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Abstract

Approximate query answering systems provide
very fast alternatives to OLAP systems when ap-
plications are tolerant to small errors in query an-
swers. Current sampling-based approaches to ap-
proximately answer aggregate queries over for-
eign key joins suffer from the following drawback.
All tuples in relations are deemed equally impor-
tant for answering queries even though, in reality,
OLAP queries exhibit locality in their data access.
Consequently, they may waste precious real estate
by sampling tuples that are not required at all or
required very rarely.

In this paper, we introduce icicles, a new class of
samples that tune themselves to a dynamic work-
load. Intuitively, the probability of a tuple be-
ing present in an icicle is proportional to its im-
portance for answering queries in the workload.
Therefore, an icicle consists of more tuples from
a subset of the relation that is required to answer
more queries in the workload. Consequently, the
accuracy of approximate answers obtained by us-
ing icicles is better than a static uniform random
sample. We show, analytically, that for a certain
class of queries reflected by the workload, icicles
yield more accurate answers. In a detailed experi-
mental study, we examine the validity and perfor-
mance of icicles.
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1 Introduction

Advances in information collection and management have
enabled businesses to build large data warehouses contain-
ing data about customers and their daily business activity.
The realization that careful analysis of this data yields valu-
able business intelligence led to the emergence of on-line
analytic processing (OLAP) systems for decision support.
The goal of these systems is to provide interactive response
times to aggregate queries. However, very large database
sizes may not allow true interactivity despite careful design
and development of an OLAP system.

Approximate query answering (AQUA) systems are be-
ing developed with a goal to reduce response times to true
levels of interactivity [VL93, AGPR99b, CMN99, PG99,
SFB99, MS00]. That most decision support applications
can tolerate approximate answers to queries is exploited by
AQUA systems to achieve truly interactive response times.

Several approximate query answering approaches for
different data domains have been proposed: sampling-
based [AGPR99b, AGPR99a], histogram-based [PG99],
clustering-based [SFB99], probabilistic [MS00], and
wavelet-based [VW99] approaches. Both histogram-based
and wavelet-based approaches assume that attributes of un-
derlying relations are numerical. The sampling-based ap-
proach does not require such assumptions. Moreover, only
sampling-based approaches have been explored for approx-
imately answering aggregate queries over joins of relations.
Therefore, we consider sampling-based techniques in this
paper.1

Gibbons et al. introduce the concept of a join synop-
sis which, informally, is a uniform random sample over
foreign-key joins of relations [AGPR99b]. Depending on
the database schema they compute a set of join synopses to
approximately answer aggregate queries. However, such a
static sampling approach has the following drawback. All
tuples within each relation (or a foreign-key join of a set
of relations) are assumed to be equally important while
collecting a random sample. However, in practice, OLAP

1This is not to say that the sampling-based approach is qualitatively
better than others. In fact, other approaches may be enhanced in the same
way we enhance a sampling-based approach.
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queries follow a predictable repetitive pattern, and exhibit
locality in their data access [DSRN98]. Therefore, treat-
ing all tuples uniformly while sampling wastes precious
main-memory on tuples that are not required for answering
queries.

As an example, consider the data warehouse of the Wid-
get Tuners company that maintains all sales informa-
tion of widgets in United States over the past ten years.
A salesperson in the Madison office of Widget Tuners
may only be interested in analyzing the sale of widgets in
Wisconsin over the past one or two years. In such cases,
maintaining a uniform random sample over the entire rela-
tion wastes real estate because it samples sales information
on regions outside of Wisconsin for the last ten years, and
the early eight year window of Wisconsin sales. It may
waste more than 95% of the available main memory on
sampling unnecessary information. But, since we do not
a priori know the focus of analysis, a straight-forward ap-
proach of jacking up the sampling rate in a given region of
the relation cannot be applied.

In this paper, we address the above-mentioned drawback
of a static sampling strategy to answer aggregate queries
over foreign key joins. The intuition behind our approach
is to incrementally maintain a sample, called icicles,2 in
which the probability of a tuple being selected is propor-
tional to the frequency with which it is required to answer
queries (exactly). That is, the probability is proportional to
the number of query predicates in the workload that the tu-
ple satisfies. Therefore, an icicle is expected to consist of
more tuples in regions that are accessed more frequently to
answer queries. We exploit this property to provide more
accurate answers to aggregate queries. Our contributions in
this paper are:

1. We introduce a new class of samples, called icicles, to
capture the data locality exhibited by a set of aggregate
queries over foreign key joins.

2. We develop a dynamic algorithm that tunes an ici-
cle with respect to the most recent knowledge of the
workload (Section 3).

3. We develop estimators for average, count, and sum ag-
gregates to answer queries using icicles (Section 4).

4. We analytically show that icicles are better than static
samples for approximately answering a certain class of
queries that conform to the workload (Section 6).

5. In an extensive experimental evaluation, we compare
the performance of icicles with (static) join synopses
(Section 7).

2 Icicles
In this section, we discuss informally the intuition behind
icicles, the algorithm for maintaining icicles, and the prob-
lem in using traditional estimators with icicles. We start

2The number of accesses to tuples in a workload-sensitive sample rel-
ative to that over tuples in the relation resembles an icicle.
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with a brief discussion of earlier work on sampling-based
approaches for approximately answering aggregate queries.

Gibbons et al. [AGPR99b] and Chaud-
huri et al. [CMN99] showed that a join of random
samples of base relations may not be a random sample of
the join of base relations. Gibbons et al. exploit the prop-
erty that relations in many decision support applications
are connected by foreign key relationships. For instance,
in a star schema, the fact table and dimension tables are
connected by foreign key relationships, and queries over
such schema typically involve foreign key joins. They
introduced the concept of a join synopsis, which is the join
of a uniform random sample of the fact table with a set of
dimension tables. Any aggregate query involving the fact
table can now be answered approximately using exactly
one of a small number of synopses.

Example 2.1 As a running example, we consider the TPC-
D database [Cou95] shown in Figure 1. It consists of the
following relations: Lineitem (LI), Order (O),
Customer (C), Part (P), PartSupp (PS),
Supplier (S), Nation (N), and Region
(R). LI is the fact table and O, P, S are constrained by
foreign key relationships with the LI table. The complete
schema is shown as a directed graph in Figure 1 wherein
a directed edge from relation A to relation B captures the
existence of a foreign key constraint from A to B. A query
Q derived from query 5 in the TPC-D benchmark is shown
below. Note that all joins in the query are foreign key joins.
Therefore, this query can be answered approximately using
a join synopsis on the join of LI, C, O, S, N, and R
relations.

SELECT COUNT(*), AVG(LI Extendedprice),
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SUM(LI Extendedprice)
FROM LI, C, O, S, N, R
WHERE C Custkey=O Custkey AND O Orderkey=LI Orderkey
AND LI Suppkey=S Suppkey AND C Nationkey=N Nationkey
AND N Regionkey=R Regionkey AND R Name=North America
AND O Orderdate≥01-01-1998 AND O Orderdate≤12-31-1998;

In the above TPC-D example query that typifies decision
support queries, an analyst is interested in sales in the North
American continent for the year 1998. Analysts in North
America are unlikely to be very interested in sales in other
continents. Therefore, all their queries may be focused on
the sales after 1998 in North America. In such cases, a uni-
form random sample of the entire relation wastes precious
main-memory by drawing a significant number of tuples
from sets of tuples that are not as “important” for answering
queries. The space is better utilized if more sample tuples
are gathered from 1998 sales in North America resulting in
a significant improvement of the accuracy of approximate
answers.

Note that we do not a priori know the subset or sets of
subsets on which the analysis is focused. Moreover, the fo-
cus may change with time. Therefore, we have to automati-
cally identify the focus of a query workload and sample ac-
cordingly. We introduce a new class of workload-sensitive
samples, called icicles, that capture the data locality exhib-
ited by queries in the workload. An icicle is a uniform ran-
dom sample of a multiset of tuples L, which is the union of
R and all sets of tuples that were required to answer queries
in the workload. We call L the extension of R with respect
to the workload.

We maintain an icicle of a relation R (or a foreign key
join of relations) as follows. To start with, L is exactly the
same as R, and an icicle is a uniform random sample of R.
For each query Q on R, we derive a multiset L′ by append-
ing to L the set of all tuples in R that satisfy the query pred-
icate (and hence were required to answer Q). The icicle is
now updated to be a random sample of the new multiset L′.
We use the reservoir sampling algorithm [Vit85] to maintain
the invariant that an icicle is a random sample of L. (Note
that the algorithm for updating icicles only accesses the new
block of data that is logically appended to L.) Therefore, if
a particular set of tuples is retrieved for a lot of queries then
an icicle is expected to consist of a greater proportion of
tuples from this set.

2.1 Icicle-based Estimators

An icicle is a non-uniform sample of the original relation.
Hence, traditional estimators for aggregate operators can-
not always be applied directly. For instance, consider the
TPC-D query Q shown in Example 2.1. Suppose the size of
the lineitem relation LI consists of 1000000 tuples and the
sample consists of 1000 tuples. Suppose LI(Q) consists of
100000 tuples. A uniform random sample of LI is expected
to consist of 100 tuples from LI(Q). Starting with a ran-
dom sample of relation LI , if the count query is executed

five times, the number of tuples from LI(Q) in the icicle is
expected to increase by five times to 500. However, the size
of the extension of L increases marginally by an amount
5 · |LI(Q)| to a value 1500000. It is easy to see that the
traditional estimation of scaling up the count from a sample
S of LI by a factor of |LI|

|S| is way off the mark!
We need new estimators for providing more accurate an-

swers. In Section 4, we derive icicle-based estimators for
the average, count, and sum aggregate operators. The basic
idea is to maintain additional information to adjust for the
selection bias in an icicle. We maintain a set of frequencies,
one per tuple in the relation, where the frequency of a tuple
is the number of times it was required to answer queries in
the workload.

2.2 Quality Guarantees

The accuracy of an approximate answer is expected to in-
crease with the number of tuples in the sample that were ac-
tually used to compute it. Since we expect an icicle to con-
tain a greater proportion of tuples from frequently accessed
sets of tuples, the quality of answers computed using these
sets is better. If the number of queries that use such fre-
quent sets is much greater than the number of queries that
do not, the average quality of answers improves as well.
Under the assumption that the past workload reflects the
future workload, we expect that an icicle provides more ac-
curate answers than a statically collected uniform random
sample of the relation. In Section 6, we show analytically
that for a broad class of queries computing averages, ici-
cles are expected to provide more accurate answers than
simple uniform random samples. However, if an occasional
query does not conform to the workload or if the workload
changes drastically, then the accuracy of the approximation
for that query or for a set of queries is worse than a static
sample. But, as shown in Section 7, icicles adapt quickly to
a workload. Therefore, such sudden changes in a workload
will deteriorate performance only for a short period of time.

2.3 Sampling Over Foreign Key Joins and Base Rela-
tions

Due to the results in [AGPR99b, CMN99], we focus on an-
swering aggregate queries involving only foreign key joins
(especially, joins between fact tables and dimension tables).
Since join synopses are uniform random samples over for-
eign key joins of a set of base relations, any query in the
targeted class can be answered using only one of a small
number of join synopses.3 Therefore, maintaining join syn-
opses is conceptually equivalent to maintaining a set of uni-
form random samples, each drawn from a single (logical)
relation. Therefore, in the algorithmic description, we as-
sume that samples are being drawn from single relations.
However, in our experimental study, we evaluate the per-
formance of icicles for answering aggregate queries over
foreign-key joins. To avoid any confusion with the precise

3The total number of such foreign key joins in a star schema is limited
([AGPR99b]).
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definition of a join synopsis (see [AGPR99b]), we use the
term static sample instead of join synopsis.

3 Icicle Maintenance

In this section, we introduce our notation and definitions.
We then describe the algorithm for maintaining icicles with
respect to a dynamically changing workload.

3.1 Definitions and Notation

We now introduce our terminology beginning with some
basic notation. Following the reasons discussed earlier, we
assume that icicles are drawn from single relations. In this
paper, we study the class of average, count, and sum aggre-
gate operators.

We use A(Q) to denote a query involving the aggregate
A (one of average, count, or sum). A workloadQ is a set of
aggregate queries. If S is a multiset of tuples, we use S̃ to
denote the set of distinct tuples in S. Let S1 and S2 be two
multisets. We use S1 ] S2 to denote the multiset-union of
S1 and S2. That is, an element is repeated in the result once
for every appearance in either S1 or S2.

For the remainder of this section, we assume that R is a
relation andQ is a workload. We use A(Q, R) to denote the
exact answer for the aggregate query A(Q) over the relation
R.

Given R and a query A(Q), the query-relevant subset
R(Q) of R for A(Q) is the set of tuples in R that satisfy the
query predicate. R(Q) is also the minimal set of tuples in
R that are required to exactly answer A(Q). Note that the
subset R(Q) of R is independent of the query processing
algorithm. An algorithm may scan the entire relation R and
determine the (minimal) subset required to answer A(Q), or
it may retrieve the minimal subset through an index-scan.

Definition 3.1 The frequency relation F (R,Q) =
{f(t, R,Q)|t ∈ R} is a set of frequencies one for every tu-
ple t ∈ R where, f(t, R,Q) =

∑

Q∈Q t ∈ R(Q). That is,
the frequency with respect toQ of a tuple t ∈ R is the num-
ber of queries in Q whose query-relevant subsets contain t.
The frequency sum σ(R,Q) is the sum of all frequencies in
F (R,Q). That is, σ(R,Q) =

∑

t∈R f(t, R,Q). �

A workload where all tuples in a relation are retrieved
equally frequently to answer queries in the workload is
called the uniform workload. Let F (R, U) represent a uni-
form workload on R. Then, for any t ∈ R, f(t, R, U) = c
for some non-negative integer c. Without loss of generality,
we assume that c = 1.

Definition 3.2 The extension L(R,Q) of R with respect to
Q is defined as follows.

L(R,Q) = R ]Q∈Q R(Q)

An icicle S(R,Q) of R with respect to Q is a uniform ran-
dom sample of L(R,Q). �

3.2 Maintenance Algorithm

We now describe our algorithm to maintain an icicle over a
single relation. We then generalize it to a set of icicles over
a set of relations.

Intuitively, we maintain an icicle such that, at all times,
the probability of a tuple’s presence in the icicle is propor-
tional to its “importance” in answering queries in a work-
load. We quantify the importance of a tuple to be its fre-
quency with respect to the workload. Hence, we maintain
an icicle such that a tuple is selected with a probability pro-
portional to its frequency. However, we do not want to scan
the complete relation whenever we update the icicle. The
efficient incremental maintenance of an icicle is possible
due to the following two observations. First, a uniform ran-
dom sample of the extension of a relation R with respect to
a workload ensures that each tuple’s selection in the icicle is
proportional to its frequency. Second, incremental mainte-
nance of a random sample of the extension of R only re-
quires the segment R(Q) of the relation each time a new
query A(Q) is answered by the system. We use the reser-
voir sampling algorithm [Vit85] to maintain a random sam-
ple of the extension.

As mentioned in Section 2.1, we maintain the frequency
relation to derive good estimates for aggregate queries. For
clarity in presentation, we treat the maintenance of the fre-
quency relation F (R,Q) independently. However, in Sec-
tion 5, we describe in detail the maintenance of the fre-
quency relation. For now, we assume that a routine to up-
date frequencies of a set of tuples exists.

Algorithm 3.1 UpdateIcicle(L(R,Q), S(R,Q), A(Q))
/* L(R,Q):extension of R, S(R,Q):icicle, A(Q):new
query */
begin

Step 1: Compute R(A(Q)).
Step 3: Set L(R,Q) = L(R,Q) ] R(A(Q)).
Step 2: Update S(R,Q) such that it is a uniform

random sample of the updated L(R,Q).
Step 4: Increment the frequencies in F (R,Q) of

each tuple t ∈ R(A(Q)).
end

The pseudocode for the algorithm to update icicles is
presented above. At any instant, an icicle S(R,Q) is a uni-
form random sample of L(R,Q). Conceptually, we stream
each tuple being appended to L(R,Q) through a reser-
voir sampling procedure [Vit85] that maintains a uniform
random sample of L(R,Q).4 When a new query A(Q)
is added to the workload Q, we stream tuples in R(Q)
through the reservoir sampling procedure to update the ici-
cle S(R,Q) such that it is a uniform random sample of
L(R,Q) ] R(Q). Even though the pseudocode serializes
steps 1 and 2, we pipeline the streaming operator into the

4The reservoir sampling algorithm maintains a uniform random sample
of the relation as follows: it scans the relation one tuple at a time and
randomly decides whether to insert it into the sample. If the tuple is added
to the sample, another tuple in the sample is kicked out.
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reservoir sampling procedure. Thus, we do not need to si-
multaneously store all of R(Q) in-memory. Also, note that
L(R,Q) is not explicitly materialized at all.

3.2.1 Workload Restriction

Note that the icicle-maintenance algorithm accesses all tu-
ples in the set R(Q) that satisfy the query predicate of a
query A(Q). Therefore, the amount of work done to update
an icicle is almost the same as the work done to answer the
query exactly. If the workload includes queries where a user
is happy with just an approximate answer, the overhead in
maintaining icicles is significant. Therefore, we restrict the
workload to only consist of queries in the system that re-
quire exact answers to queries.5 This restriction allows us
to update icicles for free because tuning an icicle with re-
spect to a new query A(Q) requires the set R(Q) of tuples
that satisfy the query predicate. Observe that this set of tu-
ples would have been retrieved anyway for answering the
query, and hence we do not perform any additional work
for updating the icicle if we piggyback the update with the
processing for the query.

Restricting the workload to only consist of exactly an-
swered queries is reasonable because we expect a typical
data analysis session to proceed as follows. Analysts de-
rive their initial conclusions on data characteristics based on
an approximate or cursory analysis where they can tolerate
small errors. To confirm their initial conclusions realized
from an interactive exploratory session, they issue one or
more queries to be answered exactly. Therefore, the final
exactly-answered queries are actual queries of interest and
are likely to be representative of the true workload. Because
the interactive approximate querying session leads an ana-
lyst to the final set of interesting queries, it is indispensable.

Note that duplicates of tuples may be present in an
icicle because a tuple may be required several times to
answer queries in a workload. It is possible to col-
lapse such duplicates together by maintaining a count of
the number of times a tuple appears in the icicle. Gib-
bons et al. showed that this approach is better than maintain-
ing duplicates [GM98]. To avoid muddling the performance
study of icicles with improvements due to collapsing dupli-
cates, we stick with the straight-forward implementation of
icicles that allows duplicate tuples. However, note that this
optimization only improves the performance of icicles.

Example 3.1 We illustrate our icicle-maintenance algo-
rithm through an example. Consider a hypothetical Widget-
Tuners relation shown in Figure 3. We add a new frequency
attribute to the schema of the relation to hold frequencies
of tuples. A hypothetical icicle created from a hypotheti-
cal workload is shown in Figure 4. Suppose the following
query is asked by an analyst to compute the average of all
sales in the month of April.

SELECT average(*) FROM Widget-Tuners
WHERE Date.Month=’April’;

5Alternative restrictions like choosing only a subset of all queries may
also be possible.

We require the two April tuples corresponding to orders
5 and 6 in Figure 3 to answer the above query exactly. The
set {OrderId = 5, OrderId = 6} consisting of these
two tuples is (conceptually) appended to the extension of
Widget-tuners. We now update the icicle such that it is a
random sample of the updated extension. Suppose the up-
dated icicle is as shown in Figure 5. Note that we increment
the frequencies of tuples corresponding to orders 5 and 6,
and that these updates are reflected in the updated icicle.

3.2.2 Maintaining Multiple Icicles

Previously, we described an algorithm for maintaining an
icicle on a single relation. We now extend it to multiple
relations. The extension relies on the partitionability of the
workload into a set of workloads, one per relation.

Recall that our target class of queries is the class of ag-
gregate (average, count, and sum) queries over foreign key
joins. As discussed earlier, this class is equivalent to a class
of single-table queries where tables may be formed from
foreign-key joins of a set of relations. Any query may be
answered using exactly one icicle on a relation. (It is a fall-
out of the fact that icicles are “tuned” synopses.) There-
fore, the overall workload can be partitioned into several
independent workloads, one for each relation. Due to the
properties that the workload is partitionable and that queries
access a single table, we can independently maintain ici-
cles on relations. That is, the maintenance of an icicle on
one relation does not depend on how an icicle on a differ-
ent relation is maintained. Given a certain amount of space
to maintain icicles, we distribute the available space among
them and maintain each icicle independently. Any space-
partitioning strategy to distribute space among icicles may
be used here. We refer the reader to the work by Gib-
bons et al. [AGPR99b] for a detailed discussion of several
strategies. We now formalize this procedure.

Let R1, . . . , Rk be k relations. Let Q = Q1 ] · · · ] Qk

be a workload where queries in Qi only access the relation
Ri. Let M be the amount of space allocated for maintaining
icicles. We maintain k icicles as follows. Using any space
allocation strategy, allocate space Mi to an icicle S(Ri,Qi)
on relation Ri, 1 ≤ i ≤ k. For a query Q ∈ Qi, we update
the icicle S(Ri,Qi) using the UpdateIcicle Algorithm.

4 Estimators for Aggregate Queries
In the previous section, we described how we maintain
an icicle with respect to a changing workload. We now
describe the methodology of answering aggregate queries
using the icicle. Due to the presence of duplicates and the
selection bias (or non-uniformity) in an icicle, traditional
estimators (e.g.,[Olk93, AGPR99b]) do not apply directly.
An example was discussed in Section 2.1 to illustrate this
problem. We now derive icicle-based estimators for the
average, count, and sum aggregate operators. We first
discuss the intuition behind our aggregate estimators,
and then formalize them in Lemma 4.1. (Due to space
constraints, we do not present the proof of the lemma.)
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OrderID Date Price Frequency
1 01-Jan-1998 100 3
2 01-Feb-1998 200 1
3 01-Feb-1998 150 1
4 01-Mar-1998 125 1
5 01-Apr-1998 120 2→ 3
6 01-Apr-1998 140 2→ 3

Figure 3: Widget-tuners

OID Date Price Frequency
1 01-Jan-1998 100 3
4 01-Mar-1998 125 1
6 01-Apr-1998 140 2

Figure 4: An icicle of Widget-tuners

OID Date Price Frequency
1 01-Jan-1998 100 3
5 01-Apr-1998 120 3
6 01-Apr-1998 140 3

Figure 5: Updated icicle of Widget-Tuners

When the sum or average is being computed, we use X to
denote the aggregated attribute.

Average: We assume that for any query A(Q) the value
a tuple t ∈ R(Q) assumes for the aggregated attribute X
is independent of the probability that t is present in the
icicle. That is, the distribution of values of X in the set of
tuples accessed by the query from the icicle is the same as
that in R(Q). Under this assumption, the average of the
set of distinct sample tuples that satisfy a given average
query is a good estimate of the average. Note that our
assumption is similar to the (implicit) assumption made by
Gibbons et al. [AGPR99b]. Their assumption was that the
value distribution of an attribute is independent of query
predicates which, in turn, determine the probability of a
tuple’s presence in an icicle.

Count: Intuitively, we expect each tuple in an icicle to
correspond to a set of tuples in the original relation R. We
first compute an estimate of the number of tuples in R that
contribute one tuple t in the icicle. We call this value the
expected contribution of t. We then estimate the count
aggregate to be the sum of expected contributions of all
tuples in the icicle that satisfy the given query.

Sum: Under the assumption that for any query A(Q), the
value a tuple t ∈ R(Q) assumes for the aggregated attribute
X is independent of the probability that t is present in the
icicle, the average and the count aggregates are independent
of each other. Therefore, the estimate of the sum aggregate
is given by the product of the average and count estimates.

Lemma 4.1 Let A(Q) be an aggregate query over the rela-
tion R, and S = S(R,Q) be an icicle over R with respect
to a workload Q. Let F (R,Q) be the frequency relation.
Let the probability of a tuple t being present in S be inde-
pendent of the probability that t assumes a certain value for
an aggregated attribute X . Then E[A(Q, R)]

=











E[A(Q, S̃)], if A=avg
σ(R,Q)
|S|

∑

t∈S(Q)
1

f(t,R,Q) if A=count

E[avg(Q, S̃)] · E[count(Q, S)], if A=sum

5 Maintaining the Frequency Relation

Recall that we maintain the frequency associated with each
tuple for estimating count queries. We now discuss an
efficient procedure for maintaining the frequency relation
F (R,Q) of a relation R with respect to a workload Q.

To hold the frequency for each tuple, we add a new
frequency attribute to the relation R. To start with, the
frequency of each tuple is set to 1. The frequency of a
tuple is incremented whenever it is accessed to answer a
query. Therefore, whenever we update an icicle with a new
query, we update frequencies of all tuples required to an-
swer the query. Consequently, the frequency column is
update-intensive. Even though these updates may be per-
formed off-line when the system is idle, they still constitute
a significant overhead. We now describe an efficient pro-
cedure for updating frequencies of tuples that exploits the
following two properties. First, frequencies need not be
maintained up-to-date. That is, it is not absolutely neces-
sary to immediately update the frequency of a tuple when-
ever it is accessed by a query. Second, data analysis queries
exhibit data locality. Therefore, frequencies of a significant
portion of often-accessed tuples can be maintained in main
memory.

The intuition behind our approach is to delay updating
the frequency of a tuple until the magnitude of the change
in frequency crosses a certain threshold. The delay helps
to batch several related updates (either on the same tuple or
on distinct tuples) together thus significantly reducing the
overall number of updates. We maintain a main-memory
hash table consisting of two attributes: tuple identifier and
count. The count for a tuple t in the hash table is the number
of times t was required to answer queries since the last time
the frequency f(t, R,Q) of t has been updated on disk. The
hash table maintains a set of tuples and the counts associ-
ated with them.

Whenever a tuple t that is required to answer a query, is
read into main memory, we check if t is present in the hash
table. If not, we add t to the hash table and set its count to
1. If t is present in the hash table, we increment its count
in the hash table. If the count crosses a threshold C (fixed a
priori), we update the frequency f(t, R,Q) of t on the disk
and delete t from the hash table. We may further optimize
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this algorithm by updating frequencies of all other tuples in
the hash table that belong to the same disk page as t.

5.1 Special Case of the Average Operator

We now discuss a very important optimization for the spe-
cial case when we are only interested in answering queries
that compute averages. We observe that we do not need to
maintain the frequency relation if we restrict ourselves to
answering queries with the average operator.

Recall that estimators for the count and the sum aggre-
gate operators require frequencies of tuples in their compu-
tation while the computation of the estimate for the average
operator does not (Section 4). Also, note that the frequency
relation is not required for any purpose other than estimat-
ing count and sum aggregate operators. Therefore, if we
restrict the class of queries to be answered approximately
to the class of aggregate queries computing averages, then
we do not need to maintain frequencies of tuples. Thus, re-
stricting the query class significantly reduces the costs for
maintaining icicles.

6 Quality Guarantees
In this section, we compare the quality of answers obtained
from icicles with answers obtained from static samples.
When queries in a workload exhibit data locality, then ici-
cles consist of more tuples from frequently accessed sub-
sets of the relation. The accuracy of an approximate an-
swer improves with the number of tuples used to compute it.
Therefore, if a new query reflects the data locality of earlier
queries in the workload, then the icicle-based answer to this
query is more accurate than that based on a uniform random
sample of the relation. We now prove that icicles provide
more accurate answers for a certain class of queries com-
puting averages. Intuitively, this class consists of queries
“focused” with respect to the workload that created an ici-
cle.

We say that a query A(Q) is focused with respect to a
workload Q if any tuple in the set R(Q) is, on an average,
accessed more often by queries in Q than queries in a uni-
form workload. That is, for a query A(Q) over the relation
R, the average frequency with respect to Q of a tuple in
R(Q) is greater than that for a uniform workload. We now
formalize this notion below.

Definition 6.1 Let R be a relation and Q be a workload.
Let F (R,Q) be the frequency relation of R with respect
to Q. Let σ(R,Q) =

∑

t∈R f(t, R,Q). We say that an
aggregate query A(Q) is focused with respect to Q if

∑

t∈R(Q) f(R, t,Q)

σ(R,Q)
≥
|R(Q)|

|R|

�

Lemma 6.1 Let R be a relation, Q be a workload, and
F (R,Q) be the frequency relation of R with respect to Q.

Let σ(R,Q) =
∑

t∈R f(t, R,Q). Let S(R,Q) be an ici-
cle created by Q and S be a uniform random sample of
R. The expected fraction of R(Q) tuples in S is |R(Q)|

|R| ,
and the expected fraction of R(Q) tuples in S(R,Q) is
∑

t∈R(Q)
f(t,R,Q)

σ(R,Q) .

Theorem 6.1 Let R be a relation, Q be a workload on R,
and F (R,Q) be the frequency relation of R with respect
to Q. Let S(R,Q) be an icicle on R. Let S be a uniform
random sample on R. If a query average(Q) is focused
with respect to Q, then the icicle S(R,Q) yields a more
accurate estimate for average(Q) than the uniform random
sample S.

The above theorem follows from Lemma 6.1. We now
present a straight-forward extension of Theorem 6.1 to mul-
tiple relations. The extension merely relies on the partition-
ability of the workload and that the amount of space allo-
cated to each icicle and the corresponding uniform static
sample on a relation are equal.

Corollary 6.1 Let R1, . . . , Rk be k relations. Let the work-
load Q = Q1 ∪ · · · ∪ Qk be such that any query Q ∈ Qi

only accesses relation Ri. For 1 ≤ i ≤ k, let Si be a
uniform random sample of Ri and S(Ri,Qi) be an ici-
cle on Ri with respect to the workload Qi such that |Si| =
|S(Ri,Qi)|. Then a query average(Qi) focused with re-
spect to the workload Qi will be answered more accurately
by S(Ri,Qi).

7 Performance Evaluation
In this section, we evaluate the accuracy of answers, ob-
tained from icicles, to aggregate queries for a wide variety
of workloads, and their adaptability to the characteristics of
a workload.

7.1 Experimental Testbed

We now describe our experimental setup and briefly outline
our experimental procedure. We use the TPC-D decision
support benchmark to generate a variety of workloads.
Using a scale factor of 0.3, we generate 300 megabytes of
test data.

Workload Characteristics and Parameters: We fix the
number of queries in a workload to be 40. We use the
query Qworkload shown in Figure 6 to generate workloads.
(Qworkload is derived from the query Q5 of the TPC-D
benchmark.) The query has two parameters: region and
start date. Region takes values from the set {AFRICA,
AMERICA, ASIA, EUROPE, MIDDLE-EAST}. The start
date may vary between 01-01-1993 and 06-31-1998. A
workload is characterized by the number of frequently ac-
cessed groups of tuples in a relation, and the relative size
of each group. The number of frequently accessed groups
is varied using the region attribute. We vary the sizes of
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SELECT COUNT(*), AVG(LI Extendedprice), SUM(LI Extendedprice)
FROM LI, C, O, S, N, R
WHERE C Custkey=O Custkey AND O Orderkey=LI Orderkey AND LI Suppkey=S Suppkey AND

C Nationkey = N Nationkey AND N Regionkey = R Regionkey AND
R Name = [region] AND O Orderdate ≥ Date[startdate] AND O Orderdate ≤ 12-31-1998

Figure 6: Qworkload: Template for generating workloads

SELECT COUNT(*), AVG(LI Extendedprice), SUM(LI Extendedprice)
FROM LICOS-icicle, N, R
WHERE C Nationkey = N Nationkey AND N Regionkey = R Regionkey AND

R Name = [region] AND O Orderdate ≥ Date[startdate] AND O Orderdate ≤ 12-31-1998

Figure 7: Template for obtaining approximate answers

frequently-accessed groups by varying the start date pa-
rameter (both month and year components) appropriately.
Note that the relative size of a group of tuples accessed by
a query equals the selectivity of the query predicate. We
generate queries in the workload by setting (with an ele-
ment of randomness) the region and start date parameters
of Qworkload.

The join synopsis LICOS we use to answer the query
Qworkload in Figure 6 is a uniform random sample of the
join of lineitem LI , customer C, order O, and
supplier S relations. An icicle is a tuned sample of
this synopsis. The query, corresponding to Qworkload, for
obtaining an approximate answer from an icicle is shown
in Figure 7. (A similar query is used for using a join
synopsis.) We fix the sizes of an icicle or a static sample
on LICOS join to be 1% of the size of the join of all four
relations.

Relative Error: For each query A(Q) on the relation R,
we compute the relative error for an answer ÂS(Q, R) ob-
tained using a sample S on R as follows. (We assume that
the exact answer A(Q, R) > 0.)

relative-error(S, Q) =
|ÂS(Q, R)−A(Q, R)|

A(Q, R)

Plots for each Workload: For each workload, we show
three plots. The first plot (indexed by the legend static sam-
ple) corresponds to the errors incurred by a static uniform
random sample (join synopsis) of the join of LI , C, O, and
S. The second plot (indexed by the legend icicle) shows the
errors from an icicle as it evolves with the workload. That
is, after each query in the workload is answered by the sys-
tem, we update the icicle; the subsequent query is answered
by the updated icicle. The third plot (indexed by the legend
icicle-complete) shows the errors from a tuned icicle cre-
ated by executing the entire workload. That is, we first cre-
ate an icicle “tuned” with respect to queries in a workload.
We then answer all queries in the (same) workload (again)
using the tuned icicle and compute the error. Intuitively,
this plot corresponds to the best possible accuracy from an
icicle of a given size. Of course, this is not a feasible evalu-
ation strategy; it is only intended as a way to compare how

our proposed evaluation compares in terms of a sampling
strategy that has foreknowledge of the entire workload. We
only show the plots for average and count estimators be-
cause the behavior of the sum estimator is already captured
by these two estimators.

7.2 Quality of Approximate Answers

In this experiment, we study the accuracy of aggregate
query answers obtained from icicles on both synthetic and
real datasets.

7.2.1 Varying Selectivities

In this experiment, we fix the number of frequently ac-
cessed groups at 1, and vary the relative size of a frequently
accessed group. Queries in the workload are derived from
Qworkload. We fix the region parameter to be ASIA. We
study the behavior on two such workloads. In the first
workload, we fix the year component of the start date to
1998 and vary the month component between January
and June. In the second workload, we fix the year com-
ponent of the start date to 1997 and vary the month com-
ponent between January and December. Note that the
size of the frequently accessed group in the first work-
load (year=1998) is much smaller than that for the second
workload (year=1997). We first show the 1998 plots (Fig-
ures 8 and 9), and then the 1997 plots (Figures 10 and 11).

Figures 8 and 9 demonstrate the rapid decrease in rela-
tive error of query answers obtained from icicles as more
queries focused on a core set of tuples are added to the
workload, and the icicle updated with tuples required to an-
swer them. Note that the relative error of query answers ob-
tained from icicles decreases significantly from 25% to 5%.
Also, observe that the icicle plot converges to the icicle-
complete plot even before 20 queries are answered. The
quick convergence of the icicle plot to the icicle-complete
plot demonstrates that icicles adapt quickly to the workload
characteristics.

The results for the 1997 plots are shown in Fig-
ures 10 and 11. The conclusions are similar. Even though
the relative error in answers from icicles stabilizes around
5% (as for 1998 plots), the relative improvement in accu-
racy due to the use of icicles is less than that for 1998 be-
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Figure 8: Average Queries Figure 9: Count Queries
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Figure 10: Average Queries Figure 11: Count Queries
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Figure 12: Average Queries Figure 13: Count Queries

184



cause both icicles and static samples start at lower error val-
ues. Also, the convergence of the icicle plot to the icicle-
complete is much faster than that for 1998. These observa-
tions are as expected because the absolute number of both
1997 and 1998 tuples in a uniform random sample of the
LICOS join is higher than that for 1998 alone.

The plots are not smooth because all queries in the work-
load are distinct from each other as the values for parame-
ters to Qworkload are chosen randomly. Therefore, the exact
answers and relative errors of the estimated answers are dif-
ferent and vary significantly from each other. The variation
is, in turn, depicted in the plots.6 The fluctuations in er-
rors are higher when the year component of the start date
is fixed at 1998 because the absolute value of the result is
much smaller for 1998. And, varying the month compo-
nent causes relatively larger fluctuations in the exact result
as well. These fluctuations are, in turn, exhibited by the
relative error plots because the exact answer appears in the
denominator of the expression for the relative error.

7.2.2 Varying Number of Groups and Selectivities

In this experiment, we increase the number of frequently ac-
cessed groups in a workload. The relative fraction is varied
around a fixed constant. We generate such a workload by
creating queries from Qworkload where the region parame-
ter is uniformly randomly selected from the set {AFRICA,
AMERICA, ASIA, EUROPE, MIDDLE-EAST}. As in the
previous experiment, we generate two workloads. In the
first workload the year component of the start date is fixed
at 1998 and the month component varied between January
and June. In the second workload, the year component is
fixed at 1997 and the month component is varied between
January and December. Each workload has 5 frequently
accessed groups, one per region.

The results for the first workload are shown in Fig-
ures 12 and 13, and those for the second workload in Fig-
ures 14 and 15. The conclusions from these plots are sim-
ilar to those drawn in the previous section. The relative
errors of answers decrease steadily when icicles are used
to answer queries. The icicle plot converges quickly to the
icicle-complete plot.

7.2.3 A Mixed Workload

In this section, we vary both the number of frequently ac-
cessed groups as well as relative sizes of each group. The
region is randomly picked from {AFRICA, AMERICA,
ASIA, EUROPE, MIDDLE-EAST} while the year com-
ponent of the start date is randomly picked to be between
1993 and 1998. Note that both the year and region param-
eters are chosen uniformly at random from their domains.
Hence, the workload is not focused on specific sets of tu-
ples. Figures 16 and 17 show the results of this experiment.
Therefore, as expected, the improvement due to the use of
icicles is not significant. The important point to observe

6This argument holds for almost all plots that follow.

SELECT count(*), average(price), sum(price)
FROM Sales-icicle
WHERE orderDate ≥ [start date]

Figure 20: Template Query on Mail Order Data

here though is that icicles are as good as static samples, if
not better.

7.2.4 Mail Order Dataset

In this section, we present the performance of icicles on
a real mail order dataset. Besides other information, the
dataset has the following attributes: customer identifier, or-
der date, style, price, quantity, cost, and gender code (’M’
for men and ’F’ for women). The dataset consists of 45000
tuples. We generate a workload by varying the start date pa-
rameter in the template query shown in Figure 20. The start
date is varied over an interval of 31 days in May. (Over-
all, the date attribute varies between 08-01-1995 and 12-31-
1996.) The size of the icicles and static samples constructed
on this workload are set such that the sample has 3000 tu-
ples.

We present the results from this experiment in Fig-
ures 18 and 19. The results and conclusions are similar
to those on the TPC-D data. Again, icicles outperform
static samples by a significant margin thus validating our
approach to maintain more sample tuples from frequently
accessed groups.

8 Related Work

The application of statistical techniques to approximate
query answering has recently received attention. However,
to the best of our knowledge, there is no technique that tunes
data summaries (samples or any other class of summaries)
with respect to a dynamic workload. We now briefly dis-
cuss previous approaches for approximate query answering,
which we have not already touched upon.

We have already discussed the approach based on join
synopses [AGPR99b]. Chaudhuri et al. explored the issue
of introducing sampling as a relational operator [CMN99].
Hellerstein et al. proposed a framework for providing a se-
ries of monotonically improving approximate answers to a
single query [HHW97].

Barbara et al. [BDF+97] present a survey of vari-
ous statistical estimation techniques for data reduction,
some of which have been applied for approximately an-
swering aggregate queries. For instance, histogram-based
approaches [PG99], wavelet-based approaches [VWI98,
VW99], mining based approaches [SFB99, MS00] have
been explored. We believe that our ideas in this paper
are applicable to these summaries as well even though ac-
tual (maintenance) techniques will be different. In the AP-
PROXIMATE query processor, Vrbsky and Liu develop no-
tions of approximations to set-valued answers and develop
computation techniques [VL92]. Their techniques are not
based on statistical summaries of the data.
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Figure 14: Average Queries Figure 15: Count Queries
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Figure 16: Mixed Workload: Average Queries Figure 17: Mixed Workload: Count Queries
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Figure 18: Mail Order Dataset: Average Queries Figure 19: Mail Order Dataset: Count Queries
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9 Conclusions and Future Work

We introduced a new class of samples, icicles, that are
sensitive to the workload characteristics and described an
incremental algorithm to maintain them with respect to a
changing workload. We developed new icicle-based esti-
mators for approximately answering aggregate queries. We
show analytically and empirically that icicles are better than
static samples for a wide variety of workloads. Our em-
pirical studies further show that icicles are especially good
when the workload is focused on relatively small subsets
of tuples in a relation. In most cases, icicles provide more
accurate answers than static samples, and they are at least
as good as static samples. Finally, they adapt quickly to the
characteristics of a workload.

In future, we intend to extend the maintenance of
icicles when the underlying relations are being modified
through ad hoc insertions and deletions.
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