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ABSTRACT

Ice particle interarrival times have been measured with a fast forward scattering spectrometer probe (FSSP).
The distribution of interarrival times is bimodal instead of the exponential distribution expected for a Poisson
process. The interarrival time modes are located at ;1022 and ;1024 s. This equates to horizontal spacings on
both the centimeter and meter scales. The characteristics of the interarrival times are well modeled by a Markov
chain process that couples together two independent Poisson processes operating at different scales. The pos-
sibility that ice crystals shattering on the probe tip causes the bimodal interarrival times is explored and cannot
be ruled out. If the observations are indicating real spacings of particles in clouds, then the observations show
very localized (centimeter scale) concentrations of ;100 s cm23 embedded within an average concentration of
typically ;1 cm23. If the localized high concentrations are produced by the ice crystals shattering, then the
concentration measured by the FSSP is overcounted by a factor of 5 in the worst case measured here, but more
typically by a factor of 2. This uncertainty in concentration will adversely affect the predicted radiative influence
of these clouds.

1. Introduction

Airborne probes capable of detecting large numbers
of ice crystals, such as Particle Measuring Systems
(PMS) 2D probes and the Stratton Park Engineering
Company Cloud Particle Imager, encounter problems
when attempting to detect and classify particles with
diameters comparable to the probe resolution. Other
probes, such as the Cloudscope and replicator-based de-
tectors, provide higher resolution but require laborious
analysis and have a relatively small sample volume. In
an effort to overcome these difficulties various research-
ers have attempted to make use of the forward scattering
spectrometer probe (FSSP) for investigating ice crystals.
However, some workers have felt that the FSSP is over-
counting in ice clouds. Gardiner and Hallett (1985) sug-
gested that the FSSP gives a false response in ice clouds
and should not be used for characterization of small ice
crystals. Since then Gayet et al. (1996) compared the
PMS cloud probe (2D-C) and FSSP size distributions
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in the poorly measured overlap region and proposed that
observations made with the FSSP probe can be believed
if the ice crystals are small and spherical, and in such
cases there is good agreement between the 2D-C and
FSSP. Poor agreement was generally found between the
2D-C and FSSP if the 2D-C spectrum was broad.

Recently, there has been interest in analyzing the spa-
tial structure of liquid phase clouds at centimeter scales
or less (e.g., Brenguier 1993; Pinsky and Khain 1996;
Chaumat and Brenguier 2001). It has been postulated
that the effects of droplet inertia in a turbulent velocity
field might lead to changes in the supersaturation field
and hence changes in the droplet growth rates. These
same effects could also be occurring in glaciated cloud.
In addition, other sources of small ice particles such as
secondary ice multiplication (Hallett–Mossop process)
and evaporative breakup, observed by Bacon et al.
(1998) in the laboratory, could result in small-scale spa-
tial structure in ice cloud.

In this paper we will try to determine whether the
fast FSSP can be used in glaciated clouds as a tool for
studying ice particle spatial distributions at the milli-
metric scale required to investigate the effects of sec-
ondary multiplication, evaporative breakup, and tur-
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FIG. 1. (left) Schematic of standard and modified inlet fitted to
FFSSP. (right) Picture of modified (silver) and unmodified (black)
FFSSP inlets.

bulence. The following sections describe the instrument
itself, the characteristics of its data in water and ice
clouds, and a statistical model to help interpret the latter.
We then describe variations of the parameters of this
model with environmental variables such as temperature
and discuss the implications in terms of different mech-
anisms that may be responsible for the observations.

2. Fast FSSP description and response to liquid
water cloud

The ‘‘fast’’ probe used is an FSSP-100 used to detect
spherical particles with a 1–22.5-mm radius with mod-
ified electronics to allow logging of particle arrival time,
pulse size, annulus signal, and pulse duration, time
stamped with a temporal resolution of 8.3 3 1028 s for
each particle. The dead time of 6 ms per particle for a
standard FSSP has been eliminated [e.g., see Brenguier
et al. (1998) for a description of similar fast FSSP sys-
tem].

The optical arrangement is as described in Dye and
Baumgardner (1984) for a standard FSSP. The pulse size
is the maximum scattering signal recorded by the de-
tection diode (38–128 forward scattering angle) for each
particle. The annulus signal is the maximum signal re-
corded by the annulus diode (128–158) and in combi-
nation with the pulse size determines whether or not the
detected particle was in the depth of field of the FSSP.
The pulse duration is the length of time that the pulse
signal remained greater than a predefined threshold val-
ue for a given particle and is a measure of how long a
particle takes to transit across the FSSP sample volume.
Because the FSSP laser beam cross section is nominally
circular, particles that cross the beam near the center
will have a longer pulse duration than those particles
that cross near the beam’s edge.

For one of the aircraft flights (A815), a modification
was made to the FSSP inlet to investigate the possibility
that the inlet geometry could affect the FSSP response.
Figure 1 schematically depicts the modified and stan-
dard FSSP inlet side by side. The main difference is

that the tube has been removed. This now places the
exposed optical arms upstream of the sample volume.

Before we proceed to analyze the response of the fast
FSSP (FFSSP) to ice particles we will first illustrate the
FFSSP’s behavior in liquid cloud. Brenguier (1993)
showed that interarrival times between droplets in stra-
tocumulus cloud were modeled well by a Poisson pro-
cess. Although the droplet counting is a Poisson process,
the droplet mean arrival time varies in time and space
due to turbulence in clouds, resulting in a generalized
or inhomogeneous Poisson process (Snyder and Miller
1991), as described by Pawlowska et al. (1997).

For a Poisson process, the probability of observing
an event in a time period short enough for only one
event to be observed, dt, is

d t
P 5 , (1)1 t

where 1/t is the mean arrival rate of the Poisson process.
The probability of not observing an event in the same
time period is then

d t
P 5 1 2 P 5 1 2 . (2)0 1 t

We are interested in the distribution of particle inter-
arrival times, Dt, that is, the time interval between one
event and the next. We can compute the probability of
having to wait a given interarrival time for an event by
considering n short periods of time, dt, during which
no events are observed followed by one short period
during which an event is observed. Because the chance
of an event occurring or not occurring in each time
period is independent, the probabilities are compounded
to give

n
d t d t

P(Dt 1 d t) 5 1 2 . (3)1 2t t

For large n, (1 2 dt/t)n 5 exp(2ndt/t), and setting Dt
5 ndt gives

P(Dt 1 d t) 1 Dt
5 exp 2 . (4)1 2d t t t

As the short time interval considered for the observation
of single events becomes small, dt → 0, Eq. (4) can
then be written as

dP(Dt) 1 Dt
5 exp 2 . (5)1 2dt t t

Integrating Eq. (5) gives the probability of finding in-
terarrival times greater than Dti: yielding an exponential
function

` dP(Dt) DtiP(Dt . Dt ) 5 5 exp 2 , (6)i E 1 2dt t
Dti

where Dti is the interarrival time considered.
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FIG. 2. (a) Cumulative interarrival time frequency for a 0.1-s in-
terval in stratocumulus cloud. (b) The same data as in (a) but plotted
on a semilog plot. The vertical dotted line is the mean interarrival
time, and the thin-lined histogram is the Poisson distribution with
the same mean as the data. (c) The cumulative x 2 distribution for 7
degrees of freedom. The solid line is the theoretical curve. The open
squares are from flight A767, and the plus signs are from flight A766.

Brenguier (1993) and Paluch and Baumgardner
(1989) have shown, using Eq. (6), that interarrival times
are exponentially distributed and that the Poisson rate
can be estimated from the slope of the cumulative fre-
quency distribution. In the subsequent analysis for ice
cloud we will be interested in the behavior of the in-
terarrival times over several orders of magnitude, ne-
cessitating the use of the semilogarithmic plot. To main-
tain an equal area–equal probability property we will
use

dP(Dt) Dt Dt
5 exp 2 . (7)1 2d lnt t t

This function is modal with a peak at Dt 5 t, indicating
that t is an estimate of the mean interarrival time. By
dividing observed interarrival times into discrete classes
in logarithmic space we can use Eq. (7) to estimate the
expected number of occurrences in each class for a ho-
mogeneous Poisson process and hence compute x 2, giv-
en that we know t. Values of x 2 computed for many
sets of interarrival times should follow the x 2 distri-
bution.

By minimizing x 2 to find t, best-fit Poisson functions
were generated for observations from two flights (A766,
A767) in liquid phase stratocumulus cloud around the
British Isles. The interarrival times were analyzed in
0.1-s intervals over 100 s. The cumulative frequency of
each interarrival time for one 0.1-s interval is shown in
Fig. 2a and displays the exponential behavior expected

for a Poisson process. Figure 2b shows the logarith-
mically binned version of the same data and the best-
fit Poisson distribution obtained after a x 2 minimization
process. This particular interval has a x 2 value of 6.9
for 7 degrees of freedom. Combining a large number
of the x 2 values allows us to generate a cumulative
distribution for x 2 that can be compared with the x 2

values obtained from tables (e.g., Snedecor and Cochran
1967). In Fig. 2c the tabulated values for 7 degrees of
freedom and cumulative frequencies obtained from the
two stratocumulus datasets are compared. The curves
show good agreement with the tabulated values, con-
firming the validity of the Poisson assumption on these
scales (10 m) for these two flights in liquid phase clouds.

The number of droplets encountered is usually ;1000
times greater than the number of ice particles for the
same interval of time. This means that in the subsequent
analysis of ice crystals we will not have the luxury of
being able to select a small enough time interval to avoid
the influence of large-scale effects.

3. Response of the FFSSP in ice cloud

The data presented are from six flights carried out
around the British Isles. All of the data are taken from
straight and level runs in ice cloud. The cloud conditions
sampled are as follows.

• A800, 13 October 2000: A cirrus layer ahead of a
warm front encroaching from the west was sampled
from near cloud top at 2428C (9400 m) down to
2238C (7000 m), which was still in cloud.

• A801, 16 October 2000: Cirrostratus was sampled just
behind an occluded front running down the center of
the United Kingdom. Cloud top was at 2418C (8800
m), and cloud base was at 2228C (5800 m).

• A802, 17 October 2000: Cirrostratus ahead of a warm
front moving in from the west was sampled between
cloud top at 2488C (9600 m) and cloud base at 2398C
(8300 m).

• A803, 20 October 2000: Runs were carried out in a
mixed phase layer of cloud ahead of a frontal system
approaching from the southwest. The layer cloud sam-
pled was dominated at one end by ice and at the other
by supercooled water at 2158C (5500 m) but only
regions devoid of liquid were used.

• A806, 21 November 2000: Runs were made deep
within a frontal cloud between 2168C (5000 m) and
268C (3000 m).

• A815, 19 February 2001: Altostratus layered ice cloud
was sampled with a modified FSSP inlet at 2268C
(6000 m) for these runs.

Examples are presented in Figs. 3–5 of the response
of the FFSSP in ice cloud. These examples are typical
of what is observed and are shown to indicate the var-
iation in the degree of bimodality seen in the interarrival
time histogram. The Small Ice Detector (SID) probe
(Hirst et al. 2001) was used to identify runs or parts of
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FIG. 3. Composite example plot from an aircraft run in glaciated cloud for flight A800 run 1.4: (a) the
measured concentration (1 Hz) from the FFSSP as a function of run time; (b) the interarrival times as a
function of run time for each particle; (c) a histogram of the interarrival times for the data shown in (b);
(d) the combined 2D-C and 2D-P size spectra; (e) example images from the 2D-C probe as a function of
time; i.e., the horizontal position relates to the run time given in (a) and (b). The width of each image bar
is 800 mm.

runs in which the liquid phase was absent for the anal-
ysis. We used contiguous data, so the sections of the
run either up to when the last liquid water was observed
or after the first liquid water was observed were used.
Figures 3–5 each consist of five panels: (a) indicates the
1-Hz particle concentration measured by the FFSSP as
a function of aircraft time; (b) shows the interarrival
time (interarrival distance is given on the right for a
nominal airspeed of 100 m s21) for each particle as a
function of time; (c) is a histogram of the interarrival
times in the panel above; (d) is the average 2D-C (nom-
inal particle size range: 25–800 mm) and the PMS pre-
cipitation probe (2D-P; nominal particle size range:
200–6400 mm) size distribution for the period consid-

ered; and (e) shows 2D-C imagery from the aircraft run
as a function of time.

In the examples shown the FFSSP concentration
varies between 0.1 and 15 cm23. The interarrival times
show a distinct bimodal nature with modes at ø1022

and ø1024 s, which is equivalent to spacings of ø100
and ø1 cm if the particles were distributed in this way
in the atmosphere. The relative contribution to the total
concentration from the modes varies from flight to flight.
Generally, as the concentration decreases the mode of
the maximum interarrival time mode moves to longer
interarrival times, whereas the shorter interarrival time
mode remains more constant.

To confirm that the FFSSP observations of bimodal
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FIG. 4. The same as Fig. 3 but for flight A802 run 3.3.

interarrival time were not an artifact of the electronics
employed, the Small Ice Detector was modified to allow
monitoring of the particle detection times with a fast
oscilloscope. This indicated that particles were also ar-
riving in the SID sample volume with bimodal inter-
arrival times.

4. Modeling the observations with a Markov chain
process

When interpreting the liquid droplet interarrival times
the a priori assumption of a Poisson process was made.
Here we will introduce a model that will aid in the
interpretation of the ice particle data. Like the assump-
tion made in liquid water cloud of the validity of a
Poisson process the choice here of statistical model does
not provide an explanation for the physical cause of the
observed distribution.

A homogeneous Poisson process is an inadequate fit
to the ice cloud interarrival time. What is required is a
model of an inhomogeneous Poisson process that re-
produces a distinct bimodal interarrival time distribu-
tion. To reproduce the observations of particles arriving
in the sample volume, use is made of a Markov chain
that contains three states (Fig. 6). The process is me-
moryless, and the outcome of the current action depends
only on the current state. The Markov chain allows us
to compound two Poisson processes to represent the
arrival of individual particles at two different scales.
States 1 and 2 are ‘‘waiting states,’’ when no particle
is observed during the interval, while state 0 represents
the observation of a particle. For a Poisson process the
chance of observing an event in an interval, dt, is dt/t,
where 1/t is the mean arrival rate for the Poisson pro-
cess. Conversely, the chance of not observing an event
is simply 1 2 dt/t. Figure 6 shows the three states linked
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FIG. 5. The same as Fig. 3 but for flight A803 run 2.3.

FIG. 6. A three-state Markov chain diagram. The numbers in the circles
represent the three states. State 0 is the presence of a particle, and states
1 and 2 indicate the absence of a particle. The arrows show the possible
ways of moving between states. The terms next to the arrows indicate
the probability of a state change occurring via that route. It can be seen
that it is not possible to go from state 1 directly to state 2; the route,
instead, has to be through the intermediate state 0.

by arrows that are annotated with their respective prob-
abilities of occurence. So for state 1 the arrow returning
directly to state 1 represents the situation in which no
event is observed (1 2 dt/t1), and the arrow linking
state 1 to state 0 represents the observation of an event
(dt/t1) for a Poisson process with mean arrival rate

1/t1. Similarly, state 2 represents a Poisson process with
mean arrival rate 1/t2. When state 0 is attained the sys-
tem returns to state 1 or 2, according to the weighting
of A and (1 2 A), respectively. More formally, the prob-
abilities given in Fig. 6 can be represented with the
following transition matrix:

0 A 1 2 A 
p p p 00 01 02 d t d t   1 2 0P 5 p p p 5 . (8) 10 11 12 t t 1 1 
p p p 20 21 22 d t d t 0 1 2

t t 2 2

The probability matrix can be used to generate the
probability of occurrence of any event described by the
system. The probability of going from state 0 to 1 and
back to 0 is



FEBRUARY 2003 255F I E L D E T A L .

d t
p 5 p p 5 A . (9)010 01 10 t 1

The probability of going from state 0 to 1 and then
remaining in state 1 for n time intervals before going
to 0 is

n
d t d t

np 5 p p p 5 A 1 2 . (10)01· · · 10 01 11 10 1 2t t1 1

Similarly, we can write

n
d t d t

p 5 (1 2 A) 1 2 (11)02· · · 20 1 2t t2 2

for state 2. The overall probability of reaching state 0
after n intervals in either state 1 or 2 is then just

p(Dt 1 d t) 5 p 1 p01 · · · 10 02 · · · 20

n n
d t d t d t d t

5 A 1 2 1 (1 2 A) 1 2 .1 2 1 2t t t t1 1 2 2

(12)

Letting interarrival time Dt 5 ndt and, for large n, (1
2 Dt/t1)n 5 exp(2t/t1) we obtain

p(Dt 1 d t) dp(Dt)
5 lim

d t dtdt→0

1 Dt 1 Dt
5 A exp 2 1 (1 2 A) exp 2 .1 2 1 2t t t t1 1 2 2

(13)

Hence, the probability of finding interarrival times, Dt,
between Dti and ` is p(t)dt:

`
#Dti

Dt Dt
P(Dt . Dt ) 5 A exp 2 1 (1 2 A) exp 2 ,i 1 2 1 2t t1 2

(14)

which reduces to the expected result for a Poisson pro-
cess if A is set to unity [cf. Eq. (6)]. The magnitude of
(1 2 A) tells us the contribution to the total number of
particles counted by the FSSP made by the particles
associated with t2. Hence, (1 2 A) can be used as a
measure of the degree of clustering if we define those
particles associated with state transitions involving state
2 as being clustered.

We will now assume that t1 . t2, and whenever state
0 is arrived at from state 2 the observed particle (state
0) is part of a cluster of particles that are bunched in
groups of 1 to many particles. To define the clustering
threshold we consider the particles related to the state
2 process and an interarrival time that only a small
proportion (0.02) of these particles have,

P(Dt , `) Dtthresh thresh5 exp 1 2 5 exp(24), (15)1 2P(t , `) t2 2

and, therefore, Dtthresh 5 5t2. In addition, if 5t2 . t1,
then the distribution will not be considered bimodal.
Unfortunately, using a threshold means that some of the
particles associated with state 1 will also be labeled as
clustered particles (typically 5%), but this does not over-
ly affect our results. When we consider a cluster con-
sisting of a train of particles that have interarrival times
less than Dtthresh, we can define the arrival time of the
cluster as that of the first particle in the train. When we
look at the distribution of the clusters by considering
the interarrival times of the clusters, we find that they
are distributed randomly, as suggested by the Markov
chain process. It should be mentioned here that other
authors (e.g., Kostinski and Jameson 1997) have intro-
duced definitions for describing the degree of clustering.
These definitions rely on the fact that the Poisson pro-
cess intensity is being modulated by an underlying larg-
er-scale process that introduces a variation of the inter-
arrival time statistical properties. In this case the random
particle counting process is an inhomogeneous Poisson
process, and the probability distribution of the interar-
rival times is represented by Eq. (14) rather than a single
exponential distribution characteristic of a homoge-
neous Poisson process.

Having developed this model as a potential means of
describing the observations, we then need a method to
estimate the parameters A, t1, and t2 from the data. We
employed a two-stage x 2 minimization technique. One
thousand initial guesses for the three parameter values
were randomly chosen and the x 2 for each guess was
computed. After this stage, another 1000 random guess-
es were made in smaller ranges around the best-guessed
values from the previous stage. The best values after
the second stage were taken as the fitted parameters.
This two-stage process was repeated 10 times for each
interval and showed that the fit was robust. Once t1 and
t2 were estimated, it was then possible to obtain pulse
durations and pulse size values (the peak scattering in-
tensity for each particle) for populations of particles
close to the two interarrival time modal values. Because
ice concentrations are much lower than droplet concen-
trations, sampling over longer time periods is required
to accumulate sufficient numbers of particles for anal-
ysis. We have chosen a 10-s interval for the present
analysis. Unfortunately, this means that larger-scale ef-
fects may alter the simple inhomogeneous Poisson mod-
el of the particle spacing suggested by the Markov chain
model outlined above. In practice this effect was re-
flected in higher x 2 values than would be expected, but
assessment of the fits using the x 2 minimization tech-
nique indicated that the automatic method was esti-
mating parameter values accurately. Figure 7 shows the
result of the fitting technique applied to the synthetic
data that was generated with the Markov chain model
for the following parameters: A 5 0.70; t1 5 0.010; t2

5 0.000 10. For this case the estimated values obtained
from the minimization of x 2 were A 5 0.70, t1 5
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FIG. 7. (a) A synthetic time series of interarrival times generated
from the Markov chain model with parameters A 5 0.7, t1 5 1022,
and t2 5 1024. (b) Histogram of the interarrival times with the best-
fit function (solid line) obtained from the minimization of x 2. The
vertical dashed lines indicate the values of t1 and t2. The vertical
dotted lines bracket the values of interarrival time used to compare
populations of particles associated with the different modes. The scale
at the top indicates the equivalent interparticle spacing for a nominal
TAS of 100 m s21. The dotted curve indicates the equivalent Poisson
curve for the overall average interarrival time.

FIG. 8. (a) The ratio of the number of clusters composed of n
particles compared to the number of cluster formed of two particles.
The * are from flight A800, the 1 are from flight A806, and the 3
are from flight A801. The straight lines are the predicted cluster
distributions based on an estimate of A obtained from the x 2 fitting.
(b) A scatterplot of A estimated from the x 2 fitting and A estimated
from fitting least squares exponential functions to the distributions
in (a).

0.0099, and t2 5 0.000 10, which compare well with
the values used to generate the dataset.

This simple Markov chain model allows some char-
acteristics of the clustering to be described. The prob-
ability for a cluster to contain n particles is proportional
to the probability of transferring from state 0 to 2, n
times consecutively [i.e., (1 2 A)n]. Thus, the expected
number of clusters of size n [Nc(n)] relative to clusters
of another size, m [Nc(m)] say, is

nN (n) (1 2 A)c 5 . (16)
mN (m) (1 2 A)c

If this ratio is plotted as a function of n on a log-linear
plot, a straight line with a gradient of log (1 2 A) is
the result:

N (n)clog 5 (n 2 m) log(1 2 A). (17)[ ]N (m)c

Because (1 2 A) , 1, the gradient is always negative,
and clusters formed from increasingly greater numbers
of particles become less frequent. To compare the pre-
dicted clustering behavior with the observed data we
use an interarrival time threshold to differentiate be-

tween particles belonging to clusters and those that do
not, as described above. The Markov chain model pro-
vides an independent method to estimate A using the
distribution of clusters. We can compare this value with
that obtained from the x 2 fitting to assess the applica-
bility of the model. Figure 8a shows cluster distribution
ratios [Nc(n)/Nc(m)] as a function of cluster size for three
10-s intervals from different flights. The straight lines
are the predicted cluster distributions based on the es-
timate of A from the x 2 fit. The predicted lines appear
to match quite well with the observed cluster distri-
bution. Figure 8b shows a comparison of A estimated
from least squares fits to the cluster distribution com-
pared to the x 2 estimate of A. The straight line represents
a 1:1 fit and suggests that the Markov chain model can
provide a robust estimate of this parameter.

5. Relationships between Markov chain
parameters and environmental variables

Using the x 2 minimization technique described in
section 4, the Markov chain parameters have been es-
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TABLE 1. Percentile values of parameters obtained from minimum x2 fit to observed interarrival time distributions,
where p(Dt) 5 A(1/t 1) exp(2Dt/t 1) 1 (1 2 A)1/t 2 exp(2Dt/t 2).

Flight

A

25th 50th 75th

t 1 (ms)

25th 50th 75th

t 2 (ms)

25th 50th 75th

A800
A801
A802
A803
A806
A815

0.53
0.48
0.80
0.41
0.32
0.80

0.57
0.56
0.87
0.49
0.42
0.85

0.63
0.68
0.89
0.56
0.48
0.88

18
13
36

8
9

19

29
18
52
10
12
27

48
32
59
15
14
38

63
81

150
61
64

110

74
90

210
72
70

120

89
100

2700
77
76

140

timated for 10-s intervals from each flight. Estimates
are made for regions containing ice crystals only, as
determined by asphericity measurements from the SID.

Table 1 contains 25th, 50th, and 75th percentile values
for the minimum x 2 fitted parameters for the individual
flights. Figures 9–11 are plots of the minimum x 2 fitted
parameters and environmental variables.

Figure 9a shows a plot of A versus the average en-
vironmental temperature for the run. If A815 is ignored,
the data display an ordered behavior with temperature—
high A values at cold temperatures decreasing to an
approximately constant value of 0.4–0.5 at temperatures
warmer than 2308C. The data from the modified inlet
flight (A815) have greater values of A compared to data
from the other flights in the same temperature range.
Importantly, some points from A803 lie above the main
body of data at 2138C. These points come from the
early part of a run, when the concentrations are rela-
tively low, and 2D-C imagery shows a larger proportion
of small particles compared to other periods on this
flight.

Figure 9b shows that there is a similar correlation,
but of opposite sign, between A and true air speed (TAS)
when TAS is used rather than temperature. As the TAS
increases so does A. This is partly to be expected when
operating at higher altitudes (colder temperatures),
where the aircraft is normally operating at a higher TAS.
Again the data points from A815 and several from A803
can be seen above the main body of the data at 125 and
117 m s21, respectively.

Figures 9c and 9d show A versus t1 and A versus t2,
respectively. In contrast to t1, which displays no cor-
relation with A, t2 displays a positive correlation with
A. In this figure the data from A815 lie coincident with
the data from the other flights. Figure 9d suggests that
as the clustering becomes more pronounced (decreasing
A) t2 and, hence, the interparticle spacing decrease.

In Fig. 10a A is plotted against the quotient of 2D-
C concentration for particles larger than 350 mm and
concentration of 2D-C particles larger than 100 mm.
This ratio is a measure of how broad the ice particle
size distribution is. Higher values of this ratio indicate
the presence of relatively more larger particles. This
figure indicates that values of A . 0.8 coincide with
narrow 2D-C size distributions. Again, A815 is an ex-

ception, displaying high A values even when larger ice
particles are present.

A plot of the normalized difference between the av-
erage pulse duration taken by the particle with inter-
arrival times close to the modal values as a function of
temperature is shown in Fig. 10b. For interarrival times
within a factor of 1.5 of the long interarrival time mode,
the pulse durations were averaged to give tr1. This was
done for the short interarrival mode as well, to give tr2.
The first point about this plot is that the difference in
pulse duration can be both positive and negative, im-
plying that clustered particles can be traveling both fast-
er and slower than the unclustered particles. Second, the
difference tends to be positive at temperatures colder
than 2208C.

A plot of A as a function of the dissipation rate, e
(Fig. 10c), indicates that turbulence appears to have no
obvious effect upon the amount of clustering observed.
Bacon et al. 1998 and Dong et al. (1994) have observed
the breakup of dendritic ice crystals when evaporating,
leading to the production of small fragments. It has been
suggested that small-scale turbulence may be respon-
sible for large variations in relative humidity, which may
lead to the evaporative breakup of ice crystals, for in-
stance. Such a mechanism would be expected to produce
clusters of particles and result in bimodal interarrival
times. To investigate this possible mechanism we have
looked at dissipation rates estimated from 32-Hz data.
Dissipation rates are estimated using the 32-Hz vertical
and horizontal winds following the method of Kaimal
(1973). This involves estimation of the second-order
velocity structure function, which is related to the dis-
sipation rate via the Kolmogorov ‘‘two-thirds’’ law. Dis-
sipation rate is a more effective measure of small-scale
turbulence than the wind variances because wind var-
iances can include nonturbulent wave motions. The lack
of correlation between the dissipation rate and the de-
gree of clustering suggests that turbulence is not playing
a role in controlling the observed clustering.

Finally, we present a figure showing the concentration
of particles measured by the FFSSP as a function of
temperature for particles in both modes (Fig. 11a) and
for particles in the long interarrival time mode (Fig.
11b). The first figure shows concentrations in the range
0.1–5 cm23, with a tendency for higher concentrations
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FIG. 9. (a) Parameter A as a function of environmental temperature.
(b) Parameter A as a function of TAS. (c) Parameter A as a function
of parameter t1. (d) Parameter A as a function of parameter t2. The
symbols represent the following flights: *—A800, 3—A801, #—
A802, M—A803, 1—A806, V—A815 (the modified inlet flight).

FIG. 10. (a) Parameter A as a function of the quotient of 2D-C
concentration for particles larger than 100 and 350 mm. (b) The
normalized difference in transit times for particles associated with
the two interarrival modes as a function of temperature. (c) Parameter
A as a function of the dissipation rate. The symbols represent the
following flights: *—A800, 3—A801, #—A802, M—A803, 1—
A806, V—A815 (the modified inlet flight).

at warmer temperatures. The latter figure displays a
more constant behavior, with concentrations in the range
of 0.1–2 cm23. There is also a suggestion that at tem-
peratures colder than 2408C the concentrations tend to
be lower. It should be borne in mind that the concen-
trations are estimated assuming that the sample volume
for droplets is applicable to ice crystals. This is not
necessarily the case, as particle size and habit may affect
the depth of field. Another problem with the estimate
of the sample volume is the situation in which large
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FIG. 11. (a) FFSSP concentration as function of temperature. (b)
FFSSP concentration in the long interarrival time mode as function
of temperature. The symbols represent the following flights: *—
A800, 3—A801, #—A802, M—A803, 1—A806, V—A815 (the
modified inlet flight).

FIG. 12. Speed reached by an ice sphere accelerated from rest in
an airflow with a speed equal to the TAS as a function of distance
traveled. The length of the FFSSP inlet tube is 10 cm.

crystals just touch the edge of the sample volume. This
has the effect of artificially enhancing the concentration
of the large particles. This multiplying effect is linear
with particle size, but, as the concentrations of large
particles typically fall off in an exponential manner, the
contribution to the FFSSP concentration from 2D sized
particles is small—typically less than 10% for the data
presented here.

6. Physical origin of bimodal interarrival times

The Markov chain model is able to describe the re-
sponse of the FFSSP to ice, but it does not provide an
explanation for the physical mechanism responsible.
Scenarios to be considered are (i) ice crystal breakup
on the probe, or in the airflow of the FFSSP upstream
of its sample region; and (ii) clustered spacing of ice
particles in the atmosphere due to real microphysical
processes. We now examine a number of characteristics
of the data in an attempt to distinguish between the two
processes.

If shattering of particles on the probe housing were
responsible, then we may postulate that the debris would
travel through the sample volume at a lower speed than
the unaffected particles. We can examine this point with
a simple model that is set in the rest frame of the probe.
Ice spheres are accelerated from rest in an airflow that
has a velocity equal to the true air speed, over a distance
of 10 cm (the distance from the tip of the sampling tube
to the scattering volume in a standard FSSP). Figure 12
shows the velocity of ice spheres (as a fraction of the
TAS) as a function of the distance they have traveled.
The figure indicates that fragments smaller than 25 mm
in radius starting at rest will accelerate to at least 70%
of the true air speed. In practice the ice crystals have
larger drag coefficients, and any debris will not nec-
essarily be starting from rest, so it seems unlikely that
there will be a large difference in the speeds of debris
and unaffected particles as they enter the sample vol-
ume. Hence, we cannot use transit times as a test of
whether or not shattering is occurring. A second ques-
tion that could be asked about the shattering scenario
is: can debris cross from the edge of the inlet tube to
the sample volume? Using the same aerodynamic mod-
el, critical trajectories were computed for debris parti-
cles that start with a speed along the axis of the inlet
tube equal to the TAS and an initial perpendicular
launch velocity into the center of the tube that would
transport the particles from the probe tip to the sample
volume. It can be seen from Fig. 13 that apart from the
smallest particles (radius , 10 mm) debris particles only
require a small fraction of the TAS in the perpendicular
direction to fall into the sample volume. Based on this
simple model it would seem unwise to rule out the pos-
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FIG. 13. (a) Critical trajectories of ice spheres launched perpen-
dicularly from the edge of the inlet tube toward the center. The upper
right corner of the plot represents the FFSSP sample volume. The
numbers next to the lines indicate the particle radius in microns. (b)
The perpendicular launch velocity required for ice spheres of various
sizes to follow the critical trajectories shown in (a).

FIG. 14. Shattering efficiency as a function of temperature. The
symbols represent the following flights: *—A800, 3—A801, #—
A802, M—A803, 1—A806, V—A815 (the modified inlet flight).

sibility that shattering may affect the FFSSP measure-
ments.

Another simple model to consider for the shattering
scenario is the relationship between the geometry of the
inlet tube and sample volume. For the unmodified
FFSSP the inlet tube has a 5-mm-wide, 458 inward fac-
ing bevel where the debris could be envisaged to orig-
inate. Of course, the debris production region could be
either larger or smaller than this. Assuming that the
production zone is a 5-mm annulus with an inside di-
ameter of 25 mm means that the ratio of this production
zone to the FFSSP sample volume is of the order of
104. In a replicator study Hallett (1976) reports that ice
crystals larger than a few hundred (100–300) micro-
meters in diameter will shatter on impact with a formvar-
covered surface. It is probably safe to assume that the
same could happen when large ice crystals come into
contact with the FFSSP probe tip. Therefore, we can
estimate a shattering efficiency based upon the relative
concentrations of large ice crystals (concentration of
particles larger than 350 mm; CD.350) and the concen-

tration of clusters (Ccl). The concentration of clusters is
given by

C (1 2 A)FFSSPC 5 , (18)cl n

where CFFSSP is the measured FFSSP concentration, (1 2
A) is the fraction of clustered particles, and is then
average number of particles in a cluster. It can be shown
that the average number of particles in each cluster, ,n
is given by 21/ln(1 2 A). Hence, a shattering efficiency,
Es, can then be defined as the ratio of concentration of
clusters, Ccl to the large crystal concentration, CD.350 with
a correction included for the difference in sample vol-
umes of the FFSSP and the annulus of the inlet tube:

C (1 2 A)[2ln(1 2 A)]FFSSPE 5 . (19)s 4C 3 10D.350

The numerator represents the concentration of clusters
of particles, that is, each cluster is a single unit. The
denominator represents the maximum concentration of
clusters that may be produced on the assumption that
every ice crystal larger than 350 mm would produce a
single cluster event and that smaller crystals would pro-
duce none. If values of shattering efficiency greatly ex-
ceed unity then we can rule out the hypothesis that the
clustered particles result from shattering. A plot of the
shattering efficiency (Fig. 14) shows values in the range
0.01–0.1 for most cases apart from flight A801, which
has much higher values (0.01–1.0). It is interesting to
note that the modified inlet flight seems to have the same
shattering efficiency as the other flights.

7. Discussion and summary

In this section we will provide arguments for and
against the ice crystal shattering and natural crystal
bunching hypotheses. The main evidence for the shat-
tering hypothesis is provided by the temperature versus
A plot (Fig. 9a), the difference in pulse duration plot
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(Fig. 10b), and the 2D-C concentration versus A plot
(Fig. 10a). In these three figures the data obtained using
the modified FSSP inlet lie outside of the main body of
data obtained from the other flights. If evaporative
breakup were really occurring, then the average particle
transit time for particles with interarrival times close the
the modal values would be the same. Figure 10b shows
that this is not the case. However, the difference is not
always of the same sense. For this observation we have
no explanation.

Evidence against the shattering hypothesis is found
in the shattering efficiency plot (Fig. 14), which shows
the modified inlet data lying within the main body of
data in contrast to the data depicted in Figs. 9a and 10a.
The modified inlet does present surfaces upstream from
the sample volume, on which particle shattering may
be occurring. Nevertheless, it may be expected that such
a significant change in the intake design would produce
an observable difference in the shattering efficiency.

Direct evidence against the evaporative breakup hy-
pothesis is seen in the dissipation rate, e versus A plot
(Fig. 10c). A correlation between these variables might
have been expected if turbulence were producing small-
scale variations in the local humidity field and more
intense turbulence were generating greater variation.
These variations would lead to regions of subsaturation
with respect to ice that could drive the evaporative
breakup of large ice crystals to produce smaller parti-
cles. The lack of correlation implies that the intensity
of the turbulence is not controlling the degree of clus-
tering.

It appears that we have no conclusive evidence to rule
out the possibility that shattering of ice crystals may be
taking place on the housing of the probe and affecting
the observations. We suggest that to determine the im-
portance of shattering an experiment needs to be un-
dertaken that involves flying two FFSSPs—one with a
modified inlet—on the same aircraft in glaciated clouds.
Even if shattering is occurring the greatest contribution
we have observed from the flights presented is 1 2 A
5 0.8, and more usually it is 1 2 A , 0.6. This means
that in the worst case the concentration is overestimated
by a factor of 5 but is more likely to be a factor of 2
or less. Obviously such large variations in concentration
estimates can have a large impact upon the subsequent
prediction of ice cloud radiative properties.

To summarize, the particle interarrival times mea-
sured by an FFSSP in ice clouds are bimodal with modes
at 1022 and 1024 s. The bimodal nature of the interarrival
times is well described with a Markov chain model that
incorporates two separate Poisson processes with rates
reflecting the observed modal values. It is difficult to
determine the physical origin of the bimodality, and
because of this more observations need to be carried
out. The role of shattering should not be ruled out. How-
ever, if shattering is responsible for the bimodality the
measured FSSP concentrations will be overestimated by
a factor of 5 at most. If the particles within a cluster

are ignored then the concentrations measured by the
FSSP typically fall in the range of 0.1–1 cm23. If the
clustered particles are included then FSSP concentra-
tions can reach 6 cm23 on average, but locally of the
order of 100 cm23 in the frontal cloud measured. If the
clustering is real then a microphysical mechanism will
need to be invoked to explain the observed localized
high concentrations of ;100 cm23 over centimeter spa-
tial scales.
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