
iCO2: Multi-User Eco-Driving Training Environment based
on Distributed Constraint Optimization

Marconi Madruga
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
+810342122650

marconi@nii.ac.jp

Helmut Prendinger
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
+810342122650

helmut@nii.ac.jp

ABSTRACT
Multi-agent systems have already been successfully applied to a
variety of traffic control problems and demonstrated the potential
to lower travel times and environmental impact. Sharing this goal,
we have developed iCO2, an online tool for training eco-friendly
driving in a multi-user three-dimensional environment. iCO2
supports eco-driving practice by instructing computer-controlled
agents, such as traffic lights and other vehicles, to create traffic
situations that make eco-driving more difficult. Hence the agents
take the role of “opponents” that try to achieve the optimal
challenge level for the skill level of each user. The research
challenge is to find the optimal challenge level for all user drivers
in a shared simulation space that (1) involves both controllable
entities (“opponents”) and non-controllable entities (users) and
(2) is highly dynamic, with dependencies between entities being
created and destroyed in real time. We try to solve this problem by
modeling the scenario as a distributed constraint optimization
problem (DCOP). The main contribution of our paper is the
application of a DCOP algorithm to such a new type of
application scenario. We evaluate our approach by running
scenarios both in terms of speed and optimality of the solutions
proposed by the DCOP algorithm.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multi-agent systems;
I.6.3 [Simulation and Modeling]: Applications

General Terms
Algorithms, Design, Human Factors

Keywords
Distributed constraint optimization, coordination, real-time
challenge balancing, social interaction

1. INTRODUCTION
During the past decade, multi-agents systems (MAS) have been
successfully applied to solve various types of sustainability issues.
Examples include smart grid management, reduction of energy
consumption in buildings, and traffic management
[24][20][2][12].

In traffic management, the goal is to minimize traffic congestion
by creating optimal traffic control strategies. To solve traffic
control problems, MAS techniques are used to synchronize
adjacent traffic signals (conceptualized as agents), with the goal of
letting vehicles cross as many intersections as possible without
stopping [2]. The difficulty is to determine which direction should
be synchronized so as to maximize network throughput, and
consequently minimize travel times and negative impacts of traffic
on the environment [3].

While we share the goal of reducing fuel consumption and CO2
emissions with those MAS-based traffic control applications, the
controllable agents in iCO2, our multi-user three-dimensional
(3D) eco-driving training space, serve a completely different
purpose. Rather than facilitating traffic flow, controllable agents
act as “opponents” to the user driver by creating eco-
circumstances (“obstacles”), i.e. traffic situations that make eco-
driving difficult for the user. We implemented two types of
opponents: fixed position and moving opponents. A traffic signal
is an opponent (agent) with a fixed position that can impact all
user drivers approaching it. As an opponent, the traffic signal can
turn “yellow” at a certain moment and put the user driver in an
“eco-safety dilemma” state: (1) strong braking or acceleration will
avoid crossing the red light, but is an eco-unfriendly driving style;
(2) keeping the speed is an eco-friendly option but has the risk of
running the red light. Computer-controlled vehicles, on the other
hand, are moving opponents. Their behavior can impact the
vehicles (both user-controlled and computer-controlled) following
on the same lane. E.g. a braking operation will induce braking in
the following vehicles, as collisions have to be avoided.

The difficulty level of the eco-circumstance, or challenge, we
want to create is determined by the user’s individual skill level. It
is known that users get frustrated when the difficulty level of the
interaction in the simulation space is too high and loose interest if
it is too low [5]. So the opponents (traffic signal, computer-
controlled vehicles) should adapt the difficulty level to the user’s
current skill level. This technique is called real-time, or dynamic,
challenge balancing (RCB) [15]. Existing approaches for RCB are
limited to the “one opponent vs. one user” case. Our training
environment, on the other hand, is a “social” driving environment,
where multiple users are expected to practice eco-driving in the
same simulation space at the same time. Therefore, to create
challenges for each individual user, multiple opponents are
necessary.

To summarize, the technical challenge of our eco-driving
environment is to find a set of actions for the opponents that
generate the optimal challenge level for each user in the scenario.
A solution to this problem is complicated by several factors: (1)
all entities (users and opponents) share the same driving space and

925

Appears in: Proceedings of the 12th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker,

Gini, and Shehory (eds.), May 6–10, 2013, Saint Paul, Minnesota, USA.

Copyright © 2013, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

thus their actions have direct and often unwanted influences on
others. For instance, the attempt to create a high-difficulty eco-
circumstance for one user driver may accidentally create a high
level challenge for another user driver (following behind the first
user), who should instead experience a low-difficulty eco-
circumstance; (2) user drivers are non-controllable entities that
might also create unwanted eco-circumstances for other users; (3)
the solution has to be found in real-time.

In this paper, we will represent our problem as a distributed
constraint optimization problem (DCOP) [14]. In DCOP
applications, each agent holds a variable and can change its value
to achieve a globally optimal solution. To our knowledge, DCOP
algorithms have not yet been applied to scenarios that are
comparable to the heterogeneity of our multi-user multi-opponent
real-time eco-driving scenario. Hence, the main contribution of
this paper is a new application for DCOP algorithms and the
presentation of results from a series of simulation runs that
involve human users, a kind of “participatory simulation” [11].

The remainder of the paper is organized as follows. In Section 2,
we discuss related work. Section 3 describes the core technical
contribution of our paper: (1) offline Q-learning, (2) online
challenge balancing, and (3) the translation of our multiuser,
multi-agent application scenario to a DCOP. Section 4 presents
the experiment and its results. Section 5 concludes the paper.

2. RELATED WORK
This section reviews related work on existing applications of
multi-agent systems for traffic control problems, as well as on
real-time challenge balancing systems.

2.1 Multi-Agent Systems in Traffic Control
Although our use of controllable agents in traffic is completely
different from their use in ‘usual’ traffic control problems, we will
discuss applications of multi-agent systems in traffic control to
highlight similarities and differences.

The control of traffic signals is typically based on pre-established
traffic signal plans that are designed to work with given nominal
volume of vehicles. As this approach cannot cope with changes in
these volumes [13], there is a need for approaches that allow for
dynamic synchronization of adjacent lights. An approach based on
swarm intelligence is proposed in [17]. Traffic signal agents see
signal plans as tasks to be executed. They receive stimuli to
change the tasks (i.e. chose a different plan) based on the amount
of “pheromone” in each direction. This pheromone is
continuously produced by vehicles waiting at the red light.
Although traffic signals are able to achieve synchronization, the
time needed to converge can be high. This approach is not
suitable for highly dynamic environments where decisions have to
be made in real time.

An agent-based mechanism for intersection control that minimizes
fuel consumption is proposed in [19]. The work uses a
reservation-based protocol directed towards autonomous guided
vehicles (AGV), such as in [8]. Intersections use an emission
model to estimate the increase in emissions, and assign time slots
to vehicles in order to minimize emissions. Such an approach
could be applied to our case, if we reverse the goal and assign
time slots to maximize (rather than minimize) the emissions.
However, our application also involves human users and there is

no guarantee that they will respect the assigned time slot, as the
AGVs do.

A DCOP-based approach to coordinate traffic signals is proposed
in [16]. In this scenario, each agent is assigned a variable which
indicates the direction of synchronization of a certain intersection.
Adjacency between intersections represents a constraint between
their variables, and the cost is determined by whether they are
synchronizing in the direction with more incoming vehicles or
not. In trying to solve the DCOP, agents eventually reach a
configuration of minimum cost. When the traffic pattern changes
the cost increases and the DCOP algorithm is automatically
reactivated. Our model is also based on dynamic DCOPs. In our
case, however, the topology of the constraint graph is also
dynamic, since it depends on the position of each entity (user
driver or moving opponent) on the road at a certain moment.
Furthermore, as mentioned above, we also account for nodes that
we cannot control, representing users.

2.2 Real-time Challenge Balancing
Real-time challenge balancing [15], a.k.a. dynamic difficulty
adjustment [10], consists in adapting the challenge level of the
system to the user’s skill level in real time. The concept is based
on Csikszentmihalyi’s flow theory [6], which describes the state
of “flow”, a psychological state of full engagement and intrinsic
motivation of performing the task at hand. This state can only be
achieved if there is a balance between the challenge of the task
and the skill of the performer. There is evidence that by keeping
the challenge level and the user skill in equilibrium, users will be
motivated to continue the task for longer periods of time, thus
making training more effective.

In applications of RCB, the challenge is usually measured by a
heuristic function that is called “challenge function”. There is no
general model for the challenge function, since it is application-
dependent. By keeping track of this function, an application is
able to detect when the challenge leaves a desirable range and can
decide when to intervene.

Existing RCB methods include behavior-based approaches [22],
neuro-evolutionary approaches [15], and an approach based on
“challenge sensitive action selection” [1]. In the last mentioned
approach, an agent is trained offline by standard tabular Q-
learning [25] to learn a winning strategy against the user. When
online, the system keeps track of a “level” n, which represents the
user’s skill level. By periodically analyzing the challenge
function, the level n can be increased or decreased if the challenge
is too low or too high, respectively. The agent then deliberately
chooses not to perform the action with the best Q-value, but the
nth best action for a given state, in order to match the user’s skill.
In our approach, the same method is used to train the
“opponents”.

It is important to note that all the RCB methods mentioned above
focus on “one opponent vs. one user” scenarios, where one agent
is an opponent that has to adapt to a user’s performance. By
contrast, our eco-driving scenario includes multiple users and
multiple opponents, all sharing the same action (driving) space.
Hence we have to deal with situations where we want to calibrate
challenges for users with different skills in the same area. A traffic
light cannot simultaneously turn “red” for one player and stay
“green” for another. Hence, there is a need for an approach that

926

considers all entities involved, users and opponents, and tries to
find a set of actions that optimizes challenges for all users.

3. MULTIUSER RCB WITH DISTRIBUTED
CONSTRAINT OPTIMIZATION
In this section, we describe our application scenario and the
application of DCOP methods to achieve the best possible
challenge level for multiple users in real time. Following Andrade
[1], we differentiate the offline learning phase from the online
adaptation phase. Importantly, our online adaptation phase
extends previous work on challenge balancing to the multi-user
case, by using distributed constraint optimization.

3.1 The iCO2 Application

iCO2 is an online tool for practicing eco-safe driving with
multiple networked users. In September 2012, iCO2 was launched
as an application on Facebook.1 The 3D scenario depicts an area
in Tokyo of about 1 km2. Users can control the direction and
speed of the car operating a mouse-based interface (see Figure 1).
The interface will change its color to indicate eco-friendliness in a
continuous color range from green (eco-friendly) to red (eco-
unfriendly), based on the EMIT emission model [4]. As a first
approximation, eco-friendliness is defined by smooth acceleration
and deceleration only.
iCO2 is designed as a computer game, where the user (or player)
tries to drive as far as possible with a given amount of fuel. To
receive more fuel, the user has to pass “checkpoints” which are
spread around the city. The distance between checkpoints
increases and the amount of fuel each checkpoint yields decreases.
Colliding with other cars or running a red light will result in a fuel
penalty.
As a tool for eco-driving practice, the iCO2 application has two
unique features: (1) unlike existing single-user tools from major
car makers, our application supports multiple drivers in a shared
space, just like in a real traffic situation; (2) the application can
dynamically create situations (eco-circumstances) that make eco-
driving driving difficult. Eco-circumstances are created by two
types of computer-controlled agents (“opponents”): traffic signals
(opponents) and opponent cars.

1 http://www.facebook.com/icotwo/

The traffic signal perceives oncoming cars and decides when to
turn to “red”. The goal of this opponent is to generate the
“yellow-light dilemma”, where the driver does not know whether
to brake or to accelerate and cannot avoid choosing an eco-
unfriendly action [21]. The opponent car perceives the car behind
it and decides whether to accelerate, to brake or to keep the speed.
The goal of this opponent is to induce an eco-unfriendly behavior
on the immediately following car, by suddenly braking hardly and
accelerating hardly. The opponent car is controlled by the
intelligent driver model (IDM) [23]. Braking and accelerating
behavior is achieved by adjusting parameters in the IDM.

3.2 Offline Learning of Q-Values
To avoid situations where the behavior of opponents (traffic
signals and opponent cars) makes eco-driving for the user too easy
or too difficult, we apply real-time challenge balancing to the
opponents’ actions [15].
In the offline learning phase, we train our opponents to achieve
challenge balancing against one user. Using Q-learning, the
opponents learn an optimal policy to make eco-driving difficult
for the user. The learning phase generates two q-tables, one for
the traffic signal and one for the opponent car. Note that there is
no learning after the tables are generated.

3.3 Online Adaption based on the Challenge
Function
In the online adaptation phase, an opponent can decide not to
choose the optimal action (provided by the Q-table), but select
progressively less and less suboptimal actions until one matches
the user’s challenge requirements. A challenge function informs
the decision by evaluating the average challenge faced by a user in
real-time, using the following heuristic:

Here is the instantaneous challenge at a time ; is the fuel
consumption, calculated by the EMIT model; is the
acceleration of the car, squared because high and low values of
the acceleration should be avoided; is the rate of crossing
red traffic lights; and is the rate of collisions with other
vehicles. The constants , , and represent the
weights for each component in the equation. The instantaneous
challenge is calculated at a fixed sampling rate of 300ms, and
accumulated according to a linear interpolation:

Here is the accumulated challenge at a time . At each
second, the current accumulated challenge is added to a moving
average of size 10. The average challenge is the result of the
moving average (i.e. it will always contain the accumulated
challenge of the previous 10 seconds). At a rate of 10 seconds, the
average challenge is evaluated and, if it crosses a threshold, a sub-
optimal action is chosen. For instance, if the challenge is too high,
the opponent will start to choose the action with the 2nd-best Q-
value, and if the average challenge continues high at the next
evaluation point, the 3rd-best Q-value is selected, and so on. This
technique is called “challenge-sensitive action selection”.

Figure 1. A screenshot of the iCO2 application on Facebook.
The blue “wheel” (mid-right) is the driving interface. It shows

“green” to indicate eco-friendly driving behavior

927

Figure 2. Left: Example traffic situation involving traffic signal, user driven cars (labeled with challenge requirements) and
opponent cars. Right: DCOP graph structure corresponding to the situation on the left. The root is always a traffic signal (tl), and
each branch represents a lane of the street. Constraints represent dominance relationships. All leaf nodes are user agents (ui). o3 is

not considered in the computation as it is non-controlling
During the online phase, all opponents use the two tables to look
up an action policy for individual users. When multiple users
share the same area, a more advanced method is required, as we
have to find an optimal set of actions for multiple opponents to
execute, so that challenge is optimal for all users involved. Such a
method will be described in the next section.

3.4 Multiuser Challenge Adaptation based on
Distributed Constraint Optimization
In distributed constraint optimization problems (DCOP), each
agent is assigned to one or more variables and these have
interdependencies. The goal is to find an optimal assignment for
the variables to minimize or maximize a global cost function [7].

A DCOP is formally defined by (following the notation of [7]):

 A set of N agents, , whereby an
agent is either computer-controlled (an opponent) or
user-controlled.

 A set of n variables, . In our case,
each agent holds a single variable, hence n = N.

 A set of domains , where the value
of is taken from . Each is assumed to be finite
and discrete.

 A set of cost functions where each is a

function . Cost functions
can also be called constraints.

 A distribution mapping assigning each

variable to an agent. means that is
responsible for choosing a value for . is given
knowledge of , , and all involving .

 A global cost function defined as an aggregation (e.g.
summation) over the set of cost functions.

 An assignment representing the values of
each variable , taken from their domains .

A DCOP is represented by a constraint graph, where the nodes are
the variables and a link between two nodes exists when there is a

constraint over two variables. Agents whose variables share a
constraint are called “neighbors”. Agents are only allowed to see
their neighbors, and may exchange messages with them.
In our application, each agent represents either an opponent or a
user. In the case of an opponent, the variable associated with it
indicates the action that the opponent will choose to execute.
Since the users are non-controllable entities, the variable indicates
the action that we predict the user to execute. The prediction is
based on (1) the current environment state (car’s position,
acceleration, speed, and distance to the light) and (2) the actions
that the car ahead may perform (i.e. the value of the parent node).
It is important to note that not all opponents involved in the
DCOP may influence the prediction of a certain user’s action. To
reflect this, we introduce the concept of “dominance”. An agent
(opponent or user) is dominant over another agent (opponent or
user) if the actions of the former directly influence the behavior of
the latter. In our application:

1. A traffic signal is dominant over an agent Ai, if Ai is in
front of the traffic light and there is no other agent Aj in
the environment between Ai and the traffic light.

2. An opponent/user car is dominant over an agent Ai, if Ai
is behind the opponent/user car, in the same lane, and
there is no other agent Aj in the environment between Ai
and the opponent/user car.

An opponent is called non-controlling if it is not dominant over
any other agent (at a particular moment). Non-controlling
opponents are not part of the constraint graph, since they cannot
influence any user. In our scenario, DCOPs always involve a
traffic light. Hence, we obtain a tree-like structure, where the
traffic light is the root, each branch represents a lane, and the leaf
nodes are users (see Figure 2 (right)). This means that if agent Ai
is dominant over agent Aj, the node controlled by Ai is a parent
node of the node controlled by Aj. Hereafter, we refer to the nodes
using tree notation (parent node and child node). Once the
structure is determined from the position of the traffic lights,
opponent cars and users in the 3D environment, we can start with
distributed constraint optimization.
The domain of a variable in the DCOP depends on the type of the
agent controlling that variable. If the variable corresponds to a
traffic signal node, there are two available actions, “change color”
and “not change color”: D = {C, NC}. If the variable corresponds
to an opponent car node, the available actions are braking,
keeping the speed and accelerating: D = {B, KS, A}. In the case

928

of the user node, the domain is the output of the prediction
function, which is also “braking”, “keeping speed”, or
“accelerating”: D = {B, KS, A}. Even though the user is allowed
to change lanes, this is not covered by the prediction function.
The existence of constraints is solely based on the dominance
relationship between agents. The cost of existing constraints
depends on whether there is a conflict between the agent’s actions
or not. A conflict occurs when (a) a parent node (dominant agent)
executes an action that raises an inadequate challenge for the child
node (in case it is a user node); (b) a child node executes an action
that is conflicting with its parent node’s value. As an example of
the latter type of conflict, consider an opponent car that is in front
of a traffic light and decides to accelerate, while the light decides
to change to red. If the car is very close to the light, it may be able
to accelerate and cross in time; hence both actions can be
executed independently. However, if the car is slightly further
away, it may be forced to brake, even if it had chosen to accelerate
(recall that opponents never cross a red light). This unwanted
braking will affect the following cars and hence, this kind of
conflict should be detected beforehand.
The cost of each constraint between two agents, f(xi,xj), is
computed according to the Algorithm 1.

Algorithm 1: Calculates the cost f (xi, xj), where xi is parent of xj

if (xj is opponent car) then

 predictedj PredictAction(xj, xi, di)

 if (predictedj > xj) then // predictedj is less restrictive than xj

 f (xi, xj) 0

 else

 f (xi, xj) ∞

 end if
else

 predictedj, chalj PredictChallengeAndAction(xj, di)

 if (predictedj != xj)

 f (xi, xj) ∞

 else

 f (xi, xj) |(max challenge – avgChallenge(xj)) - (chalj)|

end if

Case 1: When the child node xj is an opponent car, we predict the
action of the opponent car given the value of the parent xi, and the
current state. Then we compare the predicted action with the
desired action (dj, the value of xj). This comparison is based on
the restrictiveness of the action, “brake” being the most restrictive
action and “accelerate” being the least restrictive one. If the
predicted action is more restrictive than the desired one, they are
conflicting, and the constraint has infinite cost. Otherwise, there is
no cost (f (xi, xj) = 0).
Case 2: When the child node xj is a user, we similarly predict the
action that the user car will execute, given the value of the parent
xi and the current state. Furthermore, we predict the challenge that
this action represents by using the challenge function. If the
predicted action is different from the value of the child node xj,
there is infinite cost. This is necessary because the DCOP
algorithm investigates all the possible values for each node. Since
the user node should always represent a predicted action, values

that are inconsistent with it should yield infinite cost. If the
predicted action is the same as the value of the child node xj, the
cost is the difference between the predicted challenge and the
ideal challenge for that user. The ideal challenge for a user is the
difference between the maximum challenge and the current
average challenge for the user.
For the prediction of the actions of opponent car and the user car,
we use the Intelligent Driver Model (IDM) [23]. The IDM is a
parameterized equation that calculates the ideal acceleration,
based on the headway (distance to the front vehicle) and speed of
the front vehicle. Hence the prediction is based on headway and
speed. Another parameter is the “prediction time”, which indicates
how far ahead the function is looking. If the parent node is a
traffic signal, we use the IDM with Intersection Management
(IDM-IM) [9], which is the IDM with additional capabilities to
indicate how a car behaves at an intersection. If the parent is a car,
the usual IDM is used.
The acceleration output of the IDM is the used to determine:

 The predicted action: negative accelerations are mapped
to the “brake” action, positive to the “accelerate” action,
and around zero (given a threshold) to the “keep speed”
action

 The challenge (in case of a user node): using the
predicted acceleration as input to the emission model
and to the challenge function

Algorithm 2: Calculates the predicted action PredictAction
PredictAction(xj, xi, di)

predSpeed speed(xi) + acceleration(xi)*predictTime

myPredSpeed speed(xj) + acceleration(xj)*predictTime

predPosition position(xi) + speed(xi)*predictTime +
acceleration(xi)*predictTime2/2

myPredPosition position(xj) + speed(xj)*predictTime +
acceleration(xj)*predictTime2/2
predAcceleration IDM(myPredSpeed – predSpeed,
distance(myPredPosition, predPosition))

if (|predAcceleration| <) then

 return keep speed
else if (predAcceleration > 0)

 return accelerate

else
 return brake

In order to take advantage of the tree structure, we use the
DTREE algorithm [18], a complete and linear-time algorithm for
solving DCOPs that can be represented as a tree network. In
DTREE, there is an initial step of selecting the root node, which is
not implemented in our case, since our application has a unique
root node (the traffic signal). When the algorithm starts, leaf
nodes calculate the lowest cost they can achieve for each of their
parent’s values, and send a UTIL message to their parent,
informing the lowest cost table. Parents aggregate the values
received from their children to find out, for each possible action,
the best utility they can achieve. When the messages reach the
root node, it is able to choose an assignment for itself and send it
back to their children, as a VALUE message. Each child node,

929

then, chooses its own value, based on the pre-calculated utilities
and its parent’s assignment. The algorithm finishes when the
VALUE messages reach the leaf nodes. After the DTREE is
finished, each of the opponents involved in the DCOP executes its
chosen action (node assignment) in the real world.

4. EXPERIMENT
To investigate the suitability of the proposed approach to our
scenario, we conducted a pilot study involving human users. The
purpose of the study was two-fold.

 Performance: we wanted to test the performance of the
DCOP algorithm in a real-time situation with non-
controllable agents (i.e. users).

 Scalability: we wanted to investigate the scalability of
the algorithm, as our scenario allows having multiple
users and computer-controlled entities simultaneously.

Regarding performance, we hypothesized that a linear-time
algorithm as the DCOP calculation would not be a bottleneck for
the application. As to scalability, we speculated that if the number
of agents (users and opponents) grows, either the size of the
graphs, or the frequency of the calculations of DCOPs will
increase to a point where the number of agents becomes a
bottleneck to finding the optimal solution.

Furthermore, we wanted to assess how the challenge function for
users develops over time. This can provide us an insight into the
quality of the current challenge function and into how events
inside the environment (e.g. participation in DCOPs, collisions,
stopping at crossings, etc.) relate to the calculated challenge.

4.1 Method
4.1.1 Subjects and Design
We had 30 subjects (19 male, 11 female), on average 27.6 of age.
Most subjects were students at institution. Subjects were paid an
amount equivalent to USD 10 for participation.

Since it is difficult to have a large number of users driving at the
same time in a controlled experiment, we also used computer-
controlled cars to represent users in the scenario. We call such car
“IDM-Eco-Car”, because it is driven by the IDM, but
parameterized to drive in an eco-friendly way. Traffic signals or
opponent cars do not differentiate between IDM-Eco-Cars and
human users. The IDM-Eco-Car is currently a limited
representation of the user, as e.g., it cannot change lanes.
Opponent cars are not allowed to change lanes. Both the opponent
cars and the IDM-Eco-Cars always respect the red light and never
collide. Finally, human users are allowed to drive freely among
the opponent cars and IDM-Eco-Cars.

4.1.2 Materials and Procedure
Subjects drove in a networked 3D simulation space representing
Yasukuni Street, a major street in Tokyo (see Fig. 1). For the
purpose of the study, the road was made a closed circuit (no turns,
no cars coming in the opposite direction). Traffic signals are
distributed along the road. To increase unpredictability of the
scenario some traffic signals are opponents, others stay green all
the time. Groups of opponent cars are created at distributed spots
along the road, usually close to a traffic signal. This was done
with the intention of increasing the probability of having users
and opponents in front of a traffic signal at the same time.

Each subject was assigned to a computer with a mouse, a monitor
and headphones. Subjects were positioned so that they could not
see each other’s screen. Subjects drove in groups of three at a time
(10 groups in total), and were instructed to try to accelerate
smoothly and to avoid sharp braking. They were told to respect the
traffic rules (avoid collisions and crossing the red light) and drive
with the speed of up to 60 km/h.

The experiment was divided into one practice session and three
experimental sessions, where the number of computer-controlled
cars was increased in a controlled manner. In the practice session,
three users practice driving together for five minutes; there are
only users and traffic light opponents.

In the experimental sessions, three users drive around the circuit
together for 10 minutes.

 Session I: nine opponent cars, divided into three groups
of three cars, are created along the road.

 Session II: 18 opponent cars, divided in 3 groups of 6,
plus 3 IDM-Eco-Cars.

 Session III: 27 opponent cars, divided in 3 groups of 9,
plus 6 IDM-Eco-Cars.

Each time a DCOP is solved, the agents involved, graph structure,
time taken and final assignment is logged. We also logged driving
behavior data, such as position, speed, acceleration, fuel
consumption, emission, etc., at a constant sampling rate of 100ms.

4.2 Results
The results of our pilot study are summarized in Table 1. The
traffic signal is included in the size of the DCOP (e.g. a problem
of size 7 should have one signal and 6 cars). As expected, when
the number of entities in the scenario grows, the number of
DCOPs to be solved also grows, as well as the size of the DCOP.
Even though 33 computer-controlled cars and 3 human users
shared the same circuit in Session III, the DCOP maximum size
did not exceed 11 variables (traffic light included).

Table 1. Results per session
 Session I Session II Session III

Number of
opponent cars

9 18 27

Number of IDM-
Eco-Cars

0 3 6

Average time per
DCOP

1.026s 1.004s 1.012s

Maximum time 2.089s 2.076s 2.162s

Number of DCOPS
solved

127 449 750

Average size of
DCOPs

4.496 4.897 5.352

Maximum size 7 9 11

Graph reconstructs
(lane changing)

1 2 3

930

The study showed that regardless of the growth in size, the
average time taken to solve the DCOPs remained approximately
constant (1 second). Even if 1 second appears slow for graphs of
such small size, it is important to note that this value does not
represent solely the algorithm runtime. Since all of the graphics
and logic complexity of the application runs in a single thread, the
exchange of messages between agents has a natural delay, even if
it runs locally. Hence, the actual time consumed by the DCOP
algorithm might be much smaller than 1 second.
As a metric for the level of “dynamics” (rate of change of the
position of user cars) of the traffic situation, we counted the
number of reconstructions of the DCOP graph due to lane
changing. First, the graph is always reconstructed when a car
crosses the traffic signal (i.e. leaves the graph). It would also be
reconstructed if a vehicle enters the relevant area. However, such
situation was not foreseen in our experiment. Second, the lane
changing action induces a reorganization of the existing variables
and indicates how “dynamic” did the user cars behave, when
inside the DCOP area. However, while users were allowed to
freely move within the scenario, few graph reconstructions were
detected in each session (see Table 1).
Although challenge balancing was not the focus of this study, we
also looked at whether the DCOP calculations have any effect on
the value of the challenge function over time. Fig. 3 shows the
example for one user in Session II. For this experiment, the
challenge function was weighted so that it could assume values
within the range [0-4]. The peak at 2min50s indicates a vehicle
collision (challenge value raises because of the collision itself,
and the sudden deceleration generated by it). The figure shows
that, overall, the challenge for this user remained low throughout
the whole session. This could indicate many things: opponents’
behavior is not aggressive enough, user was not affected by
challenge balancing (as this would have yielded a generally higher
challenge, in average) or that the challenge function needs to be
adjusted. Further investigation is necessary to establish a direct
relation between the participation in the DCOPs and the change in
the value of the challenge function.

Figure 3. Challenge function over time, for one certain user in
Session II. Vertical dotted lines represent DCOPs in which this
user participated.

5. DISCUSSION AND CONCLUSIONS
The aim of this paper is to investigate multi-agent scenarios
involving controllable agents and non-controllable agents (users)
for the purpose of letting users practice eco-driving in an
engaging and motivating way. This is achieved by adjusting the
difficulty level for each of them. This aim led to the creation of

iCO2, a Facebook application based on our multiuser networked
3D virtual environment technology. Unlike existing online
training environments, which support a single user driver only,
drivers in iCO2 share the same simulation space. Further, by
introducing “opponents” (for users) to the environment, we try to
create situations for user that make it difficult to drive in an eco-
friendly way.

The research challenge is to find an adequate challenge level for
all users (drivers) in spite of the high interdependency of a traffic
situation consisting of multiple agents, including computer-
controlled cars and users. To address this problem, we cast the
scenario as a distributed constraint optimization problem (DCOP),
and apply the DTREE algorithm [18] to find an optimal solution.

To test the algorihm on our scenario, we conducted a pilot study
involving human drivers. The study revealed that the algorithm
does not represent a bottleneck for the application and is suitable
for a real-time application. However, more stress tests are
necessary, since increasing the number of computer-controlled
cars in the scenario did not raise the size of the DCOPs as much
as expected. This might be due to the fact that our experiment
involved 10s rather than 100s of computer-controlled vehicles
besides the user drivers. To increase the amount of realistic
“ambient traffic” (IDM-Eco-Cars), we have to increase the
varibility of parameter settings of the IDM and implement further
driving behaviors, such as lane changing. We expect that traffic
with hundreds of cars will create more challenge for the DCOP
algorithm, and interesting trade-offs between different algorithms
might be observed.

In addition we want to increase the number of simultaneous user
drivers in the driving simuation space. For that purpose,
developed iCO2, a Facebook application that supports massively
multiuser driving simulation (see the link in Footnote 1). As a
next step, we will organize an eco-driving ‘contest’ on this
popular social networking service, which will allow us to gather
large numbers of users in the scenario. This might lead to large-
scale user study, which is hard to conduct in a laboratory
environment.

Further, the granularity of the behavior (learned by Q-learning) of
the opponent cars is rather coarse. We consider to retrain the car
opponents with larger set of behaviors, with different levels of
acceleration and braking.

In conclusion, we hope that our eco-driving training scenario can
provide an innovative and challenging environment for testing
DCOP algorithms. To the best of our knowledge, existing
algorithms have not yet been applied to such potentially highly
dynamic application environments involving heterogeneous types
of agents.

6. ACKNOWLEDGEMENTS
This research was partly supported by a ‘‘Grand Challenge’’
Grant from National Institute of Informatics (NII), Tokyo and by
the MEXT (Ministry of Education, Culture, Sports, Science, and
Technology - Japan) scholarship applied for graduate studies at
NII. The authors would like to thank all colleagues at NII for
helpful discussions.

7. REFERENCES
[1] Andrade, G., Ramalho, G., Santana, H., and Corruble, V.

2005. Extending reinforcement learning to provide dynamic
game balancing. In Proc. of the Workshop on Reasoning,

931

Representation, and Learning in Computer Games, 19th
International Joint Conference on Artificial Intelligence.
IJCAI. 7–12.

[2] Bazzan, A. L. 2005. A distributed approach for coordination
of traffic signal agents. Autonomous Agents and Multi-Agent
Systems 10, 131-164.

[3] Bazzan, A. L. C. 2008. Opportunities for multiagent systems
and multiagent reinforcement learning in traffic control.
Autonomous Agents and Multi-Agent Systems, 18, 3, 342–
375.

[4] Cappiello, A., Chabini, I., Nam, E.K., Lue, A. and Abou
Zeid, M. 2002. A statistical model of vehicle emissions and
fuel consumption. In Proc. of the IEEE 5th International
Conference on Intelligent Transportation Systems. 801- 809.

[5] Cowley, B., Charles, D., Black, M., and Hickey, R. 2008.
Toward an understanding of flow in video games. Computers
in Entertainment, 6, 2 (Jun. 2008), 20:1-20:27.

[6] Csikszentmihalyi, M. 1990. Flow: The Psychology of
Optimal Experience. Harper Perennial, New York.

[7] Davin, J. and Modi, P. J. 2005. Impact of problem
centralization in distributed constraint optimization
algorithms. In Proc. of the International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’05),
1057-1063.

[8] Dresner, K.,and Stone, P. 2005.Multiagent traffic
management: An improved intersection control mechanism.
In Proc. 4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’05), 471-477.

[9] Fiore, M., Harri, J., Filali, F. and Bonnet, C. 2007. Vehicular
mobility simulation for VANETs. 40th Annual Simulation
Symposium, 301-309.

[10] Hunicke, R., and Chapman, V. 2004. AI for dynamic
difficulty adjustment in games. Challenges in Game Artificial
Intelligence AAAI Workshop. 91–96.

[11] Ishida T., Nakajima Y., Murakami Y., Nakanishi H. 2007.
Augmented experiment: Participatory design with multiagent
simulation. In Proc. of the International Joint Conference on
Artificial Intelligence, 1341-1346.

[12] Jain M., An B., and Tambe M. 2012. An overview of recent
application trends at the AAMAS conference: Security,
sustainability and safety. AI Magazine, to appear.

[13] Junges, R., and Bazzan, A. L. C. 2008. Evaluating the
performance of DCOP algorithms in a real world, dynamic
problem, In Proc. of 7th Int. Conference on Autonomous
Agents and Multiagent Systems (AAMAS’08), 599-606.

[14] Liu, J., and Sycara, K. P. 1995. Exploiting problem structure
for distributed constraint optimization. In Proc. of
International Conference on Multi-Agent Systems, 246-253

[15] Olesen, J. K., Yannakakis, G. N., and Hallam, J. 2008. Real-
time challenge balance in an RTS game using rtNEAT. In
Proc. of IEEE Symposium on Computational Intelligence
and Games. CIG’08. 87-94.

[16] Oliveira, D. D., Bazzan, A. L. C, and Lesser, V. 2005. Using
cooperative mediation to coordinate traffic lights: A case
study, In Proc. of the 4th International Conference on
Autonomous Agents and Multiagent Systems, 463–470.

[17] Oliveira, D., Ferreira, P. R., Jr., Bazzan, A. L. C., and Klügl,
F. 2004. A swarm-based approach for selection of signal
plans in urban scenarios. In Proc. of 4th International
Workshop on Ant Colony Optimization and Swarm
Intelligence—ANTS 2004, 416–417.

[18] Petcu, A. and Faltings, B. 2004. A distributed, complete
method for multi-agent constraint optimization. In CP 2004 -
Fifth International Workshop on Distributed Constraint
Reasoning,1-15.

[19] Pulter, N., Schepperle, H., and Böhm, K. 2011. How agents
can help curbing fuel combustion–a performance study of
intersection control for fuel-operated vehicles. In Proc. of
10th Int. Conference on Autonomous Agents and Multiagent
Systems (AAMAS’11), 795–802.

[20] Rogers, A., Maleki, S., Ghosh, S. and Nicholas R, J. 2011.
Adaptive home heating control through Gaussian process
prediction and mathematical programming. In Proc. of the
Workshop on Agent Technologies for Energy Systems, 71–
78.

[21] Seifert, Howard S. 1962. The stop-light dilemma. American
Journal of Physics, Volume 30, Issue 3, 216-218.

[22] Tan, C. H., Tan, K. C., and Tay, A. 2011. Dynamic game
difficulty scaling using adaptive behavior-based AI. IEEE
Trans. on Computational Intelligence and AI in Games 3, 4,
289–301.

[23] Trieber M., Hennecke A. and Helbing D. 2000. Congested
traffic states in empirical observations and microscopic
simulations, Phys. Rev. E 62, Issue 2, 1805-1824

[24] Vandael, S., Craemer, K. D., Boucke, N., Holvoet, T., and
Deconinck, G. 2011. Decentralized coordination of plug-in
hybrid vehicles for imbalance reduction in a smart grid. In
Proc. of the International Conference on Au- tonomous
Agents and Multiagent Systems (AAMAS’11), 803– 810.

[25] Watkins, C. and Dayan, P. 1992. Q-Learning. Machine
Learning, 8, 279-292.

932

