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Abstract

The regulation of alternative splicing involves interactions between RNA-binding proteins and pre-mRNA positions close to
the splice sites. T-cell intracellular antigen 1 (TIA1) and TIA1-like 1 (TIAL1) locally enhance exon inclusion by recruiting U1
snRNP to 59 splice sites. However, effects of TIA proteins on splicing of distal exons have not yet been explored. We used
UV-crosslinking and immunoprecipitation (iCLIP) to find that TIA1 and TIAL1 bind at the same positions on human RNAs.
Binding downstream of 59 splice sites was used to predict the effects of TIA proteins in enhancing inclusion of proximal
exons and silencing inclusion of distal exons. The predictions were validated in an unbiased manner using splice-junction
microarrays, RT-PCR, and minigene constructs, which showed that TIA proteins maintain splicing fidelity and regulate
alternative splicing by binding exclusively downstream of 59 splice sites. Surprisingly, TIA binding at 59 splice sites silenced
distal cassette and variable-length exons without binding in proximity to the regulated alternative 39 splice sites. Using
transcriptome-wide high-resolution mapping of TIA-RNA interactions we evaluated the distal splicing effects of TIA proteins.
These data are consistent with a model where TIA proteins shorten the time available for definition of an alternative exon by
enhancing recognition of the preceding 59 splice site. Thus, our findings indicate that changes in splicing kinetics could
mediate the distal regulation of alternative splicing.
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Introduction

Pre-mRNA splicing is catalysed by small nuclear ribonucleo-

protein particles (snRNP) that recognise the splice sites on pre-

mRNA and remove the introns with great precision. U1 and U2

snRNPs recognise the core motifs present at the 59 and 39 splice

sites, respectively [1]. These core splice site motifs, however,

contain only about half of the information required to define

exon/intron boundaries [2]. Additional sequence elements can

recruit regulatory RNA-binding proteins either to enhance or

silence splice site recognition depending on their position relative

to the splice sites [3,4].

T-cells intracellular antigen 1 (TIA1) and TIA1-like1 (TIAL1,

also known as TIAR) are closely related RNA-binding proteins.

They have three RNA recognition motifs (RRMs) and a carboxyl-

terminal glutamine-rich region [5,6]. RRM2 is the major domain

binding to uridine-rich sequences, RRM3 is thought to bind to

RNA with no specificity, and RRM1 has no detectable RNA

binding affinity in vitro [7]. Instead, RRM1 and the C-terminus

interact with U1 snRNP to enhance its recruitment to the 59 splice

site of alternative exons [8–11].

TIA1 and TIAL1 are involved in multiple aspects of RNA

metabolism. They are present in both the cytoplasm and the

nucleus and shuttle between these two compartments in a manner

that requires the RRM2 and RRM3 domains [12,13]. In the

nucleus, TIA1 and TIAL1 regulate alternative splicing by binding

to U-rich sequences adjacent to the 59 splice site and recruiting

U1-C to promote exon inclusion [8,10,11,14,15]. They also

regulate the splicing of their own mRNAs, and the resulting two

major isoforms have different splicing activity [16,17]. In the

cytoplasm, TIA1 and TIAL1 function as translational silencers by

binding to the 39 untranslated region (39 UTR) of mRNAs [18,19].

They were also implicated in stress-induced translational silencing

in stress granules [12,20]. In addition, TIA1 and TIAL1 were

shown to promote apoptosis [21], and depletion of both proteins

promotes cell proliferation [22].

The role of cis-regulatory RNA motifs located close to

alternative exons has been widely investigated, but recent studies
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suggest that distal regulatory motifs might also play an important

role [4,23,24]. For instance, Nova1 and Nova2 proteins can

silence inclusion of an alternative exon when binding downstream

of the preceding exon [4,24]. In contrast, Nova proteins enhance

inclusion when binding directly downstream of an alternative exon

[4,24]. This suggested that the local and distal effects of Nova

binding downstream of a 59 splice site are reciprocal [25]. Since

the function of TIA proteins in recruiting U1 snRNP to 59 splice

site is well characterised, these proteins offered a unique

opportunity for a comprehensive study of the distal splicing effects

of changes in 59 splice site recognition.

Ultraviolet (UV)-crosslinking and immunoprecipitation (CLIP)

was first developed to identify RNA sites bound by the splicing

regulators Nova1 and Nova2 in brain tissue [26]. The traditional

CLIP cDNA library preparation protocol suffers from a potential

loss of cDNAs due to truncation immediately before the ‘‘crosslink

site,’’ where at least one amino acid remains covalently attached

after proteinase K digestion [27]. Therefore, we used a modified

cDNA library preparation protocol that was recently developed

(iCLIP), which identifies truncated cDNAs by introducing the

second adapter to cDNAs after reverse transcription [28]. In

addition, iCLIP introduces a random DNA sequence (barcode) to

cDNAs during reverse transcription to differentiate between

unique cDNA products and PCR duplicates. Since the first

nucleotide of resulting cDNA sequences most likely locates directly

downstream of the crosslink site, iCLIP enables quantitative and

high resolution analysis of protein crosslinking to the target RNAs

[28].

Here, we used iCLIP to identify the RNA crosslink sites of TIA

proteins. iCLIP showed a high density of TIA crosslinking in 39

UTRs of mRNAs and in non-coding RNAs (ncRNAs). Intronic

TIA binding clusters were restricted to positions immediately

downstream of 59 splice sites. TIA binding at the 59 splice site of an

alternative exon and/or the preceding exon predicted its dual

splicing effects. TIA binding enhanced inclusion of proximal

upstream alternative exons and usage of upstream alternative

splice sites but silenced distal downstream alternative exons if these

lacked direct TIA binding. Interestingly, TIA proteins also

regulated distal alternative 39 splice sites, suggesting that by

enhancing 59 splice site recognition, they can indirectly silence

downstream alternative exons.

Results

iCLIP and iCLAP Identify Crosslink Sites of TIA1 or TIAL1
iCLIP was used to identify the crosslink sites of TIA1 and

TIAL1 in HeLa cells in a transcriptome-wide manner. Briefly,

cells were UV-irradiated, lysed, and RNA was digested with

RNase I to a size of approximately 40–100 nucleotides (nt). The

proteins were immunoprecipitated using TIA1 or TIAL1-specific

antibodies, and the protein-RNA complexes were subjected to 59

labelling using 32P-c-ATP for visualisation after SDS-PAGE

separation. The specificity of each antibody was determined by

overexpression of TIA1 or TIAL1 in HeLa cells (Figures 1A, 1B,

S1A and S1B). TIA1 and TIAL1 antibodies each detected RNA-

protein complexes of correct size only from UV-crosslinked cells

and only if an antibody was used for immunoprecipitation.

Furthermore, the signal decreased in TIA1/TIAL1 double

knockdown (KD) cells and increased when the corresponding

protein was overexpressed (Figure 1A and 1B). There was a slight

cross-reactivity of the TIA1 antibody to the TIAL1 protein

(Figures 1A and S1A, when TIAL1 was overexpressed). However,

during immunoprecipitation, the TIA1 antibody mainly recog-

nised the TIA1 protein, as no increase was seen when TIAL1 was

overexpressed (Figure S1B).

To assess the RNA sequence specificity of TIA1 or TIAL1

without the use of antibodies, we also developed crosslinking and

affinity purification (iCLAP), a method to purify Strep/His

double-tagged TIA1 and TIAL1 proteins using stringent affinity

purification. This method circumvents any cross-reactivity of

antibody that would identify the same crosslink sites for both

proteins. TIA1 and TIAL1 with the Strep/His tag on the N- or C-

terminus were overexpressed in HeLa cells. After UV crosslinking

and RNase I digestion, the protein-RNA complexes were first

purified with magnetic streptavidin bead before ligation to the 39

RNA adaptor. Cobalt beads were then used to further purify the

protein-RNA complexes under denaturing conditions (8 M urea,

Figure S1E). iCLAP detected protein-RNA complexes only if cells

were transfected with an appropriate construct, and no signal was

detected in vector-transfected or non-crosslinked cells (Figure

S1F). In summary, the analysis of radioactive protein-RNA

complexes indicated that both iCLIP and iCLAP isolated specific

protein-RNA complexes without contamination from other co-

purified proteins or RNAs.

To amplify the co-purified RNAs, these were dephosphorylated

and ligated to the 39 RNA adaptor on beads during immunopre-

cipitation (iCLIP) or affinity purification (iCLAP). After SDS-

PAGE and nitrocellulose transfer, the protein-RNA complexes of

70–150 kDa were excised from the membrane (Figure S1C) and

subjected to proteinase K digestion. The RNA was reverse

transcribed with a primer complementary to the 39 RNA adaptor,

which contained a second half complementary to the 59 Solexa

sequencing primer separated by a BamHI digestion site. The

cDNA was then self-circularised, digested with BamHI, giving a

product with corresponding adaptors at both ends, and amplified

by PCR (Figure S1D). PCR products were sequenced using single-

end 44 nt reads on the Illumina GA2 system.

Three independent replicate iCLIP experiments and one

iCLAP experiment were performed for both TIA1 and TIAL1

(Table S1). In total, 18.4 million iCLIP sequences were generated,

74% of which aligned to the human genome by allowing only

single genomic hits and one nucleotide mismatch (Table S2).

Unique cDNAs were identified based on random barcodes, and

the crosslink site was mapped to the first nucleotide preceding the

start of the cDNAs (Figure 1C). Together, iCLIP produced

869,782 unique cDNA reads for TIA1 and 2,966,801 unique

Author Summary

Studies of splicing regulation have generally focused on
RNA elements located close to alternative exons. Recently,
it has been suggested that splicing of alternative exons
can also be regulated by distal regulatory sites, but the
underlying mechanism is not clear. The TIA proteins are
key splicing regulators that enhance the recognition of 59
splice sites, and their distal effects have remained
unexplored so far. Here, we use a new method to map
the positions of TIA-RNA interactions with high resolution
on a transcriptome-wide scale. The identified binding
positions successfully predict the local enhancing and
distal silencing effects of TIA proteins. In particular, we
show that TIA proteins can regulate distal alternative 39
splice sites by binding at the 59 splice site of the preceding
exon. This result suggests that alternative splicing is
affected by the timing of alternative exon definition
relative to the recognition of the preceding 59 splice site.
These findings highlight the importance of analysing distal
regulatory sites in order to fully understand the regulation
of alternative splicing.

iCLIP Predicts the Dual TIA Splicing Effects
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Figure 1. iCLIP identifies the TIA1 and TIAL1 crosslink sites with nucleotide resolution. Autoradiogram of 32P-labelled RNA crosslinked to
TIA1 (A) or TIAL1 (B) in HeLa cells. Immunoprecipitation was performed with either anti-TIA1 or anti-TIAL1 antibody using lysate from UV-crosslinked
HeLa cells, cells transfected with TIA1 or TIAL1, TIA1/TIAL1 KD cells, or non-crosslinked cells. High and low RNase concentrations were used and
protein G beads were used as a control. The Western blots below the autoradiograms show the input lysate used for each immunoprecipitation. (C)

iCLIP Predicts the Dual TIA Splicing Effects
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cDNA reads for TIAL1 (Table S2). The iCLIP no-antibody

controls, performed in parallel with two of the iCLIP experiments,

did not generate detectable PCR products. When submitted for

sequencing, they generated 1,074 and 7,798 unique cDNAs

mapping to the human genome (Table S2). Since TIA1 or TIAL1

iCLIP generated 100-fold more cDNAs than controls, we

estimated that over 99% of cDNAs from the iCLIP experiment

represent RNA sites specifically crosslinked to TIA1 or TIAL1.

TIA1 and TIAL1 Bind the Same RNA Sites
The random barcode introduced into iCLIP cDNAs allowed us

to analyse the distribution of TIA1 and TIAL1 on human RNAs

in a quantitative and reproducible manner (Figure S2). Only 1.7%

of cDNAs mapped in antisense orientation to annotated genes,

confirming the high strand specificity of iCLIP. Only 10% of

cDNAs mapped to intergenic regions (Figure 2A). The highest

cDNA density was seen in 39 UTRs and ncRNAs, which together

contained 22% of all cDNAs (Figure 2A and 2B). 2,277 ncRNAs

and 8,602 39 UTRs had a higher cDNA density than the whole-

genome average, and the cDNA enrichment correlated between

TIA1 and TIAL1 iCLIP (Pearson correlation coefficient r=0.95

and r=0.90, respectively; Figure S3G and S3H). The ncRNA and

39 UTR sites with the highest cDNA counts mapped to highly

expressed RNAs such as tRNAs and histone mRNAs (Figure S4B).

Interestingly, cDNA enrichment in 39 UTRs was 5-fold higher

than in the coding sequence (Figure 2B), in agreement with past

findings that TIA proteins bind 39 UTR to regulate translation

[18,29–31].

Fifty-eight percent of TIA1 and 60% of TIAL1 cDNAs mapped

to introns (Figure 2A). 67,002 introns had a cDNA density higher

than the whole-genome average, and the cDNA enrichment

correlated between TIA1 and TIAL1 iCLIP (r=0.81; Figure S3I).

The cDNA density in introns was on average 18-fold lower than in

39 UTRs and ncRNAs (Figures 2B and S3I). Past studies have

shown that TIA1 and TIAL1 regulate alternative splicing of exon

6 of FAS mRNA [14,17,32,33]. Both TIA1 and TIAL1

crosslinked to previously characterised intronic binding sites in

FAS pre-mRNA (Figure S5A).

Past studies suggested that TIA1 and TIAL1 have different

RNA binding specificities [7,34]. However, the two proteins can

regulate alternative splicing of the same exons [17]. We therefore

analysed the in vivo RNA specificity of the two proteins using our

iCLIP data. As a control, the iCLIP positions were randomised

within the co-expressed genomic regions. The 21 nt sequence

surrounding the crosslink sites was compared to randomised

positions to identify the pentamers enriched at the TIA1 and

TIAL1 crosslink sites. Pentamer enrichment in TIA1 and TIAL1

iCLIP data was highly correlated, and UUUUA and AUUUU

were the two most common pentamers (r=0.99; Figures 2C and

S3A, Table S3). Comparing replicate iCLIP experiments of either

protein verified the high reproducibility of the observed sequence

specificity (Figure S3C and S3D). Similarly, iCLAP experiments

with both proteins were also highly correlated and were enriched

for the same pentamers as iCLIP, independently supporting the

determined sequence specificity of both proteins (Figure S3B).

These results demonstrated that TIA1 and TIAL1 share the same

in vivo RNA binding specificity.

Due to the high stringency of purification of protein-RNA

complexes, iCLIP purified RNA sites that directly interact with

TIA proteins. However, it is possible that some of these sites

represent transient and low-affinity TIA-RNA interactions. To

specifically analyse the high-affinity RNA binding sites, we

determined clusters of TIA1 or TIAL1 crosslink sites with a

maximum spacing of 15 nt containing a significant cDNA count

when compared to randomised positions (FDR ,0.05). This

identified 12,048 TIA1 and 34,058 TIAL1 crosslink clusters.

Uridine represented 82% of TIA1 and 75% of TIAL1 clustered

crosslink sites (i.e., crosslink sites that located within these clusters)

and was also the most common nucleotide at all positions up to

10 nt away from these crosslink sites (Figure S3E). This agreed

with the past studies showing that TIA proteins bind to uridine-

rich motifs [8,14,17,19].

To compare the overlap between binding of TIA1 and TIAL1

to the same sites, we analysed the proportion of crosslink clusters

identified by both proteins. Eighty-three percent (10,021 / 12,048)

of TIA1 crosslink clusters overlapped with a TIAL1 crosslink site,

and 59% (20,047 / 34,058) of TIAL1 crosslink clusters overlapped

with a TIA1 crosslink site. The overlap depended on the number

of cDNAs that defined a cluster. Ninety-nine percent of the

crosslink clusters that were defined by five or more TIA1 cDNAs

overlapped with a TIAL1 crosslink site (Figure 2D). We also

assessed the distances between clustered TIA1 and TIAL1

crosslink sites. TIAL1 crosslink sites overlapped with TIA1

crosslink sites 15-fold more common than with randomised

TIA1 iCLIP positions (Figure S3F). These analyses indicated that

the binding sites of TIA1 and TIAL1 largely overlap.

Since both proteins showed a redundant binding behaviour, the

iCLIP data of TIA1 and TIAL1 were merged to increase the

reliability of cluster definition, which depends on the number of

unique cDNA sequences. 46,970 crosslink clusters were identified

in the joint TIA1/TIAL1 data with a maximum spacing of 15 nt

(FDR,0.05). The cDNA counts within these crosslink clusters

were highly correlated between TIA1 and TIAL1 data, indicating

that they had similar affinity to their common RNA binding sites

(r=0.85; Figure 2E). Furthermore, the cDNA counts were

correlated even at the single-nucleotide level, as evident in the 39

UTR of MYC mRNA, which is a functionally validated

translational target of the TIA proteins (r=0.73; Figures 2F and

S5B) [30,35]. Taken together, iCLIP data suggested that TIA1

and TIAL1 have similar affinity for their common RNA binding

sites.

iCLIP Predicts TIA Effects on Splicing of Cassette Exons
In order to identify the candidate positions where TIA proteins

bind to regulate splicing, we compared the distribution of TIA1/

TIAL1 iCLIP clustered crosslink sites close to constitutive and

alternative cassette exons (Figure 3A). Thirty-fold enrichment was

seen at positions 10–28 nt downstream of exon/intron boundaries

compared to the last 20 nt of both type of exons. Surprisingly, the

constitutive and alternative exons showed a similar extent of

crosslinking in this region. Approximately 5% of both types of

exons contained a TIA crosslink cluster in this region.

Since TIA proteins were previously described as splicing

enhancers [8,14], we hypothesised that TIA crosslink clusters

TIA1 and TIAL1 crosslink to uridine tracts downstream of the alternative 59 splice sites in the CLIP4 gene. The cDNA positions are colour-coded for
three replicate TIA1 and TIAL1 experiments, and the random barcode (shown on the left) is used to identify unique iCLIP cDNAs (number in brackets
indicates the number of corresponding PCR duplicates). Below, the bar graphs show the cDNA count (number of cDNAs at each crosslink site). Pre-
mRNA sequence is shown below with crosslink nucleotides in red. The exon and intron positions of the two isoforms of CLIP4 mRNA are shown at the
bottom.
doi:10.1371/journal.pbio.1000530.g001

iCLIP Predicts the Dual TIA Splicing Effects
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could be used to predict proximal enhanced exons (Figure 3B).

Therefore, a regulatory logic was defined where TIA crosslink

clusters 10–28 nt downstream of an alternative exon (region a in

Figure 3B) predicted enhanced exon inclusion. This predicted

1,620 alternative cassette exons as enhanced by TIA proteins.

Furthermore, since binding of Nova proteins downstream of the

preceding exon could silence distal alternative exons [4], we

defined a second regulatory logic for distal silencing. TIA crosslink

clusters 10–28 nt downstream of the preceding exon (region b in

Figure 3B) predicted silenced alternative exon inclusion if TIA

crosslink clusters were absent in the region a. This predicted 1,962

alternative cassette exons as silenced by TIA proteins.

To assess the iCLIP predictions in an unbiased way, the splicing

changes in TIA1/TIAL1 KD HeLa cells were analysed using a

high-resolution splice-junction microarray. Microarray data were

analysed with the ASPIRE 3 software [28]. The microarray

detected splicing changes in 1,213 cassette exons (|DIrank|$1),

46 of which were further assessed using reverse transcription and

0
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Figure 2. TIA1 and TIAL1 crosslink to the same positions in human RNAs. (A) The percentage of cDNAs from TIA1 and TIAL1 iCLIP that
mapped to different types of RNAs. (B) The fold enrichment of average cDNA density from TIA1 and TIAL1 iCLIP in different types of RNAs relative to
the average cDNA density in the whole genome. (C) Pentamer z scores at the 21 nt sequence surrounding crosslink sites (210 nt to +10 nt) are
shown for TIA1 and TIAL1 iCLIP. The sequences of the two most enriched pentamers and the Pearson correlation coefficient (r) between the TIA1 and
TIAL1 z scores are shown. (D) Reproducibility of TIA1 and TIAL1 crosslink clusters. Percentage of crosslink clusters with a given cDNA count in TIA1
iCLIP that were also identified in TIAL1 iCLIP is shown. (E) Contour plot comparing TIA1 and TIAL1 cDNA counts in the 46,970 crosslink clusters. The
darkness of contours increases with the number of clusters. The Pearson correlation coefficient (r) between the TIA1 and TIAL1 cDNA counts in the
clusters is shown. (F) Crosslink sites of TIA1 and TIAL1 in the 39 UTR of the MYC gene. The bar graph shows the number of cDNAs that identified each
crosslink site. The Pearson correlation coefficient (r) between the TIA1 and TIAL1 cDNA counts at individual nucleotides is shown.
doi:10.1371/journal.pbio.1000530.g002
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PCR (RT-PCR) and capillary electrophoresis (Text S1). RNA was

isolated from cells treated with three different siRNA oligonucle-

otide pairs targeting TIA1 and TIAL1, and with control siRNA

oligonucleotides (for knockdown efficiency, see Figure S6). Primer

pairs generated a PCR product for 40 of the 46 tested splicing

events, with 30 detecting two or more splicing isoforms. Among

these, RT-PCR validated 86.7% (26/30) of the splicing changes,

confirming the high accuracy of the microarray data (Figure S9A,

Table S4).

We assessed the accuracy of iCLIP predictions by comparing

them to the splicing changes identified by the microarray. Exons

were divided into subsets according to the confidence of the

detected splicing change (DIrank), and the number of exons

correctly predicted by iCLIP was identified in each subset. iCLIP

predicted approximately 5% of false positives in control exons

(|DIrank|,0.1; Figure 3C). However, iCLIP predicted a

significantly higher number of exons among those with a

detectable splicing change (p,0.05, Fisher’s Exact Test;

Figure 3C). For these exons, iCLIP correctly predicted the

direction of splicing change for 105 of 123 exons (85%), out of

which 87 were enhanced (DIrank $2) and 18 were silenced

(DIrank #22). For example, a TIA crosslink cluster downstream

of exon 23a in NF1 pre-mRNA located to a previously described

functional TIA binding site [36], and it correctly predicted the

enhancing effect of the TIA proteins (Figure 3D). In contrast, a

TIA crosslink cluster downstream of the exon preceding the

alternative exon in LRRFIP2 pre-mRNA correctly indicated the

TIA-dependent silencing (Figure 3E).

To assess whether TIA proteins bind at additional positions to

regulate splicing, we comprehensively analysed the positions of

TIA crosslinking in target RNAs with respect to the observed

splicing changes (Figure 4A). Each clustered crosslink site in an

individual RNA was considered as one crosslink event. The RNA

map showed an increase in the number of crosslink events

downstream of the exons, confirming that the predictive code

included the primary positions where TIA proteins regulate

splicing. There was a decrease in the number of crosslink events

downstream of the silenced exons, combined with a significant

increase downstream the preceding exon (Figure 4A). Similarly,

mutually exclusive exons such as in FYN pre-mRNA displayed

TIA crosslinking downstream of the enhanced exon but not in the

vicinity of the silenced exon (Figure S8A). Since silenced exons had

a reduced proximal TIA binding compared to control exons, TIA

binding at the preceding exon was the most likely cause for the

silencing effect.

The RNA map demonstrated a significant increase in the

number of crosslink events downstream of the enhanced exons. To

further validate the function of TIA binding at this position, we

constructed a reporter minigene containing the alternative exon 5

and the flanking introns and exons of OGT pre-mRNA

(Figure 4B). In the iCLIP data, the only TIA crosslink cluster

present in this region was located downstream of the 59 splice site.

Overexpression of either TIA1 or TIAL1 in HeLa cells increased

exon inclusion, whereas TIA KD HeLa cells decreased exon

inclusion (Figure 4B). Overexpression of either TIA1 or TIAL1 in

the KD cells was able to restore exon inclusion. This confirmed

that both TIA1 and TIAL1 could enhance inclusion of the exon.

To directly test whether the RNA sequence underlying the TIA

crosslink cluster is necessary for the ability of TIA proteins to

enhance exon inclusion, the 40 nt of intronic sequence down-

stream of the exon were replaced with a sequence from CDC25C

pre-mRNA, which did not contain any TIA crosslink sites

(Figure 4B). Splicing of the mutant minigene did not change in

response to the increased or decreased TIA protein levels

(Figure 4B). Thus, the TIA crosslink clusters located downstream

of enhanced exons identified the RNA sites necessary to mediate

the enhancing effect of TIA proteins.

TIA Proteins Maintain Splicing Fidelity at the 59 Splice Site
Extensive TIA crosslinking downstream of constitutive exons

suggested that in addition to regulating alternative splicing, TIA

proteins might also play a role in maintaining splicing fidelity.

Microarray analysis detected increased retention of 143 introns

and decreased retention of 102 introns in TIA KD cells. We tested

18 of these introns using real-time PCR with a 94% validation rate

(Figure S7B, Table S5). An example of an intron retained in KD

cells is shown in PIAA2 pre-mRNA, which contains TIA crosslink

sites downstream of the 59 splice site (Figure S7A). The introns that

were inefficiently spliced in KD cells had a significantly increased

number of crosslink events downstream of the 59 splice sites

compared to control introns, indicating that TIA1 negatively

regulates intron retention (Figure 4C). This is consistent with a

past study using the msl-2 reporter minigene, which showed that

TIA1 binding to the uridine-rich track prevents intron retention

[37]. Our results indicate that maintaining splicing fidelity at 59

splice sites of constitutive exons is a widespread function of TIA

proteins.

iCLIP Predicts TIA Effects on Usage of Alternative 59
Splice Sites
In addition to regulating splicing of cassette exons, TIA

proteins can also regulate the usage of alternative 59 splice sites

[38]. We therefore hypothesised that TIA crosslink clusters could

be used to predict regulation of variable-length exons (Figure 5A).

Since the variable regions are often very short, precise

identification of binding sites is crucial. To test whether the

resolution of iCLIP was sufficient to resolve dual regulation of

Figure 3. iCLIP predicts the regulation of alternative cassette exons. (A) The nucleotide-resolution RNA map of TIA1/TIAL1 iCLIP crosslink
clusters at 59 splice sites of constitutive (grey line) and alternative (black bars) exons. Percentage of exons containing crosslink sites in 20 nt of exonic
and 80 nt of intronic sequence is shown. The region ‘‘x’’ 10–28 nt downstream of exon/intron boundaries contains 30-fold enrichment of crosslink
events if compared by the last 20 nucleotides of exonic sequence. (B) Logic functions of the TIA iCLIP code that predict splicing regulation. a and b
are regions 10–28 nt downstream of exon/intron boundaries that predict enhanced or silenced exons. (C) The exons analysed by the splice-junction
microarray are divided into intervals relative to their splicing change, and percentage of exons predicted by iCLIP in each interval is shown. The stars
mark those categories where predictions perform significantly better than on control exons (* p,0.05, Fisher’s Exact Test). (D,E) iCLIP crosslink sites
surrounding the enhanced exon 23a in NF1 pre-mRNA (D) and the silenced exon in LRRFIP2 pre-mRNA (E). The cDNA counts for TIA1 and TIAL1 are
shown in bar graphs (blue bars represent crosslinking to the sense strand, and orange bars to the antisense strand of the genome), and the crosslink
(XL) clusters (FDR,0.05) are marked with grey rectangles. The arrow above the bar graphs shows the previously identified TIA binding sites. RNA
from KD cells prepared with three different siRNA oligonucleotides and their quantification was analysed by RT-PCR and capillary electrophoresis.
Capillary electrophoresis image and signal quantification are shown below the bar graphs. Quantified transcripts including (in) or excluding (ex) the
regulated alternative exon are marked on the right. Average quantification values of exon inclusion (white) and exclusion (grey) are given as a
fraction of summed values. Error bars represent standard deviation of three replicates and p values are also calculated (* p,0.05, *** p,0.001, one-
way ANOVA).
doi:10.1371/journal.pbio.1000530.g003
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Test). (B) Minigene validation of enhanced alternative cassette exon from OGT1 pre-mRNA. The schematic diagram of each isoforms is shown, and the
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doi:10.1371/journal.pbio.1000530.g004
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alternative 59 splice sites, a regulatory logic was defined where

TIA crosslink clusters 10–28 nt downstream of the intron-distal

59 splice site (position a in Figure 5A) predicted silenced variable

exons (i.e., increased usage of the intron-distal 59 splice site).

Conversely, TIA crosslink clusters 10–28 nt downstream of the

intron-proximal 59 splice site (position b in Figure 5A) predicted

enhanced variable exons if TIA crosslink clusters were absent

downstream of the intron-distal site. This logic predicted TIA-
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dependent silencing and enhancing for 84 and 172 variable-

length exons, respectively.

The microarray detected a splicing change in 213 variable-

length exons in KD cells (|DIrank|$1), 147 of which were a result

of alternative 59 splice site use. The accuracy of microarray data

was assessed by analysis of seven alternative 59 splice sites with a

100% validation rate (Figures 5D, 5E, and S9B; Table S4). iCLIP

predicted approximately 3% of false positives in either direction

among the control exons (|DIrank|,0.1; Figure 5B). However,

iCLIP predicted a significantly higher number of true positives

among the exons that had splicing change in KD cells (p,0.05,

Fisher’s Exact Test; Figure 5B). Among these exons, iCLIP

correctly predicted 18 out of 19 exons (95%), of which 8 were

enhanced exons (DIrank $2) and 10 were silenced (DIrank #22).

For example, a crosslink cluster downstream of the intron-distal

alternative 59 splice site was associated with silencing of the

variable portion of exon 11 in CLIP4 pre-mRNA (Figure 5D). In

contrast, a crosslink cluster downstream of the intron-proximal

alternative 59 splice site was associated with enhanced inclusion of

the variable portion of exon 33 in CHD9 pre-mRNA (Figure 5E).

To further assess the predictive value of iCLIP independently of

the microarray, the nine alternative 59 splice sites with the highest

iCLIP cDNA counts at predictive positions were analysed by RT-

PCR. RT-PCR detected alternative isoforms for five of these

exons, and all of these showed a splicing change in KD cells

(Figure S9D). iCLIP correctly predicted the direction of splicing

change for all of these exons (Figures 5C). Furthermore, we

comprehensively analysed the positions of TIA crosslink events in

target RNAs with respect to the observed splicing change

(Figure 6A). In agreement with the predictive regulatory logic,

there was a significant increase in the number of crosslink events

downstream of the enhanced 59 splice sites, but not at any other

positions in the RNA map.

To further verify TIA regulation of an alternative 59 splice site,

we constructed a reporter minigene containing the variable exon

33 and downstream intron and exon from CHD9 pre-mRNA

(Figure 6B). The only TIA crosslink cluster present in this region

located downstream of the intron-proximal 59 splice site

(Figure 5E). Overexpression of either TIA1 or TIAL1 significantly

increased inclusion of the variable portion of the exon, whereas

knockdown of the TIA proteins showed the opposite effect, which

could again be rescued by TIA overexpression (Figure 6B).

Replacing 40 nt of intronic sequence downstream of the intron-

proximal 59 splice site with a sequence from CDC25C pre-mRNA

rendered the minigene unresponsive to the changing TIA protein

levels (Figure 6B). This confirmed that the TIA crosslink clusters

identified the RNA sites that mediated the effect of TIA proteins at

the alternative 59 splice sites.

TIA Proteins Regulate the Usage of Alternative 39 Splice
Sites by Binding at 59 Splice Sites
The microarray also detected a splicing change in 84 alternative

39 splice sites, four of which were analysed by RT-PCR with a

75% (3/4) validation rate (Figure S9C, Table S4). The RNA map

of TIA binding showed no enrichment of TIA crosslink events at

the regulated alternative 39 splice sites (Figure 6C). Instead, there

was an increase in TIA crosslink event 10–28 nt downstream of

the preceding 59 splice site if TIA silenced inclusion of the variable

portion of the exon, as shown for C3orf23 pre-mRNA (Figures 6C

and S8B). Although the enrichment did not reach the significance

level, these observations indicated that TIA proteins might silence

the intron-proximal alternative 39 splice sites by binding at the

preceding 59 splice site.

In order to test this hypothesis, we constructed a reporter

minigene containing variable-length exon 4 and the upstream

intron and exon from C3orf23 pre-mRNA (Figure 6D). The only

TIA crosslink cluster present located downstream of the 59 splice

site (Figure S8B). Since the intron has a size of more than 6 kb, we

fused its first and last 600 nt to form the intron in the minigene.

Overexpression of TIA1 or TIAL1 protein significantly decreased

the inclusion of the variable part of the exon, whereas TIA

knockdown significantly increased the inclusion (Figure 6D). In

order to verify functionality of this binding site, the 83 nt

downstream of the 59 splice site were replaced with the

corresponding region from constitutive exon 2 of GAPDH pre-

mRNA (Figure 6D). This resulted in a loss of TIA regulation.

Surprisingly, the mutation abolished inclusion of the variable

portion of the exon, possibly due to the enhanced TIA-

independent recognition of the GAPDH 59 splice site. Taken

together, the minigene reporter analysis confirmed that TIA

binding downstream of the 59 splice site can affect the usage of

distal alternative 39 splice sites.

Discussion

The present study predicts the positive and negative effects of

TIA proteins on splicing of cassette and variable-length exons

based on experimental analysis of in vivo TIA-RNA interactions.

Consistent with previous observations, we found strong binding of

TIA1 and TIAL1 downstream of 59 splice sites where it exerts

local and distal effects on splicing regulation. In addition, binding

of both proteins was also enriched in ncRNAs and 39 UTR of

mRNAs. The latter is consistent with their role in translational

repression via binding AU-rich element (ARE) and with the role in

stress granules, where they promote the assembly of translation

pre-initiation complexes [18,19,39,40]. Further analyses of iCLIP

data could therefore provide novel insights into how TIA binding

mediates translational inhibition.

As shown in the example of the 39 UTR of MYC pre-mRNA,

TIA1 and TIAL1 crosslinking is quantitatively reproducible at the

level of individual nucleotides (Figure 2F). This allowed us to show

that TIA1 and TIAL1 have identical RNA binding specificity and

that both proteins bind to the same primary RNA sites. This result

is interesting from an evolutionary perspective, raising the question

of why two proteins with the same specificity have been

maintained in the genome. The redundancy between TIA1 and

TIAL1 might increase the robustness of gene expression.

Moreover, it is likely that the two proteins differ in their

interactions with other proteins and in their post-translational

modifications, allowing different signalling pathways to regulate

activity of the two proteins. Since the relative expression of TIA1

and TIAL1 varies among human tissues [16], this could allow

different signalling pathways to modulate expression of TIA-target

RNAs in different tissues.

The Positions of TIA-RNA Interactions Predict the Splicing
Effects of TIA1 and TIAL1
TIA crosslink clusters were identified downstream of 5% of

alternative and constitutive exons, suggesting that TIA proteins

play a widespread role in 59 splice site recognition. However, in

spite of this widespread TIA binding, we were able to use

consistent rules to predict the effects of TIA binding on splicing of

regulated alternative exons. Assessing TIA crosslinking at the 59

splice sites of both the alternative and the preceding exon enabled

us to distinguish between silenced and enhanced exons. Splice-

junction microarray analyses and minigene experiments validated

the accuracy of these predictions on a genome-wide scale and at
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the level of individual regulated exons, supporting the finding that

the position of TIA binding on pre-mRNA determines its dual

splicing effects.

The ability of iCLIP in predicting the dual TIA splicing effects is

particularly noteworthy in the case of variable-length exons, since

the distance between alternative splice sites is often very short, as

shown in the example of CLIP4 pre-mRNA (Figure 1C). The

ability of iCLIP to directly identify crosslink sites and thereby

resolve TIA binding at such proximal sites was crucial for the

accuracy in separating silenced from enhanced variable-length

exons.

TIA Effects on Variable-Length Exons Allow Evaluation of
the Different Models of Splicing Regulation
In the present study, we have evaluated both the local and distal

splicing effects of TIA binding at 59 splice sites. Locally, TIA

proteins can regulate alternative 59 splice sites in a manner

consistent with the splice site competition model [41]. TIA

proteins enhanced the closest upstream 59 splice site, leading to a

concomitant decrease in usage of the competing 59 splice site

(Figure 7A). Similarly, TIA binding downstream of a cassette exon

acts by promoting the usage of its 59 splice site (Figure 7B). A past

study evaluating splicing intermediates showed that in cases of

Nova binding downstream of enhanced exons, the downstream

intron is removed prior to the upstream one [4]. This result is

consistent with a splice site competition model, indicating that

Nova and TIA proteins can enhance cassette exons by promoting

the splicing pathway that uses the 59 splice site of the alternative

exon, with concomitant decrease in the exon skipping pathway

that uses the 59 splice site of the preceding exon (Figure 7B).

We also found that TIA binding can lead to distal splicing

silencing effects. This supports the hypothesis of indirect silencing

action, where an RNA-binding protein could cause a distal

negative splicing effect by its local enhancing function, initially

proposed to explain the same observation in the Nova RNA map

[4,25]. A recent study of PTB-RNA interactions observed an

opposite scenario where the local silencing function of PTB causes

a distal positive splicing effect [23]. These findings point to the

observation that a local splicing function of RNA-binding proteins

generally leads to reciprocal distal splicing effects. The study

analysing the distal effects of PTB proposed a model where

competition between the constitutive and the alternative 59 splice

site was responsible for these distal effects [23].

To gain further insights into the distal regulation of alternative

splicing, we analysed the effect of TIA binding on distal alternative

splice sites. Surprisingly, we found that TIA proteins regulate

usage of alternative 39 splice sites without binding directly at the 39

splice sites. This distal effect does not involve a competition

between the constitutive and the alternative 59 splice sites. Instead,

TIA proteins regulate the distal alternative 39 splice sites by

modulating recognition of the upstream 59 splice site (Figure 7C).

This result was also supported by the minigene experiment, which

showed that a constitutive non-TIA dependent 59 splice site

promotes skipping of the variable portion of the distal exon. This

suggests that regulation of a 59 splice site recognition can affect

splicing of downstream alternative 39 splice sites even if it doesn’t

compete with another 59 splice site. This effect could also

contribute to the splicing regulation of distal cassette exons

(Figure 7D).

Mechanistic Insights into the TIA-Dependent Regulation
of Alternative Splicing
Unlike Nova, FOX2, and PTB proteins [4,23,24,42], which

bind at positions close to either 39 or 59 splice sites, TIA RNA

maps did not identify significant binding at 39 splice sites or within

the alternative exons. Instead, TIA binding was enriched only

downstream of the exons, where TIA proteins were reported to

recruit U1 snRNP to the 59 splice sites [9–11]. It is clear that the

uridine-rich motifs downstream of exons are not the only

determinant of TIA binding, since these motifs are present also

in the polypyrimidine tracts upstream of exons. It is therefore

possible that TIA binds to RNA cooperatively in complex with U1

snRNP, which would ensure TIA binding only downstream of

exons.

Interestingly, TIA crosslinking was equally common down-

stream of constitutive and alternative exons. Past studies found

that uridine tracts are among the most enriched motifs

downstream of constitutive exons, but the function of TIA binding

to these motifs was not validated [15,43]. We found that TIA

binding downstream of constitutive exons often promotes efficient

splicing of the corresponding intron. Interestingly, this function is

shared with the yeast orthologue Nam8p, suggesting that it

represents a primary evolutionary function of the TIA proteins

[44–46].

We find that TIA proteins can cause a distal splicing effect by

regulating recognition of a constitutive 59 splice site, even if this

site does not compete with an alternative 59 splice site (Figure 7C).

Several models of splicing regulation could account for this effect.

TIA proteins might change the conformation of the U1 snRNP

complex in a way that promotes its pairing with the intron-distal 39

splice site. Alternatively, binding of TIA proteins could lead to a

change in the long-range RNA-RNA interactions, or a change in

interactions with other RNA-binding proteins that bind at a distal

site. Finally, the result could also be explained in light of the

splicing kinetics model. Kinetic parameters of splicing were shown

previously to influence the splice site choice [41]. By enhancing U1

snRNP recruitment to the 59 splice site, TIA proteins might allow

the splicing reaction to proceed faster, thereby shortening the time

available for definition of the downstream alternative exon. In

contrast, the slower splicing kinetics in knockdown cells could

allow additional time for trans-acting factors, such as SR proteins,

to recognise exonic elements that prevent skipping of the

alternative exon (Figure 7C, D) [47]. Such effects of splicing

kinetics might be related to the transcriptional effects on splicing,

which act partly by changing the ability of SR proteins to define

the alternative exons [48]. Taken together, this study of TIA

proteins highlights the importance of identifying the positions of

protein-RNA interactions with high precision in order to reveal

the full complexity of splicing regulation.

Figure 6. RNA maps of TIA-regulated variable-length exons. RNA maps showing the percentage of variable 59 splice site exons (A) or variable
39 splice site exons (C) with clustered TIA1/TIAL1 crosslink sites at exon/intron boundaries of variable exons and flanking constitutive exons, including
20 nt of exonic, 40 nt of variable exonic, and 60 nt of intronic sequence. The number of crosslink events at each region ‘‘x’’ 10–28 nt downstream of
exon/intron boundaries and the total number of exons analysed are shown for silenced (DIrank #1, blue bars), enhanced (DIrank $1, red bars), and
control variable exons (|DIrank|#0.1, black line). The positions with a significantly higher number of crosslinking events in TIA-regulated RNAs than in
control are indicated by red or blue dots above bars (* p,0.05, Fisher’s Exact Test). Minigene validation of variable 59 splice site exon in CHD9 pre-
mRNA (B) and variable 39 splice sites exon in C3orf23 pre-mRNA (D) are shown. Depiction and labelling is as described in the legend for Figure 4B.
doi:10.1371/journal.pbio.1000530.g006
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Methods

iCLIP and iCLAP Methods
HeLa cells were irradiated with UV light. Upon cell lysis, RNA

was partially fragmented using RNase I. For iCLIP, TIA1 or

TIAL1 were immunoprecipitated with protein G Dynabeads

(Invitrogen) conjugated to goat-anti TIA1 (Santa Cruz, C-20) or

goat-anti TIAL1 (Santa Cruz, C-18) antibody. For iCLAP, the

Strep/His-tagged proteins were affinity purified using Streptavidin

and Cobalt beads. RNA was ligated at 39 ends to an RNA adapter

and radioactively labelled on beads. After gel electrophoresis and

nitrocellulose membrane transfer, protein-RNA complexes were

visualised by autoradiogram. RNA was recovered by proteinase K

digestion and reverse transcribed using primers with adapter

regions separated by a BamHI restriction site and a barcode

region at their 59 end. cDNA was size-purified, circularised,

annealed to an oligonucleotide complementary to the restriction

site, and digested with BamHI. Linearised cDNA was then PCR-

amplified using primers complementary to the adapter regions and

subjected to high-throughput sequencing using Illumina GA2. A

more detailed description is available in Text S1.

Mapping Sequences to the Human Genome
The sequences corresponding to the individual experiment were

identified by their defined barcode, the random barcodes were

registered, and the barcodes were removed before mapping the

sequences to the human genome sequence (version Hg18/

NCBI36), allowing one mismatch using Bowtie version 0.10.1

(command line: -a -m 1 -v 1).

Randomisation of iCLIP Positions
The randomisation was done within co-transcribed regions that

were expected to have the same expression levels. For instance, a

single gene contains abundant exonic and non-abundant intronic

RNA, and intronic RNA contains non-coding RNA genes that are

usually highly abundant. We have randomised positions within

each individual intron, excluding the non-coding RNA genes.

Each non-coding RNA gene was randomised separately. Exons

were grouped into one single region for randomisation. However,

as evident in Figure 2B, the 39 UTR contains a higher cDNA

enrichment than the coding sequence; therefore, we randomised

positions in each UTR region separately from the coding

sequence. All annotations were based on the version Hg18/

NCBI36 of the human genome sequence. Each cDNA was

considered independent when randomising the positions.

Comparison of Crosslinking Nucleotide Positions
Only crosslink positions (but not the cDNA count) were

compared between the different datasets. Crosslink positions in

the first dataset define the position of 0 when analysing the

positions in the second dataset.

Analysis of Enriched Pentamers
For sequence analysis of iCLIP crosslink sites, the position of

the crosslinking site was extended 10 nt in both directions. The z

score for pentamer enrichment at the 21 nt region surrounding

the crosslink sites was then calculated relative to randomised

genomic positions. A more detailed description is available in

Text S1.

The splice-site competition model explains the local splicing effects of TIA binding.

The splicing kinetics model explains the distal splicing effects of TIA binding.

KD

KD

KD

ORA

C

B

D

Figure 7. An overview of the models of TIA-dependent splicing regulation. (A) TIA proteins can directly regulate 59 splice site competition
by enhancing either intron-proximal or intron-distal 59 splice sites. (B) TIA proteins directly regulate alternative cassette exon inclusion by enhancing
59 splice sites. (C) TIA proteins promote the use of intron-distal alternative 39 splice sites without directly modulating competition between the
alternative 39 splice sites. By enhancing 59 splice site recognition, TIA proteins decrease the inclusion of the variable portion of the exon. The splicing
kinetics model proposes that the splicing kinetics is affected by 59 splice site recognition, which then indirectly affects the ability of SR proteins and
other factors to define the variable portion of the distal exon. According to this model, the slower splicing kinetics in the absence of TIA increases the
time available to these factors to promote inclusion of the variable portion of the exon. (D) Similar to the effect on distal variable exons, a change in
splicing kinetics could contribute to the ability of TIA proteins to promote skipping of distal alternative cassette exon by binding at the upstream 59
splice site.
doi:10.1371/journal.pbio.1000530.g007
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Identification of Significant iCLIP Crosslink Sites
This followed the same statistical approach as the analysis of

CLIP sequence clusters [42] with a few modifications as described

in [28]. Rather than combining crosslink sites into larger clusters,

the crosslink sites within the clusters were kept individually in

order to preserve the nucleotide resolution of the data. A more

detailed description is available in Text S1.

siRNA Knockdown
Three different oligonucleotides were used together with a

scrambled control (Invitrogen, 12935-112). The following siRNA

oligonucleotides were used:

siTIA1-1: 59-GCAAGUUCCUGCAUAUGGAAUGUAU-39

siTIA1-2: 59-AGAAUAUCAGAUGCCCGAUGGUAA-39

siTIA1-3: 59-GGCAACAGGAAAGUCUAAGGGAUAU-39

siTIAL1-1: 59-CGGAUAUGGUUGGCAAGUUACCAA-39

siTIAL1-2: 59-CCGAACCAAUUGGGCCACUCGUAAA-39

siTIAL1-3: 59-GCGUCUGGGUUAACAGAUCAGCUUA-39

5 nM of each siRNA (siTIA1 and siTIAL1) were transfected

using Lipofectamine iMax (Invitrogen) according to manufactur-

er’s instructions. Cells were transfected again 2 d after the first

transfection and were harvested 2 d after the second transfection

for protein and RNA analyses.

Western Blot
The protein concentration was determined using Lowry’s Assay

(Bio-RAD). Goat anti-TIA1 antibody (1:1000) (Santa Cruz, C-20)

and anti-TIAL1 antibody (1:1000) (Santa Cruz, C-18) were used

to detect TIA1 and TIAL1 protein. Rabbit anti-GAPDH (1:5000)

(Cell signalling) was used for loading control. For overexpression,

mouse anti-Strep tag antibody (1:1000) (Qiagen) was used to detect

the tagged protein. Donkey anti-goat HRP, goat anti-rabbit HRP,

and goat anti-mouse HRP (Invitrogen) were used as secondary

antibodies. The membrane was visualised using ECL kit

(Amersham).

Splice-Junction Microarray
A total of six samples were used, three from the siRNA control

and three from KD3. The high-resolution splice-junction micro-

arrays were produced by Affymetrix, monitoring 260,488 exon-

exon junctions (each with eight probes) and 315,137 exons (each

with 10 probes). cDNA samples were prepared using the

GeneChip WT cDNA Synthesis and Amplification Kit (Affyme-

trix). Analysis of microarray data was done using version 3 of

ASPIRE (Analysis of SPlicing Isoform Reciprocity). ASPIRE

predicts splicing changes from reciprocal sets of microarray probes

that recognise either inclusion or skipping of an alternative exon.

In version 3 the background detection levels are experimentally

determined for each probe, allowing background subtraction in a

probe-specific manner [28]. Description of RT-PCR validation is

available in Text S1.

iCLIP RNA Maps
RNA maps were produced by assessing the positioning of

clustered crosslink sites at the exon/intron boundaries of

alternative and flanking exons. For each exon, the positions

between 20 nt of exonic and 60 nt of intronic sequence for each of

the splice sites were analysed. When introns or exons were shorter

than two times the length of the analysed area, analysis was

restricted to region up the middle of the intron and exon. To draw

the RNA map, the percentage of exons containing a crosslink site

at the corresponding position is drawn.

Minigene Construction and Transfection
The alternative exons with the flanking constitutive exons were

amplified by PCR with genomic DNA from HeLa cells and cloned

into pcDNA3 vectors. The 40 nt downstream of the exon-intron

boundaries where TIA binding site are present were mutated to

sequences with no observed TIA binding sites. In the case of the

enhanced cassette exon (OGT1) and the alternative 59 splice sites

(CHD9), the 40 nt were replaced with sequences downstream of a

silenced cassette exon (CDC25C). In the case of the alternative 39

splice sites (C3orf23), the 83 nt were replaced with sequences

downstream of GAPDH exon 2. The intron of C3orf23 was too

long, so only 600 nt from the exon-intron boundaries on either

side were cloned. The constructs were transfected together with

GFP, TIA1, or TIAL1-pcDNA3/Step-His vectors using polyfect

(Qiagen). The siRNA for TIA1 (KD3) and negative control were

transfected at the same time using Lipofectamine iMax (Invitro-

gen). The cells were collected 2 d later and the splicing effects were

assessed by RT-PCR using a T7 forward primer (59-TAATAC-

GACTCACTATAGGG-39) and gene-specific reverse primers

(Table S4).

Supporting Information

Figure S1 iCLIP and iCLAP of TIA1 and TIAL1. (A)

Western blot for TIA1 and TIAL1 in HeLa, TIA1 or TIAL1

overexpressed, and TIA1/TIAL1 double KD cells. GAPDH was

used as loading control. (B) Western blot with either antibody

upon immunoprecipitation using the same antibody. Protein G

beads were used for immunoprecipitation. The strong signal at

6130 kDa represents immunoglobulin cross-reactivity. A weak

signal for native TIA1 and TIAL1 is seen at 650 kDa, and the

overexpressed proteins migrate at only slightly higher molecular

weight. (C) Autoradiogram of 32P-c-ATP labelled RNA in

complex with TIA1 or TIAL1 in iCLIP. The low RNase I results

in a shift of the complex. (D) The final PCR gel for each protein

before being submitted to sequencing on the Illumina GA2 system.

(E) iCLAP purification of overexpressed TIA1 and TIAL1 with

Strep and His tag. The proteins were first purified using Strep

beads and then purified with Cobalt beads. (F) iCLAP autoradio-

gram for TIA1 and TIAL1. Vector-transfected cells and no UV-

crosslinking samples were used as controls.

Found at: doi:10.1371/journal.pbio.1000530.s001 (1.51 MB PDF)

Figure S2 A global view of replicate iCLIP and iCLAP
experiments for TIA1 and TIAL1. The three individual

replicates of iCLIP for TIA1 or TIAL1 together with iCLAP for

either protein are shown in BedGraph format in the UCSC hg18

Genome Browser. cDNA counts at crosslink sites on the sense

(purple) or anti-sense strand (orange) of the chromosome 20 are

shown. The cDNA counts are shown on the left of the BedGraphs.

Found at: doi:10.1371/journal.pbio.1000530.s002 (0.27 MB PDF)

Figure S3 Reproducibility of replicate iCLIP and iCLAP
experiments for TIA1 and TIAL1. (A) Fold-enrichment of

pentamers in the 21 nt sequence surrounding crosslink sites

(210 nt to +10 nt) are shown for TIA1 and TIAL1 iCLIP. (B)

Pentamer z scores at the 21 nt sequence surrounding crosslink sites

(210 nt to +10 nt) are shown for TIA1 and TIAL1 iCLAP. The

sequences for the two most enriched pentamers and the Pearson

correlation coefficient (r) are shown. (C,D) Reproducibility of

sequence composition at crosslink nucleotides. Frequencies of

pentanucleotides overlapping with crosslink nucleotides are shown

for the three replicate experiments for TIA1 (C) or TIAL1 (D). (E)

Weblogo showing base frequencies of crosslink nucleotides and

20 nt of surrounding genomic sequence. Positions 0 and 1
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correspond to crosslink nucleotide and first position of cDNA

sequence, respectively. (F) Reproducibility analysis comparing the

positions of clustered crosslink sites of TIA1 and TIAL1. Black

bars show the number of crosslink nucleotides from TIA1 iCLIP

that are reproduced in TIAL1 iCLIP with a given offset. An offset

of 0 nt indicates the number of crosslink nucleotides from TIA1

iCLIP that were reproduced by a crosslink nucleotide at exactly

the same position in TIAL1 iCLIP. Negative or positive offset

values indicate whether the reproducing TIAL1 crosslink position

is located upstream or downstream of the TIA1 crosslink

nucleotide, respectively. The orange curve depicts results of the

same analysis upon randomisation of TIA1 crosslink nucleotide

positions. (G–I) Contour plots comparing TIA1 and TIAL1 cDNA

enrichment in ncRNAs (G), 39 UTRs (H), and introns (I). The

cDNA enrichment was calculated by dividing the density in each

RNA region by the whole-genome cDNA density. The legend

shows the minimal density of RNAs in an area of the plot

corresponding to the colour of each contour.

Found at: doi:10.1371/journal.pbio.1000530.s003 (0.59 MB

PDF)

Figure S4 TIA1 and TIAL1 crosslink to different parts of

chromosomes. (A) Global view of chromosome 6 with TIA1

and TIAL1 iCLIP crosslink sites. The chromosome is shown at the

top. The genes are shown below the tracks. The zoom-in view

shows the MAPK14 gene. This gene has two mutually exclusive

exons, and splicing change was detected by the microarray. The

regions with enriched iCLIP cDNAs were zoomed in further down

to nucleotide resolution. (B) Global view of the same chromosome.

This time, the region with very high numbers of cDNAs was

zoomed in. The crosslink sites map to the antisense strand, and

three major peaks were further zoomed in. The first one maps to

the 39 UTR of a histone gene (1), whereas the other two map to

non-coding tRNAs (2, 3).

Found at: doi:10.1371/journal.pbio.1000530.s004 (0.71 MB

PDF)

Figure S5 The location of TIA1 and TIAL1 crosslink

sites in previously described pre-mRNAs. (A) TIA1 and

TIAL1 crosslink sites in FAS pre-mRNA. In the mid panel, exons

5, 6, and 7 are shown, with exon 6 being alternatively spliced. The

arrows above the bar graphs show the previously identified TIA

binding sites. (B) TIA1 and TIAL1 crosslink sites in MYC pre-

mRNA. Most of the sites were concentrated at the 39 UTR. Upper

and lower panels depict enlarged regions showing nucleotide

resolution of iCLIP crosslink sites.

Found at: doi:10.1371/journal.pbio.1000530.s005 (0.29 MB PDF)

Figure S6 TIA1/TIAL1 siRNA knock-down in HeLa

cells. Western blot for TIA1/TIAL1 KD samples. Either TIA1

or TIAL1 was detected in the upper panels and GAPDH in the

bottom panel as loading control.

Found at: doi:10.1371/journal.pbio.1000530.s006 (0.19 MB

PDF)

Figure S7 TIA1/TIAL1 regulate intron retention. (A)

iCLIP crosslink sites in the silenced intron in PPIA pre-mRNA.

The exon is shown by the rectangle, and the alternative intron by

the arrowed line. The area surrounding the 59 splice site is shown

at a greater resolution below. (B) 18 intron retention events

detected by the microarray were analysed by real-time PCR in

control and TIA1/TIAL1 KD samples (prepared using the third

siRNA oligonucleotide).

Found at: doi:10.1371/journal.pbio.1000530.s007 (0.33 MB

PDF)

Figure S8 TIA binding causes distal splicing effects. (A)
UCSC hg18 Genome Browser views of iCLIP crosslink sites

around the two mutually exclusive exons of FYN pre-mRNA. The

areas surrounding both 59 splice sites are shown at a higher

resolution. Capillary electrophoresis of RT-PCR from KD

samples and its quantification are shown below. (B) UCSC

Genome Browser views of the alternative 39 splice site in C3orf23

pre-mRNA. The areas surrounding the 59 splice site of the

preceding exon and the alternative 39 splice sites are shown at a

higher resolution. Capillary electrophoresis of RT-PCR from KD

samples and its quantification are shown below (* p,0.05,

*** p,0.001, one-way ANOVA).

Found at: doi:10.1371/journal.pbio.1000530.s008 (0.43 MB PDF)

Figure S9 RT-PCR validation of splicing events detected
by the microarray using QIAxcel. (A) Cassette exons events

validated by QIAxcel and their quantification are shown next to

the pictures. (B) Validated alternative 59 splice sites regulated by

the TIA proteins. (C) Validated alternative 39 splice sites regulated

by the TIA proteins. (D) Validated alternative 59 splice sites

predicted by iCLIP. * p,0.05, ** p,0.01, *** p,0.001, one-way

ANOVA. (A–D) Depiction and labelling as in Figure 3D–E. (E)

The percentage of change in exon inclusion (DI) detected by

microarray and RT-PCR are plotted against each other.

Found at: doi:10.1371/journal.pbio.1000530.s009 (1.10 MB PDF)

Table S1 Information used to map the sequencing
results to genome.
Found at: doi:10.1371/journal.pbio.1000530.s010 (0.04 MB PDF)

Table S2 Mapping information for iCLIP and iCLAP
data.
Found at: doi:10.1371/journal.pbio.1000530.s011 (0.03 MB PDF)

Table S3 Enrichment of pentamers surrounding TIA1 and

TIAL1 iCLIP and iCLAP crosslink sites.

Found at: doi:10.1371/journal.pbio.1000530.s012 (0.02 MB PDF)

Table S4 RT-PCR primers for validation of splicing
event predicted by the microarray.
Found at: doi:10.1371/journal.pbio.1000530.s013 (0.08 MB PDF)

Table S5 qPCR primers for validation of intron reten-
tion event.
Found at: doi:10.1371/journal.pbio.1000530.s014 (0.06 MB PDF)

Text S1 Supplementary methods. A detailed explanation of

the iCLIP, iCLAP, z score analysis, identification of significant

iCLIP crosslink sites, and RT-PCR analysis is provided.

Found at: doi:10.1371/journal.pbio.1000530.s015 (0.04 MB

DOC)
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