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ABSTRACT Traditional histogram equalization may cause degraded results of over-enhanced images under

uneven illuminations. In this paper, a simple and effective image contrast enhancement method is proposed

to achieve high dynamic range imaging. First, the illumination of each pixel is estimated by using an induced

norm of a patch of the image. Second, a pre-gamma correction is proposed to enhance the contrast of

the illumination component appropriately. The parameters of gamma correction are set dynamically based

on the local patch of the image. Third, an automatic Contrast-Limited Adaptive Histogram Equalization

(CLAHE) whose clip point is automatically set is applied to the processed image for further image contrast

enhancement. Fourth, a noise reduction algorithm based on the local patch is developed to reduce image noise

and increase image quality. Finally, a post-gamma correction is applied to slightly enhance the dark regions

of images and not affect the brighter areas. Experimental results show that the proposed method has its

superiority over several state-of-the-art enhancement quality techniques by using qualitative and quantitative

evaluations.

INDEX TERMS Contrast enhancement, contrast-limited adaptive histogram equalization, gamma correc-

tion, high dynamic range, induced norm, noise reduction.

I. INTRODUCTION

Recently, the requirement for digital photography and

multimedia applications has been increasing. One of these

requirements is to obtain as much complete image dynamic

range information as possible, which is called High Dynamic

Range (HDR) imaging. HDR aims to overcome the short-

comings of traditional images and display a wide exposure

dynamic range. Therefore, under the environment of sig-

nificant difference between light and shadow, the details of

the bright and dark areas of a photograph of HDR can still

be retained. HDR digital imaging uses a combination of

contrast ratio and an observer-based color perception model

and multiple exposures of a single scene to improve visual

authenticity.

In addition to using sensors to achieve HDR, image synthe-

sis with multiple exposures is also a feasible solution [1]–[4].

HDR has become one of the main fields of computer graph-

ics so far [5]. Because HDR can show the appearance of

real scenes, it has become more and more popular. In the

The associate editor coordinating the review of this manuscript and

approving it for publication was Long Xu .

photography world, HDR has attracted many professional

and amateur photographers and has practicality in many

applications such as visual effects production. Although some

specific cameras can be used to capture HDR images directly,

they are still expensive and not popular. Nowadays, mobile

devices with cameras such as smartphones or tablets have

become more and more popular and lead to many pho-

tographs in our daily lives. Some photos produced under

the complicated factors of the lighting environment result in

lower visibility. Many contrast enhancement methods have

been developed to solve this problem, where the mainstream

can be divided into two categories: based on histogram and

based on Retinex.

The former is based on the intensity level distribution

in the input image to explore the ideal dynamic range to

enhance the contrast. For example, Histogram Equalization

(HE) and its modifications are easily combined with several

optimization techniques to adjust the intensity distribution of

the original image effectively. Histogram equalization flat-

tens the intensity histogram and extends the dynamic range of

intensity levels. It is the most well-known method because of

its simplicity and effectiveness. However, the recovery results
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will still be exaggerated under uneven illumination, leading

to excessive enhancement. Therefore, to overcome the short-

comings of HE, different kinds of the modifications such

as contrast limit [6], weight adjustment [7], and brightness

maintenance [8]–[10] have been developed.

Recently, researchers have begun to focus on methods

based on decomposition models. Most of the algorithms are

based on the Retinex theory [11], which assumes that the

human eye scene is the product of the reflectance compo-

nent and the illumination component. It means that the pixel

intensity is the product of illuminance and reflectance. The

traditional Retinex-based enhancement method is designed to

separate the illumination layer from a given scene accurately.

Usually, the estimated reflectance (or enhanced reflectance)

component is used as the result of illumination invariance

enhancement [12]–[16]. Although these algorithms can effec-

tively emphasize the details of the image, the inappropriate

decomposition between the illumination component and the

reflectance component may cause visual discomfort [17].

According to the Retinex theory, it is unreasonable to treat

the reflectance component only as an enhanced image [18].

Since most traditional histogram equalization methods

strongly depend on setting parameters to achieve the optimal

enhancement effect for different images. Also, the conven-

tional decomposition of the reflectance component and the

illumination component based on Retinex theory takes time

for calculation. In this paper, a simple and effective image

enhancement method is proposed. The illumination of each

pixel is estimated by using an induced norm of a patch of the

image. The computation time can be significantly reduced.

A novel pre-gamma correction and a novel noise reduction

method, all based on the local patch of an image, are proposed

to improve the CLAHE processing and better visualize the

input image. A novel post-gamma correction is proposed to

enhance the dark regions of images slightly and not affect the

brighter regions.

Recently, contemporary deep learning-based methods pro-

vide state-of-the-art performance for image enhancement

tasks. Some methods based on neural networks have been

proposed in the field of computer vision. Wang and Hu [19]

proposed a multi-layer convolutional neural network that

includes convolution kernels of different sizes for the three

channels of the original images. The convolution kernel

size is determined by calculating the mean square deviation

of the pixels of the corresponding channel. The proposed

algorithm can enhance weak contrast images with better

details. Guo et al. [20] proposed a low-light image enhance-

ment based on an end-to-end fully convolutional network

and discrete wavelet transformation. The pipeline neural net-

work consists of a denoising network and a low-light image

enhancement network, which learns a function from a pair

of dark and bright images. Guo et al. [21] proposed Zero-

Reference Deep Curve Estimation (Zero-DCE), which trains

a lightweight deep network, DCE-Net, to estimate pixel-wise

and high-order curves for dynamic range adjustment of a

given image. The method does not require any paired or

FIGURE 1. Illustration of Retinex theory.

unpaired data during training and is efficient for low-light

image enhancement.

The rest of this paper is organized as follows. Section II

provides a brief survey of related work. Section III describes

our proposed image enhancement. Section IV shows the

experimental results to compare different methods and

related analysis. Finally, concluding remarks are given in

Section V.

II. RELATED WORKS

In this section, we briefly introduce the image enhancement

methods proposed in the field of computer vision. As men-

tioned earlier, the image contrast enhancement is mainly

divided into twomainstream ideas: based on histogram equal-

ization and based on the Retinex algorithm.

A. RETINEX ALGORITHM

TheRetinex algorithm [22]was first proposed by Edwin Land

(1964). It first introduced human visual characteristics into

the literature in the field of image enhancement research.

When the human eye observes an object, its color is not just

the spectral energy reflected by the object. The color percep-

tion is obtained by comparing the color and lightness value

between this object and surrounding neighboring objects. The

Retina and Cortex process this color perception ability in the

human brain. In human vision, the stimulus value of the image

is obtained by the retina (Retina). Then the color information

obtained by the retina of the cerebral cortex (Cortex) is used to

know the color of the object. In this way of operation, people

can feel the real image. Fig. 1 shows the operation principle

of Retinex.

Retinex is derived from the color constancy model of

the human visual system [23]. Afterward, the model was

extended to decompose the image S into two different images,

namely the reflectivity image R and the illumination image L

as follows.

S (x, y) = R (x, y) · L (x, y) . (1)

When the illumination is uneven, we only need to extract

the illumination image L(x, y) from the observation image

S(x, y), and then subtract L(x, y) from S(x, y). The real

image R(x, y) can be obtained. In the following, we briefly

investigate different image enhancement algorithms based on

the Retinex theory [24].
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TheRetinex theory assumes that the perception of color has

a strong correlation with reflectivity. The amount of visible

light that reaches the observer depends on the product of

reflectivity and illuminance [25]. Most algorithms based on

Retinex can enhance the details by eliminating the illumina-

tion to extract the reflectivity. However, it is impossible to

remove the illumination for unsmooth depth scenes [12], [26].

In practice, the reflectance should be between 0 and 1, which

means that the light reflected by the surface cannot exceed the

light it receives. For example, 50% of the reflectance obtained

by Single Scale Retinex is greater than one and may cause

over-enhancement [27]. Furthermore, it is unreasonable to

simply delete the necessary lighting that represents the envi-

ronment [18].

Since the traditional Single-Scale Retinex (SSR) andmulti-

scale Retinex approaches often yield unnatural result [17],

[28], Some approaches, such as intrinsic image decomposi-

tion [28], [29] and illumination map estimation [30], have

been proposed to adjust the decomposed illumination com-

ponent for image enhancement. However. Most traditional

methods, including intrinsic image decomposition, require

high computation to implement the model procedure and are

hardly applied to mobile.

Kim [17] proposed the principal energy analysis based

on the key observation that the illumination component is

dominant over a small local region. The corresponding energy

can be separated from the scene reflectance by exploiting

the subspace analysis. The Singular Value Decomposition

(SVD), which is useful for factorizing given data and reveal-

ing the underlying structure of their distribution [31], [32],

was applied to estimate the illumination component by defin-

ing the small local patch at each pixel position and conduct

the orthogonal transform for the corresponding region.

The SVD computational procedure is expressed as follows:

B (x, y) = USV T , (2)

where S denotes the diagonal matrix and has the singular

values as its diagonal term, i.e., S = diag (s1, s2, · · · , sN ),

which represent the power of the independent component. U

and V denote orthogonal matrices while satisfyingUTU = I

and V TV = I . Therefore, the largest s1 can be regarded as

the principal energy related to the illumination component in

the current pixel position.

Although the principal energy approach can obtain better

decomposition results, the SVD computation still takes time.

Since the largest s1 obtained from SVD is equivalent to

the Frobenius norm, which is just the norm 2 on a square

matrix B(x, y).

The Frobenius norm ‖‖F is defined so that for every square

n× n matrix A ∈ Mn (C),

‖A‖F =





n
∑

i,j=1

∣

∣aij
∣

∣

1/2



 =
√

tr (AA∗) =
√

tr (A∗A). (3)

In order to reduce the computation time and still obtain a

better decomposition effect, a patch-based induced norm is

proposed to estimate the illumination of images in this paper.

B. NATURALNESS

Naturalness means that the overall atmosphere of the image

should not be severely changed, and the direction of the

light source should not be significantly changed. Recently,

some natural enhancement algorithms [18], [33], [34] based

on Retinex theory have been proposed to retain naturalness,

but these algorithms may not be suitable for non-uniformly

illuminated images [27].

C. GAMMA CORRECTION

Huang et al. [35] employed a Compensated Cumulative

Distribution Function (CDF) as an adaptive parameter, mod-

ifying the intensity with a progressive increment of the orig-

inal trend. The proposed Adaptive Gamma Correction with

Weighting Distribution (AGCWD) is formulated as follows:

TAGCWD (l) = lmax(l/lmax)
1−cdf ω(l), (4)

cdf ω (l) =

∑l
l=0 pdf ω (l)

∑lmax

l=0 pdf ω (l)
, (5)

pdf ω (l) = pdf max

(

pdf (l) − pdf min

pdf max − pdf min

)α

, (6)

pdf (l) =
nl

MN
, (7)

where nl is the number of pixels in the gray level l,MN is the

total number of pixels of an image.

Several researchers have demonstrated that local correc-

tion can significantly improve image quality relative to a

global correction [36]. Since the Gamma function only allows

for the global contrast, a modified Gamma function based on

local patches is proposed in this paper.

D. HISTOGRAM EQUALIZATION

Contrast Enhancement (CE) technology has been widely

used in various image enhancement applications. Histogram

Equalization (HE) is one of the most popular and simple CE

technologies [37]. HE uses the Probability Density Function

(PDF) of the gray level of the input image to construct

a cumulative distribution function and performs gray level

mapping to redistribute the brightness histogram evenly so

that the image is evenly distributed. This method can produce

a good contrast enhancement effect on almost all images.

However, there are serious problems, including unnatural

effects or artifacts on images with high peaks in some his-

tograms. Therefore, the degree of enhancement cannot be

accurately controlled, which causes some visual degradation

effects. For example, some areas of color images have a color

shift and excessive enhancement.

Many histogram-based CE algorithms can use vari-

ous methods to improve HE. For example, Bi-HE (BHE)

is an algorithm that divides a histogram into two sub-

histograms and applies HE to each sub-histogram [38].

Brightness-preserving Bi-Histogram Equalization (BBHE)

uses the average intensity value of the input image to seg-

ment its histogram [39]. Brightness Preserving Dynamic

Histogram Equalization (BPDHE) [10] first divides the
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histogram into several sub-histograms, then applies HE to

each sub-histogram separately, and then performs the nor-

malization process. The contrast-enhanced image has the

same average intensity value as the input image. These exist-

ing histogram-based CE methods tend to retain all average

intensity values while improving the contrast of the entire

image. There are other well-known methods to improve

HE [40]–[42]. However, they are susceptible to parameters

and only provide good image quality after careful parameter

tuning.

At the same time, Adaptive Histogram Equalization (AHE)

[43], [44] was developed, which is a CE using local statis-

tical characteristics. AHE successfully considers local sta-

tistical properties, unlike traditional histogram equalization

algorithms. AHE equalizes each pixel through a histogram

of pixels within a rectangular range around it. The method

of equalization is exactly the same as the HE algorithm.

Therefore, the algorithm is more suitable for improving the

local contrast of the image and obtaining more image details.

However, AHE still has the problem of excessively magni-

fying the noise in the same area of the image. When the

pixel values contained in a specific area are very similar, the

histogram will be sharpened. At this time, the transformation

function of the histogramwill map a narrow range of pixels to

the entire pixel range, which causes a small amount of noise

in some flat areas to be excessively amplified. AHE does not

consider the overall appearance of the image and has a high

computation complexity.

Partially Overlapped Sub-block Histogram Equalization

(POSHE) [45] and Cascaded Multistep Binomial Filtering

HE (CMBFHE) [46] enhance AHE as a consideration of the

overall appearance of the image and reduce the computational

complexity. However, thesemethods are still computationally

expensive, making them unusable for commercial use.

In order to solve the problem of excessive magnifica-

tion, the method of Contrast Limited Adaptive Histogram

Equalization (CLAHE) is used [47]. The difference between

CLAHE and AHE is the contrast limiting. CLAHE uses

the threshold value to cut the sharpened histogram and

evenly distributes the cut parts to other histogram parts. This

method improves the disadvantage that histogram equaliza-

tion reduces the contrast in areas with moderate brightness

when processing high-contrast or low-contrast images. It also

improves the noise problem caused by adaptive histogram

equalization for histogram sharpening. However, the disad-

vantage of this method is that it cannot be processed automat-

ically. A threshold must be set for clipping, and this threshold

will affect the quality of image processing.

The clip point is calculated as follows:

β =
M

N

(

1 +
α

100
Smax

)

, (8)

where M is the number of pixels in each block, N is the

dynamic range in this block, Smax is the maximum slope, and

α is the clip factor. It is noted that the value of the clip factor

α is to be determined based on the image being processed.

Based on the average gray value and standard deviation,

which represent textures of a block, Chang et al. [48] set the

clip point adaptively as follows:

β =
M

N

(

1 + P
lmax

R
+

α

100

(

σ

Avg+ c

))

, (9)

where σ denotes the standard deviation of the block, Avg

denotes the mean value, and c is a small value to avoid

division by 0, R represents the entire dynamic range of the

image. P and α are parameters to control the weights of the

dynamic range and entropy terms, respectively. It should be

noted that parameters P and α are still to be determined,

and different parameter values may have different image

enhancement. Determining the parameter values will be a

critical issue in getting a better image contrast enhancement

for all types of low dynamic range images. In this paper, since

all types of low dynamic range images are pre-processed by

the pre-gamma correction function based on local patch, the

parameters α for the clip point of CLAHE can be fixedly set

as a small value and still achieve better image enhancement.

III. PROPOSED METHOD

Most state-of-the-art techniques in image contrast enhance-

ment might not be suitable for all types of low dynamic range

images since different types of degraded images may require

different enhancements. Hence, a new image enhancement

method is proposed based on the statistical information of the

respective images. The flowchart of the proposed method is

shown in Fig. 2 and illustrated as follows.

Since the RGB color components are not decoupled, the

RGB color model is not suitable for enhancement. In the HSV

color model, the color content (V) intensity can be used to

enhance the color image. Therefore, color space transforma-

tion is performed to convert the input image from RGB into

HSV. The proposed image enhancement method is applied

to the V component. The new proposed approach is based

on the fact that the illumination component is dominant over

a small region defined at each pixel position. A measure of

the induced norm in the local patch provides a good approx-

imation of the illumination component, which can be easy

to implement in mobile devices. The estimated illumination

is subsequently adjusted by a pre-Gamma function, CLAHE,

noise reduction algorithm, and post-Gamma function, com-

bined with the reflectance layer and H , V components, and

converted back to RGB image for generating the enhanced

image.

A. ILLUMINATION ESTIMATION VIA INDUCED NORM

The illumination component is estimated by defining a small

local patch at each pixel position. The small local patch

denoted as B(x, y) of size N × N pixels is centered at (x, y)

pixel position, where N is set to be 5. The procedure of

estimating the illumination component is as follows:

The L-1 norm of B(x, y) is defined as:

∥

∥B(bij)
∥

∥

1
= max

j

∑N

i=1

∣

∣bij
∣

∣ , (10)
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FIGURE 2. The flowchart of the proposed contrast enhancement method.

FIGURE 3. (a) Intensity channel of the original input image. (b) Estimated
illumination map. (c) Estimated reflectance map.

The L-∞ norm of B(x, y) is defined as:

∥

∥B(bij)
∥

∥

∞
= max

i

∑N

j=1

∣

∣bij
∣

∣ , (11)

where bij denotes the intensity of the pixel at location (i, j).

Similar to the principal energy related to the illumination

component, the illumination component in the current pixel

position is estimated as:

i (x, y) = max
(∥

∥B(bij)
∥

∥

1
,
∥

∥B(bij)
∥

∥

∞

)

. (12)

Compared with the principal energy approach, the pro-

posed method can achieve better low computational costs.

An image can be defined as a two-dimensional function

f (x, y), where x and y are spatial coordinates, and the ampli-

tude of f is the intensity of the image at the point (x, y). The

intensity of the image f (x, y) is a product of the illumination

and reflectance components:

f (x, y) = i(x, y)·r(x, y), (13)

where r(x, y) denotes the reflectance component.

The reflectance component r(x, y) at each pixel position

can be written as:

r (x, y) = f (x, y)/(i (x, y) + ε), (14)

where ε is a small positive number to avoid zero-division.

Fig. 3 shows the results of the illumination component

and the reflectance component of an image. It is noteworthy

that edges and textures, i.e., reflectance components, are well

revealed even under unevenly lighted regions, for example,

the dark window of the right side (see Fig. 3 (c)).

B. IMAGE ENHANCEMENT BY PRE-GAMMA CORRECTION

An adaptive gamma correction based on local patch is pro-

posed to pre-process all types of low dynamic range images

enhance as follows:

Iout = I
γ

in, (15)

γ (x, y) =
(1−(µ+σ)) ×e(−cdf WD(I (x,y))) + (µ+σ)

A(x, y)
, (16)

A (x, y) =
I (x, y)

1
N×N

∑

(x,y)∈B I (x, y)
, (17)

where Iout , Iin, µ and σ denote the input, the output, the mean

value, and standard deviation of the image, respectively. The

small local patch B(x, y) of size N × N pixels is centered

at (x, y) pixel position, where N is set to be 5. Since the

image is processed based on a local patch, the local feature

and naturalness can be preserved.

C. IMAGE ENHANCEMENT BY CLAHE

The CLAHE limits the amplification by clipping the his-

togram at a predefined value before computing the CDF.

The clip limit of CLAHE is the key parameter to adjust

the contrast enhancement. Since the pre-gamma correction is

applied to pre-process the images based on the local patch,

the parameters α in (8) for the clip point of CLAHE can be

set as a small value for all types of images. In this paper, each

image is divide into 8 × 8 blocks. The proposed clip point

for all types of low dynamic range images is calculated as

follows:

β =
M

N
(1 + 0.004Smax) . (18)
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FIGURE 4. (a) Without pre-processing noise before image enhancement.
(b) With pre-processing noise before image enhancement.

D. NOISE REDUCTION METHOD

Although CLAHE can improve the noise problem caused by

adaptive histogram equalization for histogram sharpening,

more or less noise may still exist in the image. A noise

reduction algorithm is proposed to reduce noise from the

image as follows:

Iout = I
γ

in, (19)

γ (x, y) =
e(

µ
0.5−1)

A (x, y)
for µ > 0.5, (20)

γ (x, y) = 1 for µ ≤ 0.5, (21)

where Iout , Iin, and µ denote the input, the output, and the

mean of the image intensity, respectively. Similarly, A(x, y) is

the same as that of (17), and the local noise of the image can

be magnified.

After magnifying the noise, and the noise can be separated

as follows:

Inoise = Iout − Iin. (22)

The extracted noise is enhanced by noise characteristics,

and the noise characteristics are adaptively enhanced accord-

ing to the standard deviation σ of the image, and the noise is

removed by:

Iout = Iin − (Inoise · (1 + σ )). (23)

It can be seen from Fig. 4(a) that noise appears after apply-

ing gamma correction without noise reduction processing.

The noise of the image can be effectively reduced by using the

proposed noise reduction processing, as shown in Fig. 4(b).

E. IMAGE ENHANCEMENT BY POST-GAMMA

CORRECTION

After applying CLAHE, the intensities of the image are scat-

tered over the entire dynamic range, and brightness correction

may becomemore critical than contrast enhancement. A post-

gamma correction is proposed to adjust the brightness of the

image as follows.

The final illumination adjustment based on the meanµ and

standard deviation σ of the image is shown as follows:

Iout = I
γ

in, (24)

γ (x, y) = 1 −
(

Iin (x, y) − Iin (x, y)ω
)σ

, (25)

ω = e(
µ
0.5−1), (26)

FIGURE 5. (a) Transformation curve for test images. (b) Image before
post-gamma. (c) Image after post-gamma. (d)–(e) Detailed image
information from enlarging (b) red block. (f)–(g) Detailed image
information from enlarging (c) red block.

where ω is affected by µ. Fig. 5(a) shows the transformation

curves for different values ofµandσ . It is noted that the values

of µ of images after pre-gamma correction and CLAHE

are mostly around 0.5∼0.6. It can be seen that the post-

gamma correction only slightly enhances the dark regions of

images and does not affect the brighter regions. Figs. 5(b)–(e)

demonstrate that the dark regions become more visible after

the post-gamma correction.

IV. EXPERIMENTAL RESULTS

In this section, the test samples were taken from the NASA

database [49], Hasinoff et al. [50], Guo et al. [30], and a

small part of the images were searched by Google Images,

which included backlight, cast shadows, uneven illumination,

and low light. The proposed image enhancement method

is evaluated based on 2,000 images obtained under various

lighting conditions. The sizes of the test images are from

640 × 449 pixels to 8, 670 × 5.526 pixels. The traditional

methods were implemented by using the codes with default

parameters provided by the authors. The computer used

in this experiment includes Intel Core i9-9900X CPU at

3.60GHz, 64GBRAM, andMatlab version 2020a. The details

of the experimental results are explained in the following

subsections.

A. SUBJECTIVE COMPARISONS

In order to show the effectiveness of the proposed method,

we use common images for comparison. Due to space
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FIGURE 6. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h) LIME
(i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

limitations, the experiment in this section uses six images

for experiment and image evaluation. Figs. 6–11 show

some experimental results obtained by the proposed method

and other state-of-the-art methods, which include HE,

CLAHE, Contextual and Variational Contrast enhancement

(CVC) [51], Layered Difference Representation (LDR)

[52], AGCWD [35], Histogram Modification Framework

(HMF) [53], Low-light image enhancement via Illumina-

tion Map Estimation (LIME) [30], Naturalness Preserved

Enhancement Algorithm (NPEA) [27], histogram modifi-

cation framework (WVM) [54], and Zero-Reference Deep

Curve Estimation (Zero-DCE) [21], respectively.

Fig. 6(a) is an original photograph taken by the photog-

raphy technique of sidelight. The light on the scene is very

complex and produces uneven lighting. Because the light-

ness and darkness exist side by side and are overlapped, the

subject will produce a more obvious shadow. It makes the

outline of the subject more prominent and looks more three-

dimensional, as shown in the statue on the right. As shown

in Fig. 6(b), although the method of HE is simple, some of

the details are lost (e.g., the details in the right area of the

statue are less visible). It can be seen that CLAHE has better

image enhancement effects than HE, as shown in Figs. 6(b)

and 6(c). In Fig. 6(o), the dark area is less visible compared

with the proposed method, as shown in Fig. 6(x). In Fig. 6(d),

CVC shows some conservative results that cannot accurately

enhance the clarity of content that belongs to dark areas. LDR

is based on the traditional histogram method. The effect of

image enhancement is not obvious, and there is not much

difference in spatial light distribution from the original image,

as indicated in Fig. 6(e). As shown in Fig. 6(f), although

AGCWD can perform the effect of image enhancement,

the effect of enhancement in dark areas is insufficient. The

brightness of the statue is too high, making the outline of

the statue inconspicuous. In Fig. 6(g), the effect of HMF

in dark places is less visible. In Fig. 6(h), LIME shows the

effect of excessive image enhancement. The overall image is

overexposed, and the color saturation is very high, making the

image unnatural. NPEA improves the low contrast displayed

in the corresponding area, where the area of detail in the

dark is less conspicuous, as indicated in Fig. 6(i). As shown

in Fig. 6(j), WVM obtains better results in dark areas, but

it still suffers from low contrast. In Fig. 6(k), Zero-DCE

also obtains better results in dark areas, but the entire image

is excessively enhanced. Fig. 6(l) shows that ICEBIN suc-

cessfully prevents excessive enhancement of bright areas.

ICEBIN can restore the texture details in dark areas and

retain the color attributes and contrast of the original image.

Figs. 6(m)–(x) respectively show the details of the dark areas

which are obtained from enlarging the red block in the upper

left corner of Fig. 6(a). It is worth noting that the sharpness

of the shadow in the Figs. 6(n)–(s) cannot be shown. Fig. 6(t)

shows that LIME can show the details in the shadows, but

the entire image is excessively enhanced. The details in the

shadow of Figs. 6(u)–(v) are not clear enough together with

the loss of other details in the bright area. Fig. 6 (w) shows

that Zero-DCE can show the details in the shadows, but

the color saturation is insufficient (e.g., the tree on the left
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FIGURE 7. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h) LIME
(i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

in Fig. 6(k)). Compared with the state-of-arts method, the

proposed method greatly restores the edges and texture of the

dark area, as shown in Fig. 6(x). At the same time, the color

attributes of the original input are maintained without greatly

exaggerating the contrast.

The image in Fig. 7(a) is from the NASA database. The

light in a given scene in the image is very complicated.

Compared with Fig. 6(a), the image of Fig. 7(a) suffers

more sidelight. Therefore, this uneven illuminationwill easily

lead to the unbalanced image enhancement processed by

the previous models such as HE, CLAHE, CVC, and LDR.

In Fig. 7(b), HE is a traditional histogram-based method,

suitable for uniformly dark or bright images. However, for

uneven illumination images, satisfactory results will not be

produced. Figs. 7(c)–(e) show that the contrast enhancement

performance of CLAHE, CVC, and LDR in low-light envi-

ronments is limited. Fig. 7(f) shows that although AGCWD

can achieve better image enhancement, the details reflected

on the window are not visible. Fig. 7(g) shows that HMF

cannot increase the brightness properly, and the original color

of the image is also decreased. Fig. 7(h) shows that LIME

successfully reveals the underlying structure reflected on the

window. However, there is an excessive enhancement in the

bright areas of the image, such as the image of the tree on the

left of the picture. Fig. 7(i) shows that NPEA over-enhances

the image, where some details of the image are lost, and noise

and color deviation are increased. Fig. 7(j) shows that WVM

is good at preserving the naturalness of the image. However,

the dark area is not clear enough. For example, the area

reflected on the window is less visible. Fig. 7(k) shows that

the Zero-DCE image enhancement is unbalanced, resulting in

a white appearance. The original color attribute of the image

cannot be maintained. In Fig. 7(l), the proposed method

provides almost the same quality in the bright areas as the

original image. For example, the tree on the left of the picture

is not over-enhanced. The entire image is not overexposed,

and the outline of the object is clear, making the image look

natural. Figs. 7(m)–(x) respectively show the details of the

shadows reflected on the window, which are obtained from

enlarging the red block on the right side of Figs. 7(a)–(l).

Figs. 7(n)–(s) cannot accurately restore the brightness and

sharpness of the shaded area within the red block. Fig. 7(t)

LIME can restore the contents of the dark place but enhances

the image too much such that details cannot be presented. In

Fig. 7(u), NPEA results in an image with low color saturation.

Also, it can be seen from the enlarged image that there is too

much image noise. Fig. 7(v) shows that the details of the dark

area of WVM are not clear enough from the enlarged image.

Fig. 7(w) shows that although Zero-DCE has enhanced the

brightness of the dark area, the color properties are different
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FIGURE 8. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF
(h) LIME (i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

from those of the original image. As shown in Fig. 7(x),

the proposed method shows that the overall image is not

overexposed, and the image is obviously more natural. Also,

dark areas have less noise than those of NPEA, and the edges

and texture details in dark areas are clearer than those of

WVM. Overall, ICEBIN achieves a good balance between

detail enhancement and noise suppression.

Similar to the above description about

Figs. 6(b)–(g) and 7(b)–(g), Figs. 8(b)–(g) and 9(b)–(g)

show that the image enhancement effects are not obvious

by using state-of-the-art methods. From the zoomed images

in Figs. 8 (n)–(s) and 9(n)–(s), It is more obvious that the

proposed method can achieve better enhancement results

than the state-of-the-art methods. For example, it can be

seen from Figs. 8(b) and 9(b) that HE causes some of

the detail loss. CLAHE, CVC, and LDR cannot effectively

enhance dark areas, as shown in Figs. 8(c)–(e) and 9(c)–(e),

respectively. AGCWD converts most of the intensity to the

white range ([128, 255]), where the image brightness exceeds

expectations. For example, the details of the skirt in Fig. 9(r)

disappear. HMF cannot properly increase the brightness, and

the original tone of the image is also decreased, as shown in

Fig. 9(g). Although the image enhancement effects, as shown

in Figs. 8(h)–(k) and 9(h)–(k) are obvious, the quality of the

results is still insufficient, which can be seen from the zoomed

image in Figs. 8(t)–(w) and 9(t)–(w). For example, LIME

shows an impressive performance in dark areas. However,

it makes the brightness too saturated because it tends to over-

enhance the relatively high-intensity area, such as the pillar

in the middle of Fig. 8(h) and the skirt of Fig. 9(t). In contrast,

ICEBIN produces more natural results while successfully

enhancing the visibility of low-light images. NPEA is very

effective when dealing with smaller size images. However, as

the image size increases, the smoothness of the illumination

deteriorates. This drawback causes the blurred appearance

of the enhanced image in Figs. 8(i) and 8(u), especially in

Fig. 9(i). WVM obtains good results in dark areas, but this

method still encounters insufficient image enhancement. It

can be seen that ICEBIN has a better image enhancement

effect in Fig. 8(l) by comparing with Fig. 8(j). Zero-DCE

attempts to stretch the narrow histogram of the dark image

to enhance the contrast but makes the image over-enhanced

and unnatural, as shown in Figs. 8(k) and 9(k). In general,

ICEBIN can achieve a better image enhancement effect either

for the full image shown in Figs. 8(l) and 9(l) or for the

enlarged image in Figs. 8(x) and 9(x), but the state-of-the-

art methods cannot.

Figs. 10–11 show the enhancement results of underlit

indoor images with strong noise. It can be seen that the hidden

noise is high under very weak lighting conditions, as shown

in Figs. 10(a) and 11(a). In Figs. 10(c)–(g), the background of

roses is less visible, and only Figs. 10(b) and 10(h)–(k) can
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FIGURE 9. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h) LIME
(i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

FIGURE 10. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h)
LIME (i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

FIGURE 11. The visual comparison between image contrast enhancement results. (a) Original (b) HE (c) CLAHE (d) CVC (e) LDR (f) AGCWD (g) HMF (h)
LIME (i) NPEA (j) WVM (k) Zero-DCE (l) ICEBIN. (m)–(x) Detailed image information from enlarging (a)–(l) red block.

show it. Moreover, the flower pot located in the middle of

the enlarged Figs. 10(o)–(s) and 10(v) are invisible, and only

Figs. 10(n), 10(t)–(u) and 10(w) –(x) can show it. Although

HE and LIME can enhance the visibility of low-light images,
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they cause the cup too high brightness, as shown in themiddle

of Figs. 10(b) and 10(h). NPEA results in the amplified noise

in Fig. 10(u), and Zero-DCE has the loss of the original color

in Fig. 10(w). The result of WVM is shown in Fig. 10(j).

It can be seen that the content in the background has been

successfully restored, but the color of the rose is still very

dark. ICEBIN has satisfactory performance and can handle

low-light images with strong noise, as shown in Fig. 10(l).

Similarly, Figs. 11(c) and 11(e)–(g) are unable to clearly

show the painting of the dog on the right of the figure, but it

can be clearly seen in Figs. 11(b), 11(d), and 11(h)–(l). From

the enlarged images, the paintings of the dog are less visible

in Figs. 11(o) and 11(q)–(s). Figs. 11(n), 11(p), and 11(t)–(x)

show the pattern of the dog clearly. However, HE and NPEA

tend to enhance noise and produce many false minute details

as shown in Figs. 11(n) and 11(u). LIME over-enhances the

input image in Fig. 11(t), especially in areas with higher illu-

mination. Zero-DCE can enhance low-light and high-noise

images in more detail than state-of-the-art methods, but the

original color attribute cannot be maintained in the enhanced

image (e.g., the lamp in the middle of Fig. 11 (k)). Although

WVM can restore most of the content of the image in

Fig. 11(j), ICEBIN can restore the details more clearly than

the WVM by comparing Figs. 11(x) with 11(v). Overall,

ICEBIN achieves a good balance between detail enhance-

ment and noise suppression.

B. OBJECTIVE QUALITY ASSESSMENTS

In addition to subjective assessment, we also objectively

compare the proposed method with the state-of-the-art meth-

ods mentioned above. Since there is no objective standard

like the human visual system, seven objective indicators

widely used in visual quality metric are adopted, includ-

ing Blind/Referenceless Image Spatial Quality Evaluator

(BRISQUE) [55], Feature SIMilarity index (FSIM) [56],

Measure of Enhancement (EME) [57], Colorfulness-based

Patch-based Contrast Quality Index (CPCQI) [58], Natural-

ness Image Quality Evaluator (NIQE) [59], and Peak Signal-

to-Noise Ratio (PSNR) to evaluate the special characteristics

of enhanced images. BRISQUE measures the naturalness

of the image based on the measurement deviation from the

natural image model, which is based on natural scene sta-

tistical data. BRISQUE indicates the loss of naturalness of

the image that may be caused by distortion. The higher the

score is, the worse the image quality is. FSIM compares the

structural and feature similarity between the enhanced result

and the original image. EME is an image quality indicator

that is more in line with the human visual system. The larger

EME value corresponds to better image quality. The image

is divided into multiple sub-image blocks. The average ratio

of the maximum and minimum intensities in the image block

evaluates the effect of image enhancement. The higher the

enhancement is, the more obvious the enhancement effect

is. CPCQI is an extended version of PCQI, taking the influ-

ence of color into consideration. CPCQI evaluates the degree

of color distortion after enhancement by calculating the

TABLE 1. Objective quality assessments of enhanced results based on
different methods.

average intensity, gray level change and structural distortion

between the original image and the enhanced result. NIQE

evaluates image quality by measuring the distance between

model statistics extracted from natural images and statistics

of deformed images. NIQE works based on the quality per-

ception set of the Natural Scene Statistics model, which can

provide the perceived quality of a given image. PSNR is a

ratio between the maximum possible power of a signal and

the power of destructive noise that affects its accuracy. The

high PSNR score represents the effective reconstruction of

the image; the low the score represents the more serious of

the distortion after reconstruction.

Table 1 shows the results of the objective quality assess-

ment of seven objective indicators for the original image and

the images generated by nine contrast enhancement methods.

In the table, the result of objective analysis for each method

uses a number in brackets to indicate the ranking in the

objective analysis. The number 1 stands for the highest score

and number 11 for the lowest score. The final ranking score

for each method in the rightmost column is the sum of all

rankings.

It can be observed that, in terms of BRISQUE, the score

of ICEBIN is only slightly larger than that of LIME, but the

LIME result is excessively enhanced. For example, the color

of the toy on the left side of Fig. 10(t) is over-enhanced,

causing the color to become less visible. For NIQE, the

score of ICEBIN is slightly larger than those of LIME and

WVM, but the score is nearly similar. Also, ICEBIN has

better scores than WVM in all other objective quality assess-

ments. Moreover, it can be seen that the detailed processing

of ICEBIN is more obvious than that of WVM in compar-

ison with Figs. 6(v) and 6(x). EME divides the image into
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multiple blocks, calculates the score based on the minimum

andmaximum gray levels in each block, and takes the average

score to approximate the average contrast in the image. It

can be seen that HE, CLAHE, CVC, and LDR provide better

scores of EME. Unfortunately, compared with the original

image, the enhanced colors look unnatural, as illustrated in

the above section. It is worth noting that CPCQI will measure

the perceived distortion based on the average strength of

the local area, signal strength, signal structure, and color

saturation. ICEBIN achieves the highest CPCQI score, which

shows that ICEBIN achieves a good balance between detail

enhancement and artifact suppression compared with other

contrast enhancement methods. Among the evaluation meth-

ods of FSIM, the scores of LDR and HMF are relatively high.

However, the performance of the proposed method in CPCQI

is much higher than those of LDR and HMF, which means

that LDR and HMF have higher color distortion. Although

in PSNR, HE, CLAHE, LDR, HMF scores are higher than

ICEBIN. But from a subjective view, the image enhancement

effect of these four methods is not as good as ICEBIN.

BRISQUE and NIQE emphasize the naturalness of the

image; CPCQI emphasizes the color distortion of the image;

FSIM emphasizes the similarity of structure and feature of the

image; and so on. The results of the subjective and objective

experiments show that ICEBIN can effectively obtain the

visual characteristics of the target image of the natural scene,

suppress the interference and influence of useless informa-

tion, and map the visual characteristics information more

realistically. It should be noted that CLAHE has better image

enhancement effects than HE when processing low-contrast

images. It is worth noting that compared with the neural net-

work enhancement algorithm (Zero-DCE), ICEBIN in overall

performance (including subjective and objective comparison)

is better than Zero-DCE. The results show that although the

use of neural networks for image enhancement is popular

recently, ICEBIN performance is superior. While complet-

ing feature mapping, ICEBIN can effectively maintain the

original structure of the scene and achieve better subjective

and objective effects than the state-of-the-art feature map-

ping algorithms. It can be seen that our method (ICEBIN)

has a total score of 18, which is the highest-ranking among

all methods. However, objective evaluation methods do not

necessarily represent the quality of the image. Sometimes the

human eye must be used to assist in judging the quality of the

image.

C. TIME ASSESSMENTS

We also evaluate the average processing time of all meth-

ods mentioned above. The source code of state-of-the-art

methods can be found on the website of authors (provided

as Matlab code) and can be directly used for performance

comparison without any modification.

Matlab is used to evaluate processing time for fair perfor-

mance comparison. Since the conventional Retinex method

requires SVD calculation at each pixel position, it requires

TABLE 2. Compare the processing time (second) of traditional SVD and
ICEBIN induced norm.

TABLE 3. Compare the calculation time (second) of different methods.

more processing time than CVC, LDR, and LIME. In order to

improve the computation speed of the proposed algorithm and

to speed up the calculation, the induced norm approach is pro-

posed in this paper. In Table 2, we compare the performance

by using various common image sizes 8K (7, 680×4.320), 4K

(3, 840×2.160), Full HD (1, 920×1.080), HD (1, 280×720),

SD (720×480 pixels).

It can be seen from Table 2 that the proposed induced norm

can effectively shorten the calculation time. Among them,

the 8K image is used as the test image for the computation

time. The proposed method using the induced norm is about

339 times faster than the SVD and can effectively save the

calculation time.

Table 3 shows the average computing time for different

image sizes. The state-of-the-art methods, including HE,

CLAHE, CVC, LDR, AGCWD, HMF, LIME, NPEA,WVM,

and ICEBIN are listed in the horizontal row. It is noted that

since Zero-DCE is executed in a Python environment, it is

different from the execution environment of the other ten

methods. For a fair comparison, the execution time of Zero-

DCE is not listed in Table 3 for comparison. Different image

sizes and the average computation time of each method are

listed in the vertical columns. It can be seen from Table 3

that although the computation times of HE, LDR, AGCWD,

and HMF are shorter than that of ICEBIN, because their

algorithms are simple and the effects are limited. Overall,

both experiments of Subjective Comparisons or Objective

Quality Assessments show that the effects of the image con-

trast enhancement of the proposed method can achieve better

performance. NPEA not only tends to generate noise in the

image but also takes a long time for calculation. WVM has

the longest computation time in Table 3. In comparison,

the proposed method is approximately 118 times faster than

WVM. The proposed method not only obtains better results

in image enhancement but also has a better advantage under

the computation speed consideration.
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V. CONCLUSION

In this paper, a simple and effective image enhancement

method is proposed. The illumination of each pixel is esti-

mated by using an induced norm of a patch of the image.

The computation time can be significantly reduced. A novel

pre-gamma correction and a novel noise reduction method,

which are all based on the local patch of an image, are

proposed to improve the CLAHE processing and achieve a

better visual quality of the input image. A novel post-gamma

correction is proposed to slightly enhance the dark regions

of images and not to affect the brighter regions. With the

novel pre-gamma correction and the novel noise reduction

method, which are all based on the local patch of an image,

the local feature and naturalness of images can be preserved.

ICEBIN can automatically perform image enhancement for

all types of low dynamic range mages without presetting its

processing parameter values. Experimental image enhance-

ment results demonstrate that ICEBIN performs well com-

pared with other state-of-the-art methods. According to the

analysis of time consumption, ICEBIN can be implemented

in a mobile device with limited resources. ICEBIN is cur-

rently suitable to solve the problem of images with backlight,

cast shadows, uneven illumination, or low light but unable to

resolve haze images. Since de-haze algorithms are different

from our ICEBIN, we will study de-haze algorithms in future

work.
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