
ICEDB: Intermittently-Connected Continuous Query Processing

Yang Zhang, Bret Hull, Hari Balakrishnan, Samuel Madden
{yang, bwhull, hari, madden}@csail.mit.edu

Abstract

Current distributed database and stream processing
systems assume that the network connecting nodes in
the data processor is “always on,” and that the absence
of a network connection is a fault that needs to be
masked to avoid failure. Several emerging wireless sen-
sor network applications must cope with a combination
of node mobility (e.g., sensors on moving cars) and
high data rates (media-rich sensors capturing videos,
images, sounds, etc.). Due to their mobility, these sen-
sor networks display intermittent and variable network
connectivity, and often have to deliver large quantities
of data relative to the bandwidth available during peri-
ods of connectivity.

This paper describes ICEDB (Intermittently Con-
nected Embedded Database), a continuous query pro-
cessing system for intermittently connected mobile sen-
sor networks. ICEDB incorporates two key ideas: (1) a
delay-tolerant continuous query processor, coordinated
by a central server and distributed across the mobile
nodes, and (2) algorithms for prioritizing certain query
results to improve application-defined “utility” metrics.
We describe the results of several experiments that use
data collected from a small deployed network of six cars
driving in and around Boston and Seattle.

1 Introduction
Over the past few years, the “first generation” of

wireless sensor computing systems have taken root [22,
23], and the idea of treating a sensor network as a
streaming data repository over which one can run con-
tinuous queries [19, 16], with optimizations such as
“in-network” aggregation [15], is now well-established.
This approach works well for a class of applications
that are characterized by static sensor nodes with rela-
tively low data rates, where the primary function of the
sensor network (“sensornet”) is to periodically monitor
a remote environment or to track some event.

We believe that the next generation of sensornets
will display much higher degrees of mobility and sig-
nificantly higher data rates. For example, media-rich
sensors, such as cameras to capture images and video,
chemical sensors to monitor pollution, vibration (ac-
celeration) sensors to monitor car and road conditions,

and cellular and 802.11 (Wi-Fi) radio sensors to map
wireless network conditions, connected to thousands
of automobiles in urban and suburban areas of the
world can dramatically improve the scale and fidelity
of spatio-temporal sensing of a wide range of impor-
tant phenomena. Due to the mobility of cars, such
a deployment of sensors can be substantially cheaper
or cover a wider area than a comparable static infras-
tructure in which sensors are placed in or on roads and
highways.

There are many issues that must be addressed to
successfully design and implement such mobile, high-
data-rate sensor systems, of which this paper focuses
on one: query processing. Motivated by the success
of first-generation systems that have viewed the “sen-
sornet as a streaming database,” we adopt a similar
programming model. The goal is to enable users to
connect to a central server (which we call the portal),
declaratively specify (primarily via continuous queries)
what data they are most interested in collecting, and
receive responses at the portal from intermittently con-
nected cars running our data processing software. The
portal takes care of distributing queries to the mobile
nodes, each of which has a local query processor.

The combination of mobility and high data rates,
however, introduces two crucial differences from
previous stream processing systems [7, 8, 16, 17]:

1. Intermittent and variable network connec-
tivity: One approach to deliver data to the portal
is to take advantage of the rise of open Wi-Fi net-
works. Although these networks have high bandwidth,
their coverage is limited and thus fundamentally spotty
for moving cars. Another approach involves using
the wide-area cellular wireless infrastructure, which
also shares this spottiness—cellular “holes” are com-
mon, and bandwidth over these networks is low. For
instance, the EVDO broadband standard for mobile
phones claims to offer uplink data rates upwards of 100
KBytes/s, but in practice, our experiments achieve 5
KBytes/s on average. In our effort, we consider both
Wi-Fi and cellular forms of connectivity.

2. Large quantities of data relative to network
bandwidth: Media-rich sensors generate data at high

rates, which means that whenever network connectiv-
ity is available, it might not be possible to send all
the data collected since the last upload. Information
that is more important may be unduly delayed, while
less important data takes its place. For example, users
on the portal may be interested in learning of traffic
speeds around the locations they are about to visit, but
if there is data waiting to be delivered about speeds
from other locations or about other sensors such as
car diagnostics, the users may not be able to see the
desired speed data in a timely manner.

The combination of these two properties—
unaddressed in previous work on query processing—
motivates a new framework for specifying and
processing continuous queries. This paper describes
the design, implementation, and evaluation of ICEDB,
a system that embeds two main ideas:

1. Delay-tolerant continuous query process-
ing: Intermittent connectivity changes the “always
on” network assumption that all existing distributed
query processing systems make. In current systems,
the absence of network connectivity is an example of a
fault [4, 21, 12], whereas in ICEDB it is part of normal
operation. In ICEDB, the local query processor con-
tinues to gather, store, and process collected data even
during periods of poor or absent connectivity, such
that when connectivity resumes, the “right” data, as
expressed by the query, is sent in order of perceived
importance. Thus, queries are continuous, yet inter-
mediate results are stored locally, with the results of
the continuous queries being streamed from this stored
data. We propose a simple buffering mechanism and
a protocol for managing the staging and delivery of
query results from mobile nodes to the portal, and of
queries from the portal to the mobile nodes.

2. Inter- and intra-stream prioritization of
query results: Because bandwidth is limited and
variable, it is essential that mobile nodes make the best
possible use of connectivity when it arrives. Hence,
some form of data prioritization is needed to allow
nodes to decide what data to transmit first.

We propose a set of SQL extensions that allow users
to declaratively express inter- and intra-stream prior-
itization of data so that, given the constrained, in-
termittent nature of connectivity, the most important
data is delivered first. Our extensions allow for both
local (within a mobile node) as well as global (portal-
driven) prioritization of results within a stream. These
priorities are specified via SQL-like statements that
give the application designer the flexibility to decide
what data is important without being concerned with
low-level details of buffer management and intermit-
tent connectivity.

We have implemented ICEDB under Linux in the
context of the CarTel project [11]. A small number
of cars equipped with CarTel boxes are currently in
daily use, collecting data from GPS receivers, Wi-Fi
interfaces, cameras, and the cars’ standard on-board
diagnostics (OBD) interfaces. We use the data col-
lected from this real system to conduct a series of trace-
driven simulations of different prioritization policies
expressed using our query language extensions. Our
results demonstrate the usefulness of our language fea-
tures and need for data prioritization in bandwidth
constrained settings.

2 Motivation and Context

To set the context for our design, we briefly describe
the CarTel system [11]. The system consists of a Web-
based portal that disseminates queries to the CarTel
nodes in users’ cars. Each CarTel node is a small em-
bedded Linux computer equipped with a variety of sen-
sors, including GPS, a camera, an accelerometer, and
a Wi-Fi network interface. The node also connects to
the car’s sensors using the standard on-board diagnos-
tic (OBD) interface. The primary mode of communi-
cation between the cars and the portal is via Wi-Fi
access points.

Though Wi-Fi may seem an unlikely choice of ve-
hicular network, in a previous study [6], performed us-
ing the CarTel infrastructure, we showed that there is
a suprising degree of Wi-Fi connectivity in suburban
and urban environments in the US that cars can make
use of.

Currently, the main use of CarTel is to allow users to
visualize various aspects of their routes. For example,
they might be interested in learning about the peak
times when segments of the paths they traverse are
congested and when congestion eases. Another class
of questions relates to landmark-based route planning,
where images captured opportunistically by cameras
can be used by a mapping service as visual cues for
waypoints. A third class of questions concerns diag-
nostic information obtained from high-data-rate ac-
celerometers or from sensors within the car, particu-
larly values that suggest anomalies.

The CarTel system has not implemented all of these
applications yet, but they all share the need to periodi-
cally issue queries to cars informing them of what data
to deliver and in what form, and the need to deliver po-
tentially large volumes of this data to the portal. The
challenge is doing this efficiently in the face of a highly
variable network. ICEDB provides a general purpose
data management infrastructure for such uses.

3 ICEDB Design

ICEDB is a delay-tolerant distributed continuous
query processor. User applications define data sources

Node
Cont.
Queries

Snapshot
Queries

Output
Buffers

Data
Source

Data
Source

Data
Source

Queries

Results

Portal

Database

ICEDB

Database

ICEDB c
a
fn
e
t

Figure 1. Software architecture of an ICEDB node and
the portal.

and express declarative queries at a centralized por-
tal. ICEDB distributes these data sources and queries
to the “local” query processors running on the mobile
nodes, such that all nodes share the same data sources
and queries. The nodes gather the required data, pro-
cess it locally, and deliver it to the portal whenever
network connectivity is available. Queries and control
messages also flow from the portal to the remote nodes
during these opportunistic connections. All communi-
cation between the car and the portal is accomplished
via CafNet, a delay-tolerant networking stack [11].

A data source consists of a physical sensor attached
to the node, software on the node that converts raw
sensor data to a well-defined schema, and the schema
itself. As shown in Figure 1, these data sources pro-
duce tuples at a certain rate and store them into a local
database on each node, with one table per data source.
Continuous and snapshot queries sent from the portal
are then executed over this database. (We could, in
principle, add a “fast-path” from the data sources di-
rectly to the continuous query processor, but have not
found streaming query performance to be an issue.)

The main difference between ICEDB and traditional
continuous query processors is that the results of con-
tinuous queries are not immediately sent over the net-
work, but instead are staged in an output buffer (see
Figure 1). The total size of each raw sensor data store
and output buffer is limited by the size of the node’s
durable storage. As described in the next section,
queries and data sources are prioritized, and we use
a policy that evicts the oldest data from the lowest-
prioritized buffers or tables first. Buffers are drained
using a network layer tuned for intermittent and short-
duration wireless connections. As results arrive at the
portal, tuples are partitioned into tables according to
the name of the source query and the remote node ID.

To populate these result buffers, we add a BUFFER
IN clause to our continuous queries to specify a named
output buffer. In other respects, our continuous queries
are simply relational queries that are periodically run
over the stored database:

SELECT ...

EVERY n [SECONDS]

BUFFER IN buffername

Here, the SELECT query is a SQL query that is run
against any of the local database tables once every n
seconds, with the result being appended to buffer-
name, a buffer of results waiting to be delivered. We
note that, in principle, any existing stream-query lan-
guage could be used in place of this simple continuous
query syntax as long as results are buffered. However,
by running SQL-only queries periodically, we are able
to re-use the conventional DBMS (in our case, Post-
greSQL) already available on our mobile nodes.

In general, each node produces many more tuples
than it can transmit to the portal at any time. The
main advantage of buffering is that it allows an ICEDB
node to select an order in which it should transmit data
from amongst currently available readings when con-
nectivity is present, rather than simply transmitting
data in the order produced by the queries. This al-
lows us to reduce the priority of old results when new,
higher priority data is produced, or to use feedback
from the portal to extract results most relevant to the
current needs or users.

As result tuples flow into the output buffer from
the continuous and ad hoc queries, they are placed
into separate named buffers (as specified in the BUFFER
IN clause). Figure 2 shows how tuples are processed
once they reach the query output buffer associated with
their source query. Each query (and corresponding
buffer) can specify a PRIORITY. The node’s network
layer empties these buffers in priority order. Tuples
from queries of the same priority are by default pro-
cessed in a round-robin fashion, but an optional WEIGHT
associated with each query can be used to bias this fair
queuing mechanism towards a particular query.

The PRIORITY clause alone is insufficient to address
all prioritization issues because the amount of data pro-
duced by a single query could still be large. To order
data within a query’s buffer, queries may include a
DELIVERY ORDER BY clause, which causes the node to
assign a “score” to each tuple in the buffer and deliver
data in score order.

ICEDB also provides a centralized way for the sink
to tell nodes what is most valuable to it, using the
option SUMMARIZE AS clause in queries. Using this
clause, nodes generate a low-resolution summary of
the results present in the corresponding query’s out-
put buffer. When a node connects to the portal, it
first sends this low-resolution summary. The portal
then uses the summary to rank the node’s rsults, and
sends the ranking to the node. The node then orders
the data in that query’s buffer according to the rank-
ing. This enables the portal, for example, to ask dif-
ferent cars to prioritize data from different geographic
locations, avoiding redundant reports.

These prioritization mechanisms are run continu-

���������
	�����
����������������

������������� ��!�"$#%�$&�"

')(+*-,/. 0�1�,+2/. (+*

34,5*-6879,/:�:<;%=?>+@?A

3�,+*-6�')(/*-,+. 0B*-@?A

CDEFG

H-IKJ�L M-IONQPR%N5H-ION�STP

HKUWV U

X-YOZ�Z/[+N5L \OI[5X

] #�^/_5`�"�&��ba�cedf#�g/_5g

7�hi1�j�k)l�m/j�nbo p�q�rOs�p�t�u�u�v9w�xysiw�v)z�{

XK|~}b}�UT� ��NK�T���T� �T�

� ���

Figure 2. Tuple data path through per-query output
buffer. Note, ranks are assigned to summary segments
by the portal, and tuples are scored using DELIVERY
ORDER BY. The output iterator selects tuples for trans-
mission first based on rank, then based on score.

ously, maintaining a buffer of data that will be de-
livered when a network connection is available. When
a node does connect to the portal, several different
rounds of communication occur. First, the portal sends
a changelog of updates (adds, removes, modifications)
to queries, data sources, and prioritization functions
that have occurred since the node last connected (this
information is maintained in a local database on the
portal). Simultaneously, the node sends any sum-
maries generated by SUMMARIZE AS queries and the
portal sends back orderings for results based on these
summaries. Once the summarization process is com-
plete, the node drains its output buffers using an out-
put iterator in the following order: (1) in order of buffer
priority, using weights among equal priority buffers;
(2) within each buffer, in the rank order specified in
the summaries (if the query uses SUMMARIZE AS); (3)
within each “summary segment”, in order of the score
assigned by the DELIVERY ORDER BY clause.

4 Result Prioritization

In this section, we describe the three declarative pri-
oritization mechansims introduced in the previous sec-
tion in more detail.

4.1 Inter-Query Prioritization
The PRIORITY clause specifies a non-negative inte-

ger priority level as an annotation to the query. By de-
fault, queries run at PRIORITY 10. All pending query
results for higher-priority queries are delivered before
any lower priority results. When multiple queries run
at the same priority level, results are delivered by

bisect(tuples):
segs = empty priority queue of segments,

ordered by segment length

segs.add(new segment(tuples sorted by time))

while segs.size > 0:

seg = segs.popmin()
add seg.midpoint() to output buffer

if seg.numtuples() > 1:

push seg.left(), seg.right() onto segs

Figure 3. Pseudocode for bisect delivery function.

draining each queries’ buffer in a round-robin fash-
ion. To assign a preference for certain queries without
starving others, a WEIGHT can be associated with the
queries for use in a weighted fair queueing scheme over
all queries within the same priority level.

For example, to specify that a query runs with
weight 5 within priority 3, a user would write:

SELECT ... BUFFER IN resultbuf

PRIORITY 3 WEIGHT 5

We expect that different data streams will have mul-
tiple continuous queries running over them, with low
priority queries streaming more complete versions of
the data and high priority queries delivering lower-
resolution versions or reports of outliers.

4.2 Intra-Query Prioritization
Whenever a continuous query enqueues results for

delivery, ICEDB assigns each tuple in a query’s output
buffer a score and delivers results in ascending score
order (note that previously scored tuples can be re-
scored). By default, tuples are scored according to
their insertion time, so that they are delivered in FIFO
order. Applications are given two options for assign-
ing their own scores to results: they can specify a lo-
cal scoring function via a DELIVERY ORDER BY clause
and/or a global scoring function that is used to pro-
vide feedback from the portal to the mobile nodes to
specify what data is most important.

4.2.1 Local Scoring Via DELIVERY ORDER BY

The DELIVERY ORDER BY clause, like a traditional
SQL ORDER BY, can specify an attribute (e.g., time)
or a numerical expression for ordering the delivery of
results. For example, the query:

SELECT gps.speed FROM gps, road_seg

WHERE gps.insert_time > cqtime - 5 AND

road_seg.id = lookup(gps.lat, gps.lon)

EVERY 5 seconds BUFFER IN gpsbuf

DELIVERY ORDER BY gps.speed -

road_seg.speed_limit DESC

requests that speed readings from cars that most ex-
ceed the speed limit be delivered first. Here, cqtime
is the time when the query runs, insert_time is the
time the record was inserted into the database, and
lookup is a user-defined function that returns the ID

of the road segment closest to the given GPS location.
In this case, ICEDB maintains a priority queue of
readings, and inserts new data with priority set to the
results of the DELIVERY ORDER BY expression.

Unlike the traditional ORDER BY clause, DELIVERY
ORDER BY can also accept a user-defined function that
can reorder the result tuples in a query’s output buffer.
This function sets the output order by updating a
score column in the query result set. Tuples are re-
moved for transmission from the result set in score or-
der (lowest score first). Since the DELIVERY ORDER BY
function may be computationally intensive, ICEDB in-
vokes it only at fixed intervals, rather than each time
a tuple is added or removed from the output buffer.

Because DELIVERY ORDER BY has direct access to
the entire result set, applications can potentially spec-
ify more powerful ordering functions that take into ac-
count the spatial extent of the data. As a simple exam-
ple, consider the problem of representing a car’s route
using a sequence of GPS points (called a trace). When
transmitting this trace to the portal, we may want to
order the points such that an application on the por-
tal can create a piecewise linear curve that minimizes
the error compared to the actual route from any re-
turned subset. One simple approximation is to recur-
sively bisect the trace (in the time domain), sending
back midpoints.

Figure 3 shows the pseudocode for this algorithm.
Here tuples represents the data to be transmitted,
and a segment of the trace is a subsequence of con-
secutive unenqueued tuples. This algorithm first puts
all tuples into a single segment, and then iteratively
splits the largest segment, adding its midpoint to the
output buffer and putting its left and right halves back
into the segs priority queue. The end result is a total
ordering of all the tuples passed into the algorithm.

Given that the bisect function is defined in ICEDB,
a query to extract traces would look as follows:

SELECT lat, lon, insert_time FROM gps

WHERE insert_time > cqtime - 5

EVERY 5 seconds BUFFER IN gpsbuf

DELIVERY ORDER BY bisect

Although our implementation of ICEDB allows
users to specify DELIVERY ORDER BY as an arbitrary
user-defined function, a library of commonly used func-
tions could also be developed.

4.2.2 Global Scoring Via SUMMARIZE

Though local prioritization can help to deliver im-
portant results first, in some situations it is insuffi-
cient because it cannot receive feedback from the portal
about which results are most important. Such portal-
driven scoring might be important when the users of
the portal are particularly interested in certain types
of data (e.g., about specific locations on the road at

certain times), or because there are multiple data col-
lection nodes in the same area that would otherwise re-
port redundant data (e.g., several cars all on the same
section of a road.)

To enable this kind of global feedback, we allow
queries to specify a SUMMARIZE clause that computes
a summary of a query’s buffered data. This summary
is sent to the portal whenever a connection is estab-
lished. Using a user-specified program, the portal can
use this summary to compute which results are highest
priority, and then send a request back to the remote
node to allow it to reprioritize its data.

The basic syntax of continuous queries with the
SUMMARIZE clause is as follows:

SELECT ... EVERY ...

BUFFER IN bufname SUMMARIZE AS

SELECT f1, . . . , fn, agg(fn+1), . . . , agg(fn+m)
FROM bufname WHERE pred1 . . . predn

GROUP BY f1, . . . , fn

The idea is that the SUMMARIZE clause selects a par-
titioning of the data from the output buffer into groups,
representing a low-resolution synopsis of the complete
buffered data. We currently rely on the user to ensure
that the size of this subset is relatively small, though
we could, in principle, truncate the summary to some
maximum size. Aggregate expressions can be used to
transform tuple values into a smaller domain; a com-
mon summary divides numerical attributes into a small
number of bins. In our implementation, the SUMMARIZE
clause is executed using a standard relational query
processor on bufname; we restrict the summary query
to consist only of single table aggregates, with grouping
and no nested queries.

As an example, suppose that we want to collect data
from users about the times and locations (expressed as
latitude/longitude points) they have visited recently,
and that we want our summary to consist of latitude
and longitude cells of size .001◦ × .001◦ in five-minute
intervals. We can express this query as:

SELECT lat,lon,insert_time,speed FROM gps

WHERE insert_time > cqtime - 5

EVERY 5 seconds BUFFER IN gpsbuf

SUMMARIZE AS

SELECT floor(lat/.001), floor(lon/.001),

floor(insert_time/300)

FROM gpsbuf

GROUP BY floor(lat/.001), floor(lon/.001),

floor(insert_time/300)

When a car runs this query, it produces (time,
lat, lon) triplets (which we call summary records)
and sends them to the portal. The portal then runs
the user-specified global prioritization function to pro-
duce an ordering of the records, and replies to the car
with this ordering. For instance, a traffic monitoring

system may prioritize “hotspots” where speeds are un-
usually lower than their historical average.

The prioritized summary records are stored in a ta-
ble, bufsummary, with one field for each of the n
grouping attributes, g1, . . . , gn, plus a rank represent-
ing each tuple’s position in the prioritized list sent back
to the car. To find tuples in the results buffer that
correspond to each summary record, each runs an au-
tomatically generated join query of the form:

SELECT b.* FROM buf AS b

LEFT OUTER JOIN bufsummary AS s

WHERE g1(b) = s.g1 ...AND gn(b) = s.gn

ORDER BY s.rank

The results of this query form a total ordering on
the buffer, with the prioritized results appearing be-
fore the non-prioritized ones. Because multiple tuples
in the output buffer may correspond to each summary
record, we optionally allow the user to specify a DE-
LIVERY ORDER BY statement to order results that are
assigned the same rank value by the above query.

For our GPS query above, this join query would look
as follows:

SELECT b.* FROM gpsbuf AS b

LEFT OUTER JOIN gpsbufsummary AS s

WHERE floor(b.lat/.001) = s.g1

AND floor(b.lon/.001) = s.g2

AND floor(b.time/300) = s.g3

ORDER BY s.rank

Because processing these join queries can be expen-
sive, we expect that mobile nodes will typically exe-
cute them between periods of connectivity when there
is little other work to be done.

To order summary records on the portal, users sup-
ply a function that takes as input the list of sum-
mary records and outputs them in a user-specified or-
der using an iterator (as with the DELIVERY ORDER BY
clause). ICEDB takes care of receiving the summary
lists on the remote node and sending them results back
in the in summary order.

5 Experimental Evaluation

In this section, we show how the prioritization and
summarization features of ICEDB can be used in prac-
tice. Specifically, we consider the problem of collecting
sensor data from a number of cars on the road that
can best answer a set of continuous queries running
at the ICEDB portal. These queries request variable
amounts of data about particular locations on the road;
we imagine, for instance, that users might be inter-
ested in images, video clips, or current traffic. In this
context, ICEDB’s prioritization schemes are important
because there is not enough bandwidth available along
a typical drive to centrally collect all of this informa-
tion without significant buffering.

We perform this evaluation using a trace-driven sim-
ulator. This simulator uses real traces collected from
actual cars running CarTel. Each trace includes the
data that was collected as the car drove and the loca-
tion of access points that could be used to upload data.
This trace-based approach allows us to model multiple
cars driving on the same roads at approximately the
same times to measure the effectiveness of our priori-
tization schemes.

5.1 Query Workload
Each user asks for information pertaining to a par-

ticular location or query point. In the uniform work-
load, every location is considered equally likely to be
queried. In the hotspot workload, the locations are cho-
sen to be those whose historical data for speed show
a high variance over time. For the data we collected
around Boston, we determined hot spots by dividing
the area into evenly sized grids of roughly 10,000 square
meters and taking n grids exhibiting the greatest vari-
ance in their data points.

5.2 Metrics
To evaluate the performance of different prioritiza-

tion schemes on our query workload, a metric must
be defined. We propose a utility function that assigns
higher scores to schemes that produce more data falling
within a certain “satisfying” distance of the various
query locations. One simple metric counts the num-
ber of data points that satisfy any of the queries. This
score is suitable for a wide range of applications that
collect geographic data, such as querying for images of
particular hotspot locations.

Given a set of query points Q that the user wants
information about and a set of data points P (where
each point pi is obtained at location pi.x at time pi.t),
this metric seeks the subset P ′ ⊆ P that maximizes
the following score, to which each query point can con-
tribute at most one point:

score (P ′) =
∑
p∈P ′

max
q∈Q

{score (p, q)}

score (p, q) =

{
0, distance (q, p) > d

1, distance (q, p) ≤ d

subject to the constraint that, ∀p ∈ P ′,now ()−p.t ≤ δ.
Here d is a maximum distance between the user’s query
location and the reported location, δ is a user-defined
time bound, and now () is the current time. In our
experiments, d is 0.1 km and δ is 1 hour.

5.3 Prioritization Schemes
We experimented with four prioritization schemes:

FIFO. A simple delivery scheme is to send the data in
order of its collection time. However, the constrained

bandwidth available to the nodes suggests that such a
FIFO scheme will lead to poor performance, as most
of the sent data will be far from the query points.
Bisect. An algorithm with significantly improved cov-
erage is bisect, which is illustrated in the example of a
DELIVERY ORDER BY clause given in Section 4.2.1 (Fig-
ure 3). Recall that bisect repeatedly sends the mid-
point of the longest segment of unsent data (with re-
spect to the distance along the trace). As an exam-
ple of a continuous query that uses bisect, the system
might enqueue images for delivery every minute:

SELECT thumbnail, lat, lon FROM photos, gps

WHERE insert_time > cqtime - 1

AND photos.insert_time = gps.insert_time

EVERY 1 minute BUFFER IN thumbbuf

DELIVERY ORDER BY bisect

Random. This scheme randomly selects points to
transmit.

Note that queries that use such local prioritization
schemes do not not take into consideration feedback
from the portal. For instance, the bisection algorithm
is unable to consider the redundancy of data available
among different cars that have recently traveled on
similar roads, nor can it take into account the distribu-
tion of the query workload, which may not be uniform
(for which random and bisection prioritization are best
suited).
Global. Global prioritization algorithms address this
limit. In these schemes, the car sends a synopsis of the
data it has available (using the SUMMARIZE AS clause)
to the portal, which responds with a prioritization of
this data. In our experiment, we use a SUMMARIZE AS
query as follows:

SELECT thumbnail, lat, lon FROM photos, gps

WHERE insert_time > cqtime - 1

AND gps.insert_time = photos.insert_time

EVERY 1 minute BUFFER IN thumbbuf

SUMMARIZE AS

SELECT floor(lat/.001), floor(lon/.001)

FROM thumbbuf

GROUP BY floor(lat/.001), floor(lon/.001)

DELIVERY ORDER BY random

Here, the SUMMARIZE AS clause requests that data
be summarized by reporting grids of .001◦ × .001◦

(roughly 0.1 × 0.01 km) that the node has collected
information about. We use random tuple-level local
prioritization scheme is used to handle the globally pri-
oritized summary returned from the portal.

The portal replies to this summary list with a prior-
itization of all the grids based on the aforementioned
scoring metric. The exact algorithm orders the sum-
mary grids by their projected score. The node then
sends data points from each grid in the returned order.
Figure 4 shows the pseudocode of the portal side of a
global prioritization function whose metric is similar

cameradata global prioritization

(query points, summary grids):

for all g ∈ summary grids:

scores[g] = {

1: if, for any q ∈ query points, another

car did not previously answer q and

distance(g.center, q) < threshold

0: otherwise

}

return summary grids sorted by scores

Figure 4. Pseudocode for a global prioritization scheme.

to the scoring metric, but which demonstrates cross-
node prioritization by preferring data for unanswered
query points only. The communication overhead of
each summary is computed by treating the summary
as an uncompressed sequence of pairs of 4-byte num-
bers representing the latitude and longitude of each
reported grid.

5.4 Trace-Driven Simulation
Our simulation models a variable number of cars

traveling on paths corresponding to a large number of
traces from real-world data. These traces cover 12,657
miles and 1,152 hours of data, and are time-shifted in
the simulation so that they appear to all start within
an arbitrary time interval. Among the parameters that
may be configured are the number of cars, traces, ac-
cess points, bytes per image, and query points, and the
distribution of these query points. We also model the
overhead of transmitting a summary and receiving a
re-ordered summary as a part of the SUMMARIZE AS.

We perform three classes of experiments: (1) where
there is one car and portal-generated queries are uni-
formly distributed over all locations, (2) where there is
one car and portal-generated queries are selected from
the top five hotspots, and (3) where there are multiple
cars driving over multiple traces using portal-generated
hotspot queries.

5.4.1 Single Car, Uniform Queries
This experiment shows a simple case of simulating

the travel of one car as it moves from Cambridge, MA
to Woburn, MA. In this experiment, query points are
distributed uniformly at random along the trace, and
are assumed to have been registered before the car
starts driving. We re-evaluate the quality of query
answers every time a car connects to an access point
according to the scoring metric defined in section 5.2.
In some cases, our graphs show the evolution of this
quality over time, and in others, they show the quality
at the end of the run.

Figure 6 shows the simulation results for one partic-
ular run of this experiment over time. In this experi-
ment, the size of each data point is fixed at 50 KBytes,

the number of queries is 20, and the number of open
access points is 5. It compares the success ratios that
each of the local and global prioritization schemes yield
as time progresses on this trace, where the success ra-
tio corresponds to the fraction of successfully answered
user queries according to the scoring metric. Given suf-
ficient bandwidth, all prioritization schemes will have
a score of 1; that is, they will successfully be able to
answer all user queries. But given the bandwidth en-
countered by the vehicle throughout this trace, global
prioritization converges significantly faster than other
prioritization schemes.

The most important result from this figure is that
the FIFO (unprioritized) approach is unable to satisfy
any queries at all. Some form of prioritization is neces-
sary to provide useful answers to queries at the portal.
Cars collect so much data that the FIFO scheme makes
it through only a small fraction of the total readings
when the node is connected. Bisect and random are
able to satisfy a small number of the queries; both per-
form roughly the same.

Figure 5 compares the scores of the randomized local
prioritization scheme and the aforementioned global
prioritization scheme, where we vary (a) the size of
each data point, (b) the number of queries, and (c)
the number of open access points through which the
vehicle is capable of uploading. The default parame-
ters (when we’re not varying them) are 50 KByte data
points, 10 access points, and 10 query points.

The global prioritization scheme dominates local
prioritization because it can synchronize with the por-
tal and send only the data in which the user is inter-
ested. The summaries of this data are small compared
to the size of the data: the number of grids spanned
by this trace is less than 200, and the size of each grid
summary is 4 bytes (two long integers representing lat-
itude and longitude), so the maximum size is of the
uncompressed summary is 800 bytes. The actual size
is substantially smaller due to the fact that the sum-
maries are cumulative, so on each connection the node
only sends information about what new grids it has en-
countered, and also the summary benefits from (delta)
compression due to the adjacency of grids. Hence the
cost of this synchronization step is cheap.

Figure 5 shows the average success ratios achieved
by different schemes as we vary the data size, number
of user queries, and number of connection points. We
see that either increasing the data size or decreasing
the bandwidth leads both the local and global priori-
tization schemes to produce a lower average yield.

Varying the data size shows that if each data point is
small enough, then the relative amount of bandwidth is
enough to allow random prioritization to send enough
points to cover the same number of query points as

global prioritization. However, as the relative amount
of bandwidth becomes more constrained, random can
no longer satisfy as many queries, whereas the global
prioritization degrades more gracefully. The average
score over the duration of the drive decreases for all
schemes, since the rate at which the unit can send data
over time is lower. Similarly, as the number of queries
grows, the score will be lower on average, since the rate
at which these queries are satisfied remains constant.

5.4.2 Single Car, Hotspot Queries
This experiment uses a similar setup, except the

query points are now chosen to be hotspots, which
are locations with high variance in their speed data.
The parameter settings are 5 connection points and 5
query points. Figure 7 shows the success ratios for the
different ordering schemes and for various sizes of the
data point. Again, we see that global prioritization
scheme dominates random prioritization, which sends
very few data points due to the non-uniform hotspot
distribution.

5.4.3 Multiple Cars, Hotspot Queries
This experiment shows what happens when multi-

ple cars travel along many distinct traces simultane-
ously. Each vehicle encounters 5 connection points
and 2 hotspot query points along its unique trace, and
the size of each data point is 50 KBytes. As a result,
even with many cars, there are significantly more data
points than what can be delivered by any car given the
amount of bandwidth available. Figure 8 shows the
success ratios for local and global prioritization with
varying numbers of cars.

With more cars and more severely constrained net-
work connectivity, the benefits of global prioritization
are evident. The rate of increase is linear with the
number of cars, since the bottleneck in this scenario
is not the number of query points to be satisfied (as
has been the case in the previous experiments), but
rather the total network capacity over the entire du-
ration of the experiment. Since global prioritization is
capable of sharing information between the portal and
the node, it makes optimal use of this limited capacity.

6 Related Work
Continuous Query Systems: ICEDB’s continuous
query processing engine is a simple stream processor
that provides a subset of the features offered by recent
streaming query engines [17, 7, 8]. We expect that any
one of these systems could be used in place of our query
processor, and use the techniques we have developed to
handle variable connectivity.
Intermittently Connected Systems: Infosta-
tions [10] provide pockets of high-bandwidth connec-
tivity to mobile users. Infostation networks are quite
similar in character to the urban Wi-Fi networks we

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200

Su
cc

es
s

ra
tio

Data unit size (KB)

Prioritization schemes over data unit size

rand
global

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5 10 15 20 25 30 35 40 45 50

Su
cc

es
s

ra
tio

Query count

Prioritization schemes over query count

rand
global 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Su
cc

es
s

ra
tio

Connection count

Prioritization schemes over connection count

rand
global

Figure 5. Single car, uniform query point distribution, varying (a) data size, (b) query point count, and (c) connection count.

 0

 0.2

 0.4

 0.6

 0.8

 1

 800 1000 1200 1400 1600 1800

S
uc

ce
ss

 r
at

io

Time (s)

Prioritization schemes over time

fifo
bisect

rand
global

Figure 6. The scores of various prior-
itization schemes for a single car as
time progresses.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Su
cc

es
s

ra
tio

Data unit size (KB)

Prioritization schemes over data unit size

rand
global

Figure 7. Single car, hotspot-based
query points, varying the data size.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

Su
cc

es
s

ra
tio

Number of cars

Prioritization schemes over number of cars

rand
global

Figure 8. Multiple cars, hotspot-based
query points, varying the number of
cars.

describe. Most of the work on Infostations, however, is
focused on either network-layer issues related to mak-
ing the best use of intermittent and variable commu-
nications links or to determining what data to cache
on clients when intermittent connections become avail-
able [5, 13].

Another class of work on intermittently connected
systems is Data Recharging [9], where mobile users
have location-sensitive profiles that specify what data
is most important to them at a particular location.
As in ICEDB, these profiles are used to prioritize the
collection of data. Unlike ICEDB, however, in data
recharging, data moves toward mobile users, not to-
ward the server, and hence the optimizations we pro-
pose where the server avoids collecting redundant data
do not apply.
Data Prioritization: In the context of broadcast dis-
semination of data, Aksoy and Franklin [1] propose a
metric for prioritizing data broadcasts called R×W.
This metric weighs the frequency of transmission of
data by its popularity (based on user queries) and size.
This scheme is similar to our notion of prioritization
in that it ensures that more popular data is dissemi-
nated first. Their scheme, however, does not provide
the same flexible data management facilities for defin-
ing streams, and seeks to maximize a different set of
metrics than ICEDB.

Olston et al. [18] present a scheme for best-effort
caching of client data at a server. Rather than deriv-

ing the value of information from user-driven queries,
however, they assign priorities to data based on its
deviation from the last transmitted value. Hence,
their scheme is similar to our local DELIVERY ORDER
BY clause, but lacks the expressiveness of our server-
driven summarization policies. Labrinidis and Rous-
sopoulos [14] looked at similar issues in deciding when
to refresh cached copies of a web sites.

Work on adaptive query processing has looked at
the problem of database query execution in the face
of delayed inputs, as when processing data over a net-
work [2, 3] By reordering and restructuring the query
plan, the query processor can perform other useful
work while waiting for data from a data source. These
techniques, however, do not specifically address the
buffering and prioritization issues that are needed to
handle disconnectivity, as in ICEDB.

Finally, in the context of online query processing,
Raman et al. [20] present Juggle, a pipelining, dynam-
ically tunable reordering operator suited for continuous
query processing. Juggle focuses primarily on dynami-
cally reordering the results of aggregation queries over
stored data, rather than reordering and summarization
of arbitrary queries over streaming results.

7 Conclusion
This paper showed how data collection can be op-

timized in intermittently connected sensor networks
using the dynamic prioritization mechanisms provided
by ICEDB. In our experimental evaluation, the local

and global prioritization schemes are able to deliver re-
sults that satisfy queries where FIFO delivery fails to
satisfy any. Furthermore, global prioritization consis-
tently dominates local prioritization according to our
chosen utility metric. The declarative query interface
allows end-users to take advantage of these benefits for
a wide range of data collection applications without
having to modify low-level code.

As sensor networks become more widely deployed,
especially in mobile or harsh environments where net-
work connectivity is intermittent and highly variable,
data collection methods sensitive to the priority of data
will become increasingly important. In such scenarios,
ICEDB can be a useful data management service that
can integrate into a current distributed database or
stream processing system.

8 Acknowledgements
This work was supported by the National Science

Foundation under grants CNS-0205445, CNS-0520032,
and CNS-0509261, and by the T-Party Project, a joint
research program between MIT and Quanta Computer
Inc., Taiwan.

References
[1] D. Aksoy and M. Franklin. R × w: a scheduling

approach for large-scale on-demand data broadcast.
IEEE/ACM Trans. Netw., 7(6):846–860, 1999.

[2] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan.
Scrambling query plans to cope with unexpected de-
lays. In PDIS, pages 208–219, 1996.

[3] R. Avnur and J. Hellerstein. Eddies: Continuously
adaptive query processing. In Proceedings of SIGMOD,
2000.

[4] M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis dis-
tributed stream processing system. In SIGMOD, pages
13–24, 2005.

[5] D. Barbara and T. Imielinski. Sleepers and worka-
holics: caching strategies in mobile environments. In
SIGMOD, pages 1–12, 1994.

[6] V. Bychkovsky, B. Hull, A. K. Miu, H. Balakrishnan,
and S. Madden. A Measurement Study of Vehicular
Internet Access Using In Situ Wi-Fi Networks. In 12th
ACM MOBICOM Conf., Los Angeles, CA, September
2006.

[7] D. Carney, U. Centiemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring Streams—A New Class of Data
Management Applications. In VLDB, 2002.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishna-
murthy, S. R. Madden, V. Raman, F. Reiss, and M. A.
Shah. TelegraphCQ: Continuous dataflow processing
for an uncertain world. In CIDR, 2003.

[9] M. Cherniack, M. Franklin, and S. Zdonik. Express-
ing User Profiles for Data Recharging. IEEE Personal
Communications, pages 32–38, Aug. 2001.

[10] D. Goodman, J. Borras, N. Mandayam, and R. Yates.
Infostations: A new system model for data and mes-
saging services. In Proc. IEEE Vehicular Technology
Conference, pages 969–973, May 1997.

[11] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen,
M. Goraczko, E. Shih, H. Balakrishnan, and S. Mad-
den. CarTel: A Distributed Mobile Sensor Computing
System. In Proc. ACM SenSys, Nov. 2006.

[12] J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel,
M. Stonebraker, and S. Zdonik. High-availability al-
gorithms for distributed stream processing. In Proc.
21st International Conference on Data Engineering
(ICDE), Apr. 2005.

[13] U. Kubach and K. Rothermel. Exploiting location in-
formation for infostation-based hoarding. In MOBI-
COM, pages 15–27, 2001.

[14] A. Labrinidis and N. Roussopoulos. Update propaga-
tion strategies for improving the quality of data on the
web. In Proceedings of VLDB, 2001.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
Tag: A tiny aggregation service for ad-hoc sensor net-
works. In OSDI, 2002.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sen-
sor networks. In SIGMOD, pages 491–502, June 2003.

[17] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S.Babu, M. Data, C. Olston, J. Rosenstein, and
R. Varma. Query Processing, Approximation and Re-
source Management in a Data Stream Management
System. In CIDR, 2003.

[18] C. Olston and J. Widom. Best-effort cache synchro-
nization with source cooperation. In SIGMOD, pages
73–84, 2002.

[19] P. P.Bonnet, J. Gehrke, and P. Seshadri. Towards sen-
sor database systems. In Conference on Mobile Data
Management, Jan. 2001.

[20] V. Raman, B. Raman, and J. M. Hellerstein. Online
dynamic reordering for interactive data processing. In
The VLDB Journal, pages 709–720, 1999.

[21] M. Shah, J. Hellerstein, and E. Brewer. Highly-
available, fault-tolerant parallel dataflows. In SIG-
MOD, June 2004.

[22] G. Tolle, J. Polastre, R. Szewczyk, D. Culler,
N. Turner, K. Tu, S. Burgess, T. Dawson, P. Buon-
adonna, D. Gay, and W. Hong. A macroscope in the
redwoods. In ACM SenSys, pages 51–63, 2005.

[23] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless
sensor network for structural monitoring. In SenSys,
pages 13–24, Baltimore, MD, Nov. 2004.

	1 Introduction
	2 Motivation and Context
	3 ICEDB Design
	4 Result Prioritization
	4.1 Inter-Query Prioritization
	4.2 Intra-Query Prioritization
	4.2.1 Local Scoring Via DELIVERY ORDER BY
	4.2.2 Global Scoring Via SUMMARIZE

	5 Experimental Evaluation
	5.1 Query Workload
	5.2 Metrics
	5.3 Prioritization Schemes
	5.4 Trace-Driven Simulation
	5.4.1 Single Car, Uniform Queries
	5.4.2 Single Car, Hotspot Queries
	5.4.3 Multiple Cars, Hotspot Queries

	6 Related Work
	7 Conclusion
	8 Acknowledgements

