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Abstract

The management and monitoring of icebergs and sea ice is an important consideration for

any maritime operations that take place in the polar and near-polar regions. Spaceborne

synthetic aperture radar (SAR) satellites can provide iceberg detection capabilities over vast

areas of ocean with a quick revisit time. Canada’s next Radarsat satellite, the Radarsat Con-

stellation, will collect compact polarimetry, a polarimetric SAR configuration that transmits

a circular polarization rather than the typical linear horizontal or vertical polarizations. In

doing so, it can provide greater polarimetric information than typical linear dual-polarized

SAR, without the swath width restrictions of fully polarimetric or quad-polarized SAR.

In this thesis, the use of compact polarimetry for iceberg detection is explored. The

detection performance of Radarsat Constellation data, simulated using Radarsat-2 data, is

assessed using validated iceberg locations collected by a survey vessel. Many new algorithms

are tested for use with compact polarimetric SAR data, including detection methods that

use pseudo quad-pol reconstruction, wherein quad-pol covariance matrix elements are ap-

proximated using the compact polarimetric covariance matrix. Detection using the Stokes

parameters is also tested, both through the use of the skew-normal distribution to model

the Stokes vector ocean clutter, and also by using the Stokes parameters to calculate the

orientation and ellipticity of the polarization ellipse. A method is proposed where the po-

larization ellipse parameters are then used to vary the detection threshold for each pixel.

Discrimination of ships and icebergs after target detection, using a support vector machine

classifier, is also demonstrated.

Overall, the compact polarimetric data significantly outperformed the linear dual-polarized

data, both in iceberg detection and ship/iceberg discrimination. Compact polarimetry shows

much promise for maritime surveillance applications.
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Chapter 1

Introduction

1.1 Iceberg Detection And Synthetic Aperture Radar

The management and monitoring of icebergs and sea ice is an important consideration for any

maritime operations that take place in the polar and near-polar regions. The National Snow

& Ice Data Centre (NSIDC) reports that the Arctic sea ice extent has been steadily decreasing

over the past few decades [2]. For example, the Arctic sea ice extent in January 2014 was

around 14 million square kilometres, compared to levels of 15 million square kilometres

commonly seen in January in the late 1970s and early 1980s [2]. Arctic sea ice extent has

declined at an average rate of 3.2% per year from 1981 to 2012 [2], and as the sea ice has

receded, shipping as well as oil and gas exploration has increased due to easier access to

Arctic waters and rising fuel prices. Arctic shipping is attractive due to reduced travel

distances and therefore fuel consumption. Arctic oil and gas exploration is attractive due to

the large reserves which are thought to exist there. With estimates that 20% of the world’s

remaining fossil fuels lie in the Arctic [3], it seems likely that oil and gas exploration will

continue to increase in the region despite the technical challenges involved in extracting these

resources.

One of these challenges is the hazard posed to ships and sea structures by icebergs.

While there is a great deal of variety in iceberg shapes and sizes, all icebergs, even relatively

small ones, can present potential hazards to maritime operations and are therefore worth

monitoring. The monitoring of icebergs, and their formation and drifting patterns, can

also be of scientific interest, such as for measuring some of the effects of climate change.

Rising temperatures have led to an increasing number of icebergs breaking off, or calving,

from Greenland’s continental ice shelf [4]. Greenland is the source of the majority of Arctic
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icebergs, creating 10,000 to 15,000 new icebergs per year, most of which float South, through

Baffin Bay and into the Labrador Sea [4].

Traditionally, icebergs were monitored using field observations from ships or aircraft,

but the use of remote sensing for this purpose has become more common as the number

of earth-observing satellites has increased. Satellite-borne synthetic aperture radar (SAR),

with its wide area coverage and all-weather day-night operation, is a strong choice for iceberg

detection applications. Remote sensing has serious benefits over field observations in terms

of cost and scale, but is also less accurate. Detection accuracy is an important consideration,

since false detections can result in ships being unnecessarily rerouted, causing delays and

financial loss, while missed detections can be catastrophic.

The first SAR systems utilized a single polarization of radiation only, that is, the trans-

mitted and received polarizations were the same (often this was the horizontal or vertical

polarization). In recent years, the development of polarimetric SAR systems has provided

a new dimension of information, allowing targets to be characterized based on their po-

larimetric scattering behaviour rather than their single-channel reflectivity. This additional

information has also increased the potential accuracy with which icebergs can be detected

and classified.

Microwave attenuation depths in freshwater ice generally range from 108-510 cm at X-

band to 360-1801 cm at S-band [5], with scattering caused by both the iceberg’s surface as

well as by air bubbles and other impurities within the ice. Due to the relatively extensive

microwave attenuation depth, most icebergs display significant volume scattering, at least in

the fall and winter months. In summer, when there is likely to be wet snow or liquid water

on the top of the iceberg, volume scattering is reduced, while surface scattering from the top

of the iceberg is increased [6]. Imaging geometry also plays an important role in the types

of microwave scattering observed—for example, tabular icebergs, whose sides are oriented

perpendicularly to the sea, have strong double-bounce scattering, where radiation is reflected
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from the iceberg wall and then from the sea (or vice versa) [6]. Due to the wide variety

of scattering mechanisms presented by iceberg targets, and the fact these mechanisms are

dependent on the size, dielectric properties, and imaging geometry of the iceberg, no generic

model for iceberg backscattering has yet been developed.

Despite this lack of a polarimetric scattering model, polarimetric SAR has shown much

promise in the detection of icebergs, with dual-polarization (dual-pol) systems, which have

two polarimetric channels, being shown as superior to single-polarization (single-pol) sys-

tems, such as in the work of Howell et al. [7, 8, 9]. Quad-polarization (quad-pol) or fully

polarimetric SAR data, with four polarimetric channels, can produce even higher detection

accuracy than dual-pol SAR [10], but due to the fact that quad-pol SAR systems must

alternate between the transmission of two orthogonal polarizations [11], the swath width

of quad-pol SAR data is severely limited compared to dual-pol. For maritime surveillance

applications, where a wide coverage area is a necessity due to the vast size of the ocean, this

makes quad-pol SAR a less than ideal choice despite its high detection accuracy.

Shipborne radar has also been used extensively to detect icebergs, and has the advantage

of being able to detect very small icebergs that are difficult to detect in remote sensing

imagery. However, shipborne radar also has a limited detection range compared to the

coverage of remote sensing data [12], measured on the order of nautical miles, compared to

hundreds of kilometres for the swath width of satellite borne SAR.

There are a number of examples of previous work in the literature using SAR images to

detect icebergs, using a number of different polarimetric configurations and methodologies.

Lane et al. [13] calculated probability of detection curves for different icebergs of different

size classes within sea ice areas, using a constant false alarm rate (CFAR) detector, using

Radarsat-1 (single polarization) and Envisat ASAR (dual-polarization) data, using only the

backscattered power, and not the phase. Wesche and Dierking [14] investigated the ice-

berg backscattering coefficients of icebergs in the Weddell Sea, in Antarctica, tracking how
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the backscattering coefficients changed with different seasons using single-polarization data.

Kim et al. [15] showed that icebergs could be detected in quad-pol Radarsat-2 data using

the entropy/alpha decomposition parameters. Dierking and Wesche [16] investigated the po-

larimetric signatures of icebergs in sea ice, using quad-pol imagery to calculate parameters

such as the phase difference between the HH and VV channels, as well as the entropy/alpha

decomposition parameters. In general, any methods which rely on quad-pol data (such as the

entropy/alpha) are hindered by the swath width reduction discussed in the previous para-

graph. Much of the previous work done in this area has focused on either single-polarization

data, with a lack of polarimetric information, or on quad-polarization data, with reduced

swath width. Relatively little work has focused on coherent dual-pol SAR (such as the work

done by Howell et al. [9]), which can present a compromise between the swath width of

single-polarization data, and the maximum polarimetric information of quad-pol data.

1.2 Some Background on Compact Polarimetry

We therefore wish to produce the best detection performance possible using dual-pol SAR

data. Traditionally, most dual-pol SAR systems transmitted a linear polarization (either the

horizontal or vertical polarization), and received two orthogonal linear polarizations (both

the horizontal and vertical polarizations). But this is not a requirement. In recent years,

a new SAR architecture called compact polarimetry has been proposed. This architecture

uses a dual-pol SAR system, but one that transmits a polarization other than the traditional

horizontal or vertical, such as a wave oriented at π/4 radians (known as the π/4 mode), as

proposed by Souyris et al. [17]. Stacy and Preiss proposed a compact polarimetric SAR

configuration called the dual-circular mode, which transmitted a circular polarization (either

right-circular or left-circular, where right and left describe the direction of rotation of the

wave’s electric field vector), and received both the right-circular and left-circular polarizations

[18].
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Raney proposed another approach to compact polarimetry, which he called hybrid-

polarity [19], and which we will refer to here as the circular transmit, linear receive (CTLR)

mode to clarify this mode’s polarimetric structure, as in the work of Nord et al. [20] and

others. In this mode, the transmitted polarization is circular and the received polariza-

tions are the traditional horizontal and vertical [19]. The CTLR approach has a number

of interesting advantages over a linear transmit polarization. First, since the transmitted

polarization is circular, the resulting backscatter is rotationally invariant, meaning that the

amount of power in the backscatted wave does not depend on the orientation of the tar-

get geometry around the radar’s line of sight [19]. As well, since the received polarizations

are the traditional horizontal and vertical, the transmitted and received polarization bases

are different rather than the same, and therefore the signal-to-noise ratio (SNR) of the two

channels is closer in magnitude than in a traditional dual-pol SAR system, where generally

the cross-polarized channel (the channel with different transmit and received polarizations)

will have a significantly smaller SNR than the co-polarized channel (the channel with the

same transmit and receive polarization). But in a CTLR system neither channel is really co-

or cross-polarized in the traditional sense, and therefore the two channels will have closer

SNR, meaning that for a constant amount of cross-talk, the effects of this crosstalk will be

less noticeable in the CTLR data than in traditional linear dual-pol data, where crosstalk

from the co-polarized channel to the cross-polarized channel can have a significant effect on

the cross-polarized channel unless the crosstalk is kept very low [19].

Compact polarimetry has been used in radar astronomy successfully for quite some time,

and was in fact used to collect images of our Moon [21], but had not often been utilized in

remote sensing of the Earth until recently. In the years since Raney’s proposal of a CTLR

SAR architecture for Earth-based remote sensing, much work has been done to investigate

the viability of compact polarimetry for a wide variety of applications and projects. Yet

the availability of actual compact polarimetric data is still very limited, with data of the

5



Earth currently only being collected by the Indian satellite Risat-1. However, Canada’s next

spaceborne SAR project, the Radarsat Constellation Mission (RCM), will collect CTLR

SAR data at C-band in a wide variety of imaging modes [22]. As well, iceberg detection and

Arctic maritime surveillance in general are stated objectives of the Radarsat Constellation

[22]. Once launched (planned for 2018), the RCM will provide an unprecedented level of

compact polarimetric SAR data, with daily revisit times for most of the Canadian Arctic

[22]. In an effort to analyze the detection performance of CTLR SAR data as compared

to traditional linear dual-pol data, we can use quad-pol SAR data collected by Radarsat-2

to simulate CTLR data at the spatial resolution and approximate noise floor of the RCM

imaging modes. This can then give us an insight into the detection performance that can

be expected from the RCM data once it is available. By working with simulated data, we

can also experiment and validate algorithms that can be ready for use once the Radarsat

Constellation has launched.

1.3 Objectives of this Research

While compact polarimetry shows much promise, the use of a circular transmit polarization

poses some challenges. The majority of the ship and iceberg detection work done in the past

using polarimetric SAR has focused on the linear polarizations. Therefore any algorithms

or methods for iceberg detection taken from the literature will likely have to be adapted for

use with CTLR SAR data. Similarly, there are many measurements and parameters which

can be estimated using compact polarimetry that were previously unavailable to dual-pol

SAR, or were less useful when derived from dual-pol SAR than from compact polarimetry

(see, for example, chapters 4 and 5), and we therefore wish to assess their usefulness for

the detection of icebergs, and how they can be used to improve the detection performance

beyond what is possible using linear dual-pol data. It is therefore also important to assess

the detection performance of compact polarimetry compared to linear dual-pol, to determine
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what benefits compact polarimetry can provide.

Previous publications by the author have shown the strong potential of CTLR SAR data

for iceberg detection [10, 23, 24, 25]. This thesis will both elucidate and build upon the

author’s previous work, as well as explore areas that have been previously unaddressed in

the literature, such as the use of the Stokes and polarization ellipse parameters for use in

iceberg detection.

There were two main objectives of this research: first, to determine the viability of

compact polarimetric SAR data compared to traditional linear dual-pol; second, to improve

upon the detection results of compact polarimetric SAR data by taking advantage of its

strengths compared to linear transmit polarizations. Considering the increasing demand for

iceberg monitoring, it is helpful to begin this work now, rather than attempt to catch up

once the RCM has launched and compact polarimetric data of the Arctic becomes more

widely available.

1.4 Structure of the Thesis

Chapter 2 gives a description of the data used in this study, including a summary of the

Radarsat scenes and validated iceberg locations, as well as the simulated RCM imaging

modes.

Chapter 3 gives some background information on the polarization of electromagnetic

waves and polarimetric SAR that is necessary for understanding the latter sections of the

thesis.

Chapter 4 gives some background information on compact polarimetric SAR specifically,

focusing on the CTLR mode used in this thesis. This chapter also discusses the concept of

pseudo quad-pol reconstruction, which involves the approximation of some quad-pol param-

eters using compact polarimetric SAR data and a backscatter model.

Chapter 5 discusses the Stokes parameters, a set of parameters that are well suited for
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use with compact polarimetry. We also discuss the parameters of the polarization ellipse,

specifically the orientation and ellipticity angles, and how these parameters are linked to the

Stokes parameters through a parametrization called the Poincaré sphere. We then discuss

the values for these parameters that we expect to see from a number of basic theoretical

scattering types, then discuss the actual values observed in the data for ocean pixels and

icebergs.

Chapter 6 discusses some methods used to detect targets in polarimetric SAR imagery,

with emphasis on the Likelihood Ratio Test (LRT) method used in this study. The potential

of using the Stokes parameters to detect targets will also be discussed, with a modified LRT

being proposed for use with the Stokes parameters.

Chapter 7 discusses the relationship between false alarm rate (FAR) and detection thresh-

old. Many detection methods used in the literature do this statistically, using a probability

distribution function, but here we showcase a simple and effective method through which the

log10 value of the FAR vs. the detection threshold is modelled empirically using an actual

ocean subset of the SAR image.

Chapter 8 shows the detection results of the methods discussed so far using a variety

of polarimetric modes: linear dual-pol, compact polarimetry, and reconstructed quad-pol

elements from compact polarimetry. The detection performance of these various polarimetric

modes is compared and discussed.

Chapter 9 describes a method through which the polarization ellipse orientation and

ellipticity parameters are used to dynamically vary the false alarm rate (FAR) of the detection

process from pixel-to-pixel. This method is well suited for use with compact polarimetry

due to the rotational invariance of the circular transmit polarization. Results of this method

are shown, and compared to the traditional constant FAR case.

Chapter 10 presents the results of discrimination between ship and iceberg targets after

detection is performed. Discrimination is done using a support vector machine classifier,
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and the results are compared for the CTLR and HH-HV polarization modes and the low

resolution and medium resolution imaging modes.

Chapter 11 gives the conclusions of the study and some potential areas of future work.

1.5 Relevant Publications by the Author

M. Denbina and M.J. Collins, “Iceberg detection using pseudo quad-pol reconstruction of

compact polarimetric SAR,” Atmosphere Ocean, vol. 50, no. 4, pp. 437–446, 2012.

M. J. Collins, M. Denbina, and G. Atteia, “On the reconstruction of quad-pol SAR data

from compact polarimetry for ocean target detection,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 51, no. 1, pp. 591–600, 2013.

M. Denbina and M.J. Collins, “Iceberg detection using simulated dual-polarized Radarsat

Constellation data,” Canadian Journal of Remote Sensing, In Press, 2014.

M. Denbina and M.J. Collins, “Iceberg detection using analysis of the received polarization

ellipse in compact polarimetry,” Proc. IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), 2014.
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Chapter 2

Data Summary

A summary of the Radarsat-2 scenes used in this study is shown in Table 2.1, sorted by

beam position (where higher beam numbers correspond to higher incidence angles). The

Radarsat-2 scenes were collected using the fine resolution quad-pol mode (fine-quad or FQ

for short), which has range sample spacing of 4.73 m, and azimuth sample spacing varying

from 4.8–5.0 m according to beam position. Nominal Radarsat-2 fine quad-pol resolution is

approximately 5.2 m in range by 7.6 m in azimuth. These scenes were then used to simulate

data in the proposed imaging modes of the Radarsat Constellation, as described in section

2.1, using simulator software developed by François Charbonneau of the Canada Centre for

Remote Sensing.

The scenes are located around 70-71◦N, 58-60◦W. Scenes will be referred to in this paper

based on the Scene ID (which is based on the date acquired, in the format mmdd, followed

by a dash, then a number to differentiate multiple scenes collected on the same day). The

“Beam” column in the table lists the fine-quad (FQ) beam position, with lower positions

having lower incidence angles, and vice versa. “Inc. Angle” is the incidence angle range of

the scene, in degrees. “W.S. (m/s)” lists the mean wind speed of each scene, in m/s, as

calculated using the mean value of the HV σ0, according to the linear regression developed

by Vachon and Wolfe [26]. A value of less than 3 in the table denotes that the wind speed

was too low to accurately estimate, and we can only state that it is less than 3 m/s. “N” is

the mean value of the constant of proportionality in each scene, as described in section 4.2

describing the pseudo quad-pol reconstruction process.
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Table 2.1: An overview of the Radarsat-2 fine-quad scenes used for this project. Beam

refers to the fine quad beam position, “Inc. Angle” is the incidence angle range of the scene

in degrees, W.S. stands for the estimated wind speed of the scene, and N is an estimated

reconstruction parameter (see section 4.2).

Scene ID Date Acquired Beam Inc. Angle W.S. (m/s) N

0905-1 2009-09-05 2 19.9◦ - 21.8◦ 5.0 51.0
0905-2 2009-09-05 2 19.9◦ - 21.8◦ 5.0 49.4
0805-1 2009-08-05 5 23.4◦ - 25.3◦ 1.3 4.5
0805-2 2009-08-05 5 23.4◦ - 25.3◦ 1.5 8.5
0829-1 2009-08-29 5 23.4◦ - 25.3◦ <3 22.3
0815-2 2009-08-15 6 24.6◦ - 26.5◦ 5.9 18.8
0822-1 2009-08-22 7 25.8◦ - 27.6◦ 3.8 17.7
0822-2 2009-08-22 7 25.8◦ - 27.6◦ 4.4 17.5
0815-1 2009-08-15 9 28.0◦ - 29.9◦ 3.9 10.0
0825-1 2009-08-25 11 30.3◦ - 32.0◦ 5.9 11.1
0825-2 2009-08-25 11 30.3◦ - 32.0◦ 5.8 11.1
0818-1 2009-08-18 16 35.5◦ - 37.0◦ 6.8 7.6

Table 2.2: An overview of the three Radarsat Constellation Mission imaging modes simulated

for this study. Simulated SLC (single-look complex) resolution is an average value taken from

scene 0818-1.

RCM Resolution (rng × az) Looks Swath Incidence Simulated
Imaging Mode Near Far (rng × az) Width Angle SLC Resolution
Ship Detection 10× 38 m 17× 77 m 5× 1 350km 36◦ to 51◦ 1.5m× 38m

Medium Resolution 50 m 50 m 4× 1 350km 19◦ to 54◦ 7.9m× 50m
Low Resolution 100 m 100 m 8× 1 500km 19◦ to 58◦ 8.3m× 99m
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2.1 Simulated RCM Imaging Modes

A summary of the wide swath RCM imaging modes simulated for this study are shown in

Table 2.2. We used a simulator created by François Charbonneau, of the Canada Centre

for Remote Sensing, to create simulated RCM single look complex (SLC) images using the

Radarsat-2 fine-quad SLC images as input. The simulated data has a noise floor of approx-

imately -22 dB (higher than the Radarsat-2 data, which has noise floors of approximately

-32 dB and lower [26]).

As with the imaging modes of Radarsat-2, the RCM imaging modes can be collected

using many different beam modes, each at a different incidence angle, and with slightly

different spatial resolution. The “Resolution” column refers to the nominal multi-look spatial

resolution, in the format of range × azimuth for the ship detection mode data. For the

medium and low resolution modes, the pixels are square. Near range spatial resolution refers

to the steepest beam mode available, and far range resolution refers to the shallowest beam

mode available (note that the resolution is only dependent on incidence angle in the ship

detection imaging mode case).

“Looks” refers to the number of looks that would be used for the multi-look products of

each imaging mode, but since we are operating with simulated SLC imagery, the number of

looks in our simulated data is equal to one. The “swath width” column contains the nominal

swath width (the width of the image in the range direction), in kilometres.

The simulated SLC resolutions in the table are shown as an average for scene 0818-1,

the highest incidence angle scene containing validated iceberg targets that we had available.

Unfortunately, this was the only scene which corresponded to the planned ship detection

incidence angle range. The planned ship detection mode only uses high incidence angle

beam modes, so that the incidence angle of scene 0818-1 (36.5◦-38.0◦) roughly corresponds

to the lowest incidence angle ship detection beam mode. Medium and low resolution modes

were simulated for all Radarsat-2 scenes with validated iceberg targets. By simulating three
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Figure 2.1: RH σ0 image of scene 0818-1, for the RCM ship detection imaging mode.

different imaging modes, we are able to explore the effects of spatial resolution and pixel size

on iceberg detection performance.

RH σ0 images of scene 0818-1, for the three RCM imaging modes, are shown in Figures

2.1-2.3 by way of example. Note the different dimensions of each image, due to the varying

pixel spacing of the different imaging modes. This scene contains one ship and six icebergs.

2.2 Validation Data

25 validated iceberg locations, based on field observations collected from a ship, were provided

by Desmond Power of C-CORE. The validation data contained the iceberg’s number, location

(in latitude and longitude), time sighted, type (blocky, dome, tabular, etc.), and size (small,

medium, and large), by which each iceberg was identified in the corresponding fine-quad

Radarsat-2 scene (and therefore also in the various simulated RCM scenes). While a larger

amount of validation data would be helpful, particularly for different seasons or years (since
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Figure 2.2: RH σ0 image of scene 0818-1, for the RCM medium resolution imaging mode.

iceberg composition and geometry can vary greatly over time), it is difficult to obtain quad-

pol SAR data that is coincident with surveyed iceberg locations. Using the classification

system of the International Ice Patrol, small icebergs have heights of 5–15 m and lengths

of 15–60 m, medium icebergs have heights of 16–45 m and lengths of 61–122 m, and large

icebergs have heights of 46–75 m and lengths of 123–213 m [27]. In this study we are most

concerned with the length of the icebergs—icebergs with lengths less than, or equal to, the

spatial resolution of the SAR data can be difficult if not impossible to detect.

Unfortunately, the full iceberg location data cannot be included in this thesis due to

intellectual property issues which prohibit disclosure of the precise iceberg locations (only

the size and shape, not exact location, are given for each iceberg). For each iceberg a mask

was manually created to identify the boundary between target and background. Masks were

also created for a few ships (including the survey vessel), and some sea ice that was present

in two of the scenes. The detection and discrimination performance of sea ice could not be

investigated in this study due to a lack of sea ice validation data, but the masks ensured
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Figure 2.3: RH σ0 image of scene 0818-1, for the RCM low resolution imaging mode.

that detections of sea ice would not count as false alarms.

In addition, a buffer region was created, covering a five pixel wide area around each of

the iceberg masks. Detected clusters in this buffer region were not considered false alarms,

since a number of icebergs were surrounded by debris fields which will generally be detected

in the SAR image, but are difficult to precisely mask out.

The iceberg targets used in this thesis are summarized in Table 2.3, sorted alphabetically

by shape category. Each iceberg was given a letter for identification. When the same iceberg

was in multiple Radarsat scenes, it was given a number after the letter to differentiate the

sightings.
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Table 2.3: An overview of the iceberg validation data used in this study, sorted alphabetically

by shape category. Iceberg F was part of a debris field around iceberg E, and did not have

a classified size/shape in the validation data. Scene represents the corresponding Radarsat

scene where the iceberg was sighted, using the scene IDs in Table 2.1. Number represents the

iceberg’s ID number within that scene (e.g., for scene 0818-1, which contains six icebergs,

the icebergs are numbered from 1 to 6).

Iceberg ID Scene Number Size Shape
A 0805-2 1 M Blocky
B1 0905-1 3 M Blocky
B2 0905-2 2 M Blocky
C1 0815-1 1 M Dome
C2 0818-1 6 M Dome
D1 0815-2 2 M Drydock
D2 0815-2 3 M Drydock
E 0818-1 3 M Drydock
F 0818-1 4 - -
G1 0829-1 1 S Drydock
G2 0805-1 1 S Drydock
H 0905-2 1 M Drydock
I 0822-2 1 L Pinnacle
J 0815-2 1 M Pinnacle
K 0818-1 1 S Pinnacle
L 0825-1 1 L Tabular
M 0822-1 1 M Wedge
N 0805-1 2 S Wedge
O1 0815-1 2 M Wedge
O2 0818-1 5 M Wedge
P1 0822-2 2 L Wedge
P2 0825-2 1 M Wedge
Q 0818-1 2 S Wedge
R1 0905-1 1 S Wedge
R2 0905-1 2 S Wedge
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Chapter 3

Polarimetry Fundamentals

The polarization of an electromagnetic wave is a term used to describe the orientation of

that wave’s electric field vector, ~E, and how this orientation changes over time (that is, as

the wave propagates). Figure 3.1 shows an example of three electromagnetic waves with

corresponding polarizations (from left to right): linear, circular, and elliptical. In the figure,

the bold black line shows the electric field vector, ~E, as it sweeps out a shape in the plane of

polarization (the plane shown in blue at the bottom of each image). The plane of polarization

is the plane orthogonal to the direction of the wave’s propagation (in this case, the direction

of propagation is towards the top or bottom of the page). The polarization state of the wave

is essentially just the shape that ~E sweeps out in this plane. The red and light blue lines in

each image show the x and y components of the electric field vector, Ex and Ey, which are

orthogonal to each other. Note that both Ex and Ey are periodic functions which have an

amplitude and a phase.

In subfigure (a) of Figure 3.1, note that Ex and Ey are in phase and have equal magnitude.

This produces a wave that is linearly polarized at a 45◦ orientation. If Ey has an amplitude

of zero and Ex is non-zero, this will produce a wave that is polarized in the x direction (that

is, horizontally polarized). Similarly, if Ex has an amplitude of zero and Ey is non-zero, this

will produce a wave that is vertically polarized. In general, as long as Ex and Ey are in

phase, the produced wave will always have a linear polarization, with the orientation of that

polarization depending on the relative magnitudes of Ex and Ey.

In subfigure (b), note that Ex and Ey are equal in magnitude but are now 90◦ out of

phase. This produces a circularly polarized wave. The direction of the ~E vector’s rotation

(either right-circular or left-circular) depends on which component of ~E is leading in phase.
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(a) Linear (b) Circular (c) Elliptical

Figure 3.1: Three different basic polarization states, from left to right: linear, circular, and

elliptical. These images are in the public domain [1].

Finally, in subfigure (c), we see that Ex and Ey are not in phase, and are not equal in

magnitude. This produces an elliptically polarized wave. The shape (or ellipticity) and

orientation of this ellipse will depend on both the relative magnitudes of Ex and Ey and

their phase difference.

Polarimetry, then, refers to the analysis and interpretation of a wave’s polarization, and

how changes in polarization can give useful information about the geometry or dielectric

properties of targets and terrain. A polarimetric SAR sensor works by transmitting a wave

with a known polarization state towards the ground. This wave then reflects, or backscatters,
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off the ground and is then received by the SAR sensor. Since the wavelengths used by

SAR systems have only minor interaction with the atmosphere, we know that a change

in polarization state between the received and transmitted waves is due to the interaction

between the wave and the ground. Different types of targets and terrain interact in different

ways with a polarized wave, and react differently to different transmitted polarizations. By

measuring these differences, we can extract useful information about the Earth’s surface.

3.1 The Sinclair Matrix

There are many different ways of mathematically representing the polarization of radar

backscatter, but a common method used in polarimetric SAR is that of the Sinclair matrix

[11, p. 53]. Before discussing the Sinclair matrix, however, it is necessary to understand the

Jones vector [11, p. 37], an easy way to describe the polarization of the waves transmitted and

received by a SAR sensor. The Jones vector is essentially a vector containing the complex

components Ex and Ey as described in the previous section. The electric field vector ~E

will in general be a function of both time, t, and the spatial dimension in the direction of

propagation, z. The Jones vector attempts to describe the polarization state of a wave by

removing the dependence on time, by noting that ~E(z, t) = ℜ
(

~E(z) exp (jωt)
)

, and then

taking the value of ~E(z) at z = 0, so that the Jones vector ~E is equal to:

~E =







Ex exp (jδx)

Ey exp (jδy)






(3.1)

where Ex is the amplitude of the x component of ~E(z), Ey is the amplitude of the y

component of ~E(z), and δx and δy are the phases of the x and y components respectively.

Note that for a horizontal wave with unit power, ~EH = [1, 0]T , and for a vertical wave,

~EV = [0, 1]T , and for a right-circular wave, ~ER = (1/
√
2)[1,−j]T [11]. The Jones vector

is merely a more formal way of presenting the polarization states discussed in the previous

section in terms of their x and y components.
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In a polarimetric SAR, we are interested in how the polarization state of the incident (or

transmitted) wave, represented by the Jones vector ~EI , is affected by the scattering process

of the ground, resulting in a different Jones vector for the scattered (or received) wave, ~ES.

~ES and ~EI can be related as follows [11, p. 56]:

~ES =
exp(−jkr)

r
S ~EI =

exp(−jkr)
r







S11 S12

S21 S22







~EI (3.2)

The fraction exp(−jkr)
r

accounts for the propagation effects, both in amplitude and in

phase, that result as the wave travels from the SAR sensor to the ground and back again.

S is called the Sinclair matrix, or scattering matrix, and it represents the effects of the

scattering process, or scattering mechanism, that takes place when the wave interacts with

the ground cover.

Each element of the Sinclair matrix, Sij, is a complex number that describes how the

incident wave is reflected by the scatterers in a particular resolution cell of a SAR image

(that is, a single Sinclair matrix represents the polarimetric backscatter for one pixel of

the image). The subscript denotes the polarization state of the wave, with the first letter

or number denoting the transmitted polarization and the second letter or number the re-

ceived polarization. For example, “H” corresponds to the linear horizontal polarization, “V”

corresponds to the linear vertical polarization, and “R” corresponds to the right-circular

polarization. Here we use 1 and 2 to make it clear that while the use of the horizontal and

vertical polarizations is common, it is not strictly required. Any orthogonal set of polariza-

tions (for example, linear waves oriented at 45◦ and 135◦, or right-circular and left-circular

waves) can be used for this purpose. Note as well that the Jones vector implies that if the set

of orthogonal components Ex and Ey are known, this is sufficient to describe the polarization

state of the wave. In fact, any set of two orthogonal Jones vectors forms what is referred to

as a polarization basis, which is sufficient to express the polarization state of any wave [11,

p. 56]. That is, we can express any Jones vector ~E in the Cartesian form ~E = Exx̂ + Eyŷ,
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or indeed in the general form ~E = Euû+Eu⊥
û⊥, where Eu and Eu⊥

are complex scattering

coefficients, and û and û⊥ are any set of orthogonal unit vectors (including complex ones).

The use of the horizontal and vertical linear polarization basis is the most common one in the

literature, due to simplicity of use and convention, but any set of orthogonal polarizations

is valid.

For a typical quad-pol SAR, transmitting the horizontal and vertical polarizations [11]:

S =







SHH SHV

SV H SV V






(3.3)

Note that in a quad-pol SAR, we transmit two orthogonal polarizations (e.g., H and V),

and for each transmit polarization, we split the received wave into two orthogonal polariza-

tions (e.g., the H and V polarization basis). Since we transmit two polarizations, and receive

two polarizations for each transmitted wave, a quad-pol SAR has four channels in total.

For example, SHH contains the information for both horizontal transmit and horizontal

receive. SHV contains the information for horizontal transmit and vertical receive. And so

on. Note that when the transmitted and received polarizations are the same, we refer to

these as the co-polarized (co-pol) channels. When the transmitted and received polarizations

are different, we refer to these as the cross-polarized (cross-pol) channels.

Note that the Sinclair matrix is similar in some ways to the radar cross section σ or

normalized radar cross section σ0, parameters which have an extensive history in SAR and

radar imaging that predates the use of polarimetry. The primary difference between the

Sinclair matrix and these parameters is that the Sinclair matrix accounts for the phase of

the waves in addition to their power. The radar cross section σ is calculated using the

equation [11, p. 54]:

σ = 4πr2
| ~ES|2

| ~EI |2
(3.4)

~ES and ~EI , as before, represent the Jones vectors of the scattered and incident waves,

respectively, and r is the distance traversed by the wave. Note that we only use the squared
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amplitude (that is, the intensity or power) of each wave’s Jones vector, and therefore the

phase information is discarded. Note the similarity to equation (3.2). While this equation is

valid for a point target, in a polarimetric SAR we generally receive backscatter from many

different targets within a resolution cell, and therefore we normalize the radar cross section

over the illuminated area A0 such that [11, p. 55]:

σ0 =
〈σ〉
A0

=
4πr2

A0

〈

| ~ES|2
〉

| ~EI |2
(3.5)

Angle brackets represent that the quantity | ~ES|2 is an average over the area. Note again

that this equation depends on the power of the incident and scattered Jones vectors, but not

their phases. Note that both σ and σ0 (as well as the intensity of the complex scattering

coefficients) represent ratios of received power divided by transmitted power. Therefore,

they are often expressed in units of decibels.

3.2 The Scattering Vector and the Covariance Matrix

Often, rather than using the Sinclair matrix directly, we vectorize it, producing the scattering

vector ~k. For example, for a typical quad-pol SAR [11, p. 63]:

~kquad-pol = V (S) = [SHH , SHV , SV H , SV V ]
T (3.6)

By alternating the transmission of two orthogonal polarizations (in this case, H and V),

quad-pol SAR provides the greatest amount of polarization information possible. When

working with quad-pol data, in the monostatic case (where the transmitting and receiving

antenna are the same), due to the reciprocity theorem (which states the transmitting and

receiving antenna properties are the same), this implies that SHV = SV H [11, p. 61], yielding

the three element quad-pol scattering vector:

~kquad-pol =
[

SHH ,
√
2SHV , SV V

]T

(3.7)
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Note the use of
√
2, to keep the total backscattered power the same as in the four element

case.

Unfortunately, for a given swath width, a quad-pol SAR system requires twice the pulse

repetition frequency, data rate, and power usage of a dual-pol SAR system. This is due to

the quad-pol system’s need to alternate the transmission of two orthogonal polarizations,

whereas a dual-pol SAR system transmits only one polarization. This is a particularly

important consideration for spaceborne platforms, where the available power and data rate

are extremely limited. To keep power usage constant, most spaceborne platforms use quad-

pol modes with half the swath width of their dual-pol modes, greatly limiting the available

coverage of quad-pol data. It is extremely important to image as large an area as possible

when mapping the locations of icebergs. Because quad-pol modes have reduced swath width,

the Canadian Ice Service does not use quad-pol SAR in their operations.

Since dual-pol SAR transmits only one polarization (e.g., either horizontal or vertical),

and receives two orthogonal polarizations (e.g., both horizontal and vertical), this results in

the following most common scattering vectors:

~kdual-pol = [SHH , SHV ]
T (3.8)

~kdual-pol = [SV V , SV H ]
T (3.9)

Note that when working with dual-pol SAR, we can no longer collect the full Sinclair

matrix as in equation 3.3, and are restricted to a single row of the matrix representing a

single transmit polarization.

The satellite Envisat also has an “alternating polarization” mode, where the two channels

can be HH and HV; VV and VH; or even HH and VV. However, when operating in the

HH/VV mode, the relative HH-VV phase coherence is not preserved [28]. The Radarsat

Constellation will collect coherent HH-VV data in the medium resolution and low resolution

modes, but with a reduced swath width.
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Another important measurement in polarimetry is the covariance matrix of the scattering

vector, calculated as the product of ~k with its complex conjugate transpose [11, p. 66]:

C =
〈

~k~kT∗

〉

(3.10)

C is the covariance matrix, ~k is the scattering vector of the data, the superscripted T∗

represents the complex conjugate transpose, and the angle brackets represent temporal or

spatial averaging (e.g., multi-looking). Note that this equation for the covariance matrix of

~k implies that the real and imaginary components of the elements of ~k have mean values

of zero, which is generally the case for the scattering coefficients but not necessarily any

parameters derived from them, which will be discussed in more detail in section 6.3.

For a typical linear quad-pol system, C is then equal to [11, p. 67]:

C4 =

〈


















|SHH |2 SHHS
∗

HV SHHS
∗

V H SHHS
∗

V V

SHV S
∗

HH |SHV |2 SHV S
∗

V H SHV S
∗

V V

SV HS
∗

HH SV HS
∗

HV |SV H |2 SV HS
∗

V V

SV V S
∗

HH SV V S
∗

HV SV V S
∗

V H |SV V |2



















〉

(3.11)

Which in the monostatic, three element case, reduces to [11, p. 68]:

C3 =

〈












|SHH |2
√
2SHHS

∗

HV SHHS
∗

V V

√
2SHV S

∗

HH 2|SHV |2
√
2SHV S

∗

V V

SV V S
∗

HH

√
2SV V S

∗

HV |SV V |2













〉

(3.12)

And for the two typical linear dual-pol systems:

C2 =

〈







|SHH |2 SHHS
∗

HV

SHV S
∗

HH |SHV |2







〉

(3.13)

C2 =

〈







|SV V |2 SV V S
∗

V H

SV HS
∗

V V |SV H |2







〉

(3.14)

The covariance matrix, particularly for the ocean pixels, is an important measurement

that is used in the calculation of the target detection decision variable (described in section
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6.1) and in the reconstruction of pseudo quad-pol data from compact polarimetry (described

in section 4.2).

3.3 Speckle and the Nature of Ocean Backscatter

Speckle is a fundamental property of SAR images that must be considered when working

with SAR data. Speckle is multiplicative noise that manifests due to the fact that the

backscattered wave received by a SAR sensor does not represent a single reflection from the

ground, but rather consists of many wavelets reflected from a large number of elementary

scatterers which are randomly distributed throughout the resolution cell [11, p. 101]. This

happens because the wavelengths used by a SAR sensor will generally be on a similar scale

to that of the surface roughness of the ground cover [11], which is not the case for optical

remote sensing. Due to the random locations of the elementary scatterers within a resolution

cell, the distance between each scatterer and the SAR sensor will vary, which will manifest

as phase differences in the received wavelets [11]. If the wavelets interfere with each other

constructively, the signal received by the SAR sensor will be stronger than expected; if

the wavelets interfere destructively, the received signal will be weaker [11]. This causes a

variation in the amount of backscattered power received by the SAR sensor from pixel-to-

pixel, even if the underlying radar cross section is constant (that is, the ground cover is

homogeneous) [11]. What this means is that generally speaking, measurements or calculated

parameters taken from a single pixel of a single-look SAR image are not reliable—some form

of filtering or averaging must be performed in an attempt to reduce the effects of speckle.

The simplest model for SAR speckle is the Rayleigh model, where each complex scatter-

ing coefficient S will have real and imaginary parts that are independently and identically

Gaussian (Normal) distributed with a mean of zero and variance σ2/2 [11, p. 102]. If x is

the real part of S, and y the imaginary part, their joint probability distribution function
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(PDF) has the form [11, p. 102]:

px,y(x, y) =
1

πσ2
exp

(

−(x2 + y2)/σ2
)

(3.15)

This results in an S with uniformly distributed phase between −π and π, and a Rayleigh

distributed amplitude. The PDF of the single-look amplitude of S, A, is then equal to [11,

p. 103]:

p(A) =
2A

σ2
exp

(

−A
2

σ2

)

, A ≥ 0 (3.16)

And the PDF of the intensity of S, I, then has a negative exponential form that is equal

to [11]:

p(I) =
1

σ2
exp

(

− I

σ2

)

, I ≥ 0 (3.17)

While simple, the Rayleigh model is not commonly used for real world applications in

the literature, and is mostly used as the basis for other more complicated models. One of

the most widely accepted models of SAR speckle in the literature, and one very commonly

used for ocean imagery, is the product model [11, 29]. The product model multiplies the

negative exponentially distributed intensity I of the Rayleigh model by a parameter that

represents the texture variation throughout the image, g. The model is succinctly described

by the equation [11, p. 108]:

Ỹ = gI (3.18)

where Ỹ is the product model distributed intensity. In the case where the texture pa-

rameter is gamma distributed, the intensity can be modelled using a probability distribution

function known as the K distribution [11, 29, 30]. In this case, g has a PDF equal to [11]:

pg(g) =
1

gΓ(α)
(αg)α−1 exp (−αg), g ≥ 0 (3.19)

α is a texture parameter that determines the variance of g. g has variance equal to 1/α,

such that for larger values of α the intensity Ỹ becomes more homogeneous, and vice versa

[11]. In the extreme case, as α tends to infinity, g approaches a constant value of one, such

that the K-distributed intensity reduces to that of the Rayleigh model (Ỹ = I).
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The K-distributed intensity can also be parametrized in terms of L, the number of statis-

tically independent looks; ν, the shape parameter; and µ, the mean value of the K-distributed

intensity [31, 29, 32]:

p(Ỹ ) =
2

Ỹ

(

LνỸ

µ

)
L+ν

2

1

Γ(L)Γ(ν)
Kν−L



2

√

LνỸ

µ



 (3.20)

This is the model that will be used to model ocean clutter in this thesis. For a more

detailed discussion of this, and how the clutter model is necessary to describe the functional

relationship between detection threshold and false alarm rate, see chapter 7.

Worth noting is that the underlying RCS of the ocean varies on a spatial scale much

larger than the pixel spacing of SAR imagery [29], so that essentially all of the pixel-to-

pixel variation in ocean backscatter is due to speckle, and not to the underlying geophysical

processes (e.g., changes in facet tilt angle, sea state, or salinity). Therefore, neighbouring

ocean pixels can be averaged together in order to reduce the effects of the speckle without

meaningfully degrading the ocean imagery. This is in contrast to backscatter from targets,

such as icebergs or ships, which tends to be heterogeneous. If possible, it is best to avoid

averaging targets together with the ocean pixels when speckle filtering, and many speckle

filtering algorithms have been proposed that attempt to avoid degrading target backscatter

while still performing smoothing over homogeneous areas, though generally these speckle

filtering algorithms involve tradeoffs in terms of the amount of smoothing they perform,

resulting in greater speckle noise in the ocean regions than a straight boxcar average, but

greater preservation of targets. This issue will be discussed in more detail in chapter 6.
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Chapter 4

Compact Polarimetry

This chapter gives an overview of some of the concepts surrounding compact polarimetry. As

discussed briefly in the introduction, compact polarimetry is an umbrella term that describes

a number of coherent dual-polarized SAR architectures, all of which involve the use of a

transmit polarization other than the linear horizontal or vertical. By transmitting circularly

polarized waves, or linear waves oriented at 45◦, we hope to gain increased polarimetric

information over horizontal/vertical transmit dual-pol, without the swath width reduction

of full polarimetry.

This thesis presents work done using the CTLR (circular transmit, linear receive) mode of

compact polarimetry, also sometimes referred to as CL (circular-linear), CL-pol, or hybrid-

polarity [19]. This mode uses a circular transmit polarization, but splits the received waves

into their horizontal and vertical components, yielding two channels: RH (right-circular

transmit, horizontal receive) and RV (right-circular transmit, vertical receive). This is the

mode that will be available on the Radarsat Constellation once it launches [22].

4.1 The CTLR Scattering Vector And Covariance Matrix

The Radarsat Constellation will transmit right-circular polarization when operating in the

CTLR mode, and therefore a right-circular transmit polarization is used in this thesis. How-

ever, use of a left-circular transmit polarization is theoretically very similar, just with some

changes in sign to accomodate the opposite rotation direction. Right-circular polarization

has a Jones vector of ~ER = (1/
√
2)[1,−j]T , while left-circular polarization has a Jones vector

of ~EL = (1/
√
2)[1, j]T [11]. Note that right-circular and left-circular polarization waves are

orthogonal, and therefore form a polarization basis [11].
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For a CTLR SAR system, transmitting right-circular polarization, the scattering vector

is equal to:

~kCTLR = [SRH , SRV ]
T (4.1)

Comparing this vector to the typical linear dual-pol vectors (which contain either the HH

and HV channels, or the VV and VH channels), we see that the transmitted polarization is

different, but the received polarization basis is the same. Raney pointed out that the use of a

different transmitted and received polarization basis meant that neither channel of a CTLR

SAR system is co-polarized or cross-polarized in the traditional sense, and that therefore the

signal-to-noise ratio of the two channels should be closer than in SAR systems where the

transmitted and received polarization basis is the same [19]. In fact, the CTLR scattering

vector can be rewritten in the linear basis as follows [20]:

~kCTLR =
1√
2
[SHH − iSHV ,−iSV V + SV H ]

T (4.2)

As this scattering vector shows, the RH and RV channels each contain a mixture of co-

polarized and cross-polarized linear backscatter. Since the co-polarized channels generally

have much higher signal levels than the cross-polarized channels, this means that often the

RH channel is dominated by the HH component, and the RV channel is dominated by the

VV component. This is particularly true for the Radarsat Constellation data, where the

noise floor for most of the wide swath imaging modes is -22 dB, higher than the expected

HV and VH σ0 values for ocean backscatter [26]. Compared to common noise floor levels

ranging from approximately -38 dB (at low incidence) to -32 dB (at high incidence) for

the Radarsat-2 fine-quad mode data [26], this is a significant increase and makes the use of

cross-pol channels for characterizing ocean backscatter problematic for RCM data (e.g., to

calculate wind speed as in the work of Vachon and Wolfe [26]).

Equation 4.2 also demonstrates how the CTLR data can be simulated from full polarime-

try (where the HH, HV, VH, and VV channels are all known).
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The 2× 2 covariance matrix of the CTLR mode is equal to:

CCTLR =
〈

kk∗T
〉

=

〈







|SRH |2 SRHS
∗

RV

S∗

RHSRV |SRV |2







〉

(4.3)

The angle brackets denote spatial or temporal averaging, and the superscript ∗T is the

complex conjugate transpose operation. Like the scattering vector, this covariance matrix

can be rewritten in the linear basis as the sum of three smaller matrices [20], assuming

reciprocity (SHV = SV H):

CCTLR =
1

2

〈







|SHH |2 i(SHH · S∗

V V )

−i(SV V · S∗

HH) |SV V |2






+







|SHV |2 −i|SHV |2

i|SHV |2 |SHV |2






+







−2ℑ(SHH · S∗

HV ) SHH · S∗

HV + S∗

V V · SHV

S∗

HH · SHV + SV V · S∗

HV 2ℑ(SV V · S∗

HV )







〉

(4.4)

Note that the first matrix consists of exclusively co-polarized terms, the second matrix

consists of exclusively cross-polarized terms, and the third matrix consists of the products

of co-polarized and cross-polarized terms.

4.2 Pseudo Quad-Pol Reconstruction

From equation 4.2, we see that the CTLR scattering vector contains a mixture of the four

linear channels measured by a quad-polarized SAR system. Methods have been proposed

in the literature that use a scattering model to calculate approximate values of some of

these quad-pol channels from compact polarimetric data. Specifically, the 2 × 2 compact

polarimetry covariance matrix is used to reconstruct some elements of the 3 × 3 quad-pol

covariance matrix. This process is referred to as pseudo quad-pol reconstruction, and the

resulting data as pseudo quad-pol or pseudo-quad.

The method was originally proposed by Souyris et al. [17], for use with the π/4 mode

of compact polarimetry. Nord et al. [20] showed how the method could be also be used for
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both the dual-circular polarization and CTLR modes of compact polarimetry, with similar

reconstruction performance results.

Recall that the 3× 3 quad-pol covariance matrix is as follows [11, 20]:

C3 =

〈












|SHH |2
√
2SHHS

∗

HV SHHS
∗

V V

√
2SHV S

∗

HH 2|SHV |2
√
2SHV S

∗

V V

SV V S
∗

HH

√
2SV V S

∗

HV |SV V |2













〉

(4.5)

This covariance matrix contains nine unknowns: three real-valued diagonal elements (the

HH, HV, and VV intensities), plus three complex off-diagonal elements, each of which has

both a real and imaginary component (
√
2SHHS

∗

HV , SHHS
∗

V V , and
√
2SHV S

∗

V V ). Unfortu-

nately, the CTLR covariance matrix of equation 4.4 only contains four equations (one for

each element of the matrix). To reduce the number of unknowns, Souyris et al. [17] made

use of the reflection symmetry assumption, which implies that the cross-polarized channels

have zero correlation with the co-polarized channels, resulting in the simplified covariance

matrix [11, 20]:

C3 =

〈












|SHH |2 0 SHHS
∗

V V

0 2|SHV |2 0

SV V S
∗

HH 0 |SV V |2













〉

(4.6)

The reflection symmetry assumption was shown to be valid at C-band in a paper by

Collins et al. [24], co-authored by the author of this thesis. Note that the reflection symmetry

assumption allows us to set the third matrix of equation 4.4 to zero, such that the CTLR

covariance matrix consists of co-polarized and cross-polarized terms only, not their complex

products. This reduces the number of unknowns to five: the three intensities, and the real

and imaginary parts of SHHS
∗

V V . One more equation is still needed to constrain the solution

space, and Souyris et al. [17] proposed the following equation to do so:

〈|SHV |2〉
〈|SHH |2〉+ 〈|SV V |2〉

=
(1− |ρ|)

N
(4.7)
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The angle brackets represent spatial averaging and ρ is the HH-VV coherence, defined

as:

ρ ≡ 〈SHH · S∗

V V 〉
√

〈|SHH |2〉 · 〈|SV V |2〉
(4.8)

Larger averaging windows will generally reduce the effects of reflection asymmetry, and

therefore improve the accuracy of the reconstruction, up to a certain point. However, larger

windows also reduce the resolution of the imagery. Because the application of this research

is iceberg detection, where resolution affects the size of the smallest targets that can be

detected, a 3×3 pixel averaging window was used to calculate the covariance matrix elements

used in the reconstruction process.

Equation 4.7 provides a general relation between the cross-polarization ratio (the ratio of

the HV intensity to the sum of the two co-polarized intensities) and the HH-VV coherence,

tuned by the value of the parameter N . Originally, Souyris et al. [17] used a value of N = 4,

which Nord et al. [20] showed was consistent with scattering from many types of natural

terrain and vegetation. Nord et al. also proposed a method for refining the value of N during

the reconstruction process, based on recalculating N as the ratio of double-bounce to cross-

pol backscatter [20]. However, Collins et al. [24] demonstrated that these methods are not

consistent with ocean backscatter. They proposed that for ocean imagery the backscattering

is primarily dependent on incidence angle, and that the value of N used in the reconstruction

process should take this into account. Using quad-pol data, they calculated the actual values

of N , then plotted them vs. incidence angle. Figure 4.1 shows the mean value of N for each

of the scenes in this study, N̄ , plotted vs. the mean incidence angle of the scene. We see

that a power law regression can be used to relate N̄ with incidence angle, with a relatively

high r2 value of 0.935.

Similarly, Collins et al. [24] developed the following regression for N vs. incidence angle

(θ), which is the one used for pseudo quad-pol reconstruction in this thesis:

N̄ = 6.52 + 18305.73 exp
(

−θ0.60
)

(4.9)
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Figure 4.1: Mean N value versus mean incidence angle for each scene. The red line shows

the regression y = 300900x−2.936, with r2 of 0.935.

Once a value for N is selected, equations 4.7 and 4.8 are solved iteratively using the

CTLR covariance matrix elements to estimate |SHV |2 and ρ as follows [20]:

ρ(i+1) =
−iC12 + (|SHV |2)(i)

√

(

C11 − (|SHV |2)(i)
) (

C22 − (|SHV |2)(i)
)

(4.10)

(|SHV |2)(i+1) = (C11 +C22) ·
(

(

1− |ρ(i+1)|
)

N + 2
(

1− |ρ(i+1)|
)

)

(4.11)

The subscripted (i) represents the iteration number and Cab represents the element from

the CTLR covariance matrix (equation 4.4) in row a and column b. A starting estimate

is used of (|SHV |2)(0) = 0. We iterate between updating the estimate of ρ and (|SHV |2)

until convergence (defined here as the HV intensity estimate changing by less than 1% of its

previous value in one iteration), or until 20 iterations have been performed, whichever comes

first. Note that in general, provided a value of N is chosen that is appropriate for the data,

99–100% of the ocean pixels will converge, often within three or four iterations.

Once estimates of ρ and |SHV |2 are calculated, they are used to calculate the values of

33



the reflection symmetric quad-pol covariance matrix, using the equations:

|SHH |2 = C11 − |SHV |2 (4.12)

|SV V |2 = C22 − |SHV |2 (4.13)

SHH · S∗

V V = −iC12 + |SHV |2 (4.14)

C11, C12 and C22 are the corresponding elements of the CTLR covariance matrix. The

covariance matrix of the reconstructed pseudo quad-pol data can similarly be calculated:

CPQCTLR
=













C11 − |SHV |2 0 −iC12 + |SHV |2

0 2|SHV |2 0

(−iC12 + |SHV |2)∗ 0 C22 − |SHV |2













(4.15)

Note that while we calculate approximate intensities for HH, VV, and HV, and the

relative HH-VV phase difference, due to the reflection symmetry assumption we are not able

to calculate any HV phase information, since we have assumed that the correlation between

the HV channel and the co-polarized channels is zero. In practice, of course, this assumption

is not 100% true—these elements of the covariance matrix are much smaller in comparison

to the reconstructed elements, but for actual data they are not equal to zero. Collins et al.

[24] showed that at C-band, these products could sometimes be as high as 5 − 10% of the

co-pol covariance matrix elements, with the reflection asymmetry increasing with incidence

angle.

There are two main sources of error in the reconstruction process. First are errors arising

from the reflection symmetry assumption, as described in the previous paragraph. Second,

while we have modelled the behaviour of N by using the mean value of N across a range

of incidence angles, it should be noted that real data has a distribution of N values that

vary from pixel-to-pixel, something which cannot be accounted for by the model. Therefore,

error will be introduced into the reconstruction process due to the discrepancy between the

actual underlying N value and the value used as input to the reconstruction.
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Typical values of the reconstruction error were investigated by Nord et al. [20] for terrain,

and Collins et al. [24] for ocean backscatter. The values of the reconstruction errors in this

study will be not be discussed here, other than to note that for this application they are,

in fact, a secondary concern—what matters is whether the reconstruction process preserves

the contrast between ocean pixels and target pixels, not the actual radiometric accuracy of

its approximations. For iceberg detection, the real test of the reconstruction process is the

detection performance of the pseudo-quad data, which will be assessed in chapter 8.

In this thesis, reconstructed pseudo quad-pol data will be used for iceberg detection in a

number of ways. First, the full pseudo quad-pol dataset will be used (pseudo-HH, pseudo-

VV, pseudo-HV, and the relative HH-VV phase). As well, the pseudo-HV intensity will be

tested on its own, as it has been shown that the HV intensity is a particularly important

parameter in iceberg detection [10]. Finally, the pseudo-HV intensity will be combined with

the coherent RH and RV channels, to create a hybrid mode between the native CTLR and

the pseudo quad-pol data.

There are other novel ways to use the compact polarimetry data which do not involve the

reconstruction or approximation of quad-pol elements. One of the ways of characterizing the

polarization of a wave is through the use of four real numbers called the Stokes parameters,

a method which is well suited for use with compact polarimetry and which will be discussed

in the following chapter.
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Chapter 5

The Stokes Parameters and the Polarization Ellipse

There are a wide variety of ways in which we can represent the polarization of an electro-

magnetic wave, and therefore a wide variety of ways in which we can represent and analyze

polarimetric SAR data. In the previous sections we have mostly used the Sinclair matrix S,

its vectorized form ~k, and the covariance matrix C. Here we present an alternative method

of describing the polarization of a wave called the Stokes parameters, or Stokes vector. The

Stokes parameters are closely related to the polarization ellipse, the shape swept out by

the electric field vector ~E as it rotates in the plane orthogonal to the wave’s direction of

propagation. The relationship between the Stokes parameters and the polarization ellipse is

artfully illustrated by the Poincaré sphere, a spherical parametrization of three of the Stokes

parameters, which we will use to demonstrate how the polarization ellipse’s orientation, ψ,

and ellipticity, χ, can be easily calculated using Stokes data.

After presenting this theory, we derive the expected Stokes vector and polarization ellipse

parameters for a number of “canonical scatterers”—basic scatterer types such as trihedrals,

dihedrals, dipoles, etc., which have been widely discussed in the literature. We derive these

values algebraically, by calculating the corresponding scattering vectors ~k for three differ-

ent polarimetric modes: CTLR, HH-HV, and VV-VH, then calculating the Stokes vector

elements and polarization ellipse parameters using basic trigonometric identities to simplify

the expressions where necessary. In doing so, we demonstrate one of the strengths of a

CTLR SAR system: that it is less affected by target orientation than a linear dual-pol SAR.

For icebergs, where the target orientation is unknown and is essentially random, this is an

important advantage.

Finally, we present plots of the Stokes vector and polarization ellipse parameters for the
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actual data used in this study, giving us an idea of the types of values these parameters take

on for both ocean and iceberg pixels.

5.1 The Stokes Parameters

The Stokes parameters (or Stokes vector) were proposed by George Gabriel Stokes in 1852

[33], and are a set of four real numbers that can be used to describe the polarization state of

a wave. Stokes’s work focused on the polarization of light waves, but the Stokes parameters

can be used to describe the polarization state of any electromagnetic wave, including the

microwaves transmitted and received by a SAR sensor. The Stokes parameters have been

used with SAR data for a variety of applications, and are well discussed in the SAR literature

(see, for example, [11, p. 43]). Raney, when proposing the use of CTLR as a compact

polarimetric polarization mode, suggested that the Stokes parameters were a natural choice

to represent the data collected by a CTLR SAR system, or indeed, by any coherent dual-

polarized SAR [19].

The Stokes parameters for a dual-pol SAR can be calculated as follows, in the linear

basis [19]:

S0 =
〈

|EH |2 + |EV |2
〉

(5.1)

S1 =
〈

|EH |2 − |EV |2
〉

(5.2)

S2 = 2ℜ 〈EHE
∗

V 〉 (5.3)

S3 = 2ℑ 〈EHE
∗

V 〉 (5.4)

E represents the complex voltage of the subscripted received polarization, and the angle

brackets represent spatial or temporal averaging. Note that since calculation of S2 and S3

rely on the value of the complex product EHE
∗

V , the Stokes vector can only be calculated

using a coherent SAR system, where the relative phase between EH and EV is known.

Note that the transmitted polarization is not included in the equation. The Stokes
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parameter values for SAR data using a linear transmit polarization will be different from

those calculated using a right-circular transmit polarization. Where applicable, we will

mention the transmit polarization used to calculate a given Stokes vector, or denote a Stokes

vector with its subscripted transmit polarization (e.g., ~SH for horizontal transmission, ~SV

for vertical transmission, and ~SR for right-circular transmission).

The naming of the Stokes vector elements varies in the literature. Sometimes the Stokes

vector elements are numbered from S1 to S4, and other times from g0 to g3 or S0 to S3. Here

we use the latter convention, so that S0 represents the total power contained in the wave.

S1, S2, and S3 then represent the amount of backscattered power within each of three

degenerate polarization states [11, 19]: horizontal/vertical, 45◦/135◦-oriented, and right-

circular/left-circular. A positive S1 value represents horizontal polarization, and a negative

value represents vertical polarization. Similarly, a positive value of S2 represents 45
◦-oriented

polarization, and a negative value represents 135◦-oriented (or −45◦-oriented) polarization.

In this thesis, a positive value of S3 represents left-circular polarization, and a negative value

represents right-circular. Note that the sign convention of S3 can vary in the literature, par-

ticularly in the field of optics, where a positive S3 value represents right-circular polarization

[34]. The convention we use here, however, is the generally accepted sign convention within

the SAR literature, and is the one used by Lee and Pottier [11].

There are a wide variety of further parameters which can be easily computed using the

Stokes parameters, but of these, arguably the most imporant (as emphasized by Raney [19])

is the degree of polarization, or DoP , here denoted with the letter m:

m =

√

S2
1 + S2

2 + S2
3

S0

(5.5)

m is the ratio of the polarized power of a wave to the total power of a wave. For a fully

polarized wave, m = 1, while for a fully unpolarized wave, m = 0.

38



5.1.1 Conversion from CTLR to Dual-Circular Polarization

The Stokes parameters also provide a straight forward method of changing the received

polarization basis from linear to circular (or vice versa), so that we can essentially convert

from the CTLR mode of compact polarimetry to the dual-circular polarization (DCP) mode.

In the previous section the equations for the Stokes parameters were presented using the

linear receive basis, but we can also define the equations in the circular receive basis, as

follows [19]:

S0 =
〈

|EL|2 + |ER|2
〉

(5.6)

S1 = 2ℜ 〈ELE
∗

R〉 (5.7)

S2 = 2ℑ 〈ELE
∗

R〉 (5.8)

S3 =
〈

|EL|2 − |ER|2
〉

(5.9)

As above, E represents the complex voltage of the subscripted received polarization, and

the angle brackets represent spatial or temporal averaging. From these equations, we see

that if we calculate the Stokes vector from right-circular CTLR data, the right-circular DCP

channels can then be calculated using the following equations:

|ERL|2 = 0.5(S0 + S3) (5.10)

|ERR|2 = 0.5(S0 − S3) (5.11)

ERLE
∗

RR = 0.5(S1 + iS2) (5.12)

In chapter 8, the detection performance of the native CTLR, and DCP calculated from

the CTLR, will be assessed and compared.

5.2 The Polarization Ellipse

Another way of representing the polarization of a wave other than the Stokes parameters is

to define the ellipse swept out by the rotation of that wave’s electric field vector in the plane
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of polarization [11, p. 34], which is the plane perpendicular to the direction of propagation

of the wave. Figure 5.1 shows an example of a polarization ellipse, with two important

parameters of the ellipse emphasized: ψ, the orientation of the ellipse (measured as the

angle between the ellipse’s major axis and the horizontal), and χ, the ellipticity of the ellipse

(where χ = 0 for a linear wave, and χ = ±45◦ for a circular wave, with the sign of χ denoting

the direction of the wave’s rotation).

Note that the electric field vector, ~E, is generally defined by its two orthogonal compo-

nents Ex and Ey [11], whose magnitudes and phases are directly related to the orientation

and shape of the polarization ellipse. If Ex and Ey are in phase, the polarization of the wave

is linear, and the polarization ellipse collapses into a line (χ = 0). The magnitudes of Ex

and Ey then determine if the wave is horizontally polarized (ψ = 0), vertically polarized

(ψ = 90◦), or polarized at some other orientation angle. If Ex and Ey are out of phase, the

polarization then becomes elliptical (χ 6= 0). A wave is circular if Ex and Ey are equal in

magnitude and are exactly 90◦ out of phase (χ = ±45◦).

Figure 5.1: An example of the polarization ellipse, with orientation angle ψ and ellipticity

angle χ. This image is in the public domain [1].
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5.3 The Poincaré Sphere

While the Polarization ellipse is a convenient and natural way of illustrating the polarization

state of a wave, for polarization states that are not one of the degenerate states (horizontal,

vertical, circular, etc.), it can be unclear how to calculate ψ and χ from the polarization

ellipse itself. Jules Henri Poincaré proposed the Poincaré sphere, essentially a spherical

parametrization of the Stokes parameters [34]. The Poincaré sphere is shown in Figure 5.2,

demonstrating that if the Stokes parameters S1, S2, and S3 are used as the three Cartesian

coordinates of a point in 3-D space, then 2ψ and 2χ can be calculated as two of the spherical

coordinates of that same point.

Figure 5.2: The Poincaré sphere, with the Stokes parameters S1, S2, and S3 aligned along the

Cartesian axes, with spherical coordinates 2ψ and 2χ. This image is in the public domain

[1].

The Poincaré sphere artfully illustrates a number of connections and important ideas:

first, that the Stokes parameters are directly connected to the polarization ellipse; second,

that the three degenerate polarization states described by S1, S2, and S3 are orthogonal

and can describe any shape and orientation of polarization ellipse; third, that conversion
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from the Stokes parameters to ψ and χ can be accomplished through a simple coordinate

transformation. Therefore, ψ and χ can be derived from the Stokes parameters using the

equations [35]:

ψ =
1

2
arctan

(

S2

S1

)

(5.13)

χ =
1

2
arctan

(

S3
√

S2
1 + S2

2

)

(5.14)

Note that the distance between the origin and the point defined by S1, S2, and S3 is equal

to the total polarized power, Ip =
√

S2
1 + S2

2 + S2
3 , which is itself equal to the numerator of

the equation for the degree of polarization, m.

For right-circular and vertical transmit polarizations, after calculating the ψ values, we

add 180◦ to any negative values, such that the range of ψ values is from 0−180◦. We do this

so that the majority of observed values will lie in the middle of the range. For horizontal

transmit polarization we generally avoid this, since most of the ψ values will lie around zero

in this case. Note that any ψ value x has the same meaning as x + 180◦ (for x in degrees),

since the polarization ellipse is symmetrical about both its major and minor axes.

5.4 The Stokes and Polarization Ellipse Response of Canonical Scatterers

Real world targets (such as icebergs) generally have a complicated geometric structure, which

manifests in a similarly complicated scattering response. These scattering responses can be

difficult to interpret, particularly in the case of icebergs where each target will have its own

unique structure based on the way it was formed and its size. However, there are a number of

canonical scattering mechanisms belonging to targets with very basic geometric properties

that have been widely discussed in the literature. The backscattering behaviour of these

simplified targets, such as flat plates, dipoles, or dihedrals, can be calculated theoretically

rather easily. We can then use these canonical scattering mechanisms to aid in our analysis
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of real world targets, for example, by noting the similarity of an ocean pixel’s backscatter to

a flate plate, or the similarity between the scattering of an iceberg wall and a dihedral.

Here we use Lee and Pottier [11] as a reference for some of these canonical scattering

mechanisms. Using the Sinclair matrix of the elementary target, we can then calculate the

corresponding Stokes and polarization ellipse parameters we would expect to receive from

that target, for each of the three transmit polarizations under consideration (right-circular,

horizontal, and vertical). To account for the fact that each scatterer can have an arbitrary

orientation angle in the plane of polarization, φ, the Sinclair matrix for most of the targets

will be a function of this angle (with the exception of trihedral scatterers, which produce

the same backscatter regardless of orientation angle). The algebra in this section was done

using Matlab, with simplification aided by basic trigonometric identities where necessary

(the double-angle identity in particular).

5.4.1 Sphere, Flat Plate, Trihedral

A sphere, flat plate, and trihedral have the same scattering response. The quad-pol Sinclair

matrix of these targets, in the Cartesian basis, is [11, p. 92]:

S =







1 0

0 1






(5.15)

The received Stokes vector for right-circular transmit polarization, ~SR, is then calculated

to be:

~SR = [1, 0, 0, 1]T (5.16)

This Stokes vector corresponds to an undefined ψ value, and a χ value of 45◦. Note that

the ψ value is undefined since both S1 and S2 are equal to zero. Since the received wave is

completely circular, the orientation of the polarization ellipse is therefore arbitrary.

The received Stokes vectors for horizontal and vertical transmit polarization, ~SH and ~SV ,

43



are:

~SH = [1, 1, 0, 0]T (5.17)

~SV = [1,−1, 0, 0]T (5.18)

For the horizontal transmit case, ψH = 0 and χH = 0. For the vertical transmit case,

ψV = 90◦ and χV = 0. We note that in each case, the trihedral essentially reflects the trans-

mitted polarization back at the sensor, leaving the polarization state of the wave unchanged.

5.4.2 Dipole

The quad-pol Sinclair matrix of a dipole oriented at φ degrees from the horizontal is equal

to [11, p. 94]:

S =







cos2(φ) 1
2
sin(2φ)

1
2
sin(2φ) sin2(φ)






(5.19)

From which we calculate the received Stokes vectors:

~SR = [0.5, 0.5 cos(2φ), 0.5 sin(2φ), 0]T (5.20)

~SH = [cos2(φ), cos(2φ) cos2(φ), sin(2φ) cos2(φ), 0]T (5.21)

~SV = [sin2(φ), cos(2φ) sin2(φ), sin(2φ) sin2(φ), 0]T (5.22)

This is an interesting case, where the orientation and ellipticity of the polarization ellipse

for the three transmitted polarizations are the same (ψ = φ, χ = 0), but where the total

power received by the sensor is quite different in each case. For right-circular transmis-

sion, the received power does not depend on the orientation of the dipole. For horizontal

transmission the backscattered power depends on cos2(φ), so that we receive the maximum

backscattered power for a horizontal dipole, and zero backscattered power for a vertical

dipole. For the vertical transmission case the backscattered power depends on sin2(φ), so

that this behaviour is reversed. This is an example of a case where an advantage of trans-

mitting circular transmission is clear, in that it is agnostic to the orientation of the target

in the plane of polarization (that is, the orientation about the radar’s line of sight).
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5.4.3 Dihedral

The quad-pol Sinclair matrix of a dihedral oriented at φ degrees from the horizontal is [11,

p. 95]:

S =







cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)






(5.23)

From which we calculate the received Stokes vectors:

~SR = [1, 0, 0,−1]T (5.24)

~SH = [1, cos(4φ), sin(4φ), 0]T (5.25)

~SV = [1,− cos(4φ),− sin(4φ), 0]T (5.26)

We see that again, the right-circular case is agnostic to the target orientation, with

χ = −45◦, and undefined ψ (since the wave is perfectly circular).

For the horizontal and vertical polarizations, χ is zero in both cases, while ψ = 2φ in

the horizontal case and ψ = 90◦ + 2φ in the vertical case. We note that for φ = 0, this is

the same polarization response as for a trihedral or flat plate. But note that the orientation

angle of a trihedral or flat plate is not meaningful (since the geometry is symmetric in the

plane of polarization), whereas here, the angle of the dihedral can have an affect on the

backscattered polarization in the case of linear transmitted polarization.

5.4.4 Cylinder

Another basic target type is the cylinder, with the quad-pol Sinclair matrix [36]:

S =
1√
1.25







1− 0.5 sin2(φ) 0.25 sin(2φ)

0.25 sin(2φ) 1− 0.5 cos2(φ)






(5.27)
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From which we calculate the received Stokes vectors:

~SR = [0.5, 0.3 cos(2φ), 0.3 sin(2φ), 0.4]T (5.28)

~SH = [0.6 cos2(φ) + 0.2, 0.05 cos(4φ) + 0.3 cos(2φ) + 0.45, ...

0.05 sin(4φ) + 0.3 sin(2φ), 0]T (5.29)

~SV = [0.6 sin2(φ) + 0.2,−0.05 cos(4φ) + 0.3 cos(2φ)− 0.45, ...

−0.05 sin(4φ) + 0.3 sin(2φ), 0]T (5.30)

For the right-circular case, ψ = φ, and χ = 26.57◦. The χ values for the horizontal and

vertical case are both zero, while the ψ value is a periodic function of φ in the horizontal

and vertical cases.

5.4.5 Quarter Wave Device

Another basic target type is that of a quarter wave device. There are two types of quarter

wave device, either a positive quarter wave device or a negative quarter wave device. First

we look at the positive quarter wave device, represented by the quad-pol Sinclair matrix [36]:

S =







1 + sin2(φ)(−1 + j) 0.5 sin(2φ)(1− j)

0.5 sin(2φ)(1− j) 1 + cos2(φ)(−1 + j)






(5.31)

From this we calculate the received Stokes vectors:

~SR = [1,− sin(2φ), cos(2φ), 0]T (5.32)

~SH = [1, 0.5 + 0.5 cos(4φ), 0.5 sin(4φ), sin(2φ)]T (5.33)

~SV = [1,−0.5− 0.5 cos(4φ),−0.5 sin(4φ),− sin(2φ)]T (5.34)

For the right-circular polarization, ψ = φ + 45◦, and χ = 0. For the horizontal and

vertical cases, both ψ and χ are again periodic functions of φ.

And for a negative quarter wave device, we see that the behaviour is very similar, only
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with a −j in place of j [36]:

S =







1 + sin2(φ)(−1− j) 0.5 sin(2φ)(1 + j)

0.5 sin(2φ)(1 + j) 1 + cos2(φ)(−1− j)






(5.35)

From this we calculate the received Stokes vector for the right-circular case:

~SR = [1, sin(2φ),− cos(2φ), 0]T , ψ = φ+ 45, χ = 0 (5.36)

Note that S1 and S2 have changed signs, but that the vector is otherwise the same. Note

also that ψ = φ− 45◦, and χ = 0.

5.4.6 Discussion of Canonical Scatterers

There are a few things worth noting from the above theory. First, for all of the targets,

when transmitting right-circular polarization, the amount of backscattered power (S0) does

not depend on the target’s orientation about the radar line of sight. This is not the case

for horizontal or vertical transmitted polarization, where both dipoles and cylinders produce

different amounts of backscattered power depending on their orientation with respect to the

angle of the transmitted polarization. This is an advantage of circular transmission, since

we do not want a target to appear dimmer or brighter based on its geometry. This is an

especially important consideration for icebergs, where the target orientation is unknown and

can essentially be considered to be random. We therefore wish for the polarization response

to depend as little as possible on target orientation. When using quad-pol data, one can

extract the target orientation angle, removing its effects (see, for example, the work of Touzi

et al. [37]), but this is not an option when using dual-pol SAR. We are therefore stuck with

the effects of target orientation angle on our resulting data.

Second, for dihedral scatterers (such as the double-bounce backscatter from an iceberg

wall and the ocean surface), when transmitting circular polarization, the target orientation

has no effect on the received polarization ellipse, since the received wave is perfectly circular,

and its orientation is therefore irrelevant. As well, dihedrals and trihedrals can be easily
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distinguished when transmitting circular polarization due to the fact that while both these

targets produce circular waves, for right-circular transmission a trihedral will produce a

left-circular wave, while a dihedral will produce a right-circular wave. Contrast this with

the transmitted horizontal and linear polarizations, where the χ angle is zero in both cases

(representing a perfectly linear wave), and it is impossible to distinguish between a trihedral

and a dihedral with φ = 0.

Overall, then, we emphasize that these are compelling reasons to use compact polarimetry

for this application rather than linear transmitted polarization. By transmitting circular

polarization, we mitigate the effects of target orientation as much as possible with a dual-

polarized SAR sensor.

5.5 Observed Stokes Parameter Values of Ocean Pixels

So far this chapter has focused on the theory behind the polarization ellipse and the Stokes

parameters. Now we begin to present and discuss the actual Stokes parameter values as

observed in the data used for this study. For each scene we used an image chip approximately

500 by 500 pixels in size, containing ocean pixels only, with which we plotted a density plot

(2-D histogram) of the Stokes vector values S1, S2, and S3. Figures for all scenes and imaging

modes used in the study are given in Appendix A, for reference. Here we focus our discussion

on a low incidence angle scene (0905-1), and a high incidence angle scene (0818-1), using the

low resolution imaging mode only, for brevity. Since we are focusing on the Stokes vector

behaviour across a sizable image chip, the use of different imaging modes should have only

a minor affect on the resulting plots.

Figure 5.3 shows Stokes vector density plots of S1, S2, and S3, for scene 0905-1, using

right-circular transmit polarization. As might be expected, the circular Stokes parameter,

S3 has a higher value than the linear parameters S1 and S2, indicating a mostly circular

wave. S2 has a small positive bias, and S1 has a small negative bias, so that the mean of the
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ocean’s ψ values will lie in the range of 45◦ − 90◦.
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Figure 5.3: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0905-1, low resolution mode, for

right-circular transmit polarization.

Figure 5.4 shows the Stokes vector density plots for scene 0818-1, using right-circular

transmit polarization. We see that while S3 is still larger than S1 and S2, it is not as large

as for the steep incidence angle scene. This represents a reduction in the magnitude of χ,

and therefore a less circular wave. We see that S1 and S2 have a similar bias as before, but

this time the values are more widely distributed.

Now we look at the Stokes vector values for the linear transmit polarizations. Figure

5.5 shows the Stokes vector density plots for scene 0818-1, with the left column showing the
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Figure 5.4: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0818-1, low resolution mode, for

right-circular transmit polarization.

results for horizontal polarization, and the right column showing vertical polarization. We

see that now S1 has a greater magnitude than S2 or S3, and that S1 has mostly positive

values in the horizontal case, and the mostly negative values in the vertical case. This reflects

the fact that when a linear transmit polarization is used, most of the resulting backscatter

from the ocean will be aligned in the same direction as the transmitted polarization.
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Figure 5.5: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0818-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).

51



5.6 Observed Polarization Ellipse Response for Ocean and Icebergs

Figure 5.6 shows the mean values of ψ, χ, andm vs. incidence angle for the ocean image chips

in each scene, using right-circular transmit polarization. We see that ψ is relatively unaffected

by incidence angle, and is generally in the range of 50◦−120◦. The ocean backscatter becomes

more depolarized as the incidence angle increases, but the mean m stays above 0.8 even at

the higher incidence angles, with a close to left-circular wave (mean χ > 35◦). These results

suggest that at very low incidence angles, the ocean acts similarly to a trihedral or flat plate

scatterer, while at higher incidence angles the ocean’s scattering becomes more cylindrical,

though falling short of what we would expect from a true cylinder scatterer (which would

theoretically produce a χ angle of 26.57◦, higher than the values observed in this data). In

fact we would expect the ocean to exhibit Bragg scattering for most intermediate incidence

angles [11], and our data is fairly consistent with that expectation.

Similar plots for horizontal and vertical transmit polarizations are shown in Figure 5.7.

We note that for the horizontal case, the ψ values of the ocean are centred approximately

around zero, while for the vertical case, they are clustered approximately around 90◦. χ

values are centred around zero for both cases, respenting a predominantly linear wave. ψ

and χ values do not seem to be a strong function of incidence angle in either polarization

case. As with the right-circular polarization, m decreases with increasing incidence angle,

though this effect seems more pronounced than in the right-circular case.

Compared to the ocean, the iceberg targets in this study exhibit a much wider range of ψ,

χ, and m values, signifying a wide variety of scattering mechanisms and target geometries.

To illustrate this, we have created plots of χ vs. ψ and χ vs. m, with the ocean pixels shown

as a density plot as in section 5.5, iceberg pixels plotted with green + symbols, and ship

pixels (where present) plotted with black + symbols. Plots for all of the scenes and imaging

modes in this study are shown in Appendix B. Here we show a plot for a low incidence

angle scene (0905-1) and a high incidence angle scene (0818-1), using only the low resolution
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Figure 5.6: The mean values of ψ, χ, and m vs. incidence angle for the ocean chips in each

scene, using right-circular transmit polarization. Multiple scenes with the same incidence

angle have been combined. Error bars show standard deviation.

imaging mode, for brevity.

Figure 5.8 shows plots of χ vs. ψ and χ vs. m for scene 0905-1, low resolution imaging

mode, for each transmit polarization. The values of ψ and χ appear largely as expected, with

linear transmit polarizations resulting in mostly linear backscatter from ocean, ships, and

icebergs. For right-circular transmit polarization, the ocean and icebergs result in mostly

circular backscatter, while the ship target produces less circular backscatter (χ values closer

to zero). Worth noting is that for right-circular polarization, there is a larger difference in m

between the targets and the ocean than for linear polarization. The ship target in particular
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exhibits low m values, denoting a mostly depolarized wave.

Figure 5.9 shows plots of χ vs. ψ and χ vs. m for scene 0818-1, low resolution imaging

mode, for each transmit polarization. This is the highest incidence angle scene in the study,

and contains the most iceberg targets (six) of any single scene. We see here that the iceberg

pixels exhibit a wide array of ψ and χ values, and the ocean pixels similarly cover a larger

area of the ψ-χ-m space than at lower incidence angles. Here the targets are less clustered

around the ocean pixels, particularly for the linear polarization case, though it is difficult to

say if this is due to the change in incidence angle or due to differences in the target geometry.

The target pixels in the right-circular polarization case have a wider range of values than in

the linear polarization case. This is a positive result, since it suggests that the targets would

be easier to distinguish from the ocean when using right-circular polarization as opposed

to a linear transmit polarization. While this analysis is mostly qualitative, we will see that

the values of ψ, χ, and m can be used to generate an ocean model which can be utilized

quantitatively to improve detection performance in Chapter 9.
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Figure 5.7: The mean values of ψ, χ, and m vs. incidence angle for the ocean chips in each

scene, using horizontal polarization (left column) and vertical polarization (right column).

Multiple scenes with the same incidence angle have been combined. Error bars show standard

deviation.
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Figure 5.8: Plot of χ vs. ψ (left column) and χ vs. m (right column) for scene 0905-1, low

resolution mode.
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Figure 5.9: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0818-1, low

resolution mode.
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Chapter 6

Ocean Target Detection In SAR Images

In very general terms, target detection in the SAR context involves discriminating between

desired targets and background clutter in a SAR image. Detection problems can be ap-

proached similarly to classification problems, but whereas classification generally involves

the use of a number of different possible classes, detection uses only two classes: target and

non-target. When performing ocean target detection, classification between different types

of targets (such as between icebergs and ships) is often performed as a later stage in the

process. This is because the contrast between different types of target is often less than the

contrast between the targets and the background. The backscattered power measured by

a SAR is, in general, significantly less from the ocean than it is from any type of target,

whether that target is a ship, a buoy, or ice.

For target detection to be successful, it is necessary for contrast to exist between the

target and the background. Generally speaking, the greater the contrast, the greater the

detection accuracy. When working with a single-channel SAR system, the idea of contrast

between the targets and the background is fairly simple, conceptually — the target pixels

should have a much greater backscattered power (σ0, for example) than the ocean. For a

single-channel image, we can set a certain intensity threshold, and classify all pixels above

that threshold as targets, and all pixels below that threshold as background. This is the

simplest target detection method possible, and is essentially the basis for the constant false

alarm rate (CFAR) detection technique, which will be explained in further detail below. All

a CFAR algorithm does is adjust the detection threshold for each pixel in the image, based

on the statistical properties of the clutter surrounding that pixel, in order to obtain a desired

false alarm rate (FAR).
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However, when working with polarimetric SAR data, where we have more than one

channel available, the detection problem becomes more complicated. When working with

multiple channels of complex data, how do we define a single detection threshold? How do

we define the contrast between the targets and the background clutter?

Since polarimetric SAR provides multiple channels (of often complex values), we either

need to combine the different channels into a single image, or develop a detection algorithm

that can use multiple channels as input. The advantage to combining the multiple channels

into a single image (often referred to as a “decision variable” image) is that simpler detection

algorithms, which only take a single channel as input (such as the constant false alarm rate,

or CFAR, detector) can then be used. The disadvantage to this approach is that if the

decision variable calculation does not accurately model the statistical distribution of the

data, information can be lost in the process of converting the multiple polarimetric channels

into a single value for each pixel.

There are a number of ways to calculate the decision variable, depending on how the

statistics of the SAR ocean clutter are modelled, and how the polarimetric channels are used

as input (e.g., is single-look data used as input, or a multi-look covariance matrix?). One

decision variable calculation method that is well established in the literature is the work of

Liu et al. [30, 31], who used the likelihood ratio test (LRT) to derive a decision variable from

polarimetric SAR using the scattering vector ~k and the covariance matrix C of the ocean

pixels, Co.

6.1 The Liu et al. Likelihood Ratio Test Decision Variable

The likelihood ratio test method was proposed by Liu et al. [30, 31], and is a process

with which to combine different polarimetric channels into a single decision variable using

the Neyman-Pearson criteria. We can quantify the detection performance at a particular

threshold (i.e., pixels with a decision variable above the threshold are considered targets)
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by calculating the probability of missed detection and probability of false alarm for that

decision variable value.

The likelihood ratio is a general concept that has seen widespread use for many detection

applications, even outside of the SAR context, and is defined as [30]:

Λ =
PT (~U)

PO(~U)
(6.1)

L is the likelihood ratio, ~U is a vector of measured variables, PT is the probability density

function of the target, and PO is the probability density function of the ocean. The greater

the value of L for a given pixel, the more likely a given pixel represents a target. In the SAR

context, ~U can be the scattering vector of a SAR system, ~k. The likelihood ratio test, using

a detection threshold equal to η, is defined [30] as:

Λ =















> η, for a target

≤ η, for ocean

(6.2)

Liu et al. use a Gaussian distribution to approximate the probability density functions for

both the target and the ocean. This is done because generally PT is unknown, and PO, while

often modelled using a K-distribution in the literature (see the next chapter, for example),

is more computationally complicated than desired. Use of the Gaussian distribution greatly

simplifies the process, and while the Gaussian is not a perfect fit for the complex elements of

the scattering vector ~k, as discussed in section 3.3, the K distribution essentially begins with

Gaussian scattering coefficients and merely multiplies them by the square root of a Gamma

distributed texture variable. So the Gaussian distribution is a reasonable approximation

for the data, provided that the variation in backscattering behaviour of the ocean from

pixel-to-pixel is driven by speckle noise, which is generally the case [29].

A zero mean complex vector ~k that is Gaussian distributed has the following probability

density function:

P (~k) =
1

πp|C| exp
(

−~k∗TC−1~k
)

(6.3)
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Where p is the number of elements in ~k, C is the covariance matrix of ~k, and the superscript

∗T represents the complex conjugate transpose.

If we take the log likelihood of L, and absorb all constant terms (e.g., any terms which

do not depend on ~k) into the threshold calculation, we end up with the following simpler

calculation of the likelihood ratio:

~k∗T (C−1
o −C−1

t )~k =















> η, for a target

≤ η, for ocean

(6.4)

Co and Ct are the covariance matrices for ocean and target pixels, respectively. This

equation is difficult to use directly, since it requires us to know Ct in advance, which requires

us to have knowledge of the targets we wish to detect before we actually detect them. Liu

et al. [30] simplified the equation by pointing out that generally, the covariance matrix for

the target pixels is significantly greater than for the ocean pixels. Therefore, the inverse

covariance matrix for the target pixels is significantly less than for the ocean pixels, and can

be ignored. This allows us to approximate the decision variable for a multi-channel, coherent

SAR system using the following equation[30, 31]:

DV = ~k∗T ·C−1
o · ~k =















> η, for a target

≤ η, for ocean

(6.5)

~k is the column scattering vector of the system, the supercript ∗T is the complex conjugate

transpose, and C−1
o is the inverse covariance matrix of the background (ocean) pixels. Note

that we do not account for the covariance matrix of the target (e.g., ship or iceberg) pixels.

This is a simplification to increase the usability of the process. Since the target’s covariance

matrix will generally be much greater than that of the ocean (and therefore the inverse

covariance matrix will generally be much smaller than that of the ocean), this has a negligible

affect on the results [30, 31]. When calculating the decision variable, ~k will be different

for each pixel, while C−1
o is generally calculated once per scene or area (using a relatively

61



homogeneous image chip of ocean pixels). In this thesis, an approximately 500 × 500 pixel

image chip from each scene was used to calculate C−1
o for each scene, although the exact

size of the image chip used is not particularly important. As long as the image chip’s mean

covariance matrix is similar to the mean covariance matrix of the scene’s ocean pixels, the

LRT should produce reasonable results.

For a non-coherent system (i.e., amplitude only, without meaningful phase information),

the decision variable is calculated by dividing the intensity of each channel by the mean

intensity of the ocean pixels for that channel, then summing the result. For example, for a

system with non-coherent HH and HV channels, we can calculate the decision variable using

the equation:

DV =
|SHH |2

E(|SHH |2)o
+

|SHV |2
E(|SHV |2)o

(6.6)

E(· · · )o is the expectation (mean) operator, applied to the ocean pixels only (e.g., applied

to the same image chip that was used to estimate the ocean covariance matrix in the coherent

case).

SAR systems are generally either coherent or non-coherent in their entirety — i.e., if one

channel has phase information, so do the others. This is not the case with reconstructed

pseudo quad-pol data. We have the HH-VV phase, but no HV phase information. We can

calculate the decision variable for the pseudo quad-pol data as follows:

DV = (~kH ·C−1
o · ~k) + |SHV |2

E(|SHV |2)o
(6.7)

~k is a two element scattering vector containing the pseudo HH-VV information, and

|SHV |2 is the pseudo-HV intensity—simply add the decision variables for a coherent and

non-coherent system together. Since pseudo quad-pol reconstruction gives us only the HH-

VV phase, rather than the absolute phases of SHH and SV V , we set the HH phase to zero

when forming our pseudo quad-pol scattering vector, then set the VV phase to satisfy the

HH-VV phase calculated by the reconstruction.
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Note that ~k in equation 6.7 does not necessarily have to contain the pseudo HH-VV

information. A scattering vector of the RH and RV channels (the channels directly measured

by a CTLR SAR) alongside the pseudo-HV can also be used, forming a hybrid CTLR/pseudo-

HV system.

Since the pseudo quad-pol reconstruction process uses a covariance matrix as input (which

has been spatially averaged) rather than the original quad-pol scattering vector, the pseudo

quad-pol data is also spatially averaged by extension. If this is not accounted for, the

pseudo quad-pol data will outperform all other modes [10]. Spatial averaging of a dataset’s

Hermitian (complex conjugate) products (such as when we average the CTLR covariance

matrix at the beginning of the reconstruction process) improves detection performance, since

this essentially smooths the speckle, with the tradeoff being that the resolution of the imagery

is degraded.

In order to spatially average the non-pseudo data in a similar fashion as the pseudo

quad-pol, see that equation 6.5 can be written as follows (for an n channel system):

DV =
n
∑

i=1

n
∑

j=1

(S∗

j · (C−1
o )ji · Si) (6.8)

S∗

j is the jth element of ~kH , Si is the ith element of ~k, and (C−1
o )ji is the element of C−1

o

in row j and column i.

By writing the equation in this form, it becomes clear that we can spatially average the

Hermitian products of the data during the decision variable calculation as follows (where

angle brackets denote spatial averaging, for an n channel system):

DV =
n
∑

i=1

n
∑

j=1

(〈S∗

j · Si〉 · (C−1
o )ji) (6.9)

For example, for a two channel system:

DV = (〈S∗

1 · S1〉 · (C−1
o )11) + (〈S∗

2 · S1〉 · (C−1
o )21)

+ (〈S∗

1 · S2〉 · (C−1
o )12)

+ (〈S∗

2 · S2〉 · (C−1
o )22) (6.10)
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Performing the necessary averaging for non-coherent data is easy by comparison—just

spatially average the intensity.

In this thesis a 3 × 3 moving average is used due to the coarse resolution of the wide

swath imaging modes, such that the spatial resolution is degraded as little as possible.

There are many speckle filtering methods in the literature that are less aggressive than a

simple boxcar spatial average, in that they attempt to compensate for the data so that

regions of homogeneous speckle are smoothed while point targets and edges are preserved.

Some preliminary testing was done using some of these filtering techniques, but these speckle

filtering techniques (such as the refined Lee [38] and intensity-driven adaptive neighbourhood

approaches [39]) reduced the detection performance (due to the fact that they performed

less smoothing) for the data used in this study, and so they were not investigated further.

It is possible they would produce superior results for very small targets which would be

degraded by the 3 × 3 spatial averaging window used here—but most of the targets in this

study spanned at least three pixels in length. Further investigation could be done in this

area, but for the purposes of this thesis, a boxcar spatial average is used.

6.2 Stokes Vector Modelling Using the Skew-Normal Distribution

Previously we discussed how the Liu et al. LRT decision variable uses a Gaussian approx-

imation for the probability distribution function of the ocean clutter. While this is a valid

approximation for the polarimetric scattering vector ~k, it is not necessarily valid for pa-

rameters derived from that vector. The Stokes vector, for example, does not appear to be

normally distributed based on the investigations performed in section 5.5. If we want to

perform detection using the Stokes vector, we can use the likelihood ratio test method, but

we must use a probability distribution function to derive that likelihood ratio that is a better

fit to the data.

Here a method is proposed that uses the skew-normal distribution to model the Stokes
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vector, a distribution which was presented and developed by Azzalini [40] across a number of

papers, sometimes with slightly different parametrizations or nomenclature. In general the

skew-normal distribution takes the normal (Gaussian) distribution, and adds an additional

skew parameter to account for skew in the data. This is helpful for characterizing data that

appears somewhat close to Gaussian, but is also clearly asymmetric, like the Stokes vector

elements. Here we use Azzalini’s 1999 paper [40] as a reference for the necessary equations

and nomenclature. First we investigate modelling the Stokes vector elements as a skew-

normal distributed random variable. Then we propose a skew-normal LRT decision variable

equation for use in target detection.

The skew-normal probability distribution function can be defined as [40]:

p(y) = 2φk(y − ξ; Ω)Φ(αTω−1(y − ξ)) (6.11)

y is the skew-normal distributed random vector, k is the number of elements of y, φk

is the k-dimensional normal distribution function, ξ is a vector of location parameters that

serve a similar function as the mean of a normal distribution, but are not equal to the mean

of the elements of y, Ω is a covariance matrix (though not the covariance matrix of y—see

explanation below), Φ is the one-dimensional normal cumulative distribution function, α is

a vector of skew parameters, and ω is a diagonal matrix of scale parameters (where each

diagonal element is similar to the standard deviation, though not equal to it, and the off

diagonal elements are equal to zero).

Ω is a covariance matrix calculated by subtracting ξ from y, rather than the actual mean

of y:

Ω =
1

n

n
∑

i

(yi − ξi)(yi − ξi)
T (6.12)

where n is the number of points used in the covariance matrix calculation.

Note that equation 6.11 for the skew-normal PDF contains the function φk, the normal

PDF. In the event of zero skewness (α = 0), the normal CDF Φ(0) is equal to 0.5, and
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therefore the skew-normal PDF reduces to the normal PDF. The skew-normal distribution

therefore contains the normal distribution as a special case.

Before delving into multivariate skew-normal modelling, let us first examine each of the

Stokes vector elements individually, through 1-D fitting of the skew-normal distribution.

For the one-dimensional case, the vectors and matrices reduce to scalars, and the mean

of the distribution can be easily calculated using the formula [40]:

µ = ξ + ωδ

√

2

π
(6.13)

where δ is related to the skew parameter α and is defined as [40]:

δ =
α√

1 + α2
(6.14)

Similarly, the variance of a single variable skew-normal distribution can be calculated

using the formula [40]:

σ2 = ω2

(

1− 2δ2

π

)

(6.15)

Using these equations, for a given value of the skew parameter α, ξ and ω can be calculated

such that the mean and variance of the fitted skew-normal distribution and the sample data

are equal. As an experiment, before working with multivariable fitting, 1D fitting was

performed by varying α between −1 and 1, in increments of 0.01. For each α appropriate

ξ and ω values were calculated so that the fitted skew-normal distribution would match

the mean and variance of the sample data. The results of this fitting are shown in Figures

6.1 and 6.2, for scenes 0818-1 and 0905-1, respectively, in the low resolution imaging mode.

A logarithmic y-axis is used in order to better demonstrate the fit of the distributions at

the tails. For scene 0818-1, the skew-normal visually appears to better fit the data for the

S0 and S3 parameters. For the S2 parameter, the skew-normal and normal distributions

are almost identical—there is no skew estimated from the data. For the S1 parameter, the

skew-normal distribution has a better fit for the negative tail, but a worse fit for the positive

tail. The results are fairly similar for scene 0905-1, with the exception that both S1 and S2
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Figure 6.1: Log histograms of the four Stokes vector elements, for scene 0818-1, low resolution

mode. Fitted normal distributions shown in red. Fitted skew-normal distributions shown in

dashed green.

have minor but noticeable skew in this case, such that the normal distribution appears to be

a slightly better fit for these parameters than the skew-normal distribution. However, the

skew-normal distribution still corresponds more closely to the observed behaviour of the S0

and S3 parameters than the normal distribution. Worth noting is that the values of S0 and

S3 are much higher than than that of S1 and S2—when transmitting a circular polarization,

most of the received backscatter is also circularly polarized.

While 1-D fitting is a useful experiment, eventually we need to work with the full Stokes

vector and perform multivariate fitting in 4-D. When working with multivariate data, the pa-

rameters can be estimated by maximizing the following log-likelihood equation, as discussed
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Figure 6.2: Log histograms of the four Stokes vector elements, for scene 0905-1, low resolution

mode. Fitted normal distributions shown in red. Fitted skew-normal distributions shown in

dashed green.
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by Azzalini [40]:

l∗(ξ, η) = −1

2
n log |Ω| − 1

2
nk + 1Tnζ0(uη) (6.16)

y is an n× k matrix containing the data to be fitted (in this case, each row is a different

pixel, for n pixels, and each column is a different Stokes vector element, for k = 4 elements),

and ξ is similarly an n× k matrix containing the location parameters for each element of y,

so that u = y − ξ.

Ω is then estimated as follows:

Ω =
1

n
uTu (6.17)

where |Ω| is the determinant of Ω.

ζ0 is defined by Azzalini as the function:

ζ0(x) = log(2Φ(x)) (6.18)

applied separately to each element of x.

We are optimizing for the parameters ξ and η, where η = ω−1α. Combining ω and α

in this fashion reduces the number of variables involved in the optimization, resulting in a

simpler optimization process. Since both ξ and η have a value for each of the k elements,

this means we are optimizing the log-likelihood function for 2k = 8 different variables in the

full Stokes vector case.

The optimization was performed using the fminsearch() function within Matlab (instead

of maximizing l∗, −l∗ was minimized). Since this function can potentially find local max-

imums rather than global ones, a wide variety of starting values for ξ and η were tested,

which resulted in only minor differences in the final result. For the results shown here, the

fitted 1D parameters were used as the starting estimates for the multidimensional ξ and η.

Since it is difficult to show the results of the fitting in four dimensions, the plots presented

here show the fitting for each possible 2-D pair of Stokes vector elements, in the form of

density plots (where the most likely values are shown in red, and less likely values in blue).
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Detection results using the skew-normal LRT, however, will use 4-D fitting to produce the

resulting decision variable.

Density plots showing the behaviour of the data and fitted skew-normal distributions of

scenes 0818-1 and 0905-1, respectively, for the low resolution imaging mode, are shown as

Figures 6.4 and 6.4.

For scene 0818-1, the S0-S3 plot has a shape that is difficult to represent using the

skew-normal, due to the fact that the data cannot lie below the y = −x line, due to the

relationship between S0 and S3. Because the fitting process attempts to fit this line using

the skew factor α, the other skew present in the data cannot be accounted for.

The distributions for the steep scene, 0905-1, are clustered together more closely, and

therefore visually appear to be a better fit for the skew-normal distribution. For both

of the scenes, though, the skew-normal appears visually to be a better fit than a normal

distribution. Of course, regardless of the fit, for this application the real test of the skew-

normal distribution is whether it can produce better detection performance than the normal

LRT for the Stokes vector data.

6.3 A Stokes Vector Decision Variable Formulation

Similar to how Liu et al. [30] took the normal distribution and formulated a decision variable

from it, here an equation for a skew-normal decision variable is derived, calculated from the

parameters of a skew-normal distribution fitted to the full 4-D Stokes vector as described

in the previous section. To begin we take 1 divided by the skew-normal PDF, so that the

greater the probability of a pixel being from the ocean, the smaller the resulting decision

variable, and vice versa. Like Liu et al., we perform no calculations regarding the expected

PDF of the target, since in general the scattering behaviour, sizes, etc., of icebergs can be

very unpredictable. Instead we focus on detecting pixels which are statistically very unlikely

to be generated by normal ocean backscatter, as modelled using an image chip of ocean
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Figure 6.3: Density plots of the four Stokes vector components, for scene 0818-1, low resolu-

tion mode. For each pair of plots, the density plot of the ocean pixels is shown on the left,

with the fitted skew-normal density function shown on the right.
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Figure 6.4: Density plots of the four Stokes vector components, for scene 0905-1, low resolu-

tion mode. For each pair of plots, the density plot of the ocean pixels is shown on the left,

with the fitted skew-normal density function shown on the right.
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pixels.

DV =
[

2(2π)−k/2 |Ω|−1/2 exp
(

−0.5(y − ξ)TΩ−1(y − ξ)
)

Φ(αTω−1(y − ξ))
]−1

(6.19)

We absorb the constant terms into the decision variable value itself:

DV =
[

exp
(

−0.5(y − ξ)TΩ−1(y − ξ)
)

Φ(αTω−1(y − ξ))
]−1

(6.20)

Then we take the logarithm:

DV = − log
(

exp
(

−0.5(y − ξ)TΩ−1(y − ξ)
))

− log
(

Φ(αTω−1(y − ξ))
)

(6.21)

And simplify:

DV = 0.5
(

(y − ξ)TΩ−1(y − ξ)
)

− log
(

Φ(αTω−1(y − ξ))
)

(6.22)

Note that the first term is very similar to the normal LRT decision variable, but with the

addition of the second skew term. As well, Ω is not necessarily equal to the covariance matrix

of the ocean image chip, though it will generally be similar (for small values of ξ). Note

that for data with no skew, α = 0 and ξ = 0, and the skew-normal LRT decision variable

reduces to the normal LRT decision variable. In chapter 8, the detection performance of the

normal (Gaussian) LRT and skew-normal LRT for the Stokes vector data will be assessed

and compared.
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Chapter 7

Empirical Clutter Modelling

To actually perform detection on the calculated decision variable images, we must determine

for each pixel in that image the desired detection threshold η. As mentioned previously,

pixels with decision variable values greater than η are considered detected, while pixels

with values below or equal to η are considered background. Generally the user specifies a

desired false alarm rate, and the value of η corresponding to that false alarm rate must be

determined and applied to the image. There is always a tradeoff between the false alarm

rate or probability of false alarm (PFA) and the probability of missed detection (PMD). The

higher the PFA the lower the PMD, and vice versa. Both the PFA and PMD for a particular

detector depend on the detection threshold chosen, and by plotting PMD vs. PFA values for

a range of detection thresholds, we can generate a plot referred to as the receiver operating

characteristic (ROC) [41].

There are two potential ways to calculate the PFA value corresponding to a given detec-

tion threshold (or vice versa). We can do so using a statistical model for the ocean clutter

(e.g., a speckle model in the case of SAR imagery, since as discussed near the end of section

3.3, the pixel-to-pixel variation in backscatter for ocean pixels is driven by speckle), or by

calculating the PFA for a given detection threshold empirically, using the following equation:

PFA =
NFA

No

(7.1)

NFA is the number of false alarms within an area of ocean containing No total ocean pixels.

Empirical PFA values are simple to compute, but are limited by the large number of ocean

samples necessary to calculate the very small PFA values needed for detection. For example,

a 1000 × 1000 pixel image chip contains No = 1, 000, 000 pixels and can therefore only

be used to calculate PFA values as low as 10−6, when often PFA values of 10−9 or lower
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would be desired. To calculate the detection threshold corresponding to a PFA value of 10−9

empirically would require one billion pixels, equivalent to a 31623×31623 pixel square image

chip—clearly not practical.

However, while direct empirical calculation of PFA values is problematic, use of statis-

tical clutter models come with their own challenges. Statistical calculation of the detection

threshold for a given PFA requires the integration of a probability distribution function that

has been fitted to the ocean clutter. While data from the ocean imagery is used in order

to fit the distribution (i.e., the clutter model) to the data, once a particular distribution

is fitted, detection thresholds can be calculated for any desired PFA value. As discussed

in section 3.3, a common distribution used to model ocean clutter in SAR images is the K

distribution. Liu et al. [31] used the K distribution to model LRT decision variables for

both linear dual-pol and compact polarimetric SAR data, using the following form for p(x),

the probability of the K distributed random variable x:

p(x) =
2

x

(

Lνx

µ

)
L+ν

2 1

Γ(L)Γ(ν)
Kν−L

(

2

√

Lνx

µ

)

(7.2)

L is the equivalent number of statistically independent looks, ν is the shape parameter,

µ is the mean of x, Γ is the Gamma function, and Kν−L() is the modified Bessel function

of the second kind, of order ν − L. Unfortunately there is no closed form integral of this

equation (and no cumulative distribution function), and integration must therefore be done

numerically. L is unknown, since the decision variable is calculated using a combination of

multiple single-look polarimetric channels (which are not necessarily statistically indepen-

dent), and therefore must be estimated along with ν and µ. µ can be estimated in a straight

forward manner using the sample mean, but L and ν are more problematic. Liu et al. [31]

estimated L and ν by calculating the K distribution for a wide variety of parameter values,

then choosing the pair of L and ν that both minimized the mean square error between the K

PDF and the data histogram, and passed a χ2 goodness-of-fit test. The fitted K distribution

was then integrated numerically to calculate the detection threshold corresponding to the
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desired PFA value. Needless to say, this procedure is expensive computationally.

However, for target detection applications, it is not strictly necessary to fit the entire K

distribution to the data histogram. What is of interest to us is that the detection threshold

as a function of the PFA (which is related to the cumulative distribution function, not the

PDF) can be calculated. As well, since we are only interested in the detection threshold for

very small PFA values, we can ignore the peak of the distribution and focus directly on the

tail probability.

Rather than attempting to fit the PDF of the K distribution to the data, an alternate

method is proposed. First, let us investigate the behaviour of numerically integrated K

distribution tail probabilities at high detection thresholds. Plots of log10(PFA) versus the

detection threshold are shown in Figure 7.1. The left plot shows the behaviour of the

K distribution for a variety of ν values, L = 4, and µ = 1. As the detection threshold

increases, the behaviour of the curves grows increasingly linear. This behaviour becomes

more pronounced as ν increases (or as L increases with ν held constant, though this is

not shown for brevity). The right plot shows empirical PFA values as a solid black line, for

simulated ship detection mode data of scene 0818-1. Note that these values only go down to a

PFA of around 10−6, too high for practical detection applications. For example, consider the

fact that scene 0905-1, simulated in the medium resolution imaging mode, has dimensions of

1709 by 1357 pixels, for a total area of approximately 2.3 million pixels (covering a geographic

area of roughly 331 square kilometres), resulting in an expected 2.3 false alarms for a PFA

value of 10−6. This image only contains three validated iceberg targets, such that the number

of false alarms in this case would be almost equal to the number of targets. Consider also that

the Arctic Ocean has a geographic area of approximately 14 million square kilometers, such

that at this PFA value, and given a similar pixel spacing throughout (which is a simplification

for the purposes of this example), we would expect approximately 98000 false alarms to be

detected across the entirety of the Arctic Ocean, much greater than the annual number of
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icebergs calved from Greenland. On top of the plotted empirical PFA values, a fitted K

distribution is shown in blue, and a fitted line in red. We fit both the K distribution and the

line using evenly spaced samples from the log10(PFA) versus threshold curve for log10(PFA)

values between -2 and -6, in increments of -0.2. This evenly distributed sampling accounts

for the fact that we have more samples for higher PFA values than for lower PFA values. By

fitting the log10(PFA) data rather than the data histogram, we are fitting the function we

are directly interested in calculating, rather than a PDF that will then need to be integrated

later.

Note that the empirical PFA behaviour has a linear trend for PFA values of approxi-

mately 10−2 and below, consistent with a K distribution with a relatively high ν value. The

behaviour for the other RCM imaging modes and polarimetric configurations had similarly

high ν values. Notably, the fitted K distribution and the fitted line have the same r2 values

(0.998) over the fitted range. Therefore, rather than using a K distribution to calculate the

detection thresholds used in this study, we instead fit a line to the empirical log10(PFA) vs.

threshold data, and extrapolate when necessary to the desired PFA values (e.g., as low as

10−9 or 10−10). This is a valid approach provided that the decision variable values are K

distributed (as shown by Liu et al. [30]). For higher PFA values where such extrapolation is

unnecessary (e.g., 10−5), PFA values can be taken directly from the empirically calculated

data, though this will generally only result in small differences from the linear regression.

The statistics of ocean speckle can theoretically vary greatly depending on the frequency

and spatial resolution of the SAR sensor. It is possible that for higher resolution modes, or

data from other satellites, the ocean distribution would be less consistent with K distributed

speckle, and this approach would not be viable. It is also likely that if we were to use a

different speckle filtering approach (that is, not a straight boxcar average during the decision

variable calculation), the ocean clutter’s distribution could be changed. However, the K

distribution appears to produce good results for this data, and by using our knowledge of
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Figure 7.1: Left: log10(PFA) vs. threshold curves for a number of K distributions with

varying ν, L = 4, and µ = 1. Right: An empirical log10(PFA) vs. threshold curve from an

ocean subset of scene 0818-1, for a decision variable calculated using simulated ship detection

mode data of native CTLR (RH-RV). A linear fit for false alarm rates between 10−2 and

10−6 is shown in red, with equation y = −0.815x+ 1.51. A similarly fitted K distribution is

shown in blue, with ν = 23.75, L = 9.04, and µ = 1.97. The r2 values shown in the legend

are calculated over the fitted PFA range.
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Figure 7.2: An example of the moving window used in the adaptive thresholding process.

The light grey region is used to estimate the speckle statistics (and therefore the detection

threshold) for the black pixel. The dark grey pixels are in the guard region, and are not used

in the calculation. The window used in this study had a guard region of 31× 31 pixels, with

a total window size of 101× 101 pixels.

the K distribution to surmise that the empirical PFA curve should have expected linear

behaviour at low PFA values, we avoid having to actually fit the K distribution for every

scene, which would have been a costly and potentially error-prone procedure.

7.1 Adaptive Thresholding and Clustering

Using the methods described in the previous section, we can calculate a detection threshold

for any given PFA, using an ocean image chip selected from each scene (in this case, the

same chip used to calculate the ocean covariance matrix for the LRT detection). However,

this process yields a constant detection threshold across an area, and does not account for

potential variations in ocean backscatter throughout the image. To account for some of this

variation, we can slide a moving window across the image with a guard region at its centre

(shown in Figure 7.2), as in constant false alarm rate (CFAR) detection [41], a method which

is well established in the literature, and has been widely used to detect ships in SAR images

[42, 43, 44].

In many cases, the moving window is used to recalculate the parameters of the clutter
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model for every pixel in the image. However, recalculating our empirical model in this

way would require a very large moving window. Consider that to calculate a PFA of 10−5

empirically requires a window area of at least 105 pixels, equivalent to a 316 × 316 square

window. For this reason, rather than calculating a new empirical model for every pixel in the

image, we instead take the sample mean of the values in the moving window (excluding the

guard region), x̄i,j, and use it to scale the detection threshold for the pixel with coordinates

(i, j), ti,j, using the following equation:

ti,j = t0
x̄i,j
µ

(7.3)

t0 is the threshold calculated from the original empirical model, x̄i,j is the sample mean

of the clutter in the moving window (excluding the guard region), and µ is the mean value of

the chip used to create the empirical model. This allows us to use a smaller window size for

the adaptive thresholding process than if we were to recalculate the model for every pixel.

Even if we were to use a K distribution to model the ocean clutter, re-estimating ν and L

as the moving window travels across the image is both time consuming and inaccurate, due

to the small number of samples available.

For this thesis a 31× 31 pixel guard region is used, with a total window size of 101× 101

pixels, to adjust the detection thresholds for each pixel in the image. Pixels with decision

variable values above the threshold were then considered to be detected.

As a further step, the detected pixels in an image can be grouped into clusters, with

each cluster consisting of 8-connected neighbouring detected pixels (i.e., pixels that are one

pixel apart, either in range, azimuth, or both directions). A minimum cluster size can then

be defined, such that clusters below this size (whether true detections or false alarms) are

discarded. By increasing the minimum cluster size, the effective FAR can be reduced without

actually changing the detection threshold (since both single-pixel false alarms, and single-

pixel detections, for example, will be discarded). Of course, this also puts a lower limit on the

size of targets that can be detected, though it should be noted that single-pixel detections
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would be very difficult to verify or classify in an operational environment in any event. In

this thesis, we use a minimum cluster size of four pixels for the low resolution and medium

resolution imaging modes, and a minimum cluster size of eleven pixels for the ship detection

imaging mode.
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Chapter 8

Detection Performance Comparison of Various

Polarimetric Modes

Detection was performed using a wide variety of polarimetric configurations in order to assess

and compare their performance. The LRT was used to calculate a decision variable for the

scattering vector of each mode as described in section 6.1, with the exception of detection

using the Stokes vector, where detection was performed using both the normal LRT and the

skew-normal LRT (as in section 6.3) in order to compare the results of these two methods.

A 3 × 3 pixel spatial averaging window was used during the decision variable calculation

process.

The detection thresholds were calculated for a false alarm rate of 10−8 as in chapter

7. This false alarm rate was low enough that for most of the modes, no false alarms were

detected in any of the images. As described at the end of chapter 7, detected pixels were

combined with their 8-connected neighbours into clusters, and clusters below a minimum

size (four pixels for the low resolution and medium resolution imaging modes, and eleven

pixels for the ship detection imaging mode) were discarded.

Due to the large number of polarimetric modes tested, in the following tables of results,

shortened names for each mode are used, as follows:

HH-HV

Linear dual-pol mode using a transmitted horizontal polarization, resulting in

coherent HH and HV channels. Probably the most common dual-pol mode

used in the literature.

VV-VH
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Coherent VV and VH channels. Another common dual-pol mode.

HH-VV

Incoherent HH and VV channels, such as in the “alternating polarization”

available from Envisat. Here we test amplitude only HH-VV, since generally

these HH-VV modes are either incoherent or have other limitations (e.g., in

terms of swath width).

CL

Circular-Linear, or CTLR, compact polarimetry. Here the coherent RH-RV

scattering vector is used directly, with no other parameters. These are the

native channels collected by a CTLR SAR system.

PQ

The full pseudo quad-pol dataset reconstructed from the CTLR. The pseudo-

HH and pseudo-VV are treated coherently, while the pseudo-HV has no phase

information and is therefore only usable as an intensity.

PHV

Pseudo-HV intensity only.

CL-PHV

The coherent RH-RV combined with the pseudo-HV intensity.

DCP

Dual-Circular Polarization, that is, a scattering vector of RR and RL.

St.

The four Stokes vector elements used as input to the (normal) LRT.

St. SN
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The four Stokes vector elements used as input to a skew-normal LRT as de-

scribed in section 6.3.

Results are split into sections by the imaging mode used. For each imaging mode, we show

tables of PMD values for each iceberg, with the icebergs grouped into four incidence angle

categories, based on the beam mode of the original Radarsat-2 fine-quad scenes (denoted

with FQ#). These four incidence angle categories are:

1. FQ2: 19.9◦ − 21.8◦(1.9◦),

2. FQ5/6/7: 23.4◦ − 27.6◦(4.2◦)

3. FQ9/10/11: 28.0◦ − 32.0◦(4.0◦)

4. FQ16: 36.5◦ − 38.0◦(1.5◦)

The number in parentheses is the difference between the maximum and minimum inci-

dence angle of that range.

As mentioned previously, the ship detection mode is planned to have high incidence angle

beam modes only. Therefore, results are only shown here for simulated ship detection mode

data of scene 0818-1, the highest incidence angle scene available, which roughly corresponds

to the lowest planned incidence angle of the RCM ship detection beam modes.

For each iceberg the validation data contained the classified size category (small, medium,

or large) and shape (tabular, wedge, blocky, drydock, pinnacle, or dome). The size categories

are defined by the International Ice Patrol as follows [27]: between 15m and 60m in length

for “small” icebergs, between 60m and 122m in length for “medium” icebergs, and greater

than 122m in length for “large” icebergs.

The shape categories are defined [27]:

Tabular An iceberg with a flat top, and generally horizontal banding along the sides. These

icebergs are formed from glaciers and ice shelves, and will often turn into one

of the other types as they melt and break up in the water.
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Wedge An iceberg with a wedge shape.

Blocky A flat-topped iceberg with steep vertical sides.

Drydock An iceberg that has a U-shaped area where the ice has melted, resulting in two

columns or pinnacles on either side, giving the iceberg the shape of its name-

sake.

Pinnacle An iceberg with a spire or pyramid.

Dome An iceberg with a smooth, rounded top.

These iceberg shape classes are less quantitative than the size classes. Sometimes all the

shape categories besides tabular icebergs will be lumped together into a single “non-tabular”

class. While the shape categories are interesting, due to the wide variety of target geometries

within each class, no analysis will be performed for them. However, we do report results

categorized by size, in the form of tables of the median PMD values for each size class,

as well as median PMD values for each incidence angle category for medium icebergs only

(since medium icebergs represented the largest portion of our validation data). Note that

while the data used here only contains three sizes, there are other size classes (e.g., growlers,

very large, etc.) that were not contained in our dataset. In particular, icebergs less than 15

metres in length would be very difficult, if not impossible, to detect in our imagery, due to

the fact that they are much smaller than the spatial resolution of the data.

While in the previous chapter we have defined the probability of false alarm and how it is

related to the detection threshold, we have not defined the probability of missed detection.

Here we calculate the PMD values using the equation:

PMD = 1− ND

NT

(8.1)

ND is the number of detected target pixels, and NT is the total number of pixels in the target

mask. The lower the PMD for a given target, the more pixels of that target were actually
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detected. A PMD value of one corresponds to a completely missed target. As long as the

PMD value is less than one, the target was detected in the image. Therefore, we can also

think of the PMD as the ratio of undetected masked area (in pixels) to the total masked

area. While the number of missed targets and number of false alarms for each polarimetric

mode are the most conclusive ways of comparing the different modes, in a number of cases

different modes produce the same number of missed targets and in these cases the PMD

values can provide a more sensitive measure of the performance of each detector.

The results are in the form of tables of the PMD value of each iceberg, as well as median

PMD values for each incidence angle or size category.

First, we present and discuss detection results for the low resolution imaging mode. Then,

for the medium resolution imaging mode. And finally, for the ship detection imaging mode.

8.1 Low Resolution Imaging Mode Results

Table 8.1 shows the PMD values of each iceberg for the low resolution imaging mode. Three

polarimetric modes are tied for the fewest number of missed targets (at five): the CTLR

RH-RV, the DCP, and the Stokes skew-normal. Of these modes, we note that the CTLR and

the DCP have exactly the same PMD values for every target, and indeed we find that this

holds across the rest of the imaging modes. Therefore, it seems that changing the received

polarization basis from linear to circular has no impact on the detection performance of a

LRT detector—a result that makes sense intuitively, but had not previously been confirmed.

Therefore, when we are discussing results for the CTLR mode in this section and in later

sections, the analysis and conclusions also apply to the DCP mode, since the two modes are

effectively the same.

The most interesting comparison here is perhaps between the CTLR and the Stokes skew-

normal. Both modes miss the same number of targets (five), and have the same median PMD

value (0.72). However, unlike the CTLR and DCP modes, there are some notable differences.
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For the highest incidence angle category of 36.5◦ − 38.0◦, and the second lowest incidence

angle category of 23.4◦−27.6◦, the Stokes skew-normal has a lower median PMD value than

the CTLR. However, the Stokes skew-normal had a single false alarm detection, while the

CTLR did not, making the CTLR overall more favourable according to this limited data set.

However, we do see that use of the skew-normal LRT over the normal LRT improves the

detection performance of the Stokes vector for this imaging mode.

Also of note is the fact that the compact polarimetric modes out perform the linear dual-

pol modes fairly consistently, both in terms of the number of missed targets, as well as the

median PMD values. The performance between the linear dual-pol and compact modes are

fairly similar at the lowest incidence angle range of 19.9◦ − 21.8◦, but as the incidence angle

increases the compact polarimetric modes, particularly the CTLR and Stokes skew-normal,

appear to pull ahead in detection performance.

In previous work by the author using the Radarsat-2 fine quad mode data directly [10],

the pseudo quad-pol reconstructed data seemed to perform better than the native CTLR.

However, that is not the case here. One plausible explanation for this difference is due to

the increased noise floor of the Radarsat Constellation compared to Radarsat-2. For the

Radarsat-2 data, the noise effective sigma zero, or NESZ, was often below -30 dB, while the

noise floor is -22 dB (referenced to the power of the transmitted radar pulse) for all three of

the proposed imaging modes we are investigating in this thesis. While the co-pol channels

will generally be above either of these noise floors, the HV (and therefore the pseudo-HV) σ0

is generally below the noise floor of the Radarsat Constellation data for most ocean pixels.

This affects the pseudo quad-pol data particularly severely because we had previously found

that the pseudo-HV intensity was the most useful of the reconstructed parameters for iceberg

detection [10], and with the higher RCM noise floor, the pseudo-HV parameter is dominated

by noise for most of the ocean pixels in the image.

Table 8.2 shows the median PMD values for each size category. We find that for the
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small icebergs, most of the compact polarimetric modes are tied for the lowest median PMD

value of 0.79. In comparison the best of the linear dual-pol modes, the HH-HV mode, had a

median PMD value of 0.81. For the medium icebergs both the CTLR and the combination

of CTLR and pseudo-HV are tied for the lowest PMD value of 0.69. For the large icebergs,

the lowest PMD value is actually held by the full pseudo quad-pol reconstructed dataset,

a somewhat surprising result considering that overall it performed worse than the original

CTLR. As we might expect, the small icebergs tend to have the highest median PMD values

overall, implying that larger targets are easier to detect.

Table 8.3 shows the median PMD values in each incidence angle category, for the medium

size icebergs only. This table attempts to eliminate the effect of iceberg size on the results,

by looking only at medium icebergs. However, we are limited to a small number of iceberg

targets in this case (five targets for the second incidence angle category, and three targets for

each of the other categories). As before, the highest PMD values overall tend to occur for the

lowest incidence angle category. It seems that very steep incidence angles have a negative

effect on detection performance, as we might expect considering the fact that the lower the

incidence angle, the greater the backscattered power from the ocean (and therefore, for a

constant target backscatter, the smaller the contrast between the target and the ocean).
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Table 8.1: PMD values for the low resolution imaging mode, categorized by incidence angle.

A FAR of 10−8 was used, with a minimum allowed target cluster size of four pixels. The

lowest value for each row is shaded a dark grey. If other PMD values in that row are within

0.05 of the minimum, they are shaded a lighter grey.

Iceberg Properties Linear Dual-Pol Compact Polarimetry
ID (Scene) Size Shape HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN

FQ2: 19.9◦ − 21.8◦(1.9◦)
R1 (0905-1-1) S Wedge 0.93 0.93 1.00 0.93 0.93 0.93 0.93 0.93 0.93 0.93
R2 (0905-1-2) S Wedge 0.81 0.86 1.00 0.79 0.79 0.83 0.79 0.79 0.79 0.79
B1 (0905-1-3) M Blocky 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H (0905-2-1) M Drydock 0.78 0.78 1.00 0.79 0.81 0.80 0.79 0.79 0.79 0.77
B2 (0905-2-2) M Blocky 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Median 0.93 0.93 1.00 0.93 0.93 0.93 0.93 0.93 0.93 0.93
FQ5/6/7: 23.4◦ − 27.6◦(4.2◦)
G1 (0829-1-1) S Drydock 0.55 0.73 0.60 0.55 0.68 0.65 0.60 0.55 0.56 0.58
G2 (0805-1-1) S Drydock 0.47 0.50 0.46 0.51 0.56 0.66 0.56 0.51 0.40 0.41
N (0805-1-2) S Wedge 0.51 0.54 0.46 0.57 0.68 0.76 0.61 0.57 0.75 0.75
A (0805-2-1) M Blocky 0.66 0.63 0.60 0.72 0.77 0.82 0.70 0.72 0.83 0.30
J (0815-2-1) M Pinnacle 0.51 0.58 0.80 0.36 0.51 0.47 0.41 0.36 0.39 0.47
D1 (0815-2-2) M Drydock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
D2 (0815-2-3) M Drydock 0.92 0.92 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.91
M (0822-1-1) M Wedge 0.74 0.74 1.00 0.40 0.49 0.51 0.46 0.40 0.40 0.37
I (0822-2-1) L Pinnacle 0.75 0.75 1.00 0.42 0.42 0.44 0.42 0.42 0.42 0.42
P1 (0822-2-2) L Wedge 0.73 0.76 1.00 0.61 0.67 0.67 0.67 0.61 0.69 0.71

Median 0.69 0.73 0.90 0.56 0.67 0.66 0.60 0.56 0.63 0.53
FQ9/10/11: 28.0◦ − 32.0◦(4.0◦)
C1 (0815-1-1) M Dome 0.66 0.68 0.76 0.59 0.63 0.71 0.63 0.59 0.54 0.64
O1 (0815-1-2) M Wedge 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P2 (0825-2-1) M Wedge 0.77 0.83 1.00 0.71 0.64 0.76 0.76 0.71 0.69 0.68
L (0825-1-1) L Tabular 1.00 1.00 1.00 0.53 0.50 0.60 0.53 0.53 0.43 0.53

Median 0.89 0.91 1.00 0.65 0.63 0.73 0.69 0.65 0.61 0.66
FQ16: 36.5◦ − 38.0◦(1.5◦)
K (0818-1-1) S Pinnacle 0.87 0.91 0.88 0.76 0.88 0.82 0.79 0.76 0.73 0.72
Q (0818-1-2) S Wedge 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E (0818-1-3) M Drydock 1.00 1.00 1.00 0.84 0.89 1.00 0.90 0.84 0.82 0.79
F (0818-1-4) - - 0.54 0.84 0.77 0.66 0.86 0.71 0.67 0.66 0.55 0.52
O2 (0818-1-5) M Wedge 0.69 0.71 0.80 0.65 0.70 0.77 0.69 0.65 0.65 0.64
C2 (0818-1-6) M Dome 0.92 1.00 1.00 0.90 1.00 1.00 1.00 0.90 1.00 0.84

Median 0.89 0.95 0.94 0.80 0.89 0.91 0.85 0.80 0.78 0.76

Overall Median 0.78 0.84 1.00 0.72 0.79 0.80 0.76 0.72 0.75 0.72

# of Missed Targets 7 8 16 5 6 7 6 5 6 5
# of False Alarms 0 0 2 0 0 0 0 0 1 1

89



Table 8.2: Median PMD values for the low resolution imaging mode, categorized by iceberg

size (small, medium, or large). A FAR of 10−8 was used, with a minimum allowed target

cluster size of four pixels. The lowest value for each row is shaded a dark grey. If other PMD

values in that row are within 0.05 of the minimum, they are shaded a lighter grey.

Iceberg Linear Dual-Pol Compact Polarimetry
Size HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN
Small 0.81 0.86 1.00 0.79 0.79 0.83 0.79 0.79 0.79 0.79

Medium 0.75 0.81 0.94 0.69 0.79 0.78 0.69 0.69 0.74 0.71
Large 0.77 0.83 1.00 0.71 0.64 0.76 0.76 0.71 0.69 0.68

Overall Median 0.78 0.84 1.00 0.72 0.79 0.80 0.76 0.72 0.75 0.72

Table 8.3: Median PMD values for the low resolution imaging mode, for medium icebergs

only, categorized by incidence angle. A FAR of 10−8 was used, with a minimum allowed

target cluster size of four pixels. The lowest value in each row is shaded a dark grey. If other

PMD values in that row are within 0.05 of the minimum, they are shaded a lighter grey.

Incidence Angle Linear Dual-Pol Compact Polarimetry
Range HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN

19.9◦ − 21.8◦(1.9◦) 0.93 0.93 1.00 0.93 0.93 0.93 0.93 0.93 0.93 0.93
23.4◦ − 27.6◦(4.2◦) 0.55 0.63 0.60 0.57 0.68 0.67 0.61 0.57 0.69 0.58
28.0◦ − 32.0◦(4.0◦) 1.00 1.00 1.00 0.59 0.63 0.71 0.63 0.59 0.54 0.64
36.5◦ − 38.0◦(1.5◦) 0.87 0.91 0.88 0.76 0.88 0.82 0.79 0.76 0.73 0.72
Overall Median 0.78 0.84 1.00 0.72 0.79 0.80 0.76 0.72 0.75 0.72
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8.2 Medium Resolution Imaging Mode Results

Table 8.4 shows the PMD values of each iceberg for the low resolution imaging mode. As

with the low resolution imaging mode, the CTLR/DCP data yields the best results, with

only one missed target and the lowest overall median PMD of 0.67. The full pseudo quad-pol

and both Stokes vector modes also only missed one target, however, the two Stokes vector

modes also had one false alarm.

As in the low resolution imaging mode, all of the linear dual-pol modes missed a greater

number of targets and had higher median PMD values than the CTLR. Despite the small

size of the data set available for this study, the strength of the compact polarimetry in this

context seems quite clear. Even the weaker compact polarimetry modes (the pseudo-HV and

the CTLR with pseudo-HV combination) missed a fewer number of targets than the HH-HV

and the VV-VH.

Comparing the Stokes vector data using a normal LRT with the skew-normal LRT, the

improvement from using the skew-normal LRT is less clear for the medium resolution imaging

mode than in the low resolution mode. Here, the skew-normal LRT actually produces a

slightly higher overall median PMD value than the normal LRT. For the two lowest incidence

angle categories, the normal and skew-normal LRTs produce the same median PMD value.

For the third incidence angle category the skew-normal LRT produces a slightly higher

median PMD value, while for the highest incidence angle category, the skew-normal produces

a slightly lower PMD value. It appears that the skew-normal LRT provides a better fit to

the data in the low resolution imaging mode than in the medium resolution case. It is

possible that finer resolution data is more difficult to model. Work could possibly be done

improving the fitting process of the skew-normal distribution—it is likely that the skew-

normal distribution was attempting to account for the fact that the three Stokes vector

elements S1, S2, and S3 must be less than S0 (i.e., the four Stokes vector elements are not

completely independent) through use of the skew factor, in the process not accounting for
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some of other the skew present in the data.

Table 8.5 lists the median PMD values for each size category. As expected the values

are highest for the small category. Somewhat surprising is that for small icebergs the lowest

median PMD is obtained using the Stokes vector with a normal LRT. For the medium and

large icebergs, the best performance was from the CTLR/DCP data as usual.

Table 8.6 lists the median PMD values of each incidence angle category, for the medium

icebergs only. As before, we see that the PMD values are highest for the lowest incidence

angle category, as expected. For the first three incidence angle categories, the normal LRT

Stokes vector actually has the lowest median PMD, while for the highest incidence angle

category, the CTLR and skew-normal Stokes have the lowest median PMD. It’s possible

that the skew-normal LRT is a better fit for the Stokes vector data at higher incidence

angles, though in any event, for the incidence angle categories where the skew-normal LRT

is an improvement for the Stokes vector data, the CTLR also performs just as well, making

the skew-normal LRT somewhat superfluous for the medium resolution imaging mode.
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Table 8.4: imaging mode, categorized by incidence angle. A FAR of 10−8 was used, with a

minimum allowed target cluster size of four pixels. The lowest value for each row is shaded a

dark grey. If other PMD values in that row are within 0.05 of the minimum, they are shaded

a lighter grey.

Iceberg Properties Linear Dual-Pol Compact Polarimetry
ID (Scene) Size Shape HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN

FQ2: 19.9◦ − 21.8◦(1.9◦)
R1 (0905-1-1) S Wedge 0.89 0.89 1.00 0.85 0.84 0.85 0.85 0.85 0.83 0.83
R2 (0905-1-2) S Wedge 0.90 0.90 1.00 0.87 0.85 0.90 0.87 0.87 0.85 0.85
B1 (0905-1-3) M Blocky 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
H (0905-2-1) M Drydock 0.83 0.84 1.00 0.83 0.88 0.82 0.81 0.83 0.83 0.80
B2 (0905-2-2) M Blocky 1.00 1.00 1.00 0.85 0.89 0.89 0.85 0.85 0.85 0.85

Median 0.90 0.90 1.00 0.85 0.88 0.89 0.85 0.85 0.85 0.85
FQ5/6/7: 23.4◦ − 27.6◦(4.2◦)
G1 (0829-1-1) S Drydock 0.62 0.73 0.65 0.50 0.71 0.61 0.53 0.50 0.52 0.48
G2 (0805-1-1) S Drydock 0.50 0.54 0.44 0.54 0.58 0.71 0.58 0.54 0.37 0.37
N (0805-1-2) S Wedge 0.50 0.53 0.44 0.58 0.64 0.71 0.59 0.58 0.64 0.66
A (0805-2-1) M Blocky 0.64 0.62 0.60 0.66 0.72 0.81 0.68 0.66 0.73 0.77
J (0815-2-1) M Pinnacle 0.48 0.54 0.80 0.32 0.39 0.39 0.35 0.32 0.34 0.39
D1 (0815-2-2) M Drydock 0.74 0.74 0.74 0.77 0.77 1.00 1.00 0.77 0.66 0.80
D2 (0815-2-3) M Drydock 0.89 0.91 0.98 0.74 0.78 0.82 0.79 0.74 0.69 0.72
M (0822-1-1) M Wedge 0.65 0.83 0.86 0.55 0.55 0.62 0.59 0.55 0.50 0.50
I (0822-2-1) L Pinnacle 0.61 0.80 1.00 0.41 0.44 0.42 0.41 0.41 0.41 0.41
P1 (0822-2-2) L Wedge 0.72 0.73 0.83 0.54 0.58 0.55 0.55 0.54 0.52 0.53

Median 0.63 0.73 0.77 0.54 0.61 0.66 0.58 0.54 0.52 0.52
FQ9/10/11: 28.0◦ − 32.0◦(4.0◦)
C1 (0815-1-1) M Dome 0.55 0.60 0.66 0.59 0.61 0.62 0.59 0.59 0.58 0.59
O1 (0815-1-2) M Wedge 0.82 1.00 0.86 0.81 0.81 0.82 0.81 0.81 0.83 0.93
P2 (0825-2-1) M Wedge 0.78 0.83 0.96 0.67 0.74 0.75 0.70 0.67 0.75 0.77
L (0825-1-1) L Tabular 0.71 0.67 1.00 0.48 0.54 0.50 0.50 0.48 0.42 0.40

Median 0.74 0.75 0.91 0.63 0.67 0.68 0.64 0.63 0.66 0.68
FQ16: 36.5◦ − 38.0◦(1.5◦)
K (0818-1-1) S Pinnacle 0.83 0.88 0.87 0.72 0.90 0.79 0.76 0.72 0.84 0.81
Q (0818-1-2) S Wedge 1.00 0.88 0.91 0.88 0.91 0.90 0.88 0.88 0.90 0.91
E (0818-1-3) M Drydock 0.85 0.94 0.88 0.75 0.85 0.84 0.77 0.75 0.73 0.72
F (0818-1-4) - - 0.66 0.86 0.80 0.62 0.84 0.67 0.63 0.62 0.58 0.55
O2 (0818-1-5) M Wedge 0.70 0.74 0.76 0.64 0.73 0.72 0.65 0.64 0.63 0.62
C2 (0818-1-6) M Dome 0.92 0.97 0.95 0.86 0.96 0.89 0.86 0.86 0.82 0.80

Median 0.84 0.88 0.87 0.74 0.88 0.82 0.77 0.74 0.78 0.76

Overall Median 0.74 0.83 0.87 0.67 0.77 0.79 0.70 0.67 0.69 0.72

# of Missed Targets 3 3 7 1 1 2 2 1 1 1
# of False Alarms 0 0 0 0 0 0 0 0 1 1
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Table 8.5: Median PMD values for the medium resolution imaging mode, categorized by

iceberg size (small, medium, or large). A FAR of 10−8 was used, with a minimum allowed

target cluster size of four pixels. The lowest value for each row is shaded a dark grey. If

other PMD values in that row are within 0.05 of the minimum, they are shaded a lighter

grey.

Iceberg Linear Dual-Pol Compact Polarimetry
Size HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN
Small 0.74 0.83 0.95 0.77 0.77 0.89 0.85 0.77 0.66 0.80

Medium 0.72 0.79 0.84 0.64 0.76 0.75 0.66 0.64 0.68 0.69
Large 0.78 0.83 0.96 0.67 0.74 0.75 0.70 0.67 0.69 0.72

Overall Median 0.74 0.83 0.87 0.67 0.77 0.79 0.70 0.67 0.69 0.72

Table 8.6: Median PMD values for the medium resolution imaging mode, for medium icebergs

only, categorized by incidence angle. A FAR of 10−8 was used, with a minimum allowed target

cluster size of four pixels. The lowest value for each row is shaded a dark grey. If other PMD

values in that row are within 0.05 of the minimum, they are shaded a lighter grey.

Incidence Angle Linear Dual-Pol Compact Polarimetry
Range HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN

19.9◦ − 21.8◦(1.9◦) 0.89 0.89 1.00 0.85 0.88 0.85 0.85 0.85 0.83 0.83
23.4◦ − 27.6◦(4.2◦) 0.62 0.62 0.60 0.54 0.64 0.71 0.58 0.54 0.52 0.53
28.0◦ − 32.0◦(4.0◦) 0.71 0.67 0.86 0.59 0.61 0.62 0.59 0.59 0.58 0.59
36.5◦ − 38.0◦(1.5◦) 0.83 0.88 0.87 0.72 0.85 0.79 0.76 0.72 0.73 0.72
Overall Median 0.74 0.83 0.87 0.67 0.77 0.79 0.70 0.67 0.69 0.72
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Table 8.7: PMD values for the ship detection imaging mode, categorized by incidence angle.

A FAR of 10−8 was used, with a minimum allowed target cluster size of four pixels. The

lowest value for each row is shaded a dark grey. If other PMD values in that row are within

0.05 of the minimum, they are shaded a lighter grey.

Iceberg Properties Linear Dual-Pol Compact Polarimetry
ID (Scene) Size Shape HH-HV VV-VH HH-VV CL PQ PHV CL-PHV DCP St. St. SN

FQ16: 36.5◦ − 38.0◦(1.5◦)
K (0818-1-1) S Pinnacle 0.82 0.91 0.90 0.75 0.93 0.85 0.76 0.75 0.92 0.91
Q (0818-1-2) S Wedge 0.90 0.92 0.95 0.88 0.93 0.93 0.89 0.88 0.89 0.88
E (0818-1-3) M Drydock 0.88 1.00 0.93 0.76 0.92 0.90 0.79 0.76 0.89 0.90
F (0818-1-4) - - 0.81 0.88 0.88 0.76 0.84 0.83 0.77 0.76 0.76 0.77
O2 (0818-1-5) M Wedge 0.73 0.78 0.81 0.63 0.71 0.80 0.64 0.63 0.70 0.70
C2 (0818-1-6) M Dome 0.90 0.94 0.94 0.82 0.89 0.87 0.82 0.82 0.82 0.81

Overall Median 0.85 0.91 0.92 0.76 0.91 0.86 0.78 0.76 0.86 0.84

# of Missed Targets 0 1 0 0 0 0 0 0 0 0
# of False Alarms 1 0 0 0 0 0 0 0 0 0

8.3 Ship Detection Imaging Mode Results

Table 8.7 shows the PMD values of each iceberg in scene 0818-1 for the ship detection imaging

mode. Again we see that the CTLR mode has the lowest median PMD value (0.76), well

below that of the best linear dual-pol mode (0.85 for the HH-HV). None of the polarimetric

modes miss targets, except for the VV-VH mode, where one target was missed. The HH-HV

mode had one false alarm, while the other modes had none.

Use of the skew-normal LRT slightly lowers the median PMD value for the Stokes vector

detection (from 0.86 to 0.84), but still produces worse performance overall than that of the

CTLR mode. However, it does have the lowest PMD value for two of the six iceberg targets,

while the CTLR mode has the lowest PMD value for the other four iceberg targets.

Due to the limited amount of data, no analysis of iceberg size will be done for the ship

detection imaging mode.
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8.4 Imaging Mode Comparison

Figure 8.1 provides a visual comparison of RH σ0 values across the three different imaging

modes, for iceberg E from scene 0818-1. As the spatial resolution becomes coarser, starting

from the ship detection mode (top left), to the medium resolution mode (top right), and

finally to the low resolution mode (bottom), it’s clear that the detail with which the iceberg

can be characterized visually in the image is reduced. Worth noting is that both the ship

detection and medium resolution modes have a 350 km swath, while the low resolution mode

has a 500 km swath. To achieve this increased swath width, the low resolution mode has

a significantly coarser azimuth resolution. As shown in the previous sections, this coarser

resolution results in a greater number of missed iceberg targets (five for the CTLR) than the

other imaging modes.

In comparison, the ship detection and medium resolution modes are closer in spatial

resolution, with the main difference lying in the fact that the ship detection mode has a

significantly finer range resolution than the medium resolution mode. Also worth noting is

that this resolution is designed to vary with incidence angle for the ship detection mode.

As well, the ship detection mode is limited to high incidence angle beam modes, whereas

the medium resolution mode has a wider range of incidence angles for which data can be

collected. This flexibility could potentially be of use operationally, if it was necessary to

have coverage of a particular area at a certain time.

While the ship detection mode is certainly more interesting visually, this study has pro-

vided no evidence that the ship detection mode actually produces better iceberg detection

performance than the medium resolution mode—here the two modes produce very similar

results. We note that for scene 0818-1, the CTLR data had almost the same median PMD

value for the ship detection mode (0.76) as for the medium resolution mode (0.74), and both

imaging modes had no missed targets for this scene. Due to the limited incidence angles

of the ship detection imaging mode, results for the other scenes besides 0818-1 have been
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(a) Ship Detection Mode (b) Medium Resolution Mode

(c) Low Resolution Mode

Figure 8.1: RH σ0 images of iceberg E (medium drydock) from scene 0818-1, for the three

different imaging modes.

omitted. However, when a test was performed using the full set of scenes with the ship de-

tection imaging mode, it was found that the same iceberg target missed by the CTLR data

in the medium resolution mode was also missed in the ship detection mode. To actually

determine which of these modes is superior in terms of detection performance would likely

take a significantly greater amount of data. What is clear is that use of the low resolution

imaging mode greaterly reduces the detection performance for all of the polarimetric modes,

with the tradeoff being a much wider coverage area.
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Chapter 9

Adaptive False Alarm Rate Adjustment

In this chapter a method is presented that utilizes the shape and orientation of the received

polarization ellipse in an attempt to improve the detection results of a coherent dual-polarized

SAR system. Though it can be used for any system which is able to calculate the received

Stokes parameters, it is particularly well suited to a circular transmit polarization, since as

shown in chapter 5, the orientation angle ψ is a better discriminator of ocean and targets

when the transmitted polarization is rotationally invariant, as it is in the circular transmit

case [45]. For a linear transmit polarization, the orientation of the received polarization

ellipse tends to be aligned to the transmit polarization’s orientation. But for circular transmit

polarization, the transmitted polarization has no orientation, and therefore the received

polarization ellipse has no preferred orientation, with the value of ψ depending more strongly

on the target geometry.

The motivation for this method is that as shown previously, use of the skew-normal

LRT to detect icebergs using the Stokes vector yielded mixed results. While the skew-

normal LRT was an improvement over the normal LRT for many of the incidence angles and

imaging modes tested, it produced inferior results in some cases, and in general fell short of

the detection performance of the native CTLR RH-RV used as input to the normal LRT.

Yet the Stokes parameters, and by extension the polarization ellipse parameters, contain

useful information that is not utilized by the LRT decision variable calculation. This method

attempts to use the Stokes parameters to augment the detection performance of the LRT

decision variable, not through the decision variable calculation itself but by refining the

choice of the detection threshold for each pixel.

One reason the ψ and χ parameters are worth investigating is that they are both phases,
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whereas the LRT process uses mostly power-based parameters (e.g., the covariance matrix

elements) as input. This is also the reason that the ψ and χ angles are used here rather

than the raw Stokes vector directly, since the Stokes vector elements are also measures of

power, and are therefore somewhat redundant to the information already used as input to

the decision variable calculation.

9.1 False Alarm Rate as a Function of ψ and χ

Recall from chapter 5 that the polarization ellipse orientation, ψ, and ellipticity, χ, are two of

the spherical coordinates that define the same point in space as the Stokes vector parameters

(if the Stokes are used as Cartesian coordinates). The third spherical coordinate is the radius

of the sphere, or the distance between the point and the origin, which is equal to the total

polarized power, Ip =
√

S2
1 + S2

2 + S2
3 . Note that the degree of polarization, m, is equal to

Ip/S0. For pixels with low degree of polarization values, Ip will be quite low, making the

angles ψ and χ more sensitive to small fluctuations in the Stokes vector parameters S1, S2,

S3 (e.g., fluctuations from speckle), and therefore less reliable. In the extreme case, as m

(and therefore Ip) approaches zero, the values of ψ and χ are almost certainly dominated by

the effects of speckle and instrument noise, making their values meaningless. However, for

high m values (such as from the majority of ocean pixels), the polarization ellipse orientation

and ellipticity are key indicators of the dominant scattering mechanism of the area under

study, and provide valuable information that can be utilized in the target detection process.

In chapter 5 plots of χ vs. ψ and χ vs. m were shown that confirmed that the majority of

ocean pixels are well confined within a relatively small area of the ψ–χ space, consistent with

the fact that ocean pixels should theoretically exhibit mostly surface and Bragg scattering,

with their exact scattering behaviour mostly depending on incidence angle (for relatively calm

sea). In contrast, most of the iceberg and ship targets in this study appeared to exhibit a

wide array of scattering mechanisms, including volume (e.g., depolarized) and double-bounce
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backscatter (e.g., dihedral scattering as in section 5.4.3, indicated in the CTLR imagery by

a negative χ angle).

We therefore wish to vary the detection threshold from pixel-to-pixel, based on the values

of ψ, χ, and to a lesser extent,m. We do this by first building an empirical model of maximum

values of the ocean backscatter for each combination of ψ and χ values. We split the ψ-χ

plane into one degree wide bins. For each bin we find the maximum decision variable value

within the same ocean chip as was used to estimate the ocean covariance matrix for the

decision variable calculation. We use the maximum values rather than the mean because

these max values represent the pixels which are most likely to be falsely detected. This ψ–χ

grid is then smoothed using a 5 × 5 moving average. We convert the smoothed decision

variable values for each bin into a corresponding log10(FAR) value using our previously

calculated linear log10(FAR) vs. detection threshold function as in chapter 7.

For this method, rather than the user specifying a single desired false alarm rate value

(e.g., 10−8), they instead specify the range of values they would like to be used for highly

polarized pixels (e.g., 10−5 down to 10−9), as well as a single value they would like to use

for depolarized, low m pixels (e.g., 10−8, same as in the constant FAR case). We then scale

and shift our grid of log10(FAR) to these desired FAR values using the simple equations:

FARscaled = FARgrid ×
log10(FARhigh)− log10(FARlow)

max(FARgrid)−min(FARgrid)
(9.1)

FARfinal = FARscaled + log10(FARhigh)−max(FARscaled) (9.2)

max(·) and min(·) are functions which take the maximum and minimum values of their

argument, respectively. FARhigh is the maximum FAR value for high m pixels as specified

by the user (e.g., 10−5). FARlow is the minimum FAR value for high m pixels as specified by

the user (e.g., 10−9). FARgrid is the original log10(FAR) grid, smoothed but not yet scaled

to the appropriate FAR values. FARscaled is a grid that has been scaled but not yet shifted.

FARfinal is the final log10(FAR) grid used in the detection process.

We still need a way to deal with pixels that have a low m value (and where ψ and χ
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are less meaningful regarding that pixel’s dominant type of backscatter). For pixels with

m < 0.3 we do not use the ψ-χ grid, and instead use a constant FAR, generally somewhere

between the values of FARhigh and FARlow, close to what we expect the mean FAR value to

be (e.g., 10−8).

An example of a final FAR grid, scaled and shifted and ready for use in detection, is

shown in Figure 9.1 for the CTLR, HH-HV, and VV-VH modes. FAR grids for all of the

scenes in this study are included in Appendix C for reference.

Note that here we derive a 2-D function of FAR vs. ψ and χ, but in theory there is

nothing preventing the creation of a 3-D function (including m as a direct parameter to

the FAR grid, rather than simply using it as a lower bound for the process). However,

the more the data in the ocean image chip is split up in this fashion, the less samples we

have available to calculate the desired detection threshold for each bin. Use of a 3-D FAR

function produced worse results for this dataset than the 2-D function. It is possible that a

3-D function could be used, but this would require a greater amount of data, or possibly the

use of a statistical, rather than an empirical, model.

9.2 Summary of the Method

A step-by-step breakdown of the method is as follows:

1. Calculate the decision variable using the normal LRT, and derive an empirical

function for log10(FAR) vs. detection threshold, as before.

2. Calculate the ψ, χ, and m values for each pixel in the ocean image chip. The

ψ and χ angles tended to be particularly noisy for this data set, so a 5 × 5

spatial averaging window was used during the calculation of the Stokes vector

parameters which were used to calculate ψ, χ, and m.

3. Split the ψ-χ space into bins. Here we use square bins that are one degree in
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each dimension.

4. For each bin, find the set of pixels in the ocean image chip that have ψ and χ

values corresponding to that bin.

5. For this set of pixels, find the pixel with the highest decision variable value.

6. Repeat the process for every bin in the ψ-χ space. Save the max decision

variable values for each bin, until the whole space is filled. For bins with no

corresponding ocean pixels, save a value of zero.

7. Smooth the grid by applying a moving average using a 5× 5 window.

8. Convert the max decision variable values into log10(FAR) values, using the

log10(FAR) vs. threshold function.

9. Scale and offset the grid of log10(FAR) values such that it satisfies the maxi-

mum and minimum FAR values desired by the user, using equations 9.1 and

9.2. In the results shown here we generally use a maximum FAR of 10−5 and

a minimum FAR of 10−9, with the exception of the ship detection imaging

mode, where a minimum FAR of 10−9.5 was used. When using a minimum

FAR of 10−9 for the ship detection imaging mode, the mean FAR applied to

the ocean pixels was greater than desired (above the constant FAR of 10−8).

10. For each pixel in the image, the FAR corresponding to that pixel’s ψ and χ

values will be used. For pixels with m < 0.3, the ψ and χ values are not

particularly useful in characterizing the nature of the backscattered wave, and

are therefore ignored. We use a constant FAR for these low m pixels. Note

that theoretically the m values of the ocean pixels should be high, and we

therefore expect few ocean pixels to satisfy this criteria.
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(c) VV-VH

Figure 9.1: Examples of ψ-χ FAR grids for each transmit polarization: (a) CTLR, (b) HH-

HV, and (c) VV-VH. The desired value of log10(FAR) is shown as a function of ψ and χ for

scene 0818-1, low resolution mode, using FARhigh = 10−5 and FARlow = 10−9.
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9.3 Low Resolution Imaging Mode Results

Table 9.1 shows PMD values for the low resolution imaging mode, comparing the values

for a constant FAR of 10−8 with an adaptive FAR ranging from 10−5 down to 10−9. For

pixels with m < 0.3, the constant FAR of 10−8 was used. In the last row of the table, the

mean log10(FAR) value applied to the ocean image chips in each scene is listed, to show the

effective FAR applied to the ocean pixels by the adaptive FAR.

For brevity, only three polarimetric modes are compared: the HH-HV and VV-VH linear

dual-pol modes, and the CTLR RH-RV compact polarimetry. For all three modes, use of

the adaptive FAR lowers the median PMD value. For the VV-VH and CTLR modes, the

mean FAR applied to the ocean was less in the adaptive case than in the constant FAR

case. Despite this fact, a greater number of pixels were detected for most of the targets

using the adaptive FAR, and for the CTLR mode one target was detected which was missed

when using a constant FAR. None of the modes produced any false alarms, whether in the

constant or adaptive case.
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Table 9.1: PMD values for the low resolution imaging mode, comparing a constant FAR with

an adaptive FAR. A FAR of 10−8 was used in the constant FAR case, with a FAR range

of 10−5 to 10−9 (with low m FAR of 10−8) for the adaptive case. The lowest PMD value

for each row is shaded a dark grey. If other PMD values in that row are within 0.05 of the

minimum, they are shaded a lighter grey.

Iceberg Properties HH-HV VV-VH CTLR
ID (Scene) Size Shape Constant Adaptive Constant Adaptive Constant Adaptive

FQ2: 19.9◦ − 21.8◦(1.9◦)
R1 (0905-1-1) S Wedge 0.93 0.93 0.93 0.93 0.93 0.93
R2 (0905-1-2) S Wedge 0.81 0.79 0.86 0.79 0.79 0.79
B1 (0905-1-3) M Blocky 1.00 1.00 1.00 1.00 1.00 1.00
H (0905-2-1) M Drydock 0.78 0.74 0.78 0.70 0.79 0.79
B2 (0905-2-2) M Blocky 1.00 1.00 1.00 1.00 1.00 1.00

Median 0.93 0.93 0.93 0.93 0.93 0.93
FQ5/6/7: 23.4◦ − 27.6◦(4.2◦)
G1 (0829-1-1) S Drydock 0.55 0.55 0.73 0.69 0.55 0.48
G2 (0805-1-1) S Drydock 0.47 0.47 0.50 0.50 0.51 0.46
N (0805-1-2) S Wedge 0.51 0.51 0.54 0.55 0.57 0.49
A (0805-2-1) M Blocky 0.66 0.62 0.63 0.61 0.72 0.63
J (0815-2-1) M Pinnacle 0.51 0.53 0.58 0.60 0.36 0.34
D1 (0815-2-2) M Drydock 1.00 1.00 1.00 1.00 1.00 1.00
D2 (0815-2-3) M Drydock 0.92 0.92 0.92 0.92 0.90 0.88
M (0822-1-1) M Wedge 0.74 0.74 0.74 0.74 0.40 0.31
I (0822-2-1) L Pinnacle 0.75 0.72 0.75 0.75 0.42 0.36
P1 (0822-2-2) L Wedge 0.73 0.73 0.76 0.73 0.61 0.59

Median 0.69 0.67 0.73 0.71 0.56 0.49
FQ9/10/11: 28.0◦ − 32.0◦(4.0◦)
C1 (0815-1-1) M Dome 0.66 0.66 0.68 0.68 0.59 0.56
O1 (0815-1-2) M Wedge 1.00 1.00 1.00 1.00 1.00 1.00
P2 (0825-2-1) M Wedge 0.77 0.76 0.83 0.80 0.71 0.55
L (0825-1-1) L Tabular 1.00 1.00 1.00 1.00 0.53 0.40

Median 0.89 0.88 0.91 0.90 0.65 0.56
FQ16: 36.5◦ − 38.0◦(1.5◦)
K (0818-1-1) S Pinnacle 0.87 0.85 0.91 0.91 0.76 0.73
Q (0818-1-2) S Wedge 1.00 1.00 1.00 1.00 1.00 0.89
E (0818-1-3) M Drydock 1.00 1.00 1.00 1.00 0.84 0.71
F (0818-1-4) - - 0.54 0.55 0.84 0.89 0.66 0.53
O2 (0818-1-5) M Wedge 0.69 0.69 0.71 0.69 0.65 0.61
C2 (0818-1-6) M Dome 0.92 0.88 1.00 1.00 0.90 0.88

Median 0.89 0.87 0.95 0.96 0.80 0.72

Overall Median 0.78 0.76 0.84 0.80 0.72 0.63

# of Missed Targets 7 7 8 8 5 4
# of False Alarms 0 0 0 0 0 0
Mean Ocean log

10
(FAR) −8 −7.78 −8 −8.03 −8 −8.14
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9.4 Medium Resolution Imaging Mode Results

Table 9.2 shows PMD values for the medium resolution imaging mode. As with the low

resolution mode, we see that use of the adaptive FAR lowers the median PMD values for

the VV-VH and CTLR modes. For the HH-HV mode, the overall median PMD value stays

constant, with some PMD values increasing and others decreasing. Use of the adaptive FAR

does not change the number of missed targets, and all of the modes detect no false alarms

with either the constant or adaptive FAR.

Regarding the mixed results for the HH-HV mode, it’s worth noting that the method

is theoretically more useful with a circular transmit polarization (and therefore rotational

invariance) than a linear transmit polarization, where values tend to cluster around the ψ

value of the transmitted waves. However, this does not explain the fact that the PMD values

decreased for the VV-VH mode, and for the HH-HV mode in the low resolution case. It’s

possible that a larger averaging window should be used for calculation of the ψ and χ angles.

The 5 × 5 window used for spatial averaging during the Stokes vector calculation was the

same size for each imaging mode. Possibly a larger size (in pixels) should be used for the

finer spatial resolutions—unfortunately this would tend to diminish the improvements that

these finer spatial resolutions can provide.
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Table 9.2: PMD values for the medium resolution imaging mode, comparing a constant FAR

with an adaptive FAR. A FAR of 10−8 was used in the constant FAR case, with a FAR range

of 10−5 to 10−9 (with low m FAR of 10−8) for the adaptive case. The lowest PMD value

for each row is shaded a dark grey. If other PMD values in that row are within 0.05 of the

minimum, they are shaded a lighter grey.

Iceberg Properties HH-HV VV-VH CTLR
ID (Scene) Size Shape Constant Adaptive Constant Adaptive Constant Adaptive

FQ2: 19.9◦ − 21.8◦(1.9◦)
R1 (0905-1-1) S Wedge 0.89 0.89 0.89 0.87 0.85 0.83
R2 (0905-1-2) S Wedge 0.90 0.90 0.90 0.90 0.87 0.85
B1 (0905-1-3) M Blocky 1.00 1.00 1.00 1.00 1.00 1.00
H (0905-2-1) M Drydock 0.83 0.82 0.84 0.79 0.83 0.81
B2 (0905-2-2) M Blocky 1.00 1.00 1.00 0.93 0.85 0.85

Median 0.90 0.90 0.90 0.90 0.85 0.85
FQ5/6/7: 23.4◦ − 27.6◦(4.2◦)
G1 (0829-1-1) S Drydock 0.62 0.60 0.73 0.68 0.50 0.44
G2 (0805-1-1) S Drydock 0.50 0.50 0.54 0.54 0.54 0.50
N (0805-1-2) S Wedge 0.50 0.49 0.53 0.53 0.58 0.50
A (0805-2-1) M Blocky 0.64 0.62 0.62 0.60 0.66 0.63
J (0815-2-1) M Pinnacle 0.48 0.47 0.54 0.53 0.32 0.28
D1 (0815-2-2) M Drydock 0.74 0.74 0.74 0.74 0.77 0.66
D2 (0815-2-3) M Drydock 0.89 0.88 0.91 0.92 0.74 0.69
M (0822-1-1) M Wedge 0.65 0.65 0.83 0.74 0.55 0.48
I (0822-2-1) L Pinnacle 0.61 0.61 0.80 0.75 0.41 0.34
P1 (0822-2-2) L Wedge 0.72 0.67 0.73 0.71 0.54 0.49

Median 0.63 0.62 0.73 0.70 0.54 0.50
FQ9/10/11: 28.0◦ − 32.0◦(4.0◦)
C1 (0815-1-1) M Dome 0.55 0.55 0.60 0.61 0.59 0.47
O1 (0815-1-2) M Wedge 0.82 0.82 1.00 1.00 0.81 0.78
P2 (0825-2-1) M Wedge 0.78 0.77 0.83 0.81 0.67 0.56
L (0825-1-1) L Tabular 0.71 0.67 0.67 0.67 0.48 0.38

Median 0.74 0.72 0.75 0.74 0.63 0.52
FQ16: 36.5◦ − 38.0◦(1.5◦)
K (0818-1-1) S Pinnacle 0.83 0.84 0.88 0.88 0.72 0.66
Q (0818-1-2) S Wedge 1.00 1.00 0.88 0.88 0.88 0.88
E (0818-1-3) M Drydock 0.85 0.85 0.94 0.94 0.75 0.65
F (0818-1-4) - - 0.66 0.69 0.86 0.86 0.62 0.52
O2 (0818-1-5) M Wedge 0.70 0.70 0.74 0.73 0.64 0.60
C2 (0818-1-6) M Dome 0.92 0.93 0.97 1.00 0.86 0.81

Median 0.84 0.85 0.88 0.88 0.74 0.66

Overall Median 0.74 0.74 0.83 0.79 0.67 0.63

# of Missed Targets 3 3 3 3 1 1
# of False Alarms 0 0 0 0 0 0
Mean Ocean log

10
(FAR) −8 −7.94 −8 −8.09 −8 −8.19
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9.5 Ship Detection Imaging Mode Results

Table 9.3 shows PMD values for the ship detection imaging mode. Here a FAR range of 10−5

down to 10−9.5 is used, with a slightly lower value of FARlow than for the previous imaging

modes. This was chosen to keep the mean ocean FAR below the constant FAR of 10−8 for

the CTLR data.

As with the medium resolution mode, the median PMD value for the HH-HV case stays

constant when using an adaptive FAR. The median PMD value of the VV-VH actually

increases slightly. As before, the median PMD for the CTLR mode decreases, from 0.76

in the constant FAR case to 0.70 in the adaptive FAR case. One false alarm detected by

the HH-HV mode in the constant FAR case is not detected in the adaptive FAR case—a

small but notable benefit to the adaptive FAR. Use of the adaptive FAR has no affect on

the number of missed targets. Again, we note that for the VV-VH and CTLR modes, the

adaptive FAR applies a lower mean FAR to the ocean image chips (corresponding to a higher

detection threshold) than the constant FAR case. Despite this fact, the CTLR mode detects

a greater number of target pixels.

Another possibility, if this method was to be applied to the linear dual-pol mode data in

the future, would be to use a different parameter in place of ψ—presumably one less affected

by the orientation of the transmit polarization, which would be more useful in characterizing

the difference between ocean and target pixels. It is possible that m and χ could be used to

produce the FAR grid, rather than m being the lower bound for use of the adaptive FAR,

but this has not yet been tested, as the focus of this research was on a method for use with

the CTLR data, not the linear dual-pol.

9.6 Discussion of Results

According to these results, use of an adaptive FAR, varied based on the values of the ψ and

χ parameters, improves the iceberg detection performance for this dataset. The method is
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Table 9.3: PMD values for the ship detection imaging mode, categorized by polarization

mode (HH-HV, VV-VH, and CTLR) and FAR type (constant or adaptive). A FAR of 10−8

was used in the constant FAR case, with a FAR range of 10−5 to 10−9.5 (with low m FAR

of 10−8) for the adaptive case. The lowest PMD value for each row is shaded a dark grey.

If other PMD values in that row are within 0.05 of the minimum, they are shaded a lighter

grey.

Iceberg Properties HH-HV VV-VH CTLR
ID (Scene) Size Shape Constant Adaptive Constant Adaptive Constant Adaptive

FQ16: 36.5◦ − 38.0◦(1.5◦)
K (0818-1-1) S Pinnacle 0.82 0.83 0.91 0.92 0.75 0.69
Q (0818-1-2) S Wedge 0.90 0.90 0.92 0.92 0.88 0.86
E (0818-1-3) M Drydock 0.88 0.88 1.00 1.00 0.76 0.67
F (0818-1-4) - - 0.81 0.82 0.88 0.89 0.76 0.61
O2 (0818-1-5) M Wedge 0.73 0.72 0.78 0.77 0.63 0.59
C2 (0818-1-6) M Dome 0.90 0.91 0.94 0.95 0.82 0.80

Median 0.85 0.85 0.91 0.92 0.76 0.70

# of Missed Targets 0 0 1 1 0 0
# of False Alarms 1 0 0 0 0 0
Mean Ocean log

10
(FAR) −8 −7.76 −8 −8.19 −8 −8.33
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more effective for the CTLR compact polarimetry than the linear dual-pol mode, indicated

by a larger decrease in median PMD value from the constant FAR to the adaptive FAR

for the CTLR data than for the linear dual-pol. This is presumably due to the rotational

invariance of the CTLR (and therefore the greater usefulness of ψ as a discriminator between

ocean and targets for this mode).

For the low resolution mode data the method was particularly effective, decreasing the

number of missed targets for the CTLR mode data. For all three imaging modes, the adaptive

FAR lowered the median PMD values of the CTLR data without increasing the number of

false alarms, while using a slightly higher mean threshold (that is, a lower false alarm rate)

across the ocean image chip in each scene.

A possible avenue of future work is to improve the method through the use of parameters

other than ψ, χ, and m, or through the use of a 3-D function rather than a 2-D function

(with a low m cutoff) to model the desired FAR behaviour.
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Chapter 10

Discrimination of Ships and Icebergs

An important consideration after target detection is performed is whether those targets can

then also be correctly identified and classified in the SAR imagery. One example of this issue

is in the discrimination of ships and icebergs. Misclassifying ships as icebergs, or vice versa,

can cause confusion and can make attempts to track the drifts of icebergs in SAR images

significantly more difficult.

To test the discrimination performance of ships and icebergs, some Radarsat-2 fine-quad

scenes were obtained from Defence Research & Development Canada. The data was located

near the Strait of Gibraltar, and contained 125 ship targets, validated using Automatic

Identification System (AIS) data. These targets were then manually masked out in the

images, in the same manner as for the iceberg targets. Table 10.1 provides a summary of

the ship detection scenes used for this purpose. The detection process used for these ship

scenes was the same as for the iceberg detection case. After detection, a support vector

machine (SVM) classifier was tested, and the discrimination accuracy for CTLR mode data

(both using constant FAR, and adaptive FAR detection) and HH-HV mode data (using

an adaptive FAR only, for brevity) was compared. Only the low resolution and medium

resolution imaging modes were tested, due to the relative lack of data at incidence angles

appropriate to the ship detection imaging mode.

10.1 The m–χ Decomposition

The m–χ decomposition is a decomposition proposed by R. K. Raney [46], designed for use

with CTLR data, that attempts to separate the total backscattered power received by the

SAR sensor into three components: a “red” component, R, corresponding to double-bounce
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Table 10.1: An overview of the Radarsat-2 fine-quad scenes used for ship detection. Beam

refers to the fine quad beam position, Date for the acquisition date, Inc. Angle for the

incidence angle range of the scene (in degrees), and W.S. for the estimated wind speed for

the scene.

Scene ID Date Acquired Beam Inc. Angle W.S. (m/s)
1126-1 2008-11-26 2 19.77◦-21.78◦ 7.1
1126-2 2008-11-26 2 19.77◦-21.78◦ 6.7
1020-1 2008-10-20 2 19.77◦-21.78◦ 3.6
1220-1 2008-12-20 4 22.16◦-24.08◦ 5.8
1220-12 2008-12-20 4 22.16◦-24.08◦ 5.7
0729-1 2008-07-29 4 22.16◦-24.08◦ 6.0
1120-1 2008-11-20 8 26.88◦-28.71◦ 11.3
1120-2 2008-11-20 8 26.88◦-28.71◦ 11.8
1127-1 2008-11-27 12 31.34◦-33.03◦ 11.9
1127-2 2008-11-27 12 31.34◦-33.03◦ 13.8
0214-1 2009-02-14 21 40.17◦-41.61◦ 13.3
0214-2 2009-02-14 21 40.17◦-41.61◦ 12.2
0209-1 2009-02-09 21 40.17◦-41.61◦ 6.2
0209-2 2009-02-09 21 40.17◦-41.61◦ <3

backscatter (such as scattering from urban areas, or the interface between the hull of a ship

and the ocean); a “green” component, G, corresponding to random, depolarized backscatter

(such as from vegetation, or some freshwater ice); and a “blue” component, B, corresponding

to surface or Bragg scattering (such as from the ocean).

These three parameters are calculated as follows [46]:

R =
√

mS0(1− sin(2χ))/2 (10.1)

G =
√

S0(1−m) (10.2)

B =
√

mS0(1 + sin(2χ))/2 (10.3)

Note that the sign in front of sin(2χ) has been adjusted from the original equations in order

to be consistent with a right-circular transmit polarization, such that a positive χ value (and

112



therefore a positive sin(2χ) value) represents left-handed rotation, and is therefore indicative

of surface scattering.

Also note that S0 = R2 +G2 +B2.

Since this decomposition aims to identify the type of backscattering taking place in each

pixel of the image, it seems that it has potential for target discrimination applications, where

we would expect targets to differ in terms of their dominant backscattering mechanisms. We

will therefore explore the use of them–χ decomposition parameters for target discrimination,

alongside other familiar parameters that have been used previously in this thesis.

10.2 Discrimination Methodology

To extract the targets for discrimination, we performed detection on the CTLR and HH-HV

data using an adaptive FAR ranging from 10−5 down to 2.5 × 10−10, with a constant FAR

of 2.5 × 10−9 for pixels with m < 0.3. We also performed detection on the CTLR data

using a constant FAR of 2.5 × 10−9, approximately equal to the average ocean FAR in the

adaptive case, in order to compare the discrimination results of the constant and adaptive

FAR methods. For each mode, adjacent 8-connected detected pixels were clustered together,

and clusters smaller than four pixels in size were discarded.

The clusters of detected pixels that corresponded to validated target locations were ex-

tracted from the original SLC imagery, and the data for those targets were saved as separate

image chips. The Stokes vector and covariance matrix elements for these targets were then

recalculated, using a 3× 3 spatial averaging window, but also ensuring that detected pixels

were not averaged with non-detected pixels and vice versa. This meant that near the edges

of targets, not all pixels within the 3×3 window were used—only pixels that were part of the

target cluster. For each target the mean values for the following parameters were calculated:

σ0 (of both channels), S0, S1, S2, S3, m, ψ, χ, as well as the three parameters of the m–χ

decomposition [46], as described above.
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Various combinations of these features were used as input data for a support vector

machine (SVM) classifier with a Gaussian radial basis function (RBF) kernel (with γ = 1),

a classifier widely used in the literature (see, for example, the work of Scholkopf et al. [47]

or Vapnik [48]). Previous work by Howell et al. [7] used a maximum likelihood classifier

(MLC) to discriminate ships and icebergs, but to use the MLC, the probability distribution

functions of the ships and icebergs must either be known, or assumed (e.g., assumed to be

Gaussian). The SVM has an advantage in that knowledge or assumptions about the PDF of

the targets is not required. Rather than attempting to calculate the log-likelihood for each

target class, the SVM attempts to divide the feature space using a hyperplane such that each

class will reside entirely on its own side of the plane. The SVM is also fairly computationally

efficient, provided the amount of training data and the number of input parameters is kept

relatively small. As well, through the use of different kernel functions, the SVM can be

adapted to a wide variety of problems. Here we use the Gaussian RBF kernel, which has the

following form [47]:

K(~x, ~xi) = exp
(

−γ||~x− ~xi||2
)

(10.4)

The Gaussian RBF was chosen due to its wide use in the literature and also due the fact

that its value is based on the squared Euclidean distance between the input vector of the

target, ~x, and the vector corresponding to some centre position ~xi (such as the centre of a

class, or the origin). This makes sense when attempting to discriminate between ships and

icebergs. Generally we would expect ships to have higher amounts of backscattered power

than icebergs, such that when using power-based parameters as input to the SVM, the ship

targets would be farther from the origin of the feature space than iceberg targets.

All input parameters were scaled to have zero mean and unit variance before training.

Classification accuracy was measured using stratified 10-fold cross-validation (see, for

example, Kohavi [49] or Salzberg and Fayyad [50]), wherein the data were randomly split

into ten different groups, or folds, each containing an approximately equal number of ships
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and icebergs. The SVM was run ten times, using each fold once for testing, and the remaining

nine folds for training. The reported accuracies in the next section are the average accuracies

across the ten testing folds. Similarly, the reported confusion matrices are the sums of the

ten testing confusion matrices.

At first θ, the incidence angle, was used as another input parameter to the SVM. Figure

10.1 shows 2-D SVM training for the medium resolution imaging mode, using CTLR m–χ G

and θ as features. However, there were two concerns with using the incidence angles directly:

(i) since the ships and icebergs were from different scenes, their incidence angles would not

match exactly, leading to potential overfitting; and (ii) there were no icebergs with incidence

angles above 40◦ in the data set, causing the model to think that any high incidence angle

target should automatically be classified as a ship. To solve this problem, θ was rounded to

the nearest ten degrees before using it as input to the SVM. While this reduced the potential

classification accuracy, it avoided any potential overfitting, and compensated for the lack of

iceberg targets with θ > 40◦ by rounding all targets with 35◦ < θ < 45◦ into a single 40◦

incidence angle category. When θ is used as input to the SVM in the next section, it is

always this rounded θ that is used rather than the actual value.

10.3 Discrimination Results

The discrimination process was performed a number of different times for each imaging and

polarization mode (and, for the CTLR, both adaptive and constant FAR), each time using

different features as input to the SVM, in an attempt to determine the best overall feature

space.

Once the targets were classified, the classification accuracy was quantified in the form of

a confusion matrix, also known as a contingency table or error matrix, which takes the form

of a table where each row represents the number of actual objects in each class, and each

column represents the number of objects classified as each class. The classification accuracy
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Figure 10.1: 2-D SVM training using m–χ G (equation 10.2) and the incidence angle as

features. The decision boundary is shown as the black line.

can be summarized using a number of accuracy measures which are common in the literature

(see a review by Congalton for reference [51]):

Overall Accuracy

The number of correctly classified targets divided by the total number of tar-

gets. From a confusion matrix, can be calculated by taking the sum of the

diagonal elements in the matrix, then dividing that by the sum of all elements

in the matrix [51]. This is a simple measure that tells the percentage of targets

that were correctly classified.

User’s Accuracy

The number of correctly classified targets in a given class, divided by the

number of targets classified as that class. Can be calculated by looking at

a single column of a confusion matrix, and dividing the correctly classified

element in that column by the sum of the elements in that column [51]. This
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measure is called the user’s accuracy because it is a measure of accuracy from

the user’s perspective—of the number of targets they have predicted to be

within a certain class, how many of those targets are actually of that class?

Producer’s Accuracy

The number of correctly classified targets in a given class, divided by the

number of actual targets of that class. Can be calculated by looking at a single

row of a confusion matrix, and dividing the the correctly classified element in

that row by the sum of the elements in that row [51]. This measure is called the

producer’s accuracy because it is a measure of accuracy from the perspective of

the producer of the classifier—of the number of targets that are actually within

a certain class, how many of those targets will then be correctly classified?

Kappa Coefficient

Also referred to as Cohen’s kappa, this measure adjusts the overall accuracy

to account for the random chance agreement. A value of zero indicates that

the classifier is no better than random chance, while a positive value of one

indicates perfect agreement. Can be calculated using the equation [51]:

κ =
N
∑r

i=1 xii −
∑r

i=1 (xi+x+i)

N2 −∑r
i=1 (xi+x+i)

(10.5)

xii is the number of targets in row i and column i, xi+ and x+i are the sums

of row i and column i, respectively, r is the number of rows in the confusion

matrix, and N is the total number of targets.

10.3.1 Low Resolution Imaging Mode Results

The summarized discrimination accuracies for the low resolution imaging mode are shown

in Table 10.2. The CTLR constant FAR data is shown in the first section, with the CTLR
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adaptive FAR in the second section, and the HH-HV adaptive FAR in the third section. The

best feature set for each section is shaded grey.

For the CTLR data, the highest overall accuracy was yielded by a feature space of the

three m–χ parameters, plus the incidence angle θ (rounded to the nearest ten degrees as

described above). This feature space yielded an accuracy of 95.0% for the constant FAR

detection, and a Kappa coefficient of 0.81. Unfortunately, it seems that use of the adaptive

FAR slightly decreased the discrimination accuracy, such that the same feature space yielded

an accuracy of 94.2% for the adaptive FAR detection.

In comparison, the HH-HV mode yielded a maximum accuracy of 89.8% for a feature

space of m–χ R and G.

The confusion matrices for the highest accuracy feature set for each polarimetric mode

and FAR are shown as Tables 10.3 (for the CTLR constant FAR), 10.4 (for the CTLR

adaptive FAR), and 10.5 (for the HH-HV adaptive FAR). For the adaptive FAR CTLR,

six ships were incorrectly classified as icebergs, and two icebergs were incorrectly classified

as ships. In comparison, for the HH-HV data, nine ships were classified as icebergs, and

four icebergs were classified as ships. This is in addition to the fact that the HH-HV mode

detected less targets than the CTLR in the first place, so that it had less targets to classify.

The CTLR data had 119 ships and 20 icebergs to classify, while the HH-HV only had 111

ships and 17 icebergs.

10.3.2 Medium Resolution Imaging Mode Results

Table 10.6 shows the results for the medium resolution imaging mode. An overall accuracy

of 100% for the medium resolution data was achieved using the CTLR constant FAR mode

and a feature space of the m–χ red and green (double-bounce and random) parameters

alongside θ. For the adaptive FAR CTLR data, the highest accuracy was 99.3%, using the

same feature space as in the constant FAR case.

The most accurate results for the HH-HV polarization were achieved using a feature
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space of HH σ0, HV σ0, S2, S3, and θ, with an overall accuracy of 96.5%. While the overall

accuracies are high, due to the much larger number of ships than icebergs in the data set

the user’s accuracy for icebergs will be lower. For the CTLR adaptive FAR data, the user’s

accuracy for icebergs is 96%, while for the HH-HV adaptive FAR, this accuracy is reduced

to 90.5%.

The confusion matrices for the highest accuracy features sets are shown in Tables 10.7

(for the constant FAR CTLR), 10.8 (for the adaptive FAR CTLR), and 10.9 (for the adaptive

FAR HH-HV). In the adaptive FAR CTLR case one ship target was incorrectly classified as

an iceberg target, while all other targets were classified correctly. For the HH-HV case, two

ship targets were classified as icebergs, and three icebergs were classified as ships. In addition

to this, as with the low resolution imaging mode data, the CTLR data was working with a

larger set of targets due to its superior detection performance. The CTLR data needed to

classify 123 ships and 24 icebergs, while the HH-HV data only needed to classify 121 ships

and 22 icebergs.

Misclassifications were less, as expected, than in the low resolution imaging mode. The

increase in classification accuracy when going from the low resolution imaging mode to the

medium resolution imaging mode is about 5% in the CTLR case, and about 6% in the HH-

HV case. The CTLR compact polarimetry produces more accurate discrimination results

than the HH-HV for all of the feature sets tested, for both the medium and low resolution

imaging modes. The m–χ decomposition seems to be a strong choice for use as input to the

SVM, yielding the most accurate discrimination performance of the CTLR data for both the

medium and low resolution imaging modes.

Unfortunately, as in the low resolution imaging mode, use of the adaptive FAR results

in a small decrease in discrimination accuracy for the CTLR mode data. This is a sign

that detecting a greater number of target pixels can be detrimental to the discrimination

performance, which is a direction that could be investigated further—rather than averaging

119



the polarimetric parameters across the whole of each target cluster, the parameters could be

averaged over the centre of the targets, or near the peak of their backscattered power. The

CTLR compact polarimetry data seems to be a strong choice for this application compared

to the linear dual-pol HH-HV, with higher classification accuracies across all of the data

tested.
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Table 10.2: Discrimination accuracies for the RCM low resolution imaging mode. Each row

represents a different set of features used as input to the SVM, with the best feature set for

each polarization shaded in grey. The top section of the table shows results using CTLR

compact polarimetry (adaptive and constant FAR), and the bottom section shows results

using HH-HV linear dual-pol (adaptive FAR only).

Features Overall User’s Accuracies Producer’s Accuracies Kappa
Accuracy (Ships, Icebergs) (Ships, Icebergs) Coef.

CTLR Mode (Constant FAR)
m–χ R, m–χ G, θ 0.899 0.973, 0.607 0.908, 0.850 0.650
m–χ R, m–χ G 0.907 0.973, 0.630 0.916, 0.850 0.669

m–χ R, m–χ G, m–χ B, θ 0.950 0.983, 0.783 0.958, 0.900 0.808
S0, S1, S2, S3, θ 0.921 0.991, 0.655 0.916, 0.950 0.729
RH σ0, RV σ0, θ 0.928 0.982, 0.692 0.933, 0.900 0.740

RH σ0, RV σ0, S2, S3 0.899 0.982, 0.600 0.899, 0.900 0.662
RH σ0, RV σ0, S2, S3, θ 0.942 0.991, 0.731 0.941, 0.950 0.792
CTLR Mode (Adaptive FAR)

m–χ R, m–χ G, θ 0.885 0.964, 0.571 0.899, 0.800 0.599
m–χ R, m–χ G 0.921 0.982, 0.667 0.924, 0.900 0.720

m–χ R, m–χ G, m–χ B, θ 0.942 0.983, 0.750 0.950, 0.900 0.784
S0, S1, S2, S3, θ 0.935 0.991, 0.704 0.933, 0.950 0.771
RH σ0, RV σ0, θ 0.921 0.991, 0.655 0.916, 0.950 0.729

RH σ0, RV σ0, S2, S3 0.907 0.982, 0.621 0.908, 0.900 0.680
RH σ0, RV σ0, S2, S3, θ 0.921 0.991, 0.655 0.916, 0.950 0.729
HH-HV Mode (Adaptive FAR)

m–χ R, m–χ G, θ 0.875 0.970, 0.519 0.883, 0.824 0.567
m–χ R, m–χ G 0.898 0.962, 0.591 0.919, 0.765 0.608

m–χ R, m–χ G, m–χ B, θ 0.891 0.971, 0.560 0.901, 0.824 0.604
S0, S1, S2, S3, θ 0.805 0.939, 0.367 0.829, 0.647 0.360
HH σ0, HV σ0, θ 0.867 0.980, 0.500 0.865, 0.882 0.564

HH σ0, HV σ0, S2, S3 0.867 0.961, 0.500 0.883, 0.765 0.529
HH σ0, HV σ0, S2, S3, θ 0.875 0.961, 0.520 0.892, 0.765 0.548
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Table 10.3: Confusion matrix for the low resolution imaging mode, using CTLR data (con-

stant FAR) and a feature space of m–χ R, m–χ G, m–χ B, and θ.

Predicted Predicted

Ship Iceberg

Actual Ship 114 5

Actual Iceberg 2 18

Table 10.4: Confusion matrix for the low resolution imaging mode, using CTLR data (adap-

tive FAR) and a feature space of m–χ R, m–χ G, m–χ B, and θ.

Predicted Predicted

Ship Iceberg

Actual Ship 113 6

Actual Iceberg 2 18

Table 10.5: Confusion matrix for the low resolution imaging mode, using HH-HV data

(adaptive FAR) and a feature space of m–χ R, m–χ G, and θ.

Predicted Predicted

Ship Iceberg

Actual Ship 102 9

Actual Iceberg 4 13
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Table 10.6: Discrimination accuracies for the RCM medium resolution imaging mode. Each

row represents a different set of features used as input to the SVM, with the best feature set

for each polarization shaded in grey. The top section of the table shows results using CTLR

compact polarimetry (adaptive and constant FAR), and the bottom section shows results

using HH-HV linear dual-pol (adaptive FAR only).

Features Overall User’s Accuracies Producer’s Accuracies Kappa
Accuracy (Ships, Icebergs) (Ships, Icebergs) Coef.

CTLR Mode (Constant FAR)
m–χ R, m–χ G, θ 1.000 1.000, 1.000 1.000, 1.000 1.000
m–χ R, m–χ G 0.973 1.000, 0.857 0.968, 1.000 0.907

m–χ R, m–χ G, m–χ B, θ 0.993 0.992, 1.000 1.000, 0.958 0.975
S0, S1, S2, S3, θ 0.952 0.975, 0.840 0.968, 0.875 0.829
RH σ0, RV σ0, θ 0.966 0.992, 0.852 0.968, 0.958 0.882

RH σ0, RV σ0, S2, S3 0.946 0.992, 0.767 0.943, 0.958 0.819
RH σ0, RV σ0, S2, S3, θ 0.973 0.992, 0.885 0.976, 0.958 0.904
CTLR Mode (Adaptive FAR)

m–χ R, m–χ G, θ 0.993 1.000, 0.960 0.992, 1.000 0.976
m–χ R, m–χ G 0.959 1.000, 0.800 0.951, 1.000 0.864

m–χ R, m–χ G, m–χ B, θ 0.986 0.992, 0.958 0.992, 0.958 0.950
S0, S1, S2, S3, θ 0.959 0.984, 0.846 0.968, 0.917 0.856
RH σ0, RV σ0, θ 0.966 0.984, 0.880 0.976, 0.917 0.878

RH σ0, RV σ0, S2, S3 0.946 0.992, 0.767 0.943, 0.958 0.946
RH σ0, RV σ0, S2, S3, θ 0.980 0.992, 0.920 0.984, 0.958 0.927
HH-HV Mode

m–χ R, m–χ G, θ 0.916 0.966, 0.692 0.934, 0.818 0.700
m–χ R, m–χ G 0.867 0.964, 0.546 0.876, 0.818 0.576

m–χ R, m–χ G, m–χ B, θ 0.937 0.975, 0.760 0.950, 0.864 0.771
S0, S1, S2, S3, θ 0.930 0.983, 0.714 0.934, 0.909 0.758
HH σ0, HV σ0, θ 0.923 0.974, 0.704 0.934, 0.864 0.730

HH σ0, HV σ0, S2, S3 0.888 0.965, 0.600 0.900, 0.818 0.626
HH σ0, HV σ0, S2, S3, θ 0.965 0.975, 0.905 0.984, 0.864 0.863
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Table 10.7: Confusion matrix for the medium resolution imaging mode, using CTLR data

(constant FAR) and a feature space of m–χ R, m–χ G, and θ.

Predicted Predicted

Ship Iceberg

Actual Ship 123 0

Actual Iceberg 0 24

Table 10.8: Confusion matrix for the medium resolution imaging mode, using CTLR data

(adaptive FAR) and a feature space of m–χ R, m–χ G, and θ.

Predicted Predicted

Ship Iceberg

Actual Ship 122 1

Actual Iceberg 0 24

Table 10.9: Confusion matrix for the medium resolution imaging mode, using HH-HV data

(adaptive FAR) and a feature space of HH σ0, HV σ0, S2, S3, and θ.

Predicted Predicted

Ship Iceberg

Actual Ship 119 2

Actual Iceberg 3 19
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Chapter 11

Conclusions and Future Work

This thesis has explored methods for the automated detection of icebergs in compact po-

larimetric SAR imagery, with minimal user input required. By using Radarsat-2 fine-quad

imagery to simulate some of the wide swath imaging modes that will be available once the

Radarsat Constellation is launched, a first look at the expected iceberg detection perfor-

mance of this data has been provided. Overall, the results are very positive for the compact

polarimetry. For the three imaging modes tested, the compact polarimetry consistently de-

tected a greater number of iceberg targets than the linear dual-pol modes. The compact

polarimetry also detected a greater number of pixels within each target than the linear

dual-pol data. As well, experiments on the discrimination performance of the compact po-

larimetry and linear HH-HV showed that the compact polarimetry data also produces higher

classification accuracy when discriminating between ship and iceberg targets.

A summary of the author’s main contributions is as follows, in roughly the same order

the topics were presented in this thesis:

• The iceberg detection performance of compact polarimetric SAR compared to

linear dual-pol data was investigated. This is the first such investigation in

the literature.

• A model of N vs. incidence angle, suitable for pseudo quad-pol reconstruc-

tion of ocean imagery, was proposed. Unfortunately, the signal level of the

reconstructed pseudo-HV is below the noise floor of the planned Radarsat

Constellation imaging modes.

• The values of the Stokes vector elements and a number of derived parameters

were investigated for both ocean and iceberg targets.
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• A modified form of the Liu et al. [30, 31] likelihood ratio test detector was pro-

posed, based on the skew-normal probability distribution function of Azzalini

[40] rather than the multivariate normal (Gaussian) distribution.

• A new method was proposed through which the orientation and ellipticity

angles of the received polarization ellipse were used to vary the false alarm

rate (i.e., the detection threshold) from pixel-to-pixel across the SAR image.

• The ability of compact polarimetric and dual-pol HH-HV data to discriminate

between ships and icebergs was tested using a support vector machine classifier.

This is the first investigation of ship and iceberg discrimination using compact

polarimetric SAR data in the literature.

There were a number of challenges this thesis wished to address involving the use of

compact polarimetric SAR data. First was the fact that compact polarimetry can be used in

a wide variety of ways, such as through pseudo quad-pol reconstruction, or in the derivation

of the Stokes parameters or polarization ellipse angles. As well, since the use of compact

polarimetry for remote sensing of the Earth is relatively new, less is understood than for

linear dual-pol data in terms of how to best utilize the compact polarimetric information.

The detection performance of pseudo quad-pol data was assessed, and unfortunately it

was found that for the Radarsat Constellation data, the results produced by the pseudo

quad-pol data is inferior to that of the native compact polarimetry channels. A likely reason

for this is due to the higher noise floor of the Radarsat Constellation data. When working

with Radarsat-2 data, the detection performance of the pseudo quad-pol data was quite

favourable, particularly the use of the reconstructed pseudo-HV parameter [10]. Unfortu-

nately, since this parameter is a cross-polarized parameter, its signal-to-noise ratio tends to

be quite low, and will almost always lie below the noise floor of the Radarsat Constellation

for ocean pixels. This will make the use of cross-pol parameters, and therefore the pseudo

quad-pol data in general, problematic for data collected by this SAR sensor. However, it
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is possible that the pseudo-HV could be used for target discrimination applications (where

the backscatter from targets would be much greater than the backscatter from the ocean),

or with other SAR sensors that feature a lower noise floor (closer to that of the original

Radarsat-2 data). More work could be done in this area, to test the expected values of the

pseudo-HV for various types of targets (e.g., icebergs, ships, and sea ice).

Use of an LRT decision variable derived from the skew-normal distribution, rather than

the normal Gaussian distribution, was tested for use with Stokes vector data as input.

The skew-normal LRT improved detection performance of the Stokes vector data for the

low resolution imaging mode, but results were mixed for the medium resolution and ship

detection imaging modes.

A method was proposed wherein the properties of the received polarization ellipse were

used to adjust the detection threshold used for each pixel. This method reduced the number

of targets missed by the CTLR data for the low resolution mode, and reduced the overall

median PMD values for the other imaging modes. This method attempts to account for

the fact that in general, many studies in the literature treat the ocean clutter as a single

variable PDF, independent of any other parameters. But in fact, this thesis showed that the

vast majority of the ocean pixels with high decision variable values (that is, potential false

alarm pixels) tend to have predictable polarization ellipse shapes which are often different

than the polarization ellipse behaviour from actual targets. By taking advantage of the fact

that with compact polarimetry, we receive a polarization ellipse unaffected by the preferred

orientation of the transmit polarization, the ability to detect icebergs can be improved while

using a lower overall false alarm rate over the ocean regions of the image.

Finally, some scenes containing ship targets were obtained, and the ability of the CTLR

and HH-HV modes to discriminate between ships and icebergs was assessed and compared. It

was found that the CTLR data also yields superior discrimination performance in addition

to detecting a greater number of targets in the first place. The parameters of the m–χ
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decomposition proposed by R. K. Raney [46] were found to be particularly well suited to

this application. The study was somewhat limited due to the relatively small number of

iceberg targets available compared to ship targets. Future work could be done using a

greater amount of iceberg data for training and testing of the classifier. Collection of iceberg

data from different seasons, since the properties of the ice (and therefore its backscattering

behaviour) can vary significantly from year to year, could also be helpful. As well, while the

results of ship and iceberg discrimination have been presented, it is also important to test

discrimination methods between icebergs and sea ice, which could be a challenging problem

in the case of thick, multi-year sea ice. Unfortunately, not enough sea ice was present in the

available data to investigate this issue, but this could be an area of future work as well.

Overall, this thesis has presented a broad investigation of the use of compact polarimetry

for iceberg detection applications—one of the few such investigations into iceberg detection

using SAR data present in the open literature, and currently the only investigation using

compact polarimetry data. While the best algorithms and methods for use with the compact

polarimetry data will no doubt be improved as the availability and use of such data increases,

the strength of the compact polarimetry for this application, and for related maritime ap-

plications such as ship detection and target discrimination, is clear. The use of compact

polarimetry yields a much greater amount of available polarimetric information than linear

dual-pol SAR, without the swath width restrictions of fully polarimetric data. This makes

it a strong choice for use in maritime surveillance applications.
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Appendix A

Stokes Vector Density Plots of Ocean Pixels

A.1 Low Resolution Mode (CTLR)
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Figure A.1: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0905-1, low resolution mode, for

right-circular transmit polarization.
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Figure A.2: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0905-2, low resolution mode, for

right-circular transmit polarization.
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Figure A.3: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0829-1, low resolution mode, for

right-circular transmit polarization.
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Figure A.4: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0805-1, low resolution mode, for

right-circular transmit polarization.
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Figure A.5: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0805-2, low resolution mode, for

right-circular transmit polarization.
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Figure A.6: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0815-2, low resolution mode, for

right-circular transmit polarization.
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Figure A.7: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0822-1, low resolution mode, for

right-circular transmit polarization.
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Figure A.8: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0822-2, low resolution mode, for

right-circular transmit polarization.
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Figure A.9: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0815-1, low resolution mode, for

right-circular transmit polarization.
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Figure A.10: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0825-2, low resolution mode, for

right-circular transmit polarization.
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Figure A.11: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0825-1, low resolution mode, for

right-circular transmit polarization.
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Figure A.12: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0818-1, low resolution mode, for

right-circular transmit polarization.
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A.2 Low Resolution Mode (Linear)
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Figure A.13: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0905-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.14: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0905-2, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.15: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0829-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.16: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0805-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.17: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0805-2, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.18: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0815-2, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.19: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0822-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.20: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0822-2, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.21: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0815-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.22: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0825-2, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.23: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0825-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Figure A.24: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0818-1, low resolution mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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A.3 Medium Resolution (CTLR)
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Figure A.25: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0905-1, medium resolution mode, for

right-circular transmit polarization.
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Figure A.26: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0905-2, medium resolution mode, for

right-circular transmit polarization.
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Figure A.27: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0829-1, medium resolution mode, for

right-circular transmit polarization.
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Figure A.28: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0805-1, medium resolution mode, for

right-circular transmit polarization.
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Figure A.29: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0805-2, medium resolution mode, for

right-circular transmit polarization.
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Figure A.30: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0815-2, medium resolution mode, for

right-circular transmit polarization.
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Figure A.31: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0822-1, medium resolution mode, for

right-circular transmit polarization.
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Figure A.32: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0822-2, medium resolution mode, for

right-circular transmit polarization.
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Figure A.33: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0815-1, medium resolution mode, for

right-circular transmit polarization.
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Figure A.34: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0825-2, medium resolution mode, for

right-circular transmit polarization.
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Figure A.35: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0825-1, medium resolution mode, for

right-circular transmit polarization.
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Figure A.36: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0818-1, medium resolution mode, for

right-circular transmit polarization.
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A.4 Ship Detection Mode
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Figure A.37: Stokes vector density plots showing the most common (red) and least common

(blue) values for an ocean image chip taken from scene 0818-1, ship detection mode, for

right-circular transmit polarization.
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Figure A.38: Stokes vector density plots showing the most common (red) and least com-

mon (blue) values for an ocean image chip taken from scene 0818-1, ship detection mode,

for horizontal transmit polarization (left column) and vertical transmit polarization (right

column).
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Appendix B

Plots of ψ, χ, and m for Iceberg and Ocean Pixels

B.1 Low Resolution Mode

Ocean pixels are shown as a density plot (2-D histogram, with blue representing the least

common values and red representing the most common values). Iceberg pixels are plotted

with green symbols and ship pixels are plotted with black symbols.
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Figure B.1: Plot of χ vs. ψ (left column) and χ vs. m (right column) for scene 0905-1, low

resolution mode. 178
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Figure B.2: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0905-2, low

resolution mode. 179
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Figure B.3: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0829-1, low

resolution mode. 180
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Figure B.4: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0805-1, low

resolution mode.
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Figure B.5: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0805-2, low

resolution mode. 182
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Figure B.6: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0815-2, low

resolution mode.
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Figure B.7: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0822-1, low

resolution mode.
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Figure B.8: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0822-2, low

resolution mode. 185
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Figure B.9: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0815-1, low

resolution mode. 186
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Figure B.10: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0825-2, low

resolution mode. 187
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Figure B.11: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0825-1, low

resolution mode.
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Figure B.12: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0818-1, low

resolution mode. 189
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Figure B.13: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0905-1, medium

resolution mode. 191
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Figure B.14: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0905-2, medium

resolution mode. 192
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Figure B.15: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0829-1, medium

resolution mode. 193
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Figure B.16: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0805-1, medium

resolution mode. 194
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Figure B.17: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0805-2, medium

resolution mode. 195
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Figure B.18: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0815-2, medium

resolution mode.
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Figure B.19: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0822-1, medium

resolution mode. 197
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Figure B.20: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0822-2, medium

resolution mode. 198
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Figure B.21: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0815-1, medium

resolution mode. 199
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Figure B.22: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0825-2, medium

resolution mode. 200
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Figure B.23: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0825-1, medium

resolution mode. 201
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Figure B.24: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0818-1, medium

resolution mode. 202
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Figure B.25: Plot of χ vs. ψ (top row) and χ vs. m (bottom row) for scene 0818-1, ship

detection mode.
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Appendix C

Plots of log10(FAR) as a Function of ψ and χ

C.1 Low Resolution Mode
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Figure C.1: log10(FAR) as a function of ψ and χ for scene 0905-1, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.2: log10(FAR) as a function of ψ and χ for scene 0905-2, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.3: log10(FAR) as a function of ψ and χ for scene 0829-1, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.4: log10(FAR) as a function of ψ and χ for scene 0805-1, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.5: log10(FAR) as a function of ψ and χ for scene 0805-2, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.6: log10(FAR) as a function of ψ and χ for scene 0815-2, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.7: log10(FAR) as a function of ψ and χ for scene 0822-1, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.8: log10(FAR) as a function of ψ and χ for scene 0822-2, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.9: log10(FAR) as a function of ψ and χ for scene 0815-1, low resolution mode, using

FARhigh = 10−5 and FARlow = 10−9.
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Figure C.10: log10(FAR) as a function of ψ and χ for scene 0825-2, low resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.11: log10(FAR) as a function of ψ and χ for scene 0825-1, low resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.12: log10(FAR) as a function of ψ and χ for scene 0818-1, low resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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C.2 Medium Resolution Mode
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Figure C.13: log10(FAR) as a function of ψ and χ for scene 0905-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.14: log10(FAR) as a function of ψ and χ for scene 0905-2, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.15: log10(FAR) as a function of ψ and χ for scene 0829-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.16: log10(FAR) as a function of ψ and χ for scene 0805-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.17: log10(FAR) as a function of ψ and χ for scene 0805-2, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.18: log10(FAR) as a function of ψ and χ for scene 0815-2, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.19: log10(FAR) as a function of ψ and χ for scene 0822-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.20: log10(FAR) as a function of ψ and χ for scene 0822-2, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.21: log10(FAR) as a function of ψ and χ for scene 0815-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.22: log10(FAR) as a function of ψ and χ for scene 0825-2, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.23: log10(FAR) as a function of ψ and χ for scene 0825-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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Figure C.24: log10(FAR) as a function of ψ and χ for scene 0818-1, medium resolution mode,

using FARhigh = 10−5 and FARlow = 10−9.
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C.3 Ship Detection Mode
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Figure C.25: log10(FAR) as a function of ψ and χ for scene 0818-1, ship detection mode,

using FARhigh = 10−5 and FARlow = 10−9.5.
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