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ABSTRACT

We show that condensation is an efficient particle growth mechanism that leads to growth beyond decimetre-sized pebbles close to
an ice line in protoplanetary discs. As coagulation of dust particles is frustrated by bouncing and fragmentation, condensation could
be a complementary, or even dominant, growth mode in the early stages of planet formation. Ice particles diffuse across the ice line
and sublimate, and vapour diffusing inwards across the ice line recondenses onto already existing particles, causing them to grow. We
develop a numerical model of the dynamical behaviour of ice particles close to the water ice line, approximately 3 AU from the host
star. Particles move with the turbulent gas, modelled as a random walk. They also sediment towards the midplane and drift radially
towards the central star. Condensation and sublimation are calculated using a Monte Carlo approach. Our results indicate that, with
a turbulent α-value of 0.01, growth from millimetre to at least decimetre-sized pebbles is possible on a time scale of 1000 years. We
find that particle growth is dominated by ice and vapour transport across the radial ice line, with negligible growth caused by transport
across the atmospheric ice line. Ice particles mix outwards by turbulent diffusion, leading to net growth across the entire cold region.
The resulting particles are large enough to be sensitive to concentration by streaming instabilities, pressure bumps and vortices, which
can cause further growth into planetesimals. In our model, particles are considered to be homogeneous ice particles. Considering the
more realistic composition of ice condensed onto rocky ice nuclei might affect the growth time scales, by release of refractory ice
nuclei after sublimation. We also ignore sticking and fragmentation in particle collisions. These effects will be the subject of future
investigations.
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1. Introduction

Planets form in protoplanetary discs of gas and dust that sur-
round young stars. In the classical planet formation scenario dust
grains collide, stick together, and form larger and larger bod-
ies (Safronov 1969). Particles of up to millimetre sizes stick to-
gether owing to contact forces and kilometre-sized and larger
bodies are held together by gravity. How particles grow from
millimetre to kilometre-sized planetesimals is difficult to explain
by collisions, since these particles tend to fragment or bounce
off each other when they collide, instead of sticking (Blum &
Wurm 2008). Furthermore, solids on Keplerian orbits experience
a headwind from the slow-orbiting pressure-supported gas, and
therefore lose angular momentum and drift in towards the cen-
tral star (Weidenschilling 1977). This radial drift velocity peaks
for metre-sized particles, which drift into the star from 1 AU on
a time scale of only 100 orbits (Brauer et al. 2008).

Once particles grow to centimetre-sized to decimetre-sized
pebbles, further growth into planetesimals is possible via parti-
cle concentration and gravitational collapse. The streaming in-
stability causes particles to clump together owing to the veloc-
ity difference between the particles and the gas in the disc, and
planetesimals form through subsequent gravitational collapse
(Youdin & Goodman 2005; Johansen et al. 2007). Particles also
concentrate in long-lived vortices (Barge & Sommeria 1995;
Klahr & Bodenheimer 2003) and in pressure bumps (Johansen
et al. 2009) excited in the turbulent flow. However, an efficient
mechanism for growth from millimetre-sized dust grains to peb-
bles is needed to explain the formation of particles that are large
enough to take part in such concentration events.

Sticking, or coagulation, as a growth mechanism has been
extensively studied, both experimentally (Blum & Wurm 2008;
Zsom et al. 2010) and numerically (Brauer et al. 2008;
Windmark et al. 2012). However, an often overlooked concept
in planet formation models is that of growth via condensation
near ice lines. Stevenson & Lunine (1988) investigated material
enhancement at the ice line due to diffusive redistribution and
subsequent condensation of water vapour from the inner part of
the disc. With the assumption of efficient condensation by ho-
mogeneous nucleation and by ignoring inward transport of ma-
terial, the authors found a significant solid density enhancement.
In contrast, Cuzzi & Zahnle (2004) considered material drift-
ing inwards across the ice line, which would enhance the vapour
density in the inner disc, followed by a phase of accumulation
of solids by condensation onto immobile planetesimals formed
outside of the ice line.

In this work the dynamical behaviour and growth of small
(∼1 mm) seed particles via ice condensation is studied in com-
puter simulations. Ice particles moving with the turbulent gas en-
counter the water ice line where ice sublimates and becomes wa-
ter vapour. We consider both the radial ice line, which separates
the inner, hotter part of the disc from the colder region farther
away from the star, and the atmospheric ice line, which sepa-
rates the hot atmosphere of the disc from the cold midplane layer
(Dullemond & Dominik 2004; Meijerink et al. 2009). Owing to
the turbulent motion of the gas in the protoplanetary disc, water
vapour diffuses across the ice line into the condensation region,
where it condenses onto existing ice particles. Many ice parti-
cles will move across the ice line and sublimate. However, since
small particles are coupled to the gas, thereby effectively moving
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in a random walk due to turbulence, a significant fraction will be
lucky enough to stay within the condensation region of the disc,
growing to larger sizes as diffusing water vapour condenses onto
them. The total mass in the ice component is maintained dur-
ing this process, because the loss of ice particles to sublimation
is completely compensated for by the growth of the remaining
particles.

In a moderately turbulent disc, we find particle growth to
beyond decimetre sizes on a time scale of a few thousand or-
bits. The most significant growth takes place locally, close to
the radial ice line. However, efficient radial mixing supplies the
midplane with large particles, even at distances of several scale
heights outside of the ice line. The atmospheric ice line, located
at z & 3 H where disc material is heated directly by the central
star (Chiang & Goldreich 1997), contributes less to the particle
growth, generally of the order of 1 µm.

The radial water ice line, or condensation front, is found at
r ≈ 3 AU around a solar type star (Lecar et al. 2006). However,
growth by condensation is not only applicable to water ice, but
also to any other volatile found in the protoplanetary disc. Other
important condensation fronts relevant for planet formation in-
clude those of ammonia, methane, carbon monoxide and molec-
ular nitrogen at much larger radii than the water ice line, and
of silicates at r ≪ 1 AU (Lodders 2003; Qi et al. 2011). These
condensation fronts will be the topic of a future study.

The paper is organised as follows. In Sect. 2 the numeri-
cal model used for particle dynamics and growth by conden-
sation is described, including the units used in this paper. The
Monte Carlo scheme for condensation is further explained in
Sect. 3. In Sect. 4 we describe the test problems used to vali-
date the code. We present our results in Sect. 5, and investigate
the influence of the position of the atmospheric ice line, the tur-
bulence strength and the effects of radial mixing. In a moderately
turbulent disc (α = 10−2), pebbles of centimetres to decimetres
form within a few thousand years. We discuss general assump-
tions and simplifications made in Sect. 6. Finally, in Sect. 7 we
conclude that particle growth by condensation is an important
mechanism for forming pebbles in protoplanetary discs, which
should be taken into account in future studies of planetesimal
formation.

2. Numerical model

2.1. Simulation box, units and boundary conditions

We simulate a two-dimensional region around the water ice line.
The simulation domain is set in the radial r and vertical z di-
rection, whereas the azimuthal direction is ignored, for simplic-
ity and under the assumption of axisymmetry. The fundamental
units are the gas scale height H as a length unit, sound speed cs

as a velocity unit and inverse Keplerian orbits Ω−1 as a time
unit. The relation between these quantities is H = cs/Ω. Setting
H = cs = Ω = 1 gives a system that is scalable to any region
of the protoplanetary disc. Hence our results apply equally well
to other condensation fronts, such as those of CO or silicates, al-
though the transition and scaling between drag regimes and the
fractional ice abundance depend on the choice of radial location
in the disc. Here we interpret the results in terms of the water ice
line at around 3 AU from the star, using a water ice mass fraction
of 0.571% (Lodders 2003).

Condensation is considered as a neighbour interaction. A lin-
ear scaling between number of particles and number of calcula-
tions is obtained by the use of a mapping scheme, where the
simulation domain is divided into a number of grid cells, with

particle interactions possible only between particles within the
same grid cell.

Initially, both vapour and ice particles have a Gaussian dis-
tribution in the vertical direction, following the gas distribution.
At the beginning of a simulation particles are set to be ice or
vapour, depending on whether they are located within or outside
of the condensation region.

2.2. Particle sizes

Particles are coupled to the gas via drag forces and can be char-
acterised by their dimensionless friction time (Weidenschilling
1977), or Stokes number,

Ωτ
(Ep)
f =

Rρ•

Hρg
for R < (9/4)λ, (1)

Ωτ
(St)
f =

4

9

R2ρ•

Hρgλ
for R > (9/4)λ, (2)

where λ is the mean free path of the gas, ρ• is the material density
and ρg is the gas density. The superscripts (Ep) and (St) denote
Epstein and Stokes drag regime, the two drag regimes relevant
for the particle sizes and gas density considered in this paper.
We formulate the particle radius R in units of R1, where R/R1 =

Ωτ
(Ep)
f so that

R1 =
Hρg

ρ•
· (3)

To find the corresponding particle size in metres, we use the
material density of ice ρ• ≈ 1 g cm−3, the midplane gas den-
sity ρg and column density Σ from the minimum mass solar neb-
ula (MMSN) model of Hayashi (1981),

ρg =
Σ(r)
√

2πH(r)
, (4)

Σ = 1700 g cm−2
(

r

AU

)−1.5

, (5)

giving the scaling of

R1 ≈ 1.3 m
(

r

3 AU

)−1.5

(6)

close to the water ice line.

2.3. Condensation scheme

The rate of change in particle mass caused by condensation and
sublimation is

dm

dt
= 4πR2vthρv

(

1 −
Psat

Pv

)

(7)

(Supulver & Lin 2000). Here, vth is the thermal velocity of
vapour, ρv is the vapour density and Psat and Pv is the satu-
rated vapour pressure and vapour pressure, respectively. Both
the vapour pressure and the saturated vapour pressure can be ex-
pressed as densities using the ideal gas law. The vapour pressure
can be written as

Pv =
kBT

mv
ρv, (8)

and the saturated vapour pressure can be expressed in an equiv-
alent way. Here, kB is the Boltzmann constant, T is the temper-
ature, ρv is the vapour density and mv is the mass of one vapour
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particle. Assuming spherical particles and using vapour densities
instead of pressures, Eq. (7) can be rewritten as

dR

dt
=
vth

ρ•
(ρv − ρsat) , (9)

in the limit where ρv ≪ ρsat sublimation dominates the time
evolution. The sublimation time scale in terms of particle radius
is then

τs,R =
Rρ•

vthρsat
, (10)

and in terms of mass

τs =
1

3

Rρ•

vthρsat
· (11)

Correspondingly, when ρsat ≪ ρv condensation dominates. The
condensation time scale in terms of radius is

τc,R =
Rρ•

vthρv
, (12)

and in terms of mass

τc =
1

3

Rρ•

vthρv
· (13)

In equilibrium ρv = ρsat with τs = τc. By definition ρv = fH2Oρg,
where fH2O is the water mass fraction, at an ice line. The rapid
increase of temperature into the condensation region implies
ρsat ≫ ρg and hence τs ≪ τf , allowing for modelling of sub-
limation as an instantaneous process as long as the particle fric-
tion time, τf , is shorter than the characteristic time scale of the
turbulent eddies, Ω−1.

Condensation can not be assumed to occur instantaneously,
since ρv never increases much beyond fH2Oρg. The condensation
time scale is proportional to the size of the particle, with the
dimensionless condensation time scale being

Ωτc =
Ωτ

(Ep)
f

3

ρg

ρv
, (14)

assuming cs ≈
√

µH20

µ
vth, where µ is the mean molecular

weight of molecular hydrogen and µH2O is the corresponding
quantity for water. The condensation process is modelled by a
Monte Carlo approach, where the probability of condensation
of vapour onto an ice particle in the condensation zone is pro-
portional to the size of the available ice surface. This is further
described in Sect. 3.

2.4. Superparticle approach

The ice and vapour components are modelled using a superpar-
ticle approach, related to the coagulation algorithm of Zsom &
Dullemond (2008), where a superparticle is a numerical repre-
sentation of a large number of physical particles with identical
properties. Here the most important properties are the physical
state (ice or vapour), size of constituent particles if ice, and ma-
terial density. The number of superparticles N is much smaller
than the number of physical particles, so that superparticle i
represents ni physical particles. In these simulations, typically
N = 10 000 for a simulation area of 12 H in the vertical direc-
tion and 1.5 H in the radial direction, a number chosen to be
computationally easy to handle. The number of superparticles is
fixed throughout a simulation, and each superparticle represents

M M
M M

M

M

m

m

2m

2m

t
0

t
1

t
0

t
1

Fig. 1. Sketch of sublimation and condensation for superparticles. Blue
represents ice and red vapour. Left panel: ice superparticle, representing
a mass M in the form of 4 physical ice particles, each of mass m, sub-
limates and turns into a vapour superparticle of mass M. Right panel:
vapour superparticle of mass M condenses onto an ice superparticle of
mass M, representing the mass 4 m. The physical ice particles are after
the event represented by two ice superparticles, each representing a to-
tal mass M, but now in the form of 2 physical ice particles each with
mass 2 m. Both mass and the number of superparticles are conserved be-
tween t0 and t1. In the case of condensation, also the number of physical
particles is conserved.

an equal and fixed mass M that does not change. The mass m of
the physical particles represented by the superparticle does how-
ever change, and so does ni, the number of physical particles
represented by a superparticle, since the total mass represented
by the superparticle is always M = mi ni. Also when an ice par-
ticle undergoes a phase transition and becomes vapour the total
mass M of the superparticle stays constant. The superparticle
approach to condensation and sublimation is sketched in Fig. 1.

2.5. Random walk of particles

In this section the modelling of particle motions is outlined. We
start by introducing the random walk used to describe the tur-
bulent motions of the gas, sufficient for modelling small par-
ticle motions, and then move on to include the more complex
behaviour of larger particles. When particles grow larger, ad-
ditional effects need to be taken into account. Firstly, the ran-
dom step length becomes smaller, since larger particles follow
the turbulent eddies a shorter length each time step. Secondly,
for larger particles gravity towards the midplane has an increas-
ingly important effect, and causes particles to sediment towards
the midplane. Finally, radial drift towards the central star must
be taken into account.

With the dimensionless constant α introduced by Shakura &
Sunyaev (1973), the turbulent diffusion coefficient of gas and
small particles in an accretion disc can be written as

D = αcsH. (15)

We here assume that particles move with velocity v ∼
√
αcs, and

that the length a particle moves coherently is l ∼
√
αH, which

gives rise to D ∼ vl ∼ αcsH by mixing length arguments. The
correlation time is defined as

τ =
l

v
= Ω−1. (16)

This means that the effect of turbulence on a small particle is
to move it in a random direction with a characteristic speed v,
during the correlation time τ. The characteristic length scale, ve-
locity scale and time scale are all set by the turbulence. We use
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a default α-value of 10−2, motivated by observations of accre-
tion rates in young stars (Hartmann et al. 1998). However, the
presence of a dead zone can give a lower α-value (Fleming &
Stone 2003; Oishi & Mac Low 2009), and there are also obser-
vations suggesting α = 10−4 in protoplanetary discs (Mulders
& Dominik 2012). Therefore we also run simulations with α =
10−3 and α = 10−4.

The distance a particle moves each time step, where one time
step is ∆t = Ω−1, is found by equating the generic expression for
the diffusion coefficient of a random walk in 2D, D = l2/(4τ),
with that of diffusion described by Eq. (15), giving

l = 2
√
αH. (17)

Practically, the random walk for particles coupled to the gas is
modelled by setting the length the particle moves in the radial
direction ∆r and in the vertical direction ∆z to

(∆r)rw = l cos θ , (18)

(∆z)rw = l sin θ. (19)

Here 0 ≤ θ < 2π is chosen randomly for each particle and time
step, so that a particle moves in a random direction, but a fixed
length, each time step. This forms the basis of the particle dy-
namics used in this code, and is valid for small particles perfectly
coupled to the turbulent gas. However, for larger particles this
simple approximation breaks down. A number of corrections to
the random walk model will now be introduced, one at a time,
before arriving at the final model for the particle dynamics.

Firstly, the random step length must be adjusted, since larger
particles move shorter distances with the turbulent eddies each
time step. The diffusion coefficient D = vl = l2/τ = l2Ω is
modified to

D∗ =
D

1 + (Ωτf)2
(20)

following the analytical theory developed and tested by Youdin
& Lithwick (2007). This gives a modified size-dependent step
length of

l∗ =
2
√
αH

√

1 + (Ωτf)2
=

l
√

1 + (Ωτf)2
· (21)

For small particles l∗ ≈ l, whereas for larger particles l∗ < l.
Separating the radial and vertical directions, Eqs. (18) and (19)
are replaced by

(∆r)rw =
l cos θ

√

1 + (Ωτf)2
, (22)

(∆z)rw =
l sin θ

√

1 + (Ωτf)2
· (23)

When particles grow larger, and drag forces decrease in strength,
the gravity towards the midplane influences the particle motion
more, so that large particles sediment to the midplane. Since this
only affects the vertical direction, it is only necessary to mod-
ify ∆z. This is done by changing the step size in the vertical di-
rection to (∆z)tot = (∆z)rw+(∆z)sed, where (∆z)sed is an increasing
function of particle size. The sedimentation step length is set by
the terminal velocity of the particles vt = −τfΩ

2z. However, in
order to modify the step length correctly, we must ensure that
the resulting particle scale height is the same as the analytically
expected scale height. The analytically expected particle scale

height, for a given particle size and turbulence strength, result-
ing from diffusion and sedimentation is

Hp

H
=

√

α

Ωτf + α
, (24)

as determined in computer simulations of particles in turbulent
protoplanetary discs (Carballido et al. 2006) and explained in the
analytical diffusion framework of Youdin & Lithwick (2007).
This can now be compared with the particle scale height that
arises from considering a combination of a random walk and
terminal velocity sedimentation, which is what is used for mod-
elling. The random walk of particles mimics turbulent diffusion
with coefficient D = αcsH, and sedimentation-diffusion equilib-
rium occurs at particle scale height

Hp

H
=

√

α

Ωτf
· (25)

To construct a model that gives the correct scale height, as given
by Eq. (24), we therefore need to modify the dimensionless fric-
tion time in the terminal velocity expression to

(Ωτf)
∗ = Ωτf + α. (26)

Effectively we let even tiny particles sediment in order to fol-
low the Gaussian distribution of the gas, rather than the uniform
distribution that results from a pure random walk. Changing
Ωτf → (Ωτf)∗ in Eq. (25) reproduces the correct particle
scale height in Eq. (24). With the modified dimensionless fric-
tion time (Ωτf)∗ in the terminal velocity expression, the step size
in the vertical direction can be written as

(∆z)tot = (∆z)rw − (Ωτf + α)Ωz∆t. (27)

However, this expression leads to a numerical instability in
which large particles overshoot the midplane while they sedi-
ment, since for Ωτf > 1 and ∆t = Ω−1 we get

(Ωτf)
∗Ωz∆t > z. (28)

This gives particle oscillations that are amplified in time.
Equation (27) is therefore modified to

(∆z)tot = (∆z)rw −
(Ωτf + α)Ωz∆t

1 + (Ωτf)2
, (29)

following the scheme of Youdin & Lithwick (2007), which elim-
inates the amplifying of the vertical particle oscillations. Instead
it gives larger particles a longer settling time, corresponding to
the time they would have spent oscillating before settling. For
a comparison between the particle scale height resulting from
Eq. (29) and the theoretical scale height from Eq. (24), see Fig. 2.
The correlation between the analytical and modelled curve in
this figure shows that the particle dynamics in the vertical direc-
tion are correctly modelled by Eq. (29).

The step in the radial direction needs to be modified because
of the radial drift towards the central star. This is also particle
size dependent, and (∆r)tot is modified to

(∆r)tot = (∆r)rw + (∆r)rd = (∆r)rw −
2ηvK

Ωτf + (Ωτf)−1
∆t, (30)

where vK is the Keplerian velocity and ηvK is the veloc-
ity difference between the gas and the particles, following
Weidenschilling (1977). This gives a radial drift velocity that
peaks for Ωτf = 1 particles. We use ηvK = 0.05cs, a reasonable
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value at 3 AU in the MMSN (Cuzzi et al. 1993; Chiang & Youdin
2010).

The friction time of a particle is inversely proportional to the
gas density, Ωτf ∝ ρ−1

g , which decreases in the vertical direc-
tion with distance from the midplane. Taking into account the
Gaussian distribution of the gas around the midplane, the dimen-
sionless friction time of a particle is modified according to

Ωτf → Ωτfǫ , (31)

where

ǫ = exp
[

z2/
(

2H2
)]

. (32)

Simulations have shown that the heterogeneous vertical gas dis-
tribution leads to a turbulent α-value that increases with height
above the midplane (Fromang & Nelson 2009). We do however
not take this effect into account in our simulations.

For large simulation domains radial gas density gradients are
also of importance, and the random walk would then have to be
adjusted in order to mimic the motion of especially small parti-
cles, well coupled to the gas (Hughes & Armitage 2010). Since
the model used in this paper is local, we ignore this effect.

The equations used to describe particle dynamics in the code
are thus

∆z =
l sin θ

√

1 + (Ωτfǫ)2
−

(Ωτfǫ + α)Ωz

1 + (Ωτfǫ)2
∆t, (33)

∆r =
l cos θ

√

1 + (Ωτfǫ)2
−

2ηvK
Ωτfǫ + (Ωτfǫ)−1

∆t, (34)

where the first term for both the radial and vertical direction de-
scribe the random walk, with a step length modified according
to particle size, and the second term describes sedimentation and
radial drift, for the vertical and radial direction, respectively.

2.6. Transition between drag regimes

For small particles with a radius of less than (9/4) of the gas
mean free path, Epstein drag applies, whereas for larger particles
Stokes drag is the relevant regime. The transition size given by
Eqs. (1) and (2) can be rewritten in dimensionless friction time as

(Ωτf)
(Ep) <

9

4

ρ•

ρg

λ

H
=

9π

2

ρ•µH

Σ2σmol
≈ 0.5, (35)

when applied to the midplane of the disc. For molecular hydro-
gen, the mean molecular weight is µ = 3.9 × 10−24 g and the
molecular cross-section is σmol = 2×10−15 cm2 (Nakagawa et al.
1986). The column density Σ at 3 AU is given by Eq. (5).

Converting dimensionless friction time in the Epstein drag
regime to the Stokes drag regime is done using

Ωτ
(St)
f =

2

9π

Σ2σmol

ρ•µH

(

Ωτ
(Ep)
f

)2
≈ 2.0

(

Ωτ
(Ep)
f

)2
, (36)

where the scale height is given by the MMSN model (Hayashi
1981) as

H = 0.033
(

r

AU

)1.25

· (37)

3. Condensation in a Monte Carlo scheme

We treat condensation as a neighbour interaction, and require
vapour to be present near an ice particle for interaction to oc-
cur. In this model “near” means being in the same grid cell, so
that it is possible for an ice particle to interact only with vapour
within the same grid cell. Condensation in each time step is thus
decided one grid cell at a time. Any grid cell can, and most of-
ten does, harbour more than one ice particle. Therefore, whether
or not condensation takes place in a given grid cell and a given
time step, is decided in a two-step process for each vapour parti-
cle present in the grid cell.

The two-step procedure is here described for one grid cell
and one time step ∆t, with one vapour particle present in this
grid cell. In the case where more than one vapour particle is
present in the grid cell, the two-step procedure is repeated for
each vapour particle present. The first step is to decide whether
this vapour particle condenses onto any of the ice particles. If it
does, the second step is to decide which of the ice particles it
condenses onto. In this scheme, a vapour particle can only con-
dense onto one single ice particle, and thus can not be shared
amongst several particles. One ice particle can on the other hand
experience several growth events during one time step, provided
that several vapour particles are present.

As a first step it is decided whether or not the vapour particle
is involved in a condensation event during the time step ∆t. In
order to do this the total interaction probability for all ice parti-
cles in the grid cell is needed. The interaction probability for ice
particle i is

pi = 1 − exp(−∆t/τi), (38)

where τi is the condensation time scale for particle i, given by
Eq. (14). The expression for interaction probability is chosen to
always give 0 ≤ pi < 1, for any ∆t, also for ∆t ≫ τi. The algo-
rithm proceeds by calculating the probability that no interaction
occurs. For n ice particles, the total probability that no interac-
tion occurs is

p0 = (1 − p1) · (1 − p2) · · · · · (1 − pn). (39)

To decide whether condensation occurs, a random number r1 ∈
]0, 1[ is generated. If r1 is smaller than p0 nothing happens,
whereas if r1 is larger than p0 the vapour particle condenses onto
one of the ice particles.

If condensation occurs, a second step is needed in order to
decide onto which of the ice particles in the grid cell the vapour
particle condenses. In this step it is no longer the absolute prob-
ability that is of interest, but the relative probabilities of the ice
particles in the grid cell. This can be expressed as

p∗i =
∆t

τi

· (40)

The relative probability for each of the ice particles in the grid
cell are placed in a sequence,

0, p∗1, p∗1 + p∗2, p∗1 + p∗2 + p∗3, . . . ,
∑

i

p∗i , (41)

and a new random number is generated, r2 ∈]0,
∑

i p∗
i
[ . Which

interval in the sequence r2 falls in decides which ice particle the
vapour particle condenses onto, such that r2 falling in the interval
]p∗

i−1, p
∗
i
] implies condensation onto ice particle i.

The condensation time scale in Eq. (13) is proportional to
the radius of the particle, so that a smaller particles has a shorter,
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and a larger particle a longer, condensation time scale. This cor-
responds to a larger condensation probability for smaller par-
ticles and vice versa, which may seem counter-intuitive, but
is explained by the fact that the simulation handles superpar-
ticles, each representing the same mass M. Therefore a super-
particle representing small physical particles represents a larger
combined surface area than one representing large particles.
Condensation is thus more likely to happen to a superparti-
cle representing small particles. Looking at a single-physical-
particle-basis, the result is correct averaged over many time steps
and particles. A condensation event means doubling the mass of
the physical particles involved, implying that a small particle ex-
periences many condensation events, but the absolute growth in
radius each event is small, whereas a single large physical parti-
cle experiences few condensation events, but with a large growth
in absolute radius each event.

4. Test problems

In order to understand the results of the computer simulations
and to make sure that the code is functioning correctly, two ma-
jor tests of the algorithms used were made. Firstly, the dynam-
ical behaviour of the code was tested without including parti-
cle growth. Secondly, the particle growth algorithm was tested,
without taking spatial dimensions into account.

4.1. Test of the dynamical behaviour of the particles

The dynamical behaviour of the particles is tested by excluding
condensation and sublimation from the simulation. This means
that particles move because of turbulence that stirs them up in
a turbulent diffusion, and because of gravity directed towards
the midplane, but no particle growth is included. We also ignore
radial drift. The particles settle to an equilibrium, where the par-
ticle scale height depends on the size of the particles, since the
strength of the coupling to the turbulent gas is a function of par-
ticle size. Figure 2 shows the particle scale height relative to the
gas scale height Hp/H as a function of particle size R. The par-
ticles settle into a Gaussian distribution around the midplane, so
the particle scale height in equilibrium can be retrieved as the
root mean square of the particle positions,

(

Hp

H

)

mod

=

√

1

N

(

z2
1 + z2

2 + . . . + z2
n

)

, (42)

where n is the number of particles and zi is the vertical position
of particles. This is compared to the theoretically expected parti-
cle scale height, given by an equilibrium between sedimentation
and turbulent diffusion,
(

Hp

H

)

theo

=

√

α

Ωτ f + α
· (43)

Figure 2 shows how the particle scale height depends on the
size of the particles, with the modelled values represented by the
black full line and the expected analytical values as a red dot-
ted line. The modelled line clearly follows the analytical curve,
showing that the dynamical behaviour of the particles is as ex-
pected. The particle size is given in units of R1, where R1 ≈ 1 m
at r = 3 AU. From the figure it can be seen that small parti-
cles are fully coupled to the gas, as Hp/H ≈ 1 for particles
of R . 10−3 R1, a size that corresponds to mm-sized ice parti-
cles near the water ice line. Furthermore, a slight change of the
slope can be seen at R ≈ 0.5 R1. This is caused by the change

from Epstein to Stokes drag regime, which makes the parti-
cles decouple more quickly from the gas and hence increases
sedimentation.

4.2. Test of the condensation algorithm

We test the condensation algorithm by letting particles grow via
condensation, without including the spatial dimensions. The ice
line is therefore not included, so sublimation is not taken into
account. The number of ice superparticles is known, as is the
number of vapour superparticles. The total mass available for
growth is known since we run the simulation until all vapour has
condensed onto the ice particles. By tracking the initial and final
mass of all superparticles the growth in radius is followed, and
can be compared to a theoretical expectation.

In reality, condensation is a continuous process on macro-
scopic scales, where single water molecules condense onto ice
particles so that growth happens little by little all the time. In the
Monte Carlo scheme used in this code this continuous behaviour
is modelled by a discrete growth process, where a condensation
event involves one ice superparticle and one vapour superpar-
ticle. The mass of the physical ice particles represented by the
ice superparticle doubles as the vapour superparticle completely
condenses onto the ice, implying that there is no vapour super-
particle left after the event. To conserve the number of ice parti-
cles and superparticles (for easier coding purposes) this implies
that the physical ice particles that before the event were repre-
sented by the one ice superparticle involved in the event, now are
represented by two superparticles, i.e. the number of physical ice
particles before the event are after the event split between two ice
superparticles. The mass of the physical particles involved in an
event thus doubles when a condensation event occurs. Since par-
ticle radius is connected to mass as m ∝ R3, for any number of
condensation events nce the radius increases as

R→ (2nce )1/3
R. (44)

The final radius Rfinal is plotted as a function of Rinit as black
crosses in Fig. 3. In this test 2000 ice superparticles were dis-
tributed evenly in 20 different initial size bins over the range
R/R1 = [0, 1], and 20 000 vapour superparticles were added. The
possible growth in radius from mass doubling events is plotted as
red lines in Fig. 3, for a different number of condensation events
0 ≤ nce ≤ 10. From the figure it is clear that all modelled val-
ues indeed fall on these lines, and never in-between, as expected
because of the discrete nature of the Monte Carlo method used.

The modelled particle growth can be compared to the ana-
lytically expected ∆R. For a physical ice particle i the total mass
growth due to condensation during the time ∆t is

∆mi = mi − m0,i =
4π

3

(

R3
i − R3

0,i

)

ρ•, (45)

where ρ• is the material density of ice, R0,i is the initial and Ri

the final radius of the ice particle. However, the physical parti-
cles are represented by superparticles in the code, and the mass
growth must therefore be given for superparticles and not phys-
ical particles. One superparticle represents the mass Mi = nimi,
where ni is the number of physical particles represented by the
superparticles.

The total mass of vapour that condenses onto the ice particles
is given by the difference between the sum of final and initial ice
superparticles,

Mv = ρvV =
4π

3
ρ•















∑

i

niR
3
i −

∑

i

n0,iR
3
0,i















. (46)
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Fig. 2. Comparison between modelled and analytical particle scale
height as a function of particle size, for a turbulence strength of α =
10−2. The black full line denotes modelled values and the red dotted
line analytical values. Small particles R . 10−3 are perfectly coupled
to the gas, whereas larger particles sediment towards the midplane.
The slope change at R ≈ 0.5 is caused by the change from Epstein
to Stokes drag regime. The particle size is given in units of R1, where
R1 ≈ 1 m at r = 3 AU. Overall, modelled and analytical values are in
good agreement.

The total number of physical ice particles is constant, as is the
total number of ice and vapour superparticles, but the number of
ice superparticles is not. While the physical particles represented
by one superparticle grow in mass, the number of physical par-
ticles represented by the superparticle decreases since the total
mass of a superparticle is constant. In order to conserve the num-
ber of physical particles, total number of superparticles and the
total mass of each superparticle, the number of ice superparticles
increases as the physical particles grow in mass, so that each su-
perparticle represents fewer and fewer physical particles, which
is why the two sums in Eq. (46) are over different numbers of
superparticles.

The right handside of Eq. (46) can be rewritten using

ni =
Mi

mi

=
ρiV

ρ•
4π
3 R3

i

· (47)

Here V is the volume represented by a superparticle, which in
this one-grid-cell test problem is equal to the total volume of
the box. By cancelling terms and gathering the densities on the
left-hand side Eq. (46) can be rewritten as

ρv

ρi

= Np − Np,0 (48)

where Np and Np,0 is the final and initial number of ice superpar-
ticles, respectively. All superparticles represent the same density,
and therefore the ratio between the two densities corresponds to
the ratio between the number of vapour and ice superparticles
represented, so that

ρv

ρi

=
Nv

1
, (49)

with Nv being the number of vapour superparticles added to the
simulation. Equation (46) is therefore equivalent to

Nv = Np − Np,0, (50)

which the code can be checked against, since both the number of
vapour superparticles put into the system and the initial number
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R
init

/R
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0.0

0.5
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1.5
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R
fi

n
a
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R

1

Fig. 3. Comparison between average modelled growth and analytically
expected growth of ice particles. The final particle size as a function
of initial particle size is shown for 2000 ice superparticles distributed
evenly in 20 different initial size bins over the range R/R1 = [0, 1] , and
with 20 000 vapour superparticles added. Black crosses show modelled
values and blue stars show the average growth in each size bin. The
modelled average size roughly agrees with the analytical value, shown
as a blue line. Red lines denote expected size for a number of conden-
sation events between 0 (lower line) and 10 (upper line).

of ice superparticles is specified, and the final number of super-
particles is given as an output from the program. This analysis
shows that the code is mass-conserving, by construction.

From Eq. (46) the theoretically expected ∆R, equal for all
particles, can be found. The final radius can be rewritten as ai =

∆R + R0,i, where R0,i is the initial radius of the particle. The two
sums are not necessarily over the same number of superparticles,
as each condensation event introduces a new ice superparticle in
the system, at the expense of the vapour particle representing the
condensing vapour. The physical particles originally represented
by the first ice superparticle are now split between the new and
the old ice superparticle. The initial size of a physical particle
represented by a converted vapour superparticle can therefore be
found as the initial size represented by the first ice superparticle.
Equation (46) is thereby rewritten as

Mv =
4π

3
ρ•

















∑

i

ni(∆R + R0,i)
3 −

∑

0,i

niR
3
0,i

















, (51)

which, by using Eq. (47), cancelling terms and noting that (as in
Eq. (46)) ρv/ρi = Nv, gives

Nv =
∑

i

1

R3
i

(∆R + R0,i)
3 − Np,0. (52)

The initial number of vapour and ice superparticles Nv and Np,0

are known, as they are input parameters to the simulation. The
radius represented by a superparticle in the end of the simula-
tion, ai, and when it is created, Rc,i, are both given as output
from the code. The radius growth for each particle ∆R can there-
fore be found. For Nv = 20 000 and Np,0 = 2000, a value of
∆R ≈ 0.202 is found. In Fig. 3 the blue full line represents the
expected growth of the 2000 initial ice superparticles, (R0,i+∆a),
as a function of initial radius R0,i. Comparing the expected final
particle radii with the actual final radii shows that for small par-
ticle sizes the Monte Carlo method works fairly well, whereas
for larger particle sizes most particles experience too little (zero)
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Table 1. List of simulations, with references to relevant figures in the second column.

Run Fig. rmin/H rmax/H zmin/H zmax/H nr × nz np zice/H rice/H α Rinit/R1

1a 6 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 0.3 – 10−2 10−3

1b 6 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 0.6 – 10−2 10−3

1c 6 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 1.0 – 10−2 10−3

1d 6 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 1.4 – 10−2 10−3

1e 6 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 1.8 – 10−2 10−3

1f 6 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 3.0 – 10−2 10−3

2a 7 −0.75 0.75 −6.0 6.0 64 × 512 104 [0.2, 3.0] – 10−4 10−4

2b 7 −0.75 0.75 −6.0 6.0 64 × 512 104 [0.2, 3.0] – 10−3 10−4

2c 7 −0.75 0.75 −6.0 6.0 64 × 512 104 [0.2, 3.0] – 10−2 10−4

3a 8 −0.75 0.75 −6.0 6.0 64 × 512 104 0.4 −0.3 10−2 10−3

3b 8 −0.75 0.75 −6.0 6.0 64 × 512 104 0.6 −0.3 10−2 10−3

3c 8 −0.75 0.75 −6.0 6.0 64 × 512 104 1.0 −0.3 10−2 10−3

3d 8 −0.75 0.75 −6.0 6.0 64 × 512 104 1.4 −0.3 10−2 10−3

3e 8 −0.75 0.75 −6.0 6.0 64 × 512 104 1.8 −0.3 10−2 10−3

3f 8 −0.75 0.75 −6.0 6.0 64 × 512 103, 104, 105 3.0 −0.3 10−2 10−3

4a 11 −0.75 0.75 −6.0 6.0 64 × 512 104 3.0 −0.3 10−4, 10−3, 10−2 10−3

4b 11 −0.75 2.25 −6.0 6.0 128 × 512 2 × 104 3.0 −0.3 10−4, 10−3, 10−2 10−3

4c 11 −0.75 3.75 −6.0 6.0 192 × 512 3 × 104 3.0 −0.3 10−4, 10−3, 10−2 10−3

4d 11 −0.75 5.25 −6.0 6.0 256 × 512 4 × 104 3.0 −0.3 10−4, 10−3, 10−2 10−3

Notes. The dimensions of the simulation box are given as rmin, rmax, zmin and zmax in gas scale heights H. The number of grid cells in the radial and
vertical direction is given as nr ×nz and the number of particles as np. Position of ice lines is given as zice/H for the atmospheric ice line, and rice/H
for the radial ice line when applicable. Turbulence strength is given by α and the initial particle size Rinit is given in units of R1, approximately
equivalent to size in metres.

growth and a few grow several orders of magnitude more than
expected. This means that one must be careful not to draw con-
clusions from the growth of individual particles. However, statis-
tically speaking, i.e. by averaging over many particles, the result
can be considered to be correct (Zsom & Dullemond 2008).

5. Results

The results are divided into two parts: runs including only the
atmospheric ice line (Table 1: runs 1 and 2) and runs including
both the radial and atmospheric ice lines (Table 1: runs 3 and 4).
We assess how the growth depends on turbulence strength in
runs 2 and 4, its dependence on atmospheric ice line position
in runs 1, 2 and 3 and the dependence on box size in run 4. In
all runs particle collisions are ignored, an assumption that we
discuss in Sect. 6.4.

5.1. Atmospheric ice line

We start by exploring the atmospheric ice line, not including the
radial ice line. This means that the simulation domain is located
just outside of the radial ice line, with a colder midplane and
hotter outer layers (Dullemond & Dominik 2004).

The thermal atmospheric ice line in a typical protoplanetary
disc is located at z & 3 H (Chiang & Goldreich 1997). However,
the decrease of pressure with height above the midplane leads to
a narrow radial zone just outside of the radial ice line where the
atmospheric ice line is located at z ≤ 3 H. The pressure ice line
in a vertically isothermal disc is shown in Fig. 4.

The height of the atmospheric ice line above the midplane
zice is varied from zice = 0.4 H to zice = 3 H. The lower limit
is the lowest value for which not all ice particles immediately
sublimate. A lower value gives a distance between the midplane
and the ice line that is comparable to the length a particle moves
during one time step (see Eq. (17)), making it possible for all
ice particles to escape from the condensation region before any

growth has taken place. Periodic boundary conditions are used
in both the radial and vertical direction.

Figure 5 shows the time evolution of a simulation with the
atmospheric ice line at zice = 1 H. The distribution of red vapour
and blue ice particles is shown together with the size distribution
of ice particles, for t = 0, t = 200Ω−1 and t = 2000Ω−1. Vapour
diffuse into the grey condensation region, condensing onto al-
ready existing ice particles. As small ice particles tend to diffuse
out of the condensation region and sublimate, whereas larger
ones stay in the midplane and experience continued growth, the
result is a narrow size distribution with decimetre-sized ice peb-
bles residing in a midplane layer.

5.1.1. Varying the atmospheric ice line position

Simulations were run with the atmospheric ice line placed at
different heights zice above the midplane. Decreasing zice cor-
responds in a physical protoplanetary disc to placing the simu-
lation box radially closer in towards the radial ice line, where
a hypothetical zice = 0 would correspond to the position of the
radial ice line, and thus assessing the narrow radial zone where
the pressure ice line dominates.

In Fig. 6 particle growth for different zice is shown. The mean
ice particle size 〈R〉 in units of R1 is shown as a function of time
in units of Ω−1. As is clear from the figure, particles grow to
larger sizes as the ice line is moved closer to the midplane. This
is effectively due to the fact that for ice lines closer to the mid-
plane, i.e. a narrower condensation region, vapour particles can
easier penetrate to the larger ice particles residing in the mid-
plane. Figure 2 shows how the particle scale height Hp decreases
with increasing particle radius R. Small particles have a scale
height comparable to the gas scale height Hp,small ≈ H, whereas
for larger particles Hp,large ≪ H. Placing the ice line at a height
larger than 1 H is thus equivalent to saying that even the small-
est particles tend to stay within the condensation zone. There is
therefore very little material available for particle growth. The

A137, page 8 of 14



K. Ros and A. Johansen: Ice condensation as a planet formation mechanism

3.0 3.5 4.0 4.5 5.0

r/AU

−2

−1

0

1

2
z
/A

U

1 H
2 H
3 H
H

2
O ice line

Fig. 4. Pressure ice line for a vertically isothermal disc. The full black line denotes the ice line, whereas the coloured dotted lines show the location
of 1 H, 2 H and 3 H. As particles are preferably found within a few scale heights from the midplane, growth due to crossing of the atmospheric ice
line is only important within less than 1 AU of the radial ice line.

−3

−2

−1

0

1

2

3

z
/H

−0.75 0.00 0.750.00
r/H

t = 0

0.001 0.010 0.100 1.000

R/R
1

 

1

10

100

1000

 

N

0.00 0.750.00
r/H

t = 200 Ω
−1

 0.010 0.100 1.000

R/R
1

0.00 0.750.00
r/H

−3

−2

−1

0

1

2

3

z
/H

t = 2000 Ω
−1

mm cm dm

 0.010 0.100 1.000

R/R
1

 

1

10

100

1000

 

N

Fig. 5. State of simulation with only the atmospheric ice line included, for t = 0, 200Ω and 2000Ω−1, from left to right. Upper panels: distribution
of blue ice particles and red vapour particles, with the grey area representing the condensation zone. The size of the blue dots are proportional
to the size of the ice particles and the number of particles shown is inversely scaled with size for visibility. Lower panels: evolution of the size
distribution of ice particles at corresponding times. N is the number of ice superparticles, and the size is given as R/R1. At the water ice line,
R1 ≈ 1.3 m.

few particles that do move across the ice line and sublimate will
mostly redistribute material among the particles at the border
of the condensation zone. Growth in runs with zice & 1 H is
both slow, and to modest particle sizes. For ice line positions of
zice ≥ 3 H the particle growth is of the order of ∆R ∼ 10−4 R1

or less in 1000Ω−1. For the larger extent of the disc, where
zice & 3H, the atmospheric ice line is thus of little importance
for particle growth by condensation.

In Fig. 6 we show runs with 1000, 10 000 and 100 000 parti-
cles for each ice line position. The negligible difference between

runs with 10 000 and 100 000 particles in combination with a
much lower computational cost motivates the use of 10 000 par-
ticles as a reference resolution.

5.1.2. Varying the turbulent α-value

Simulations were run with different values of α in order to test
the influence of turbulence strength on the results. In Fig. 7 the
mean particle size 〈R〉 is shown as a function of the height of the
ice line above the midplane zice, starting from an initial particle
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Fig. 6. Mean ice particle size as a function of time for different positions of the atmospheric ice line. The different lines show the growth for
different distances from the atmospheric ice line to the midplane, zice. From top to bottom zice = 0.4 H, 0.6 H, 1.0 H, 1.4 H, 1.8 H and 3.0 H. Ice
particles grow faster, and to larger sizes, the closer to the midplane the atmospheric ice line is. Full lines denote simulations with 10 000 particles,
dashed lines 1000 particles and dotted lines 100 000 particles.
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Fig. 7. Mean ice particle size as a function of the position of the atmospheric ice line and the strength of the turbulence. The mean particle size
〈R〉 is shown as a function of the distance from the atmospheric ice line to the midplane zice, in gas scale heights H. The system is shown when the
particle sizes have approximately reached an equilibrium, at t = 5000Ω−1 for α = 10−2, shown in blue, at t = 25 000Ω−1 for α = 10−3, shown in
red, and at t = 100 000Ω−1 for α = 10−4, shown in yellow. The initial particle size is 10−4 R1, corresponding to approximately 0.1mm at the ice
line. Solid lines are modelled values and dotted lines are analytical values, set by Eq. (53). The modelled and analytical values follow the same
slope in the applicable range.

size of 10−4 R1. The system is shown when it has approximately
reached an equilibrium, at t = 5000Ω−1 for α = 10−2, shown
in blue, at t = 25 000Ω−1 for α = 10−3, shown in red, and at
t = 100 000Ω−1 for α = 10−4, shown in yellow. Full lines rep-
resent modelled values and dotted lines are analytical estimates.
As can be seen, lowering the strength of turbulence gives less
growth. This is to be expected since the main effect of decreas-
ing the level of turbulence is to lower the effective particle scale
height, set by an equilibrium between sedimentation and turbu-
lent diffusion. As a comparison, dotted lines show the analytical
relation between mean particle size and particle scale height in
a system where vertical gravity and turbulent diffusion is dom-
inating. The scale height of particles in terms of the gas scale
height is

Hp

H
=

√

α

Ωτf + α
· (53)

Setting Hp ∼ (1/c) zice gives an analytical estimate of the
maximum particle size achievable by condensation, shown in

Fig. 7, as

Ωτf = α

{

1

[zice/(c H)]2
− 1

}

. (54)

We chose c = 3, but even in this case the analytical expression
underestimates the resulting R slightly. Nevertheless our simu-
lations show that particles grow approximately to a size where
their scale height is 1/3 of the ice line height.

5.2. Atmospheric and radial ice line

Including both the atmospheric and radial ice lines is done by let-
ting the simulation domain represent a region around the radial
ice line. This means that ice particles can sublimate both by mov-
ing away from the midplane, and by moving closer to the central
star. For a realistic atmospheric ice line position at zice & 3 H,
sublimation by moving across the radial ice line is however
much more important than by moving across the atmospheric
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Fig. 8. Mean ice particle size 〈R〉 as a function of time in inverse
Keplerian orbits Ω−1 for simulations including both radial and atmo-
spheric ice lines. The height of the atmospheric ice line above the mid-
plane zice is denoted as: black 0.4 H, violet 0.6 H, blue 1.0 H, green
1.4 H, red 1.8 H and yellow 3.0 H. For the runs with zice = 3.0 H,
the dashed line corresponds to 1000 particles and the dotted line to
100 000 particles. Full lines denote runs with 10 000 particles. The posi-
tion of the radial ice line is rice = −0.3 H, and the strength of turbulence
is α = 10−2.

ice line. The simulation domain is 12 H in the vertical direc-
tion. In the radial direction the box size is varied from 1.5 H
to 5.25 H, with the number of particles and grid cells changed
accordingly in order to keep the particle density and the effec-
tive resolution fixed. Periodic boundary conditions are used in
the vertical direction, and reflective boundary conditions in the
radial direction. In the vertical direction there is in effect no dif-
ference between +z and −z, because the conditions above the
midplane mirror those below it. In the radial direction, when in-
cluding the radial ice line, there is no such symmetry. At r = rmin

conditions such that ice sublimates prevail at all z, whereas at
r = rmax the midplane is part of the condensation zone, where ice
particles can exist without sublimating. Using periodic bound-
ary conditions in the radial direction would therefore artificially
introduce vapour in the system and thereby cause a too large
particle growth.

5.2.1. Varying the atmospheric ice line position

Including the radial ice line greatly increases the growth ef-
ficiency. As shown in Sect. 5.1, models with only the atmo-
spheric ice line gives negligible growth for ice line positions
of zice & 3 H. However, also taking the radial ice line into ac-
count leads to particle growth beyond 0.1 R1, corresponding to
decimetre-sized pebbles at the ice line, within 1000Ω−1.

Figure 8 shows how the mean particle size 〈R〉 as a func-
tion of time varies with atmospheric ice line position zice when
the radial ice line is included. Growth is somewhat faster for zice

close to the midplane and slower for zice farther away from it.
As previously discussed, this is due to the larger supply of ma-
terial available for growth in a narrow condensation region, as
compared to a wider condensation region. For ice line positions
above 3 H, a growth similar to that for zice = 3.0 H is found.

Growth stops at 〈R〉 ≈ R1 for all zice. This is due to radial
drift towards the star that eventually removes all ice particles
from the simulation. From Eq. (30) it can be seen that the radial
drift inwards peaks for particles of 〈R〉 ≈ R1. When particles

reach this size they thus drift inwards, past the radial ice line,
and sublimate.

We also show the growth for ice line position of zice = 3.0 H
for a smaller (np = 1000) and a larger (np = 100 000) number
of particles in Fig. 8, in addition to np = 10 000 particles. For
particle sizes R . 0.1 R1 we find converging results, whereas
for larger particle sizes the growth is dominated by statistical
fluctuations caused by runaway growth of a few lucky particles.
Our condensation model is constructed to give correct results
in a regime where many particles compete for vapour, i.e. up to
pebbles of a few decimetres, but may be unphysical in the regime
of metre-sized boulders and beyond.

5.2.2. Varying the radial extent of the simulation
and the turbulent α-value

To assess the importance of the size of the simulation domain,
we ran simulations where the box size was varied in the radial
direction. Figure 9 shows the time evolution of a run where the
radial extent of the simulation box has been increased, so that
rmax = 5.25 H. The most significant growth takes place close to
the radial ice line, but owing to radial mixing large particles can
be found throughout the entire radial extent of the simulation
box. In Fig. 10 the partial growth in four equally sized subdo-
mains can be compared to the total growth in the whole simu-
lation domain, as shown in Fig. 9. This illustrates that the total
particle growth is dominated by the growth near to the radial ice
line.

The left panel of Fig. 11 shows the particle growth for dif-
ferent radial extents of simulation domains for a strongly turbu-
lent disc, α = 10−2. The growth time scale increases with larger
simulation domains, as the amount of ice particles is increased
while the supply of water vapour across the ice line remains un-
changed. Results from simulations with weak turbulence are pre-
sented in the middle (α = 10−3) and right (α = 10−4) panels of
Fig. 11. These low-turbulence simulations show that particles
can grow via condensation also in dead zones, although slowly.

6. Discussion

Our results show that ice condensation is an efficient way to form
centimetre-sized and decimetre-sized pebbles. Ice condensation
does not suffer from bouncing and fragmentation barriers and
could be the dominant mode of growth in protoplanetary discs,
to sizes where particles can concentrate strongly in the turbulent
gas and continue towards planetesimal sizes by gravitational col-
lapse. However, our results rely on a number of assumptions and
simplifications that we discuss here.

6.1. Other ice lines

This model has been developed primarily to investigate the water
ice line at r ≈ 3 AU. Similar ice lines, or condensation fronts, ex-
ist also for other chemical species, and as this model is scalable
to any r it can easily be adapted to include any condensation
front. Of importance for planet formation purposes are in par-
ticular the ammonia, methane, carbon monoxide and molecular
nitrogen ice lines farther out in the protoplanetary disc, and the
numerous silicate condensation fronts farther in towards the cen-
tral star. A global disc model, which includes all condensation
fronts of the most important chemical species in the protoplane-
tary disc, will be an important extension of this work.
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6.2. Disc evolution

The systematic motion of gas accretion onto the central star has
been ignored in this work. However, compared to the time scales
of particle growth by condensation the accretion process is slow
enough to be safely neglected (Hartmann et al. 1998).

The ice line has throughout this work been considered as
fixed. Seen over the life time of the disc this is not true, since the
ice line probably moves both in a systematic way over long time
scales and because of shorter heating events (Armitage 2011).
However, as the time scale for growth by condensation found
in this work is of the order of τc ≈ 1000Ω−1, which is very
short compared to the life time of the disc τdisc ∼ 3 Myr, the
assumption of a fixed ice line is reasonable.

We also ignore the potential effect the processes of conden-
sation and sublimation have on the ice line position, since the re-
sulting release and absorption of energy is relatively small com-
pared to the total thermal energy of the disc (Stevenson & Lunine
1988).

6.3. Ice nuclei

We have modelled ice particles as one-component particles; ho-
mogeneous water ice particles. In reality these particles would

have (at least) a two-component composition, that of a rocky
core and an icy mantle. This is due to the fact that supersaturated
water vapour is needed for homogeneous nucleation, i.e. for the
spontaneous formation of a new ice particle. As this is typically
not the case in the conditions prevailing in a protoplanetary disc,
water vapour instead condenses onto an existing grain, either a
rocky dust particle, or a particle with an already existing ice layer
on top of the dust grain. Whether vapour preferably condenses
onto a bare dust grain or an ice particle depends on material
properties and on their respective sizes.

Ignoring the small refractory dust particles present in the disc
possibly leads to an over-estimation of the growth of the larger
ice particles. For a fixed amount of mass, smaller dust particles
have a larger combined surface area than larger particles, and
therefore there is a higher probability that a vapour particle con-
denses onto a smaller dust superparticle than onto a larger su-
perparticle. This is for the case when the material properties of
dust and ice are such that two equally large dust and ice particles
have equal probabilities of having a vapour particle condensing
onto them. Instead of growth of a few large ice particles that sed-
iment towards the midplane and thereby are protected against
sublimation, there would thus be a continuous sublimation and
condensation of the small ice particles at the ice line. This ef-
fect can already be seen in our condensation model, as small
particles are more likely to cross the ice line and sublimate, and
conversely, to grow by condensation, but could be amplified by
the introduction of refractory grains.

Material effects might make this problem more severe. The
dust grain composition is assumed to be similar to that of in-
terstellar dust grains, either being pure interstellar dust grains
or conglomerates thereof. This gives us the most important dust
species as silicates and carbonaceous material, with silicates typ-
ically assumed to be the dominating one (Draine 2003). Silicates
have material properties that makes them more efficient as ice
nuclei than pure water ice particles (Goumans et al. 2009), im-
plying that the effect of small particle growth at the expense of
the larger ones is amplified when taking the material properties
into account.

There are however a number of possible solutions to this
problem, in terms of reasons for vapour to condense onto ice
particles instead of the small dust grains. Firstly, the dust grains
are not likely to all have the same size. Rather, they would have
a size distribution where the smallest grains can be nanometre
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sized (Draine 2003). The largest dust particles of relevance are
the ones of the largest size that is strongly enough coupled to the
gas to be present at the relevant vertical distance from the mid-
plane. This is around micrometre-scale (see Fig. 3). The equi-
librium vapour density for a curved surface is higher than for a
flat surface, so that vapour more easily condenses onto a flat sur-
face than a curved one. This is typically referred to as the Kelvin
curvature effect, and is most important for the smallest particles,
around nanometre sizes (Sirono 2011). Therefore vapour will ef-
fectively prefer condensing onto the larger particles, leaving the
smallest ones as bare dust grains.

Secondly, small grains are likely to be hotter than larger par-
ticles, moving the ice line of small particles closer to the mid-
plane than the ice line of large particles. The temperature of
the grains is set by the balance between absorption and emis-
sion efficiency. Since grains absorb and emit radiation most ef-
ficiently in wavelengths smaller than and up to their own size,
there is a size-dependent effect (Krivov et al. 2008; Vitense et al.
2012). The spectral energy distribution of a solar-type star peaks
at wavelengths of about 500 nm. All grains of this size and larger
therefore absorbs incoming radiation with approximately equal
efficiency. However, grains emit in infra-red wavelengths (larger
than 1 µm), and thus the larger grains can emit more energy than
the smaller ones. The resulting temperature for the smaller grains
is therefore higher than for the larger grains. Also the material
affects the temperature of the grains. As water ice is nearly trans-
parent in visible light, where a solar-type star peaks, an ice par-
ticle is heated less by the stellar radiation than a particle of a
more absorbing material (Lecar et al. 2006). Both mechanisms
are valid for grains residing in the atmosphere of the disc, where
the disc is optically thin to the stellar radiation, but not for grains
in the midplane, where the received stellar radiation is mainly the
re-emitted infrared radiation from neighbouring grains.

Furthermore, there is a possibility that material effects might
prevent water vapour from condensing onto the dust grains. As
mentioned above, bare silicate grains are more efficient as ice nu-
clei than ice-covered ones. However, for carbonaceous grains the
opposite is true (Papoular 2005), meaning that vapour condenses
more easily onto a water ice particle than onto a bare carbona-
ceous grain. For a grain population with ice coated particles and

bare carbonaceous grains, the carbonaceous grain would there-
fore be left bare, whereas the ice grains would continue growing.

6.4. Particle collisions

We have neglected collisions between particles throughout this
work. Depending on material properties and relative velocities of
the particles, collisions can lead to increased growth via coagu-
lation, to fragmentation or to bouncing. In general, small parti-
cles tend to stick together to a larger extent than large particles, if
colliding, whereas larger particles are more prone to bouncing or
fragmenting. Collisions amongst large particles therefore have a
tendency to be destructive, whereas small-particle collisions are
more likely to favour growth (or at least not counteract it). For
silicate particles growth via collisions involving equal-sized par-
ticles is very difficult beyond millimetres, however collisional
growth involving small particles colliding with a large target is
possible, although slow (Wurm et al. 2005; Johansen et al. 2008;
Windmark et al. 2012).

Whereas extensive experimental data exists on collisions be-
tween rocky particles, the outcome of ice particle collisions is
not equally well-known. Bridges et al. (1996) performed low-
velocity collisions (vrel < 5 cm s−1) between ice pebbles and
found that ice particles covered with a frost layer have an in-
creased stickiness compared to rocky particles. A mechanism of
collisional fusion, in which ice particles undergo a phase change
during collision, has been suggested as a way for particles to
stick also in collisions with higher velocities (1 m s−1 < vrel <
100 m s−1) (Wettlaufer 2010).

Collision experiment for higher velocities have been used
to derive criticial relative velocities above which fragmentation
can occur, vcrit. Higa et al. (1996) found a critical velocity of
vrel ≈ 1 m s−1, but other groups have found significantly larger
values (Arakawa 1999; Arakawa et al. 2002). Computer simula-
tions suggest critical velocities of up to vrel ≈ 100 m s−1 (Benz &
Asphaug 1999).

Collision velocities for millimetre-sized particles are set by
the turbulent velocities and are expected to be of the order of a
few m s−1, whereas collisions involving larger particles approach
the radial drift velocity, vrel ≈ 50 m s−1 (Brauer et al. 2008). Both
coagulation and fragmentation are therefore expected to occur as
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a result of collisions. A likely scenario is that collisions between
large particles lead to fragmentation, where the resulting small
ice fragments are later swept up in collisions with other particles.

An important implication of collisions is that it provides a
natural means of removing small dust grains released from the
ice particles when sublimating. As these dust grains are very
efficient ice nuclei, they might prevent growth of already large
particles by “stealing” all the vapour, as discussed in Sect. 6.3.
However, the small dust grains are likely to be swept up by larger
ice particles in collisions. This does not increase the growth sig-
nificantly, but has the important benefit that the small dust grains
are removed so that vapour has to condense onto growing ice
particles.

We plan to include the effects of multiple condensable
species, refractory ice nuclei and particle collisions in future
work. The present work highlights that simple turbulent dy-
namics can cause significant particle growth by condensation of
volatiles, motivating follow-up studies with increasingly realis-
tic models for the condensation and collision processes.

7. Conclusions

In this paper we have shown that ice condensation is an impor-
tant particle growth mechanism that must to be taken into ac-
count in models of early planet formation. As the more thor-
oughly investigated mechanism of coagulation is inefficient in
forming particles larger than millimetres, growth by condensa-
tion is an important mechanism that could complement coagula-
tion or even be the dominant particle growth mode.

Our results show that growth by condensation near ice lines
is rapid and results in large particle sizes. The growth time scale
from millimetre-sized dust grains to decimetre-sized pebbles is
τc ≈ 1000 years. Significant growth is obtained for a range of
turbulent α-values from 10−4 to 10−2, where the higher value
corresponds to the strength of turbulence that has been inferred
from observations of protoplanetary discs, and the lower value
has been suggested in a dead zone with weak turbulence stirred
by the narrow active layers.

An implication of our model is a lower column density of
vapour in the entire region outside the radial ice line compared
to the inner part of the disc, caused by condensation onto ex-
isting grains and subsequent sedimentation of particles. This is
in agreement with observations of CO (Qi et al. 2011), where
a drop in abundance was found outside of the CO ice line. The
far outer disc regions have also been observationally inferred to
be depleted in water vapour (Hogerheijde et al. 2011). Observed
remnant water and CO vapour in the outer disc shows the im-
portance of the coexistence of a cold midplane and an upper
atmospheric layer where ice can sublimate or photodesorb into
vapour.

Ice condensation can also explain observations of large quan-
tities of pebbles in protoplanetary discs (Wilner et al. 2005).
Such pebbles are crucial in planet formation models, as they
are the preferred starting size for planetesimal formation by
clumping via streaming instabilities, in pressure bumps and in
vortices, followed by gravitational collapse. Once large plan-
etesimals have formed, continued pebble accretion is a very
efficient path to formation of the cores of gas and ice giants
(Ormel & Klahr 2010; Lambrechts & Johansen 2012; Morbidelli
& Nesvorny 2012).

Ice condensation is a natural consequence of temperature
gradients in protoplanetary discs. With our simulations we have
shown that condensation is an efficient growth mechanism with

the potential to explain the formation of decimetre-sized peb-
bles in protoplanetary discs, thereby providing the missing link
to further growth into planetesimals and planets.
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