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Abstract. This paper introduces our dedicated authenticated encryp-
tion scheme ICEPOLE. ICEPOLE is a high-speed hardware-oriented
scheme, suitable for high-throughput network nodes or generally any en-
vironment where specialized hardware (such as FPGAs or ASICs) can be
used to provide high data processing rates. ICEPOLE-128 (the primary
ICEPOLE variant) is very fast. On the modern FPGA device Virtex
6, a basic iterative architecture of ICEPOLE reaches 41 Gbits/s, which
is over 10 times faster than the equivalent implementation of AES-128-
GCM. The throughput-to-area ratio is also substantially better when
compared to AES-128-GCM. We have carefully examined the security
of the algorithm through a range of cryptanalytic techniques and our
findings indicate that ICEPOLE offers high security level.

Keywords: authenticated encryption scheme, authenticated cipher,
ICEPOLE.

1 Introduction

Protocols such as SSL/TLS [12,16], the backbone of the Internet, are designed to
provide data confidentiality and authenticity. Often the underlying algorithms
of these protocols realize encryption and authentication separately (e.g., AES
in CBC mode for encryption and HMAC-SHA1 for authentication). Although
this approach leads to relatively easy security analysis, the performance, due to
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two separate algorithms, does not meet demands of modern applications. Hence,
recently, the symmetric crypto community focuses its attention on dedicated au-
thentication encryption schemes, which aim to provide message encryption and
authentication more efficiently. An interest in new efficient and secure solutions
is manifested in the recently launched competition called CAESAR [1].

This paper presents our new design of the authenticated encryption scheme
called ICEPOLE. It is a family of authenticated ciphers with two parameters: key
length (128 or 256 bits) and nonce length (between 0 and 128 bits). Our primary
recommendation is ICEPOLE-128 which uses 128-bit key and 128-bit nonce.
The claimed security level for the primary variant is 128 bits and it is supported
by our extensive cryptanalysis. ICEPOLE is based on the duplex framework
introduced by Bertoni et al. in [8]. At the heart of the duplex framework is a
permutation and the ICEPOLE permutation is our new design. In particular,
inspired by the Keccak non-linear step [7], we introduce a new S-box with good
security properties and low implementation cost.

ICEPOLE is a high-speed hardware-oriented scheme, suitable for high-
throughput network nodes or more generally any environment where specialized
hardware (such as FPGAs or ASICs) can be used to provide high data processing
rates. ICEPOLE-128 is very fast. On the modern FPGA device Virtex 6, a basic
iterative architecture of ICEPOLE reaches 41 Gbits/s, which is over 10 times
faster than the equivalent implementation of AES-128-GCM [23] (one of the
most common standards for authenticated encryption). The throughput-to-area
ratio is also substantially better than AES-128-GCM results.

The paper is organized as follows. ICEPOLE specification is given in Section
2. Our security analysis is presented in Section 3. Next, Section 4 shows hardware
performance on FGPA devices and the comparison with the AES-GCM hardware
implementation. Then, software performance is given in Section 5. Finally, in
Section 6, we describe all the key decisions with motivation and justification
behind them.

2 Specification

Our primary recommended parameter set is: 128-bit key and 128-bit nonce. The
ICEPOLE variant with these recommended parameters is called ICEPOLE-128.
We also define two ICEPOLE variants serving as drop-in replacements for AES-
128-GCM and AES-256-GCM. These variants are ICEPOLE-128a (128-bit key,
96-bit nonce) and ICEPOLE-256a (256-bit key, 96-bit nonce). The following
specification refers to the primary recommendation ICEPOLE-128. A specifica-
tion of ICEPOLE-128a and ICEPOLE-256a is nearly the same and the differ-
ences are described in Appendix D.

2.1 State Organization and Notations

The algorithm works on the 1280-bit state S. The state S is organized as the
two-dimensional array S[4][5] where each element of the array is a 64-bit word.
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When we refer to the particular bit, we introduce the third index: S[x][y][z]. The
mapping between the bits of vector v and those of S[x][y][z] is v[64(x+4y)+z] =
S[x][y][z]. (At some points in the algorithm’s description we xor the state with a
vector so this mapping must be specified.) If the bits of the state share the same
z coordinates, they form a slice. As z ranges from 0 to 63, there are 64 slices in
the state. If the bits of the state share the same x and z coordinates, they form
a row. It is also convenient to introduce a notation which allows referring to the
first n bits of the state. Let S�n� denotes the first n bits of the state, namely
those bits S[x][y][z] for which 64(x+ 4y) + z < n.

We use the following notation: ⊕ (bitwise XOR), · (bitwise AND), ¬ (negation).

2.2 Scheme Overview

ICEPOLE-128 encrypts and authenticates a message with a 128-bit key and a
128-bit nonce. There are 3 phases of the algorithm as shown in Figure 2.2.

Fig. 1. General scheme of ICEPOLE encryption and authentication

At the heart of ICEPOLE there is the 1280-bit permutation denoted by P .
Let us first describe this permutation.

2.3 Permutation P

P is an iterated permutation and a number of rounds is a parameter of the per-
mutation. In the presented algorithm the 6- and 12-round variants (denoted by
P6 and P12) are used. Each round R consists of five steps labelled by the Greek
letters: μ (mu), ρ (rho), π (pi), ψ (psi), κ (kappa).

R = κ ◦ ψ ◦ π ◦ ρ ◦ μ

Each step updates the state as follows.

μ:
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In the μ step bits are mixed through the MDS (Maximum Distance Separable)
matrix. Every 20-bit slice is mixed through the matrix given below. Formally,
a column vector (Z0, Z1, Z2, Z3) is multiplied by a constant matrix producing a
vector of four 5-bit words.

⎛
⎜⎜⎝

2 1 1 1
1 1 18 2
1 2 1 18
1 18 2 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
Z0

Z1

Z2

Z3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2Z0 + Z1 + Z2 + Z3

Z0 + Z1 + 18Z2 + 2Z3

Z0 + 2Z1 + Z2 + 18Z3

Z0 + 18Z1 + 2Z2 + Z3

⎞
⎟⎟⎠

The operations are done in GF (25). Here the multiplication is defined as the
multiplication of binary polynomials modulo the irreducible polynomial x5 +
x2 + 1. There are only three distinct terms in the chosen matrix, namely 18, 2,
1 and they correspond to the polynomials x4 + x, x, and 1, respectively. The μ
step can be efficiently implemented with simple bitwise equations (see Appendix
G).

ρ:

The ρ step is the bitwise rotation applied to each of the twenty 64-bit words of
the state. The bitwise rotation moves bit at position z into position (z + rvalue)
modulo 64. For each word rvalue is different.

S[x][y] := S[x][y] ≪ offsets[x][y] for all (0 ≤ x ≤ 3), (0 ≤ y ≤ 4)

The rotation offsets are given in Appendix A.

π:

π reorders the words in the state. Words are moved from S[x][y] to S[x′][y′] and
the new coordinates (x′, y′) are calculated from the following simple formula.

x′ := (x+ y) mod 4
y′ := (((x + y) mod 4) + y + 1) mod 5

ψ:

In the ψ step the ICEPOLE S-box is applied to each of 256 rows of the state.
The S-box maps a 5-bit input vector (M0,M1, ...,M4) to a 5-bit output vector
(Z0, Z1, ..., Z4). The S-box functionality can be easily described by the following
bitwise equation. Operations on the index k are done modulo 5. The bitwise
AND operator · is omitted for clarity.

for all (0 ≤ k ≤ 4)
Zk = Mk ⊕ (¬Mk+1Mk+2) ⊕ (M0M1M2M3M4) ⊕ (¬M0¬M1¬M2¬M3¬M4)
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κ:

In κ the 64-bit constant is xored with S[0][0].

S[0][0] := S[0][0] ⊕ constant[numberOfRound]

The constant value for each round is different. The values are given in Appendix B.

2.4 Initialization Phase

First, the state is initialized with the 1280-bit pseudorandom constant. The con-
stant was obtained by applying the Keccak-f[1600] permutation (an underlying
permutation of the SHA-3 standard) to the all-zero vector and truncating the
result to 1280 bits. (The constant is given in Appendix C.)

Once the state is filled with the constant, the 128-bit key K and the 128-bit
nonce are introduced into the state. K0 and K1 denote two 64-bit words of the
key, nonce0 and nonce1 denote two 64-bit words of the nonce.

S[0][0] := S[0][0] ⊕K0

S[1][0] := S[1][0] ⊕K1

S[2][0] := S[2][0] ⊕ nonce0
S[3][0] := S[3][0] ⊕ nonce1

Then, the P12 permutation is run on the state S.

S := P12(S)

2.5 Processing Phase

The input data is processed in blocks. First, the associated data blocks σAD
i are

processed and next the plaintext blocks σP
i . The plaintext blocks are authenti-

cated and encrypted whereas the associated data blocks are only authenticated.
A block length has to be between 0 (the empty block) and 1024 bits. Each

block is padded to be 1026 bits long and the padding rules are as follows. First,
every block is appended with the frame bit. The frame bit is set to 1 for the
last σAD block and all σP

i except the last one. Otherwise the frame bit is set to
0. Once the frame bit is appended, a given block is padded with a simple rule:
append 1 and such a number of 0’s which gives 1026-bit block. Thus the padded
block has at least two padding bits (the frame bit and 1) and maximally 1026
padding bits (in case of the empty block).

In the processing phase the ciphertext blocks ci are produced and the state
is updated.

for all blocks σAD
i {

σAD
i := pad(σAD

i )
S�1026� := S�1026� ⊕ σAD

i
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S := P6(S)
}

for all blocks σP
i {

ci = S�l� ⊕ σP
i (l is a length of σPi )

σP
i := pad(σP

i )
S�1026� := S�1026� ⊕ σP

i

S := P6(S)
}

2.6 Tag Generation

When the blocks processing is finished, P6 is run on the state and the 128-bit
authentication tag T is derived. (T0 and T1 denote two 64-bit words of T .)

S := P6(S)
T0 := S[0][0]
T1 := S[1][0]

2.7 Decryption and Verification

Decryption and verification are done basically with the same scheme as for en-
cryption. The only difference is that now the input data are the ciphertext blocks
and the associated data blocks. Figure 2.7 shows the scheme. We stress that the
same permutation P (and not its inverse) is used for decryption and verification.
Once the processing phase is finished, the tag T is generated and verified with
the tag received from the sender. If the tags match, the data is authenticated.

Fig. 2. ICEPOLE decryption
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3 Security Analysis

In 2010, Bertoni et al. introduced the duplex construction [8] which provides the
framework for an authenticated encryption scheme. ICEPOLE is based on this
construction and thus ICEPOLE general security claims are inherited from it.
The duplex construction can be seen as a particular way of using the sponge
construction [6]. Similarly, there are two parameters, namely r (bitrate) and
c (capacity). The sum of these two parameters makes the state size. Different
values for bitrate and capacity give trade-offs between speed and security; a
higher bitrate gives a faster construction at the expense of a lower security. For
ICEPOLE-128, r is 1026 bits and c is 254 bits. In case of ICEPOLE variants
with a 256-bit key, r is 962 bits and c is 318 bits.

In [3], it was proved that the sponge construction is secure against generic
attacks with complexity below 2c/2. However, when a sponge or duplex object
is used in conjunction with a secret key, one can prove more refined bounds
taking into account the data complexity. In [4] Bertoni et al. proved that if the
data complexity is limited to 2a r-bit blocks, the keyed mode withstands generic
attacks with time complexity up to 2c−a calls of the underlying permutation. If
a < c/2, this results in an increase of the security strength from c/2 to c − a.
This comes in handy particularly for 256-key ICEPOLE variants, where we would
like to keep 256 bits of security without expanding the state or introducing any
serious changes in the algorithm’s specification. By limiting the number of blocks
(encrypted under the same key) to 262, ICEPOLE-256 stands up to any attack up
to 2318−62 = 2256 (unless easier generically). For ICEPOLE-128 the limit (rather
purely theoretical) is 2126 blocks and hence the security level is 254− 126 = 128
bits.

In [6] it was shown that the security level can be proven under the assumption
that the underlying permutation P has not any exploitable properties (there are
no structural distinguishers of the permutation). Therefore the security analysis
of ICEPOLE comes down to analysis of the permutation P . Below we give our
cryptanalysis indicating that P is indeed a secure permutation.

A user of ICEPOLE is required to use a nonce. However, in the case of nonce
reuse ICEPOLE provides some intermediate level of robustness. The nonce reuse
leads to leaking XOR of plaintexts (via XOR of ciphertexts) and this cannot be
avoided in our case. The secret key used with the same nonce also leads to
the situation where the adversary can control the XOR differences after the 12-
round initialization. But our cryptanalysis (given below) strongly indicates that
the 6-round permutation P (run at the processing phase) is secure, in particular
against differential and linear cryptanalysis. Therefore we argue that in the case
of nonce reuse the key-recovery attack is not possible.

3.1 Differential Cryptanalysis

Differential cryptanalysis, introduced by Biham and Shamir [9], has become very
powerful technique of modern cryptanalysis. One of the most convincing way of
showing the resistance against differential attacks is to provide a lower bound
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on the weight of any differential characteristics (also called differential trails or
paths) over a number of rounds. For example, in the AES the structure of the
cipher and its diffusion properties allow to provide such bounds analytically [11].
However for ‘bit-oriented constructions (e.g., Keccak or MD6 hash function) it
is not possible to derive differential characteristics bounds in a very straightfor-
ward and convenient manner. In such cases computer-aided proofs are provided
and for ICEPOLE we take this approach.

Computer Aided Proof
A brute-force strategy to check all possible characteristics (even for a very small
number of rounds) fails. The 1280-bit state is too big, even when exploiting
all possible symmetries. Instead of the plain brute-force we used a SAT-solver.
A SAT solver is an algorithm, which decides whether a given propositional
(Boolean) formula (typically described in the Conjunctive Normal Form) has
a satisfying valuation. Generally, to solve a problem: (1) translate the problem
to SAT (in such a way that a satisfying valuation represents a solution to the
problem); (2) run a favourite SAT solver to find a solution.

First, we focused on the problem of finding the 3-round characteristic with the
minimum number of active S-boxes. The problem was encoded as a SAT formula in
the Conjunctive Normal Form with the aid of the CryptLogVer toolkit [18]. Crypto-
MiniSat2 [25] is able to solve it in a few hours on a desktop PC. The solution, that is
the minimum number of active S-boxes for 3 rounds, is 9. Then, we tried to repeat
the experiments for 4 rounds, but the problem was too hard for the SAT-solver.
However, if we slightly change the problem and ask the solver about a particular
number (up to 13) of active S-boxes on the 4-round differential path, the answer is
provided by the solver. For 4 rounds there are no paths with 13 or fewer S-boxes.
Again, checking a higher number of S-boxes turned out to be infeasible.

If a number of active S-boxes is at least 14 (for 4 rounds) and the highest proba-
bility of a difference transition through the S-box is 2−2 (deduced from the differ-
ence distribution table of the S-box, given in Appendix F), then the lowest weight
for 4 rounds is 2−2∗14 = 2−28. So for 12 rounds a weight equals 2−28∗3 = 2−84

and hence data complexity for the attack is 284 plaintexts. Please note that this
is already a much bigger number than the limitation (262) for ICEPOLE-256 on a
number of blocks of plaintexts encrypted under the same key.

We believe that the complexity of differential attack should be much higher
than the lower bound of 284 plaintexts. The first reason for that is the difference
transitions through the S-box with the weight 2−2 happen very rarely. Out of
337 possible difference transitions only 10 (3%) has the weight 2−2. Most of the
transitions (216) has the weight 2−4 and the average weight is 23.4. The second
argument strongly indicating that ICEPOLE is resistant to a differential attack
is our experimental results. These gives some more insight into the difference
propagation in ICEPOLE. Details are presented in Appendix D.

Internal Differentials. The best collision attack against Keccak was obtained
through the technique called internal differentials [13]. While in standard differ-



400 P. Morawiecki et al.

ential attacks we consider two different plaintexts, in internal differential attacks
only one plaintext is considered, and the statistical evolution of the differences
between its parts is followed. In the attack against Keccak two properties were
exploited, which led to the successful attack against the round-reduced Kec-
cak. These properties are: very low Hamming weight constants (which helps to
keep the state in the desired symmetry) and the fact that the state is initialized
with the all-zero vector (which allows to construct the initial difference). For
ICEPOLE it is not the case as the state is initialized with the pseudorandom
constant and the round constants have much higher Hamming weight. There-
fore we conclude it is not possible (or heavily limited) to successfully apply the
internal differential technique to our scheme.

3.2 Linear Cryptanalysis

Linear cryptanalysis, formally introduced by Matsui [21], has become another
powerful tool against modern cryptographic primitives. The main idea is to
construct the linear approximation of the algorithm. In many ways this technique
resembles differential cryptanalysis. Tracing the evolution of differences has the
counterpart in tracing linear masks. Usually the complexity of the attack is also
determined by the number of active S-boxes in the trail. One excellent example
of exploiting the duality between these two techniques is the analysis of AES
provided by its designers.

Although the structure of ICEPOLE does not allow for a straightforward
and completely parallel analysis with respect to the two types of attacks, we
think that ICEPOLE (and its permutation P ) should offer very similar security
margin against linear and differential cryptanalysis. First indication of it is the
examination of the linear profile of the S-box. (The complete profile is given in
Appendix H.) The highest bias of the linear approximation of the S-box is 2−2

and on average the bias is lower as the value of 2−2 happens rarely. (Note that
the highest probability of difference transitions in the S-box is also 2−2). The
complexity of the linear attack is not only determined by the S-box properties
but also by a number of active S-boxes on the trail. The μ step brings diffusion to
the algorithm and hence it is the main factor for increasing a number of active S-
boxes. The μ step affects linear and differential trails in the same way. Therefore
we conclude that the complexity of the linear attack against ICEPOLE should
be comparable with differential analysis and after 5-6 rounds the complexity
becomes completely intractable.

3.3 SAT-Based (Logic) Cryptanalysis

We encoded the following problem into SAT: an adversary knows a part of the
input state, a part of the output state and the goal is to retrieve the unknown
part of the input state. For ICEPOLE this problem models two types of attacks.
The first type is the key recovery where an unknown part of the state is a secret
key. The second type of the attack is the state recovery (in the processing phase)
where the attacker tries to recover the unknown capacity part of the state.
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To encode the problem into a SAT instance we used the toolkit presented in
[18]. We obtained a SAT instance describing a single round of P with roughly
6400 variables and 35300 clauses. In attacks we used CryptoMiniSAT2, a gold
medallist from recent SAT competitions [25]. We tried to solve three variants of
the problem where 64-, 80-, and 128-bit part of the input state remains unknown.
For 2 rounds CryptoMiniSAT2 was able to find the solution in a few seconds on a
desktop PC. For 3 rounds only 64-bit variant of the problem was solved (also in a
matter of seconds) and for 4 rounds, with 48-hour time limit, CryptoMiniSAT2
was unable to provide any solution. It looks as the hardness of the problem
grows super exponentially in a number of rounds and this effect has been also
observed in SAT-based attacks on other cryptographic primitives [18,24]. Thus
we conclude that ICEPOLE with the 12-round initialization and the 6-round
processing phase is secure against the SAT-based attack.

3.4 Rotational Cryptanalysis

The technique was formally introduced in [20]. Unlike differential analysis, where
the attacker follows the propagation of the xor differences of two plaintexts
through the cryptographic system, in rotational analysis, the adversary inves-
tigates the propagation of the rotational relations between plaintexts. In [22]
rotational cryptanalysis was applied to Keccak and since there are some similar-
ities between ICEPOLE and Keccak, we take a closer look whether that tech-
nique could be used against ICEPOLE. In the attack on Keccak two properties
were exploited, namely very low Hamming weight constants (which helps keep
the states in the desired rotational relation) and the fact that the state is ini-
tialized with the all-zero vector (which allows to construct the initial rotational
relation). For ICEPOLE it is not the case as the state is initialized with the
pseudorandom constant and the round constants have much higher Hamming
weight. Therefore we conclude it is not possible (or heavily limited) to apply
rotational cryptanalysis to our scheme.

3.5 Techniques Exploiting Low Algebraic Degree

There are several cryptanalytic techniques, which exploit a low algebraic degree.
These are, for example, the cube attack [14] or the zero-sum distinguisher [2]. An
algebraic degree of a single round of P (or its inverse) is 4. Then, after four rounds
the algebraic degree is 256, which stops the mentioned attacks from reaching the
attack complexity lower than the claimed security level 2128. Thus ICEPOLE
with its 12-round initialization is completely secure against techniques exploiting
a low algebraic degree.

4 Hardware Performance

A proof-of-concept basic iterative architecture of ICEPOLE-128 was implemented.
Figure 4 shows an overview of a datapath design. The presented cryptographic core
is capable of performing encryption and decryption, and contains a full padding
unit.
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Fig. 3. A proof-of-concept single iterative round design for the hardware implementa-
tion of ICEPOLE

AES-GCM is used as a basis of our comparison as it is one of the most widely
accepted standards for authenticated encryption [23]. The same basic iterative
architecture is implemented for a direct comparison. Both implementations use
also the same interface and communication protocol in order to reduce any dis-
crepancies between the two designs. Similar to ICEPOLE, AES-GCM contains
the full padding unit and supports both encryption and decryption within a
single core.

Both cryptographic cores were described using VHDL language and verified
against software generated test vectors using ModelSim. The results were gener-
ated using ATHENa [17] using two high-performance FPGA families from two
major FPGA vendors, Xilinx and Altera. These FPGA families are Xilinx Vir-
tex 6 and Altera Stratix IV, respectively. No dedicated resources, such as Block
RAMs or DSP units, were used in either implementation. The comparison be-
tween ICEPOLE-128 and AES-128-GCM using a basic iterative architecture is
shown in Table 1. The throughput shown in the table is based on the throughput
of long messages.

Table 1. The comparison between ICEPOLE-128 and AES-128-GCM using an itera-
tive architecture

Xilinx Virtex 6 Altera Stratix IV

ICEPOLE-128 AES-128-GCM ratio ICEPOLE-128 AES-128-GCM ratio

throughput (Gbit/s) 41.364 3.539 11.7 38.779 3.612 10.7

area (Slices/ALUT) 1501 940 1.6 4564 4025 1.13

throughput-to-area 27.56 3.76 7.3 8.5 0.9 9.4

With the exception of resource utilization, ICEPOLE-128 consistently out-
performs AES-128-GCM in terms of the throughput and the throughput-to-
area ratio. For Xilinx Virtex 6, with only 60% increases in area, ICEPOLE-128
achieves almost 12 times the speed of AES-128-GCM, and seven times higher
the throughput-to-area ratio. For Altera Stratix IV, due to the unique behaviour
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of Altera Adaptive Look Up Tables (ALUTs), the resource utilization is similar
for both algorithms, with ICEPOLE-128 consuming only 13% more area. At the
same time, ICEPOLE-128 outperforms AES-128-GCM by a factor of 11 in terms
of throughput and a factor of 9 in terms of the throughput-to-area ratio.

We strive to provide the fairest possible comparison with AES-GCM. When we
state that the design used is an ‘iterative architecture’, this means that it takes
10 clock cycles to calculate the AES. Certainly, we selected the multiplier unit
that optimizes the unit to meet that latency. This means that we are performing
a 128-bit × 128-bit multiplication using at least a 128-bit × 16-bit multiplier
to satisfy the 10 clock cycles requirement. For a fair comparison, we selected a
128-bit × 16-bit multiplier because 128-bit × 32-bit or larger multiplier would
increase the area unnecessarily.

As ICEPOLE is inspired by the Keccak permutation, it is natural to ask
whether our new construction offers better performance over the Keccak permu-
tation. The main reason ICEPOLE permutation is faster than Keccak is that
the linear step μ can be implemented in the single layer of LUTs whereas Kec-
cak θ needs 2 layers. Hence both area and throughput for this step would be
to ICEPOLE advantage. Other steps in permutation are basically equivalent in
terms of performance. Our experiments supports this analysis. The experiment
was conducted by wrapping ICEPOLE and Keccak permutations with a shift
register for I/O. Then the same optimization technique used in our paper was
applied to both designs. The improvement in speed is consistent across all device
families with the highest performance gain in Altera as much as 20%.

5 Software Performance

While the primary focus of the ICEPOLE design is hardware performance, the
cipher is also amenable to efficient software implementations. The three steps
that require nontrivial implementations are μ, ρ and ψ. They all can be easily
implemented on platforms supporting 64-bit XORs, logical ANDs and rotations.
We measured that a rather straightforward C implementation compiled for speed
(with no beyond-C optimization efforts like code vectorization using AVX or
intrinsics use) runs for very long messages at about 9 cycles per byte on Intel
Ivy Bridge i5-3320M processor. The same implementation runs at about 8 cpb
on a Haswell (Intel Xeon E3 1275) machine.

We believe there is still room for possible improvements. A better code opti-
mization (e.g., making sure that the compiler uses the andn a, b instruction on
Haswell for ¬A ·B extensively used in the step ψ) could lead to a better perfor-
mance than the reported 8 cycles per byte. Additionally, one could think about
an AVX-based implementation where the whole state is kept in five YMM reg-
isters. Compared to the pure C code this could save time on memory loads and
stores but at the expense of the more complex μ step. For 32-bit platforms, only
rotation performance will scale worse than linearly (compared to the straight-
forward 64-bit version). It is because in such a case the rotations need to be
combined from more than two instructions.
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6 Design Rationale

We have aimed at high-speed, hardware-oriented authenticated encryption
scheme, suitable for high-throughput network nodes or any environment where
specialized hardware (such as FPGAs or ASICs) can be utilized to provide de-
sired high data processing rates. Our main inspiration comes from the duplex
construction with the round-reduced Keccak-f permutation [5]. We have decided
to keep the general framework (namely the duplex construction) and design an
underlying permutation from scratch.

In the Keccak-f permutation, the linear step θ brings most of diffusion to
the algorithm and is roughly two times slower (when considering the FPGA
design) than the non-linear part (a layer of S-boxes). Our general approach to
the design of the permutation P has been to make steps more balanced. We
have wanted to make the linear part simpler (faster) and improve the properties
(diffusion, algebraic degree) of the non-linear part (in comparison to Keccak-
f). The challenge has been that a more complex S-box layer should not nullify
the gain from introducing a lighter linear part. Our second starting idea was to
take into consideration cryptanalysis of Keccak-f and its round-reduced variants.
Those findings have determined some of our decisions for ICEPOLE and its P
permutation.

6.1 Permutation P Steps

Let us first explain design rationale behind the P permutation steps.

μ:

We have aimed at a possibly simple and implementation-friendly linear step.
The step does not have to have an efficient inverse as in the duplex construc-
tion the permutation is calculated only in one way (both for encryption and
decryption). Additionally, we have required that the linear step has very good
diffusion properties. In [19] Junod and Vaudenay presented their research on
building MDS matrix (known for an excellent diffusion property) under the cri-
teria, which perfectly suit our needs, that is an efficient implementation and
neglecting an inverse of the matrix. We have decided to use one of the ‘optimal’
matrices presented in [19].

The μ step also helped determine the size and organization of the state. First,
we tried to keep the same state organization as in Keccak-f[1600] that is 5×5×64.
However the ‘optimal’ 5 × 5 MDS matrix did not give us a clear advantage (in
terms of hardware implementation efficiency) over the linear step presented in
Keccak. Hence we have decided to use the smaller 4 × 4 matrix, which would
operate on four 5-bit vectors. The linear operation based on the chosen matrix
can be implemented in just a single layer of LUTs in the modern FPGA devices.
Consequently, to let our new linear step be applied naturally, the state has been
organized as the two dimensional array 4×5 of 64-bit words, giving the 1280-bit
state.
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ρ:

The ρ step is essential to bring diffusion along z axis in the state. Otherwise
a given bit would only affect bits from its slice (the bits sharing the same z
coordinate). The 20 offsets are calculated from a simple formula i(i+1)/2 modulo
the word length (64 bits in the case of ICEPOLE). This formula is the same as
in the Keccak permutation. A nice feature of this formula is that in the case
of shorter word lengths, each word (or nearly each word) has a distinct offset
value. This might come in handy when one tries to build ICEPOLE variant with
a smaller state, better suited for constrained environments.

π:

The π step reorders the words in the state. We have introduced this step to bring
extra diffusion between the words (which is already provided by μ and ψ). In
hardware, π and ρ are ‘cheap’, their computational cost corresponds to wiring.
The π formula has been chosen for its simplicity.

ψ:

We have aimed at the non-linear step (an S-box), which would have the following
properties: good differential and linear profiles, an algebraic degree higher than 3,
compact boolean circuit (low implementation cost). We have concluded that the
Keccak S-box would not be the best choice mainly for its slow diffusion. Every
bit affects only 3 others whereas we need better diffusion to complement μ.
Secondly, the Keccak S-box algebraic degree is only 2 and for a small number of
rounds techniques exploiting a low algebraic degree might be a threat. Therefore,
ideally, we would like to keep good differential and linear profiles of the Keccak
S-box and increase its diffusion and the algebraic degree. Our idea to achieve
this goal was as follows. If we change the truth table of the Keccak S-box very
little, differential and linear profiles should stay much the same (Though it needs
to be verified.) Hopefully, a small change would improve diffusion and increase
the algebraic degree. In the Keccak S-box the input vector ‘00000’ is mapped
onto ‘00000’ and ‘11111’ onto ‘11111’. If we switch them (‘00000’ ⇒ ‘11111’ and
‘11111’ ⇒ ‘00000’), this seemingly tiny change gives us all we want. Now every
output bit depends on all 5 input bits (better diffusion then) and the algebraic
degree now equals 4, also the inverse of the new S-box has degree equals 4. The
boolean description is still very compact, the equations are given in Section 2.
As expected the differential and linear profiles remain very the same, keeping
their good properties. The profiles are given in Appendix.

κ:

κ adds the 64-bit round constant and for each round a constant is different.
Without κ all rounds of the permutation P would be equal making it subject
to attacks exploiting symmetry such as slide attacks [10]. The constants used in
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Keccak have very low Hamming weight and this feature was exploited in two
cryptanalytic attacks [13,22] against the round-reduced Keccak. These results
motivated us to introduce constants with much higher Hamming weight. The
constant values are taken as the output of a simple 64-bit maximum-cycle Lin-
ear Feedback Shift Register (LFSR). The polynomial representation of LFSR is
x64 + x63 + x61 + x60 + 1. The LFSR state is initialized with the 64-bit vector
‘0123456789ABCDEF’ (hexadecimal format) and then each cycle generates a
subsequent constant. Thus κ can be implemented as a simple LFSR circuit or a
precomputed look-up table.

Steps order within a Round
μ is the step, which provides the best mixing between the unknown part of the
state (a secret key K) and the remaining part of the state which would be known
to the attacker. Hence we have placed μ as the first step in a round. The order
of other steps is arbitrary.

6.2 ICEPOLE Parameters and Decisions

ICEPOLE works on the 1280-bit state and the reason for that is explained above
in the subsection on the μ step. ICEPOLE-128 (our primary recommendation)
uses the 1024-bit input data block to be more hardware friendly. This value is a
power of 2 and allows a more natural I/O operation in hardware as opposed to
the slightly bigger size of 1088 bits (which could be also a choice). With 6-round
processing phase where a large amount of data must be transferred within a
short period, a non-power-of-2 block size can introduce an inefficiency in data
transmission when the I/O width is large. Furthermore, with the 1024-bit input
data block, a hardware implementation can more efficiently uses its storage,
which can be important where aiming for an extremely small design.

Before P is applied, the state is initialized with the pseudorandom 1280-
bit constant. This decision has been motivated by cryptanalysis on the round-
reduced Keccak where two different techniques [13,22] have exploited the fact
the state is initialized with the all-zero maintaining many different symmetries.

The number of rounds in Initialization is 12. This value is based on our differ-
ential cryptanalysis shown in Section 3. After Initialization an adversary should
not have any control over the differences (when mounting the differential attack).
The experiments indicate that 6 rounds are sufficient and we have doubled this
value to get a solid security margin.

The number of rounds in Processing Phase is 6. This value is based on our
SAT-based cryptanalysis given in Section 3. We were able to recover a small
unknown part of the state for 3 rounds. To get a solid security margin we have
doubled the number of rounds in Processing Phase to 6.

The frame bit (introduced as a part of the padding) is needed for security
analysis of the duplex construction working in the authenticated encryption
mode [6, Section 4.1.5]. The chosen padding rule is the simplest sponge-compliant
padding [6, Definition 2].



ICEPOLE: High-Speed, Hardware-Oriented Authenticated Encryption 407

7 Conclusion

We have proposed the dedicated authenticated encryption scheme called ICE-
POLE. It is very fast on the modern hardware platforms and its hardware perfor-
mance is substantially better than the AES-GCM. Our software non-optimized
implementation, running at 8 cycles per byte, is also a promising result. We
performed a security analysis with aid of many cryptanalytic tools and our find-
ings show that ICEPOLE offers solid security margin. Our new permutation P
(combining with the sponge construction [6] or other permutation-based modes)
could become a building block for a new, high-speed cryptographic primitive
such as a hash function or a stream cipher.
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Appendix

A

The rotation offsets used in the ρ step are given below.

offsets[0][0] := 0 offsets[0][1] := 36 offsets[0][2] := 3 offsets[0][3] := 41
offsets[0][4] := 18 offsets[1][0] := 1 offsets[1][1] := 44 offsets[1][2] := 10
offsets[1][3] := 45 offsets[1][4] := 2 offsets[2][0] := 62 offsets[2][1] := 6
offsets[2][2] := 43 offsets[2][3] := 15 offsets[2][4] := 61 offsets[3][0] := 28
offsets[3][1] := 55 offsets[3][2] := 25 offsets[3][3] := 21 offsets[3][4] := 56

http://groups.csail.mit.edu/cis/md6/
http://www.msoos.org/cryptominisat2
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B

The round constants used in the κ step are given below. The values are given in
hexadecimal using the little-endian format.

constant[0] := 0091A2B3C4D5E6F7 constant[1] := 0048D159E26AF37B
constant[2] := 002468ACF13579BD constant[3] := 00123456F89ABCDE
constant[4] := 00091A2BFC4D5E6F constant[5] := 00048D15FE26AF37
constant[6] := 0002468AFF13579B constant[7] := 000123457F89ABCD
constant[8] := 000091A2BFC4D5E6 constant[9] := 000048D1DFE26AF3
constant[10] := 00002468EFF13579 constant[11] := 00001234F7F89ABC

C

At the start of Initialization Phase the 1280-bit state is initialized with the pseu-
dorandom constant. The values are given in hexadecimal using the little-endian
format.

S[0][0] := FF97A42D7F8E6FD4 S[0][1] := 90FEE5A0A44647C4
S[0][2] := 8C5BDA0CD6192E76 S[0][3] := AD30A6F71B19059C
S[0][4] := 30935AB7D08FFC64 S[1][0] := EB5AA93F2317D635
S[1][1] := A9A6E6260D712103 S[1][2] := 81A57C16DBCF555F
S[1][3] := 43B831CD0347C826 S[1][4] := 01F22F1A11A5569F
S[2][0] := 05E5635A21D9AE61 S[2][1] := 64BEFEF28CC970F2
S[2][2] := 613670957BC46611 S[2][3] := B87C5A554FD00ECB
S[2][4] := 8C3EE88A1CCF32C8 S[3][0] := 940C7922AE3A2614
S[3][1] := 1841F924A2C509E4 S[3][2] := 16F53526E70465C2
S[3][3] := 75F644E97F30A13B S[3][4] := EAF1FF7B5CECA249

D

ICEPOLE-128a. We specify ICEPOLE-128a to have a drop-in replacement
for AES-128-GCM run with most common parameters, namely a 96-bit nonce
and a 128-bit tag. The only differences between ICEPOLE-128 (specified above)
and ICEPOLE-128a is that in ICEPOLE-128a a nonce is 96 bits long. The nonce
is padded with 32 zeros and introduced into the state in the same way as for
ICEPOLE-128.

ICEPOLE-256a. We specify ICEPOLE-256a to have a drop-in replacement for
AES-256-GCM run with most common parameters, namely a 96-bit nonce and a
128-bit tag. ICEPOLE-256a encrypts data with a 256-bit key, a 96-bit nonce and
the data is authenticated with a 128-bit tag. The 96-bit nonce is padded with
32 zeros. A 256-bit key consists of four 64-bit words K0 . . .K3 and the padded
nonce consists of two 64-bit words. The key and the nonce are introduced into
the state as follows.
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S[0][0] := S[0][0] ⊕K0

S[1][0] := S[1][0] ⊕K1

S[2][0] := S[2][0] ⊕K2

S[3][0] := S[3][0] ⊕K3

S[0][1] := S[0][1] ⊕ nonce0
S[1][1] := S[1][1] ⊕ nonce1

The data blocks have the length between 0 and 960 bits and the padded
blocks are 962 bits long. For ICEPOLE-256a the number of blocks encrypted
under a single key should be less than 262. All other parameters and steps of the
specification are the same as for ICEPOLE-128.

E

Differential Path Search
We were inspired by the work of Duc et al. [15] where the algorithm for dif-
ferential path search was given for the Keccak permutation. They managed to
provide the best differential paths for the round-reduced variants of the permu-
tation. Our permutation shares some key features with the Keccak permutation
(in particular how the state is organized and ‘bit-oriented’ propagation) and
hence we think that a similar algorithm may be fruitful also for our analysis.

The goal of the algorithm is to derive differential paths by maintaining the
bit difference Hamming weight as low as possible. We note that μ, ρ, π are
all linear mappings (denoted altogether by λ, while ψ acts as the non-linear S-
box. κ (adding round constants) does not affect differential analysis in any way.
Furthermore, ρ and π do not change the number of active bits in a differential
path, but change only bit positions. Hence, μ and ψ are critical when analysing
differential paths. Since ψ is followed by μ in the next round (ignoring κ), we
consider these two mappings together by treating a slice of the state as a unit,
and try to find the potential best mapping of the slice through ψ with the
following rule.

• Given an input difference of the slice find all possible output differences by
looking into the S-box differential profile. Then, among all combinations of
possible output differences, choose a combination which would give the state
the minimum Hamming weight after an application of μ.

It is not possible to check all possible states as the starting points for a differ-
ential path because the state is too big, even if we take advantage of symmetries.
We limit the space of starting points to the states with a single active bit. For
the 20-bit slice there are 20 such cases. For our permutation (as in the case of the
Keccak permutation) a differential path is invariant through position rotation
along the z axis so choosing a particular slice does not matter.

We start our search from b1 point, i.e., the state after the linear mappings
(denoted by λ) in the second round, and compute backwards for one round, and
a few rounds forwards, as shown below.
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a0
λ−1←−−− b0

ψ−1

←−−− a1
λ−1←−−− b1

ψ−−→ a2
λ−−→ b2

ψ−−→ a3
λ−−→ b3 . . .

The forward part is longer than the backward part because the diffusion of
μ−1 is better than for μ, so it will be easier to control the bit differences Ham-
ming weight for several rounds forwards (instead of backwards). Table 2 shows
probabilities of the best paths we found with the aid of the algorithm.

Table 2. Best differential paths results. The third column shows the weights of rounds
for a given path.

rounds total probability products

1 2−2 2−2

2 2−10 2−8 · 2−2

3 2−18.4 2−8.4 · 2−2 · 2−8

4 2−52.8 2−8.8 · 2−2 · 2−8 · 2−34

5 2−186.2 2−10.4 · 2−2 · 2−8 · 2−36 · 2−129.8

6 2−555.3 2−10.4 · 2−2 · 2−8 · 2−36 · 2−129.8 · 2−369

The weight of the 3-round path matches the bound we provided (2−18) very
closely. We investigated up to 6 rounds as the complexity of the attack exploiting
the 5-round path is already completely intractable.

F

G

The μ step changes the S state according to the following equations.
for (z := 0; z < 64; z := z + 1) {
S′[0][4][z] := S[0][3][z] ⊕ S[1][4][z] ⊕ S[2][4][z] ⊕ S[3][4][z]
S′[0][3][z] := S[0][2][z] ⊕ S[1][3][z] ⊕ S[2][3][z] ⊕ S[3][3][z]
S′[0][2][z] := S[0][4][z] ⊕ S[0][1][z] ⊕ S[1][2][z] ⊕ S[2][2][z] ⊕ S[3][2][z]
S′[0][1][z] := S[0][0][z] ⊕ S[1][1][z] ⊕ S[2][1][z] ⊕ S[3][1][z]
S′[0][0][z] := S[0][4][z] ⊕ S[1][0][z] ⊕ S[2][0][z] ⊕ S[3][0][z]

S′[1][4][z] := S[0][4][z] ⊕ S[1][4][z] ⊕ S[2][0][z] ⊕ S[3][3][z]
S′[1][3][z] := S[0][3][z] ⊕ S[1][3][z] ⊕ S[2][4][z] ⊕ S[3][2][z]
S′[1][2][z] := S[0][2][z] ⊕ S[1][2][z] ⊕ S[2][3][z] ⊕ S[3][4][z] ⊕ S[3][1][z]
S′[1][1][z] := S[0][1][z] ⊕ S[1][1][z] ⊕ S[2][2][z] ⊕ S[2][0][z] ⊕ S[3][0][z]
S′[1][0][z] := S[0][0][z] ⊕ S[1][0][z] ⊕ S[2][1][z] ⊕ S[3][4][z]
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Table 3. The difference distribution table of the S-box. Input and output differences
are given in the hexadecimal format. Each element of the table represents the number
of occurrences of the corresponding output difference ΔOUT given the input difference
ΔIN . For clarity ‘-’ denotes 0.

ΔOUT
ΔIN

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

00 32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
01 - 8 - - - - - - - 6 - - - - 2 - - 6 - - - - 2 - - 8 - - - - - -
02 - - 8 6 - - - - - - - - - 2 - - - - 6 8 - - - - - - - - 2 - - -
03 - - 2 4 - - - - - - 4 2 - - - - - - 4 4 2 - - - - - 4 4 - 2 - -
04 - - - - 8 6 6 8 - - - - - - - - - - - - - - - - - 2 2 - - - - -
05 - - - - 4 - 4 - 2 - - - 2 - 4 - - - - 2 - 4 - 2 - - - - - 4 - 4
06 - - - - 2 4 4 4 - 2 - - - - - - - - - - 4 4 2 4 - - - 2 - - - -
07 - - - - 2 - 2 2 - - - - 2 2 2 - 2 - - - 2 2 2 2 - - 2 - 2 2 2 2
08 - - - - - - - - 8 - 6 - 6 - 8 - - - - 2 - 2 - - - - - - - - - -
09 - 4 2 2 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - 2 2 - 4
0a - - - - - - - 2 4 - - 4 4 - - 2 2 - - - - - - - 2 - - 4 4 - - 4
0b - 2 4 - - - - - - - - - - 4 2 - - 6 4 - - - - - - - - - - 4 6 -
0c - - - - - - - - 2 4 4 4 4 2 4 4 - - 2 - - - - 2 - - - - - - - -
0d - - - - 2 - 6 - 4 - 4 - - - - - - - - - - 4 - 4 - 2 - 6 - - - -
0e - 2 - - - - - - 2 2 - 2 2 2 2 2 - - - - - 2 - - 2 2 2 2 2 2 - 2
0f - - - - 2 2 2 - 2 2 2 - - - - - - - - - 4 2 2 2 4 2 2 2 - - - -
10 - - - - - - - 2 - - - 2 - - - - 8 - - - 6 - - - 6 - - - 8 - - -
11 - 2 - - - 4 - - - 4 2 - - 4 - - - 4 - - - 2 - - - 4 - - - 4 2 -
12 - - 4 4 2 - 2 4 - - - - - - - - - - - - - - - - - 2 4 2 - - 4 4
13 - - 2 2 - - 2 2 2 - 2 2 - 2 2 2 - - - 2 - - 2 - - - 2 2 - - 2 2
14 - 2 - - - - - - - - - - - - 2 - 4 2 - - - - 4 4 4 4 - - - - 2 4
15 - 4 - - - - - 2 - 4 - - - - - 6 2 - - - - - 4 - 6 - - - - - 4 -
16 - - 2 6 4 4 - - - - - - - - - - - - - - - - - - - - 4 4 2 6 - -
17 - - 2 2 2 2 - - - - 4 2 4 2 - - - - 2 - 2 - - - - - 2 2 2 2 - -
18 - - - - - 2 - - - - - - - - - 2 2 - 4 - 4 - 4 - 4 - 2 - 4 - 4 -
19 - 2 - 2 2 2 - 2 - - - 2 - 2 - 2 - 2 - 2 - 2 2 2 - 2 - - - 2 - 2
1a - - - - - - - - 2 - - 4 6 - - 4 4 - - 2 4 - - 6 - - - - - - - -
1b - 2 2 - - 4 4 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - - - - - 2 2 -
1c - - 2 - - - - - - - - 2 - - - - 2 2 2 2 - 2 2 2 2 2 2 2 2 - 2 2
1d - 2 - 4 - 2 - 2 - 2 - 2 - - - 2 2 - 4 - 2 - 2 - 2 - 2 - - - 2 -
1e - - - - - - - - 2 4 2 2 2 2 - 2 2 4 2 2 2 2 - 2 - - - - - - - -
1f - 2 2 - 2 - - 2 2 - - 2 - 2 2 - 2 - - 2 - 2 2 - - 2 2 - 2 - - 2

S′[2][4][z] := S[0][4][z] ⊕ S[1][3][z] ⊕ S[2][4][z] ⊕ S[3][0][z]
S′[2][3][z] := S[0][3][z] ⊕ S[1][2][z] ⊕ S[2][3][z] ⊕ S[3][4][z]
S′[2][2][z] := S[0][2][z] ⊕ S[1][4][z] ⊕ S[1][1][z] ⊕ S[2][2][z] ⊕ S[3][3][z]
S′[2][1][z] := S[0][1][z] ⊕ S[1][0][z] ⊕ S[2][1][z] ⊕ S[3][2][z] ⊕ S[3][0][z]
S′[2][0][z] := S[0][0][z] ⊕ S[1][4][z] ⊕ S[2][0][z] ⊕ S[3][1][z]

S′[3][4][z] := S[0][4][z] ⊕ S[1][0][z] ⊕ S[2][3][z] ⊕ S[3][4][z]
S′[3][3][z] := S[0][3][z] ⊕ S[1][4][z] ⊕ S[2][2][z] ⊕ S[3][3][z]
S′[3][2][z] := S[0][2][z] ⊕ S[1][3][z] ⊕ S[2][4][z] ⊕ S[2][1][z] ⊕ S[3][2][z]
S′[3][1][z] := S[0][1][z] ⊕ S[1][2][z] ⊕ S[1][0][z] ⊕ S[2][0][z] ⊕ S[3][1][z]
S′[3][0][z] := S[0][0][z] ⊕ S[1][1][z] ⊕ S[2][4][z] ⊕ S[3][0][z]
}
S := S′
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Table 4. The linear profile of the S-box. Input and output masks are given in the
hexadecimal format. Each element in the table is the number of mismatches between the
linear equation represented by the input mask IN and the linear equation represented
by the output mask OUT . Dividing an element value by 16 gives the probability that
the corresponding equations are not equal.

OUT
IN

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

00 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
01 16 10 18 24 18 12 16 14 18 16 16 18 16 22 18 20 18 16 16 18 16 14 18 12 16 18 18 16 18 12 16 14
02 16 18 10 16 18 16 24 18 18 16 12 14 16 18 14 12 18 16 16 18 16 18 18 16 16 18 22 12 18 16 20 14
03 16 24 16 16 16 12 16 20 16 16 12 12 16 20 12 16 16 16 16 16 16 12 16 12 16 16 12 20 16 12 12 16
04 16 18 18 16 10 16 16 18 18 16 16 18 24 18 18 16 18 16 16 18 12 22 14 12 16 18 18 16 14 20 12 14
05 16 8 16 8 16 12 16 20 16 16 16 16 16 20 16 12 16 16 16 16 20 16 12 16 16 16 16 16 20 16 12 16
06 16 16 24 16 16 16 16 16 16 16 12 12 16 16 20 12 16 16 16 16 12 12 12 20 16 16 20 12 12 12 16 16
07 16 10 18 16 18 20 16 22 18 16 12 14 16 14 14 16 18 16 16 18 12 18 22 16 16 18 14 20 14 16 16 22
08 16 18 18 16 18 16 16 18 10 12 16 22 16 14 18 12 18 16 16 18 16 18 18 16 24 14 18 20 18 12 16 14
09 16 16 16 16 16 20 16 20 8 12 16 20 16 16 16 16 16 16 16 16 16 12 16 12 8 20 16 12 16 16 16 16
0a 16 16 8 16 16 16 8 16 16 20 12 16 16 12 20 16 16 16 16 16 16 16 16 16 16 20 20 16 16 12 12 16
0b 16 18 18 8 18 20 16 14 18 20 12 18 16 18 22 20 18 16 16 18 16 14 18 12 16 14 14 16 18 16 20 14
0c 16 16 16 16 24 16 16 16 16 12 16 12 16 12 16 20 16 16 16 16 12 20 12 12 16 12 16 12 20 16 12 16
0d 16 18 18 16 18 20 16 14 18 12 16 14 8 18 18 16 18 16 16 18 20 18 14 16 16 22 18 20 14 20 12 14
0e 16 18 10 16 18 16 16 18 18 12 20 18 16 22 22 16 18 16 16 18 12 14 14 20 16 14 14 16 14 16 16 22
0f 16 16 16 8 16 12 16 12 16 12 20 16 16 16 12 20 16 16 16 16 12 16 20 16 16 20 20 16 12 12 16 16
10 16 18 18 16 18 16 16 18 18 16 16 18 16 18 18 16 10 24 12 14 16 18 22 20 16 18 14 12 18 16 12 14
11 16 16 16 16 16 12 16 12 16 16 16 16 16 12 16 12 24 16 12 20 16 12 20 16 16 16 12 12 16 20 12 16
12 16 16 16 16 16 16 16 16 16 16 20 12 16 16 20 12 8 8 12 20 16 16 20 12 16 16 16 16 16 16 16 16
13 16 18 18 16 18 12 16 14 18 16 12 22 16 14 14 16 10 16 20 22 16 14 14 16 16 18 18 16 18 20 16 22
14 16 16 16 16 8 16 16 16 16 16 16 16 8 16 16 16 16 16 20 20 12 20 16 16 16 16 12 12 20 12 16 16
15 16 18 18 16 18 12 16 22 18 16 16 18 16 14 18 20 18 8 20 14 20 18 18 20 16 18 14 12 14 16 16 14
16 16 18 18 16 18 16 8 18 18 16 20 14 16 18 14 12 18 16 20 14 12 14 18 16 16 18 18 16 22 20 20 14
17 16 16 16 16 16 20 16 12 16 16 12 20 16 20 12 16 16 8 12 12 12 16 16 20 16 16 16 16 20 16 12 16
18 16 16 16 16 16 16 16 16 24 12 16 20 16 12 16 12 16 16 12 12 16 16 12 12 16 20 12 16 16 12 20 16
19 16 18 18 16 18 12 16 14 10 20 16 14 16 18 18 16 18 16 12 14 16 22 14 16 16 22 14 16 18 16 20 22
1a 16 18 18 16 18 16 16 18 18 20 20 18 16 14 14 16 18 16 12 22 16 18 14 20 8 14 18 20 18 12 16 14
1b 16 16 16 16 16 12 16 12 16 12 12 16 16 16 20 12 16 16 20 12 16 20 20 16 8 12 16 20 16 16 16 16
1c 16 18 18 16 10 16 16 18 18 12 16 14 16 14 18 20 18 16 12 14 20 14 18 16 16 14 22 16 22 16 16 22
1d 16 16 16 16 16 12 16 20 16 20 16 20 8 16 16 16 16 16 12 12 12 16 16 12 16 12 20 16 12 20 16 16
1e 16 16 16 16 16 16 8 16 16 12 12 16 16 20 12 16 16 16 12 20 20 20 16 16 16 12 16 12 12 16 20 16
1f 16 18 18 16 18 20 16 14 18 20 20 18 16 18 14 12 18 16 20 14 20 18 18 12 16 14 18 12 14 12 12 22
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