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Abstract— We present the outcome of the latest edition of the 
CROHME competition, dedicated to on-line handwritten 
mathematical expression recognition. In addition to the 
standard full expression recognition task from previous 
competitions, CROHME 2014 features two new tasks. The first 
is dedicated to isolated symbol recognition including a reject 
option for invalid symbol hypotheses, and the second concerns 
recognizing expressions that contain matrices. System 
performance is improving relative to previous competitions. 
Data and evaluation tools used for the competition are publicly 
available. 
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I.  INTRODUCTION 
CROHME, which stands for Competition on Recognition 

of On-line Handwritten Mathematical Expressions, is now a 
well-established annual competition. This edition is the 
fourth in a series started in 2011 at ICDAR in Beijing [1], 
and then continued with ICFHR in Bari [2], and recently 
ICDAR in Washington [3]. There are a number of 
explanations for the sustained interest in these competitions. 
First, handwritten math recognition is a very challenging 
problem, which significantly increases difficulties associated 
with handwriting recognition. Not only is the number of 
symbol classes large (it has been fixed to 101 for CROHME 
2014), but more importantly, the two dimensional nature of 
the notation, as compared to the left-right layout of a 
standard text, greatly complicates the segmentation and 
interpretation stages. Second, the availability of an efficient 
mathematical recognition tool would be of a tremendous 
interest for everyone who is struggling to input expressions 
in a document or math-aware search engine [4]. And third, 
nowadays, many touching devices, from small digital pads to 
large white boards, are available and allow the user to write 
and store the corresponding ink traces. 

With this 2014 edition, we have introduced two major 
innovations. One of them is the introduction of a task related 
to isolated symbol classification (Task 1). It can be 
considered as a sub-task of the main problem of recognizing 
mathematical expressions. This task should be more 
accessible for newcomers to CROHME, since it requires 
only the design and training of a classifier. However, we 
have required that this classifier has the capability to reject 
invalid symbol segmentation hypotheses, where the input 
does not correspond to an actual symbol. The second change 

is a new task dealing with the recognition of matrices (Task 
3), which opens the competition to new mathematical 
domains. On the other hand, we have kept the main task 
dedicated to general mathematical expressions largely 
unchanged, by keeping the same symbol set, expression 
grammar, and training set (Task 2). Of course the test sets for 
all three tasks are new, with new writers and expressions.  

Table I summarizes the evolution of the CROHME 
competition in terms of tasks, expression grammars and 
symbol class sets, data sets for the traditional expression 
recognition task (Task 2) and participants. Roughly the same 
number of organizations participated in CROHME 2014 as 
CROHME 2013, but with the addition of two new tasks. 

TABLE I.  CROHME EVOLUTION 

2011 2012 2013 2014 
Expression Grammars 
 # Symbol Classes 

2 
60 

3 
75 

2 
101 

1 
101 

Task 2 Training expressions  
Task 2 Test expressions  

921 
348 

1 341 
486 

8 836 
671 

8 836 
986 

Participations for Task 1 
Participations for Task 2 
Participations for Task 3 

- 
4 
- 

- 
6 
- 

- 
8 
- 

8 
7 
2 

II. COMPETITION PROTOCOL AND DATA 
New test data for all three tasks, along with training data 

for the new matrix recognition task (Task 3) were collected 
by the three organizing labs: IRCCyN/IVC (France), 
RIT/DPRL (USA), and ISI/CVPR (India), ensuring a large 
variability in writing styles. Test expressions were selected 
from Wikipedia articles. 

Different capture devices were used to collect 
expressions by the three labs. Large white boards and tablet 
PC were used at IVC, expressions were drawn by finger on 
iPads at the DPRL, and a Wacom tablet with stylus was used 
at ISI. The training data are already publicly available on the 
TC11 website1. 

A. Isolated Symbol Recognition (Task 1) 
Given the importance of accurate symbol classification                      

for handwritten math recognition, a new task to evaluate 
symbol recognizers has been proposed. In this new task, 
symbols are extracted from complete handwritten 
expressions, and have not been written as single symbols. 

                                                           
1  http://www.iapr-
tc11.org/mediawiki/index.php/CROHME:_Competition_on_Recogniti
on_of_Online_Handwritten_Mathematical_Expressions 



Since symbols need to be segmented before being classified, 
we also consider mis-segmented (i.e. invalid) symbols. To 
produce samples of mis-segmented symbols, we have 
randomly selected sequences of one to four strokes written in 
time-order that do not correspond to valid symbols. This 
produces both under- and over-segmented symbols. Mis-
segmented symbols should be assigned to a reject class 
(junk). As seen in Table II, the proportion of valid symbols 
to junk in the test set is around 1:1 (i.e. roughly as invalid as 
valid symbols). We compare symbol classifiers two ways: 1) 
over valid symbols only, and 2) over both valid symbols and 
mis-segmented symbols. Table II provides additional 
information about the data sets used for Task 1. A script was 
provided that allowed participants to generate junk samples 
automatically from the training data provided for Task 2. 

As suggested by Tables II and IV, symbols used for Task 
1 were generated from test expressions in Task 2. 

TABLE II.  ISOLATED SYMBOL DATASETS (TASK 1) 

Training Set Valid Symbols 85 781 
Invalid Symb. (Junk)  User-specified (script) 

Test Set Valid Symbols 10 061 
Invalid Symb. (Junk) 9 161 

B. Matrix Recognition (Task 3) 
This task has been introduced to foster new research 

projects, since to date, few systems have been proposed to 
handle matrix notations. An expression with matrices can be 
considered as an expression with nested sub-expressions 
arranged in a tabular layout (i.e. in rows and columns). Thus 
to recognize expressions with matrices, systems must first 
detect the presence of one or more matrices, then their cells, 
the arrangement in rows and columns, and their contents, 
which can be any mathematical expression consistent with 
the grammar in task 2. Hence, a new representation has been 
proposed allowing multi-level evaluation that considers 
matrices, rows, columns, cells, and of course symbols. 

TABLE III.  MATRIX DATASETS (TASK 3) 

Training Set 
Matrices 362 
Number of cells  2 332 
Number of symbols 4 281 

Test Set 
Matrices 175 
Number of cells  1 075 
Number of symbols 2 101 

As can be seen from Table III the average number of 
cells per matrix is around 6, corresponding to a simple 2×3 
matrix, and there are about two symbols per cell on average. 
Examples of matrix expressions used in the competition are 
shown in Figure 1. 

 

 
Figure 1.  Two examples of expressions with matrices. 

C. Mathematical Expression Recognition (Task 2) 
Task 2 considers recognition of complete handwritten 

expressions, requiring systems to identify symbol locations 
and identities, along with the spatial layout of symbols. This 
is the core task of the competition. We have kept the same 
constraints as in 2013 the competition [3] focusing on Part 4 
from CROHME 2013, to allow for tracking progress. 

TABLE IV.  MATHEMATICAL EXPRESSIONS DATASETS (TASK 2) 

Training Set 
Expressions 8 836 
Number of symbols 85 781 

Test Set 
Expressions 986 
Number of symbols 10 061 

III. SYSTEM DESCRIPTION 
This section describes the eight participating teams that 

submitted a total of 16 systems to participate for the different 
tasks. Table V presents the affiliation and the tasks 
participation of each one. A brief description of each system 
is provided in the remainder of this section.2 

TABLE V.  CROHME PARTICIPANTS 

System Affiliation Tasks 
I Universitat Politècnica de València 1 – 2 – 3

II University of São Paulo 1 – 2
III MyScript 1 – 2 – 3
IV Rochester Institute of Technology, DRPL 1 – 2
V Rochester Institute of Technology, CIS 1 – 2

VI Tokyo University of Agriculture and Technology 1 – 2
VII University of Nantes, IRCCyN 2

VIII ILSP/Athena Research and Innovation Center 1 

A. Universitat Politècnica de València (System I) 
Two systems are proposed by F. Alvaro from Pattern 

Recognition and Human Language Technology (PRHLT) 
research center, Universitat Politècnica de València. 

Task 1. Given an isolated math symbol represented by a 
set of strokes, seven online features were computed for each 
point. Then, an image of the symbol was generated using 
linear interpolation, setting the image height to 40 pixels and 
keeping the aspect ratio. Nine offline features were extracted 
from each column of the rendered image. Finally, a BLSTM-
RNN classifier was trained for each set of features (online 
and offline) and the outputs of both classifiers were 
combined. A detailed description of this classifier and 
feature extraction (PRHLT + FKI) can be found in [5]. The 
rnnlib library3 was used and the feature extraction tools are 
also publicly available as open-source from 
www.prhlt.upv.es. 

Tasks 2 and 3. The seshat4 system parses expressions 
using two-dimensional stochastic context-free grammars. It 
is an advanced model evolution of the system presented 
in [6]. The parser first computes several hypotheses for 

                                                           
2  Note that systems IV and VII are from organizing labs. 
3  A. Graves, RNNLIB: A recurrent neural network library for 
sequence learning problems, http://sourceforge.net/projects/rnnl/ 
4  https://github.com/falvaro/seshat 



symbol segmentation and recognition at stroke level using 
several stochastic sources (symbol classifier, segmentation 
model and duration model). Symbol classification is 
performed by a combination of online and offline features 
with a BLSTM-RNN classifier [5] as in task 1. Then, the 
parser builds new hypotheses by combining smaller sub 
problems using a spatial relationship classifier (a Gaussian 
Mixture Model with geometric features). Finally, after 
parsing the most likely derivation tree represents the 
recognized math expression. Hence, symbol recognition, 
segmentation and the structural analysis are globally 
determined using the grammar and contextual information. 

For the matrix recognition task, we used the best system 
trained for task 2 with a grammar that accounts for matrices. 
There are mainly two differences in this task. First, the 
number of rows/columns must match when combining 
hypothesis in order to create a matrix. Second, the spatial 
relationships between rows or columns take into account the 
differences between the centers of each row/column. 

B. University of São Paulo (System II) 
This system is proposed by Frank Aguilar. 
Tasks 1 and 2. The recognition process is divided into 

three steps: (1) symbol hypotheses generation, (2) baseline 
tree extraction and (3) syntactical parsing. In the first step, 
each stroke is combined with its three nearest neighbor 
strokes. Each combination is considered as a symbol 
hypothesis. A symbol classifier with a reject option [7] is 
used to label each hypothesis with its corresponding symbol 
label or as a junk class (not a symbol). In the second step, 
several partitions, using the symbol hypotheses with the 
lowest cost, are generated and a baseline structure tree [8] is 
built for each partition. A cost that combines the symbol 
hypothesis costs and relation costs is assigned to each 
baseline tree. In the final step, the latex code of each baseline 
tree is extracted and a parser evaluates if it belongs to a 
predefined mathematical language grammar. The legal 
expression with lowest cost is selected for output. 

C. Myscript, formerly Vision Objects (System III) 
Task 1. The MyScript Isolated Symbol recognizer uses a 

two stage process: a feature extraction process followed by 
Neural Network (Multi-layer perceptron) classifiers that 
output a list of symbol candidates with recognition scores. 
The chosen feature set uses a combination of dynamic and 
static information. Dynamic information is extracted from 
the trajectory of the pen and is based on information such as 
the position, direction and curvature of the ink signal. Static 
features are computed from a bitmap representation of the 
ink and are typically based on projections and histograms.  

Tasks 2 and 3. The MyScript Math recognizer is an on-
line recognizer that processes digital ink. The overall 
recognition system is built on the principle that 
segmentation, recognition and interpretation have to be 
handled concurrently and at the same level in order to result 
in the best candidate.  

The Math recognition engine analyzes the spatial 
relationships between all the parts of the equation, in 
conformity with the rules laid down in its grammar, to 

determine the segmentation of all its parts. The grammar is 
defined by a set of rules describing how to parse an equation, 
each rule being associated with a specific spatial 
relationship. For instance a fraction rule defines a vertical 
relationship between a numerator, a fraction bar and a 
denominator. The matrix recognition uses a specific post-
processing to retrieve the rows and columns. 

The Math recognizer has also a symbol expert that 
estimates the probabilities for all the parts in the suggested 
segmentation. This expert is based on feature extraction 
stages, where different sets of features are computed. These 
feature sets use a combination of on-line and off-line 
information. The feature sets are processed by a set of 
character classifiers, which use Neural Networks and other 
pattern recognition paradigms. 

The Math recognition engine includes a statistical 
language model that uses context information between the 
different symbols depending on their spatial relationships in 
the equation. Statistics have been estimated on hundreds of 
thousands of equations. A global discriminant training 
scheme on the equation level with automatic learning of all 
classifier parameters and meta-parameters of the recognizer 
is employed for the overall training of the recognizer. The 
recognizer has been trained on writing samples that have 
been collected from writers in several countries. 

D. Rochester Institute of Technology, DRPL (System IV) 
This system was developed by K. Davila Castellanos and 

L. Hu from the Document and Pattern Recognition Lab 
(RIT) with some contributions by F. Alvaro (UPV). The 
systems are available as open source online.5 

Task 1. The symbol classifier by K. Davila is an SVM 
with a Gaussian Kernel trained for probabilistic classification 
[10] using a combination of on-line and off-line features. On-
line features include normalized line length, number of 
strokes, covariance of point coordinates, and the number of 
points with high variation in curvature and total angular 
variation. Off-line features include: normalized aspect ratio; 
the count, position of the first and position of the last times 
that traces intersect a set of lines at fixed horizontal and 
vertical positions (crossings); 2D fuzzy histograms of points 
and fuzzy histograms of orientations of the lines.  

Task 2. The segmenter considers strokes in time series, 
using AdaBoost with confidence-weighted predictions to 
determine whether to merge each pair of strokes [9]. The 
same classifier used in Task 1 is used for Task 2. The parser 
is a modified version of Eto and Suzuki’s MST-based 
parsing algorithm [11]. The parser recursively groups 
vertical structures (e.g. fractions, summations and square 
roots), extracts the dominant operator (e.g. fraction line) in 
each vertical group, and then detects symbols on the main 
baseline and on baselines in superscripted and subscripted 
regions. For each baseline, an MST is built over symbol 
candidates and the spatial relations between symbols. Spatial 
relationships are classified using bounding box geometry and 
a shape context feature for regions around symbol pairs [12]. 
 

                                                           
5  https://github.com/DPRL 



E. Rochester Institute of Technology, CIS (System V) 
This system is proposed by Wei Yao and Fan Wang from 

the Chester F. Carlson Center for Imaging Science (CIS). 
Tasks 1 and 2. The segmentation method is based on 

Hu’s work [9]. Given an expression with n strokes, the 
segmentation method considers merging or splitting the n-1 
stroke pairs in time order. For each stroke pair 405 features 
are measured: geometric features (23), multi-scale shape 
context features (180), and classification probabilities (202). 
Features are scaled and then reduced to 100 dimensions 
using PCA. Using LIBSVM6, an SVM with a radial basis 
function kernel is trained using cross validation and grid-
search to obtain the best observed parameter pair (C, γ).  

For classification, five features are used: pen-up/down, 
the density in the center of a 3×3 matrix containing symbol 
strokes, normalized y-coordinate, sine of curvature and 
cosine of vicinity from slope [13]. Features were then scaled.  

Segmented and classified symbols are then used as input 
for parsing. The first parsing stage detects "strong" geometric 
relationships (above, below and inside). To solve the 
above/below spatial relationships, we first search for 
symbols that horizontally overlap horizontal lines. Then we 
search for root symbols, to identify contained expressions. 
The expression is then split into several sub-expressions 
(numerator and denominator of a fraction, base of a square 
root, and remaining symbols) that do not contain the 
previous relationships. Then, shape feature Polar Histograms 
[12] are used to detect "weak" geometric relationships 
(Right, superscript and subscript). A polar histogram layout 
descriptor in 15 (distance) × 20 (angle) resolution is used to 
generate 300 features for each two adjacent symbols. After 
PCA reduction, SVM classifier is employed to classify 
relationships. 

F. Tokyo Univ. of Agriculture and Technology (System VI) 
This system was developed at Nakagawa Laboratory by 

Anh Duc Le, Truyen Van Phan, and Masaki Nakagawa. 
Task 1. The system normalizes each input symbol 

pattern with the Line Density Projection Interpolation 
(LDPI) normalization method. Then a 512D feature vector is 
extracted based on Normalization-Cooperated Gradient 
Feature (NCGF). The feature vector is reduced to 300D by 
FLDA. The reduced vector is classified by a Generalized 
Learning Vector Quantization (GLVQ) classifier. For 
classifying invalid symbols more accurately, patterns are 
clustered into 64 clusters by using the LBG algorithm for 
training.  

Task 2. The system is an upgrade of the system used in 
CROHME 2013. It contains 3 processes: symbol 
segmentation, symbol recognition, and structure analysis. 
We propose body box and a method to learn structural 
relations from training patterns without any heuristic 
decisions by using two SVM models. In structure analysis, 
we employ stroke order to reduce the complexity of the 
parsing algorithm to O(n3|P|) where n is the number of 
symbols, and P the number of production rules. The detail of 

                                                           
6  http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

our system is presented in [14]. We did not use more data 
than the CROHME 2013 training part to train the system and 
the CROHME 2013 testing part for validation. 

G. University of Nantes, IRCCyN (System VII) 
Tasks 2. This system simultaneously optimizes 

expression segmentation, symbol recognition, and 2-D 
structure recognition under the restriction of an expression 
grammar [15]. This strategy is adopted to prevent errors from 
propagating from one step to another. The approach 
transforms the recognition problem into a search for the best 
possible interpretation of a sequence of input strokes. 

The symbol classifier is a classical neural network, a 
Multilayer Perceptron, which has the capability to reject 
invalid segmentation hypotheses, unlike most existing 
systems. The originality of this system stems from the global 
learning schema, which allows training a symbol classifier 
directly from mathematical expressions. The advantage of 
this global learning is to consider the 'junk' examples (i.e. 
invalid symbol segments) and include them in the training 
set for the symbol classifier's reject class. Furthermore, 
contextual modeling based on structural analysis of the 
expression is employed, where the models are learnt directly 
from expressions using a global learning scheme. This global 
approach is applicable for other 2-D languages, for example, 
flowchart recognition [16]. 

H. Institute for Language and Speech Processing/Athena 
Research and Innovation Center (System VIII) 
Task 1. This system is based on a template elastic 

matching distance [17]. In this method, the pen-direction 
features are quantized using the 8-level Freeman chain 
coding scheme and the dominant points of the stroke are 
identified using the first difference of the chain code. The 
distance between two symbols results from the difference of 
the respective chain codes of the variable speed 
normalization of dominant points weighted by the local 
length proportions of the strokes. 

IV. RESULTS 
The results which are displayed in this section give only 

a partial view of the behavior of the different systems, a 
much more detailed analysis can be achieved by exploiting 
the information provided by the label graph evaluation tools 
[18]. Additional tables will be prepared and displayed on the 
CROHME website7. 

A. Isolated Symbol Recognition (Task 1) 
Two important behaviors of the proposed classifiers are 

evaluated: the accuracy of the classifier with respect to the 
true symbols, i.e. ignoring the junk class, and the ability of 
the classifier to accept true symbols while rejecting junk 
samples. The first issue is evaluated considering only the true 
symbols with the classical Top N recognition rate, the mean 
position of the true label is also provided. To evaluate the 
reject option of the classifier, in addition to the previous 
values, we compute the True Acceptance Rate (TAR is also 

                                                           
7  http://www.isical.ac.in/~crohme/ 



the recall rate for symbols) and the False Acceptance Rate 
(FAR). These rates do not depend of the ratio between the 
number of symbol and junk samples. Table VI presents these 
rates for all submitted systems. When a system does not 
include the reject option, n.r.o. will be displayed. 

TABLE VI.  ISOLATED SYMBOL RECOGNITION (TASK 1) 

System 

Without Junk 
(101 classes) 

With Junk 
(102 classes) (2 classes) 

Top1 
True 
Mean 

Position 
Top1 

True 
Mean 

Position 
TAR FAR 

I 91.24 1.20 n.r.o. 
89.79 1.25 84.14 1.28 80.29 6.44 

II 82.72 1.60 79.11 1.50 82.49 14.63 
III 91.04 1.19 85.54 1.23 87.12 10.39 
IV 88.66 1.27 83.61 1.29 83.52 9.03 
V 85.00 1.37 71.19 1.48 86.84 36.85 

VI 84.31 1.53 n.r.o 
82.08 1.63 76.24 1.57 77.98 16.47 

VIII 77.25 1.68 n.r.o 
 

As expected, performances are decreasing when the junk 
class, which covers many different configurations, has to be 
managed. The decrease is most of the time around 5% but 
reaches 14% for one system. Interestingly, the top 3 systems 
(III, I and IV) are based on different classifiers, respectively 
MLP, RNN, and SVM. The operating points that define the 
trade-off between TAR and FAR are a bit different for the 
different systems and it turns out that there is a larger 
difference in the FAR rates which are approximately ranging 
from 6% to 37% than in the TAR rates which are comprised 
between 78% and 87%. 

B. Matrix Recognition (Task 3) 
It has been possible to extend the approach based on the 

label graph metric used in the last CROHME competition. 
To this end, new object labels have been added to represent 
the specificities of matrices: cell, row, column, and matrix. 
In addition to the classical full expression recognition rate, 
and symbol and layout recall rates (as with task 2), it is also 
possible to extract recall rates for this four specific objects of 
interest. 

TABLE VII.  MATRIX RECOGNITION (TASK 3) 

 System I System III 
Expression Rate 31.15 53.28 
Symbol Reco Rate 87.43 89.81 
Matrix Recall Rate 73.14 92.57 
Row Recall Rate 70.59 92.00 
Column Recall Rate 50.84 69.16 
Cell Recall Rate 55.35 71.07 
 

Only two systems took part in this task. It can be noticed 
that this task is harder than regular mathematical expression 
recognition. However, for the first edition of this task, as 
presented in section II-B, the complexity of the expressions 
was moderated. As a matter of fact, at the expression level 
the best rate is 53.28%, somehow below the best rate 
displayed in Table IX. For the matrix case, the spatial 

relationships are more elaborated since every piece of ink 
has to be assigned the right symbol, cell, row and column for 
a perfect recognition. Looking at the other rows of Table VII, 
it is worth to note that rows are more correctly extracted than 
columns for both systems. 

C. Mathematical Expression Recognition (Task 2) 
A first experiment, presented in Table VIII compares on 

the same test set (Test set 2013), the performances of the 
previous systems [3] with the current ones (2014). Most of 
the systems succeed to improve their performances on the 
last year test set. This is an encouraging sign of progress, 
tempered to some degree by the possibility of using, 
intentionally or not, this test set as a validation set for tuning 
the meta-parameters of the 2014 systems. 

TABLE VIII.  MATHEMATICAL EXPRESSION RECOGNITION (TASK 2, ON 
TEST SET 2013, 671 EXPRESSIONS) 

System 

2013 
Syst. [3] 2014 Systems 

Correct 
(%) 

Correct 
(%) 

Segments 
(recall%) 

Seg+Class 
(recall%) 

Tree 
Relations 
(recall%) 

I 23.40 30.70 93.01 83.33 83.93 
II 9.39 15.05 74.84 63.58 57.73 
III 60.36 62.15 98.27 93.47 94.82 
IV 14.31 19.52 86.44 74.98 71.57 
V - 17.44 88.52 74.88 65.34 
VI 19.97 25.04 90.96 76.13 75.42 
VII 18.33 17.59 89.64 71.47 70.50 

The results on the new test set (2014) are provided in 
Tables IX and X. The rates at the expression level with no 
error, and with at most one to three errors are given in Table 
IX. In addition to the correct rate at the expression level, 
table X also provides recall and precision metrics for symbol 
segmentation (‘Segments’), detection of symbols with their 
correct classification (‘Seg+Class’), and spatial relationship 
detection. A correct spatial relationship between two 
symbols requires that both symbols are correctly segmented 
and in the right relationship. For spatial relationships, we use 
metrics based on edges in the symbol layout trees (‘Tree 
Rels.’). 

TABLE IX.  CORRECT EXPRESSION RECOGNITION RATE (SYSTEMS 
2014, TEST SET 2014, 10061 EXPRESSIONS). EXPRESSION LEVEL 

EVALUATION 

System  Correc (%)t <= 1 error <= 2 errors <= 3 errors 
I 37.22 44.22 47.26 50.20 
II 15.01 22.31 26.57 27.69 
III 62.68 72.31 75.15 76.88 
IV 18.97 28.19 32.35 33.37 
V 18.97 26.37 30.83 32.96 
VI 25.66 33.16 35.90 37.32 
VII 26.06 33.87 38.54 39.96 

 
To evaluate the complexity of 2014 versus 2013 test sets, 

we can compare each of the systems on these two datasets in 
Tables VIII and IX. We can observe a large stability, except 
for systems I and VII, which show an improvement around 8 
% on the new test set. One hypothesis is that the new test is a 
little bit simpler than the former although the mean number 



of symbols per expression has slightly increased from 9.06 to 
10.20.  

TABLE X.  MATHEMATICAL EXPRESSION RECOGNITION (SYSTEMS 
2014, TEST SET 2014, 10061 EXPRESSIONS). OBJECT LEVEL EVALUATION 

System Segments (%) Seg+Class (%) Tree Rels. (%) 
 Rec. Prec. Rec. Prec. Rec. Prec. 
I 93.31 90.72 86.59 84.18 84.23 81.96 
II 76.63 80.28 66.97 70.16 60.31 63.74 
III 98.42 98.13 93.91 93.63 94.26 94.01 
IV 85.52 86.09 76.64 77.15 70.78 71.51 
V 88.23 84.20 78.45 74.87 61.38 72.70 
VI 83.05 85.36 69.72 71.66 66.83 74.81 
VII 89.43 86.13 76.53 73.71 71.77 71.65 

 
It is also interesting to note that the large differences at 

expression level between the systems (cf. Table IX, from 
15.01% to 62.68%) are attenuated at the object level (cf 
Table X) in term of the segmentation (from 76.63% to 
98.42%), recognition (from 66.97% to 93.91%) or layout 
(from 60.31% to 94.26%). 

Table XI shows the raw Hamming distances between 
labeled graphs and the average percentage of mislabeled 
node and edge labels per expression (ΔBn) along with a 
variation designed to weight segmentation, classification and 
parsing decisions more equally (ΔE). It allows a more 
detailed analysis, e.g. we can see how are recognized the 
miss-segmented symbols. For example the system IV has 
less stroke label errors than system VII even if the seg+class 
rates are comparable. 

TABLE XI.  MATHEMATICAL EXPRESSION RECOGNITION (TASK 2, ON 
TEST SET 2014). STROKE AND STROKE TO STROKE LEVEL EVALUATION. 

(13 796 STROKES FROM 10 061 SYMBOLS, 288 660 STROKE PAIRS) 

System Label Hamming Distances µ error (%) 
 Strokes Pairs Seg Rel ΔBn ΔE 
I 2026 7174 2540 4634 6.23 11.98 
II 4523 17449 7772 9677 14.42 25.77 
III 845 2489 836 1653 2.21 4.56 
IV 3406 12768 5328 5328 9.98 19.17 
V 2742 13477 4386 9091 10.26 18.24 
VI 4039 13325 5670 7655 10.05 19.43 
VII 3558 11795 4388 7407 9.38 17.66 

V. CONCLUSION 
Eight groups from five different countries took part in 

this fourth edition of the CROHME competition. Concerning 
the results, for task 1, related to math symbol classification 
with a reject class, we can mention the close outcome since 
three systems are separated by less than 2%. The new task 3 
about matrix detection and recognition attracts only 2 
participants but shows the feasibility and the difficulty of this 
task. Seven systems participated in the main task 2 related to 
full expression recognition. The best system (III, MyScript) 
reaches 62.68% which is comparable to the previous 
competition in the same condition (using external private 
training data). The best system using only the CROHME 
datasets (I, UPV) improves significantly its results up to 
37.22%, maybe because of a stronger symbol classifier.  

The CROHME committee wants to highlight that some 
of the proposed systems are open sources (UPV, RIT), we 
hope that this will help the progress in this research domain. 
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