. We performed at least three experiments at each dew point. The sample

was warmed to 275 K for 15min between subsequent experiments to ensure complete sublimation of ice

crystals and to avoid potential preactivation [Knopf and Koop, 2006]. After each ice nucleation event, a calibra-

tion experiment was conducted to calibrate Tp against Td as described in Wang and Knopf [2011].

Experimental uncertainties were calculated from the uncertainties of ΔTd<±0.15 K and ΔTp<±0.3 K [Wang

and Knopf, 2011].

During the ice nucleation experiments, the entire sample area was monitored at once. This procedure avoids

missing the detection of INPs that may have nucleated at lower RHice and potential artifacts in the RH distri-

bution due to ice forming outside the field of view. For each independent experiment, the ice nucleation

onset observed was the first particle in that sample to nucleate ice. Only the first ice nucleation event was

reported since the presence of ice could lead to changes in RHice above the particles at the low cooling rates

used in these measurements. Although activation of all particles cannot be achieved by this method, the first

ice formation event represents the precise thermodynamic conditions at which air containing a similar par-

ticle population would initiate ice crystal formation and, in addition, allows for the unambiguous identifica-

tion of the ice nucleation process (IMF and DIN), deliquescence, or liquid-liquid phase separation [Bertram

et al., 2011;Wise et al., 2012; Schill and Tolbert, 2013; Schill and Tolbert, 2014]. The optical microscope method

intrinsically possesses high detection sensitivity, being able to determine activated fractions in the range of

10�6. This method can be applied to derive ice nucleation parameters such as frozen fraction (f), active

surface site densities (ns), or heterogeneous ice nucleation rate coefficients (Jhet) [Dymarska et al., 2006;

Kanji and Abbatt, 2006; Kanji et al., 2008; Knopf and Lopez, 2009; Knopf et al., 2010; Alpert et al., 2011; Knopf

et al., 2011; Murray et al., 2011; Wang and Knopf, 2011; Broadley et al., 2012; Wang et al., 2012a, 2012b;

Knopf and Alpert, 2013]. A comparison of deposition ice nucleation, including Jhet values due to the clay

mineral kaolinite, is presented in Figure S5 in the supporting information, demonstrating the agreement of

our technique [Wang and Knopf, 2011] with the continuous flow diffusion chamber technique [Kanji et al.,

2013]. Lastly, the microscopy approach is well suited to identify INPs and to scrutinize these particles in terms

of chemical composition and morphology with subsequent comparison with non-INPs [Baustian et al., 2012;

Hiranuma et al., 2013; Knopf et al., 2014].

2.4. Single-Particle Analysis and Ice Nucleating Particle Identification

We analyzed single particles using a field emission scanning electron microscope (SEM) (Hitachi S-4700) on

the same silicon nitride substrates, but only after having concluded the ice nucleation experiments, to avoid

possible damage due to electron beam exposure. On numerous, randomly selected particles we conducted

energy dispersive X-ray spectroscopy (EDS) to determine the elemental composition and the particle internal

mixing state and to assess the chemical composition and morphology of the ambient particle population.

Furthermore, individual INPs were identified from recorded optical microscopy images of ice nucleation

experiments (as described in Knopf et al. [2014]) and were then relocated in the SEM for microscopic charac-

terization. Figure 2 shows an example of INP identification from optical microscopy images and SEM. Lacey

grids were examined using transmission electron microscopy (TEM) (JEOL JEM-2010) to further investigate

the individual particle morphology and internal mixing state.

3. Results and Discussions

3.1. Particle Characterization

The average particle number concentrations (>0.3μm in diameter) measured by the optical particle counter

were 13.2, 6.6, 1.1, and 0.4 cm�3 for SA1, SA2, SA3, and SA4, respectively. The mean particle 2-D projected

area equivalent diameter, DAeq, ranged from 0.56 (SA1) to 1.02μm (SA4) (Figure S1 and Table S1 in

the supporting information). We note that the projected geometric diameter (DAeq) obtained from 2-D

SEM images may differ from the aerodynamic diameter given by the impactor and the optical diameter

classification provided by the optical particle counter. The particle number density (Nd) and the total number

of particles available for ice nucleation on the substrate were estimated directly from the SEM images.
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The total particle surface area on the substrate for ice nucleation was calculated from DAeq, Nd, and the

sample area observed. The sample area for the ice nucleation experiments is 0.8mm2. Uncertainties for the

total surface area of the particles were propagated from DAeq and Nd. The mean values and uncertainties

are reported in Table 1. The value of Ns ranges from 0.06 (SA1) to 0.23 (SA3)mm2.

Figure 3 shows some representative TEM images of particles examined in this study. TEM images show that

mineral dust, soot, sulfate, and other material are internally mixed and coated by organic matter. Soot and

organic matter are identified in the TEM from their morphological properties; soot particles have graphitic

layers, while organic matter has disordered, amorphous structures. Often atmospheric particles are engulfed

within coating material and classified as embedded particles [Adachi and Buseck, 2008; China et al., 2013]. A

major fraction (~50–65%) of the particles in our PMO samples is embedded within organic matter for all

four samples. The type of organic coating on individual particles can be different and can have different

origins. Organic coating can be acquired at the source during emission or during the long-range transport.

However, the identification of different types of organic coating is not feasible with the data available from

this study. Additional SEM images are shown in Figure S2. Most of the particles in all four samples are mix-

tures of soot (C and O); mineral dust (Al, Ca, and Fe); fresh (Na, Cl, and Mg); and aged (Na, Mg, and S, with

depleted Cl) sea salt, sulfate, and organic matter, as identified by EDS analysis. SA1 is dominated by smaller

particles (<0.4μm), mostly coated soot with a minor contribution of mineral dust particles. IC data from bulk

aerosol analysis show that oxalate, malonate, and succinate are elevated in SA1, suggesting an aged

anthropogenic pollution influence [Song and Gao, 2009]. SA2 is dominated by fresh and aged salt particles

and by mineral dust mixed with salt. In SA3, most particles are internally mixed with mineral dust, salt, soot,

and sulfate. SA4 is dominated by dust and soot particles, while internally mixed soot and dust particles

represent a lower fraction than in SA3. Sulfate and nitrate are also abundant in all four samples among the

anions, with the maximum concentration of nitrate in SA2 and the maximum concentration of sulfate in

SA1 (Table S2 and Figure S3). The mean OC/EC ratio ranges between 6.5 and 65.8 (Table 1). From the OC

concentration, we estimated the organic mass (OM) assuming an OM:OC ratio of 1.8 [Pitchford et al., 2007]

representative of remote locations. Organic mass ranges from 0.02μgm�3 to 1.73μgm�3 with the highest

concentration during SA1 and the lowest concentration during SA4. A previous study at PMO showed

that organic compounds often comprise the largest fraction (57 ± 21%) of the total aerosol mass [Dzepina

et al., 2015].

Figure 2. Example of ice nucleating particle (INP) identification from optical microscope images and SEM for SA4. (a) An ice

crystal initiated by an INP (white arrow) and (b) the same after sublimation. (c) SEM image of the same field of view and

(d) magnified view.
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3.2. Water Uptake and Ice Nucleation

The mean conditions for initial DIN and IMF events and water uptake are shown as a function of Tp and

RHice in Figure 4a, and Figure S4 shows additional examples of water uptake experiments. Water uptake

occurred on most of the particles, but not on all of them. Water uptake occurred from 44% to 66% RH

between 238 K and 267 K; however, some sample consistently required less or more humid conditions than

others before condensed water was observed. For example, sample SA2 took up water at the lowest RH

values in the range of 42–47% compared to other samples, suggesting that particles on SA2 are more

hygroscopic. For SA1, which is dominated by coated soot, water uptake occurred between 57 and 61%

RH. SA3 and SA4 took up water between 49–60% and 49–66% RH, respectively, even though the particles

contain sea salt, known to be highly hygroscopic. We emphasize that the samples collected at PMO are

complex mixtures of sea salt, dust, and soot particles coated by sulfate and organic material. Due to the

presence of organic acids (e.g., oxalate, malonate, and succinate), sulfate and nitrate, one would expect that

low RH is required for water uptake (Figure S3). Multicomponent mixtures of organic acids and salt have

been previously shown to deliquesce at RH as low as 27% [Marcolli et al., 2004], which may also explain

the low RH water uptake observed here. We suggest that despite the different origins of the particles

and the initial chemical compositions, mixing and chemical aging during long-range transport alter their

ability to take up water.

Ice nucleation occurred via IMF at 238 K and 248 K near or below water saturation between 90 and 100% RH

(Figure 4a). Water uptake was observed at T= 262–267 K, but no subsequent ice formation occurred for

any sample. IMF did not occur immediately after water uptake; instead, more dilute aqueous solutions were

required to initiate IMF, which may explain why a narrow range of RHice for IMF was observed. Furthermore,

using an aerosol thermodynamic model [Friese and Ebel, 2010], ionic concentrations are estimated in an

aqueous solution considering only the presence of nitrate and sulfate at subsaturated conditions. Since ice

formation occurred primarily between 90 and 100% RH, ionic concentrations are calculated (wtNO3= 9.3%,

wtSO4= 5.4–4.7%, and wtHSO4= 2.2–2.9%, with total ionic concentration of wt= 15.4%) at 90% RH as a limit

for aqueous solution concentration. These results suggest that ice must have formed heterogeneously in

the presence of aqueous solutions at T=235–245 K (see supporting information).

At ~223 K, particles from all samples nucleated ice via the DIN at RHice between 112% and 128%, considerably

lower than water saturation and the homogeneous freezing limit [Koop et al., 2000]. Overall, the mean onset

RHice varied only by 5% between samples. The green shaded area in Figure 4a indicates the range of

Figure 3. TEM images representative of the particle population: (a and b) coated dust, (c and d) coated sulfate particle, and (e and f) coated soot. High-resolution TEM

images of (g) organic matter (OM) with amorphous structure and (h) soot particle with graphitic layers. Elemental compositions of particles were obtained using EDS

and are given in parentheses. C and O were present in each particle but are not shown here.
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predicted glass transition temperatures for laboratory-generated SOA [Wang et al., 2012a], and Figure S6

discusses glass transition temperatures for different organic to sulfate ratios.

It has been hypothesized that DIN may occur through condensation of water and subsequent homogeneous

freezing in pores [Marcolli, 2014]. DIN onsets at 223 K are within the range of condensation freezing in

7.5–15.0 nm pores, while surface features of ~5–40 nm were measured in coated INPs at PMO (Figure S7).

Photochemically aged particles collected from the urban, polluted environment of Los Angeles nucleated

ice in the DINmode for RHice~138% [Wang et al., 2012b], substantially less efficiently than the atmospherically

aged particles from PMO for similar Tp and Ns (Table S3), while both the samples contain organic matter.

Finally, we note that PMO samples had slightly different average surface areas (Ns of 0.06, 0.15, 0.23, and

0.10mm2 for samples SA1, SA2, SA3, and SA4, respectively), which may also explain the range of observed

onset conditions [Kanji et al., 2008; Knopf and Alpert, 2013].

Heterogeneous ice nucleation rate coefficients (Jhet) are calculated as a function of the water activity criterion

(Δaw) [Knopf and Alpert, 2013]. The parameter Δaw is a function of T and RH and is calculated by subtracting

the aw of the particles from the water activity point that falls on the ice melting curve at the same tempera-

ture [Koop and Zobrist, 2009]. As the experiment progressed in time, Δaw increased from Δaw=0 at

RHice= 100% until freezing was observed. Recent modeling results show that during and after a humidity-

induced phase transition from solid to liquid-like, the aqueous solution associated with that particle readily

equilibrates with its humidified environment under the applied experimental conditions [Berkemeier et al.,

2014]; therefore, we make the reasonable assumption that particle aw is equal to relative humidity.

Homogeneous freezing of pure water and micrometer-sized droplets of aqueous solution occurs at about

Δaw= 0.313 (Figure 4a), representing an upper limit for heterogeneous ice nucleation. Therefore, ice forma-

tion observed between 0<Δaw< 0.313 is considered heterogeneous freezing. Particles exposed to water

vapor during our experiments are assumed to be in equilibrium with their humidified environment, and thus,

the aw of the particles was set equal to RH. To derive Jhet (Δaw), the onset conditions of T and RHice from the

experiments were used to calculate aw and finally Δaw. Then, discrete Δaw intervals are defined by calculating

Δaw between t=12 s time intervals, identical to the time between subsequent optical images used to

Figure 4. (left) Mean onset conditions for ice nucleation and water uptake. The solid blue line indicates the homogeneous freezing limit for Jhom = 10
10

cm
�3

s
�1

and Δaw = 0.313 [Koop et al., 2000; Koop and Zobrist, 2009]. The error bars are the standard deviations of the observed RHice or experimental uncertainties, whichever

are larger. The gray symbols indicate the onsets of ice nucleation on a blank substrate. The red shaded area indicates the bounds of continental cirrus formation

[Heymsfield and Miloshevich, 1995]. The gray shaded area indicates the estimated conditions required for ice nucleation in pores of sizes of 7.5–15 nm [Marcolli, 2014].

The green shaded area indicates the range of predicted glass transition temperature for laboratory-generated secondary organic aerosol [Wang et al., 2012a]. (right)

Experimentally derived heterogeneous ice nucleation rate coefficients, Jhet, and active surface site densities, ns (green symbols; note the different scale in the sec-

ondary y axis), as a function of Δaw and Jhet parameterizations for particle types illite (standardmineral dust), leonardite (standard humic acid), 1-nonadecanol [Knopf

and Alpert, 2013], and natural dusts [Niemand et al., 2012; Alpert and Knopf, 2016]. The solid green line is a log linear fit; the dotted gray and black lines along are the

confidence and prediction bands at 95%, respectively.
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monitor ice nucleation [Wang and Knopf, 2011]. We note that due to the relationship between T, RHice, and

Δaw, consecutive Δaw intervals are not the same. Repeated cooling cycles at similar T and RHice trajectories

were conducted, and each is considered an independent ice nucleation experiment. Therefore, repeated

experiments in which one freezing event was observed (the first freezing event) at the same conditions are

equivalent to a single experiment that can monitor multiple freezing events. This allows derivation of Jhet as

a function of Δaw following the equation, Jhet=Nice/(t ·Ns,tot). In any given interval of Δaw, Nice is the number

of observed ice nucleation events that occurred. In other words, if one ice nucleation event occurred within a

Δaw interval, then Nice=1 for that interval. If two different experiments nucleated ice for the same value of

Δaw, then Nice=2 for that corresponding Δaw interval. The total surface area,Ns,tot, is the sum of the particle sur-

face area on the sample that nucleated ice in the specific Δaw interval and the particle surface area for all other

experiments that observed ice nucleation at a larger Δaw. In other words, at a single ith interval, Δaw
i, Ns,tot

i

accounts for all surface area available from experiments which nucleated ice between Δaw
i and Δaw

i + 1 and

those experiments that detected ice formation at larger intervals or greater values of Δaw. Ice active surface site

densities, ns, as a function of Δaw, are also shown and calculated similarly, ns=Nice/Ns,tot.

Figure 4b shows Jhet derived from the freezing data along with four parameterizations of different laboratory-

investigated particle types, including (i) illite (standard mineral dust); (ii) leonardite (standard humic acid); (iii)

1-nonadecanol monolayer coatings; and (iv) natural Asian, Saharan, Canary Island, and Israel dusts [Niemand

et al., 2012; Knopf and Alpert, 2013; Alpert and Knopf, 2016]. Uncertainties in calculating Jhet can stem from a

variety of experimental errors or limitations, including uncertainties in the number of observed ice nucleation

events, temperature, RH, and surface area. Following Alpert and Knopf [2016], we estimate a factor error in Jhet,

referred to as Δ Jhet, for the Jhet parameterization given in Figure 4b (green curve). Here we quantified ΔJhet in

the form of a �
÷ error (representing a factor error) because Jhet varies exponentially over a linear range in T.

Considering that we observed about 40 ice nucleation events ΔJhet ¼
�11
÷4

� �

, a temperature uncertainty of

±0.3 K ΔJhet ¼
�
÷ 2

� �

, an RH uncertainty of about ±3% ΔJhet ¼
�
÷ 10

0:03m ¼ �
÷ 1:2

� �

, and an error in surface area

of about 1.5 orders of magnitude or a factor of about 32 ΔJhet ¼
�32
÷32

� �

, results in a total Jhet uncertainty of

about a factor of 50 in the positive and 40 in the negative direction (+1.7 and �1.6 orders of magnitude).

This parameterization uncertainty covers the Jhet data scatter from all samples measured here and is greater

than 95% prediction bands from the log linear fit (Figure 4b). We note that the slope of Jhet versus Δaw of the

PMO samples changes by about 2 orders of magnitude in the investigated range and is much shallower com-

pared with previous parameterizations of laboratory-generated and natural dusts. As previously stated, the

collected particles are chemically complex and internally mixed with several inorganic elements and organic

matter (Figure 3). Despite the fact that most of the samples contained mineral elements, Jhet values for these

limited PMO samples do not resemble parameterizations of laboratory freezing data for illite and natural

dusts. Leonardite is a humic-like substance and may serve as a surrogate for the organic-rich particles

observed at PMO. Parameterizations of immersion freezing due to leonardite, however, also do not match

well with the observed freezing presented here. However, we note that the estimated Jhet values for PMO

samples represent an average over all kinds of particles with different sizes and types, rather than specifically

for a single-particle type. Furthermore, Jhet estimates are based on limited data and more experiments on

multiple samples from various events are required to draw any firm conclusion. These preliminary results

clearly warrant further investigation of the ice nucleating ability of long-range transported particles. We

speculate that physicochemical transformations of the particles due to aging during the long-range transport

can substantially impact their ice nucleation abilities. It is also possible that other minerals, organics

and surfactants, not considered here, may be responsible for nucleating ice. Following the aw-based IMF

model [Knopf and Alpert, 2013], we provide a new Jhet parameterization applicable specifically to the

free tropospheric particles collected at PMO during this study and presented in Figure 4b, where Jhet

¼ 10 m�Δawþbð Þ, m= 2.981, and b= 0.656 and ns ¼ 10 m�Δawþbð Þ, m= 2.981, and b= 1.735. This new parameter-

ization can assist in predicting IMF from free tropospheric aerosol over the Atlantic Ocean leading to ice cloud

formation. Nevertheless, more experimental data are required to develop an improved parameterization that

can be generalized for the remote free troposphere.

To simulate cloud processing, we repeated ice nucleation experiments in identical thermodynamic condi-

tions by cycling particles through warm and cold temperatures as well as dry and humid conditions.
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Figure 5b reports the ice formation frequency of specific INPs (identified using SEM) at different

temperatures. Thirteen out of the 25 identified particles nucleated more than once (Figure S8). Wang et al.

[2012a] instead reported that DIN occurred on different particles, most of the time. In our study, some

particles nucleated multiple times at two different temperatures (238 K and 248 K) via IMF. Although, not a

single particle that nucleated at 223 K by DIN nucleated by IMF at either 238 K or 248 K. The average

frequency (number of times nucleated/total nucleation events) is similar for both DIN (0.36) and IMF (0.43).

It is not clear why some of the PMO particles formed ice multiple times. Because most INPs were coated, it

is possible that once the particle initiated ice, the crystallization process restructured the particle surface

[Adler et al., 2013] influencing subsequent experiments. In a recent study, Kaufmann et al. [2016a] also

observed that some macromolecules, from washing water samples of birch pollen, nucleated multiple

times, while others did not.

Figure 5. (a, top) Examples of identified INPs. The asterisk indicates INP that nucleated more than once. The scale bar is 1 μm. (b) Elemental composition for 25 iden-

tified INPs as a function of size (DAeq (μm), given below each bar) and ice nucleation mode and temperatures. The numbers at the top represent the frequency

(number of times nucleated/total nucleation events) at which the same INP nucleated. The ordinate axis shows the relative abundance of atomic elements in percent

after background subtraction. Si and N elements were not included in this analysis because of the background due to the silicon nitride substrate. Only distinct peaks

(>3 atomic %) were used for this semiquantitative analysis.
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Estimates of activated INP (NINP) per liter of air via DIN mode at 223 K are given in Table 1. We note that these

estimates are INP concentrations for given T and RHice. NINP values were calculated from the observed INP-

activated fraction (Table 1) and the total particle number concentration in air (ambient condition)

measured by the optical particle counter (>0.3μm) during each sample collection. Observed activated

fractions are calculated using the ratio of the number of ice crystals formed simultaneously to the total

number of particles on the substrate. This calculation yields NINP of 0.06 (±0.13), 0.03 (±0.20), 0.01 (±0.04),

and 0.01 (±0.01) L�1 for samples SA1, SA2, SA3, and SA4, respectively, at 223 K. Note that NINP values have

large uncertainties, originating from the uncertainties associated with the total particle surface area and

the particle number density on the substrate. NINP values and their uncertainties are reported in Table 1.

These estimated NINP values provide a lower limit since the total particle concentration may be underesti-

mated due to the fact that we used the total particle concentration measured by the optical particle counter

that counts only particles larger than 0.3μm.

Concentrations of INPs measured in the free troposphere can be compared with the results presented here.

NINP can be calculated from Figure 4b using available atmospheric and aerosol parameters, T, RH, and Stot,

where Stot is the total particle surface area per volume of air. Stot was estimated using the particle concentra-

tion data from the optical particle counter and the particle surface area measurements from the SEM images,

yielding an uncertainty of 1.5 orders of magnitude. When assuming a time-dependent freezing process,

NINP= Jhet× Stot× t, where t is the time for ice nucleation to occur. Ice nucleation examination times for many

field-deployed instrumentation is on the order of 10 s [e.g., DeMott et al., 2003; Chou et al., 2011]. For PMO, the

derived Jhet values from experimental data range between 5 and 140 cm�2 s�1 for Δaw= 0.04–0.31, respec-

tively (Figure 4b) and mean Stot=2.4 × 10�5 cm2 L�1. Employing t=10 s results in NINP= 0.0012–0.03 L�1.

Allowing for 20min of ice particle production in a cloud, i.e., t= 1200 s, NINP= 0.14–4.0 L�1. It is worthwhile

noting that the INP concentrations calculated here can be lower than the typical instrument detection limit

of instruments employed in field experiments such as the continuous flow diffusion chamber (CFDC), for

which the typical detection limit is above 0.1 INP L�1 [DeMott et al., 2010; DeMott et al., 2016], although it

can be below 0.1 INP L�1 when using an aerosol concentrator [Tobo et al., 2013]. For example, at the free

tropospheric station, Jungfraujoch in Switzerland, INP concentrations at Δaw= 0.20 (i.e., RH= 0.93, T=241)

were about 1.0 L�1, although measurements were frequently below instrument detection, which ranged

between 0.1 and 1 L�1 [Boose et al., 2016]. We provided an estimation of INP concentration (Figure S9) to

compare with mixed-phase cloud conditions and existing published measurements, typically conducted at

water saturation (RH= 100% or aw=1.0). Figure S10 provides a comparison of the INP concentration for sev-

eral field measurements as a function of temperature, for aw=1.0 and ice nucleation times t=10 s, 1min, and

20min. We note that this comparison depends on the assumption that ice nucleation on ambient particles

will continue as a function of time when all other conditions and variables are constant. We also draw atten-

tion to the uncertainties in this calculation, which are about ±1–2 orders of magnitude in Jhet [Knopf and

Alpert, 2013; Alpert and Knopf, 2016] and ±2 orders of magnitude representing the range of Stot.

Predictions of NINP may provide a benchmark in this low INP concentration range. In other words, when

increasing RH at a given T, NINP derived from our method should converge with the lower bound of CFDC

measurements as exemplified in Figure S10.

3.3. Identification of Ice Nucleating Particles

We were able to identify a total of 25 individual INPs from 3 of the 4 samples (9 from SA2, 5 from SA3, and

11 from SA4). Examples of INPs observed in SA2, SA3, and SA4 at different temperatures and freezing

modes are displayed in Figure 5a. The DAeq of the INPs ranges between 0.84 and 6.32 μm with a mean

of 3.35 μm. Each INP is associated with O and C, O being the most abundant. Other common elements

are Na, S, Al, Ca, K, Cl, Mg, and Fe (Table S4). Elemental composition, represented as atomic percent, is

shown in Figure 5b as a function of particle size, freezing mode, and temperature. Similarly to a previous

study [Knopf et al., 2014], we find no clear trends in INP composition with regard to ice nucleation modes,

freezing temperatures, and particle size. We note that all INPs and non-INPs are associated with C- and O-

rich material.

As mentioned above, the TEM analysis of particle population demonstrates the predominance of coated

particles (Figure 3). In general, the DIN RHice values for samples SA2, SA3, and SA4 are remarkably similar
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despite the different air masses and particle types. We hypothesize that at cold temperature, the outer

organic coating may control the ice nucleation even if the core of the particle is dust, sulfate, or sea salt

[Knopf et al., 2010]. It is possible that organic coatings or organic particles transitioned to a glassy state at

223 K [Berkemeier et al., 2014], as discussed in the supporting information and Figure S6. This may be evident

from the apparent discontinuity in RH onsets between IMF and DIN occurring at 88–100% and 70–78%,

respectively. All the DIN events were observed below the predicted range of glass transition temperature

(Tg) of anthropogenic derived SOA material (Figure 4a), although the presence of sulfate can affect Tg
[Koop et al., 2011] (Figure S6). We hypothesize that glass formation of the organic material present on parti-

cles might explain why DIN occurred in a narrow RHice range, even when the overall composition varied

significantly among particles and samples. We speculate that a reason for the slight variability in the onset

RHice between samples (between 112% and 128% and mean onset at a given T varies by 5% between

samples) for DIN could be the thickness of the coating on the particles, because thin coating may only

partially mask the surface of the particle included within [Kanji et al., 2008; Möhler et al., 2008; Wise et al.,

2010; Wang et al., 2012b; Chou et al., 2013]. More studies investigating the effect of glassy organic coatings

on ice nucleation are needed to further our understanding of these processes.

4. Conclusions

In this study, we report unique observations of ice nucleation and water uptake of aged free tropospheric

particles collected at PMO. The data suggest that typically aged, free tropospheric particles at PMO promote

ice formation by immersion freezing and deposition ice nucleation. Most identified INPs are internally mixed

with organic and inorganic materials. Bare particles, such as pure soot or mineral dust, are absent, indicating

that either organic coatings were acquired close to their source in photochemically active regions or that

even under free tropospheric conditions, secondary organic material condensed onto accumulation mode

particles and INPs. Glassy organic coatings on particles at low temperatures may be responsible for the

remarkably similar ice formation conditions, despite different particle sources and types, suggesting that

the internal mixing state of individual particles plays a critical role in ice nucleation. Our results demonstrate

that free tropospheric particles collected at PMO, which experience physical and chemical aging while being

transported across the Atlantic Ocean, can participate in cloud glaciation processes by immersion freezing

and deposition ice nucleation, potentially impacting mixed-phase and cirrus cloud formation and thus the

regional hydrological cycle, radiative transfer, and climate. Finally, we should caution that the results from this

study are based on a limited number of samples collected over a 1month period and that future studies

should focus on analyzing larger sets of samples collected over longer periods and during different events

and transport patterns to achieve more general insights on the ice nucleation characteristics of long-range

transported, aged, and free tropospheric particles.
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