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ABSTRACT 
Multi-agent systems have already been successfully applied to a 
variety of traffic control problems and demonstrated the potential 
to lower travel times and environmental impact. Sharing this goal, 
we have developed iCO2, an online tool for training eco-friendly 
driving in a multi-user three-dimensional environment. iCO2 
supports eco-driving practice by instructing computer-controlled 
agents, such as traffic lights and other vehicles, to create traffic 
situations that make eco-driving more difficult. Hence the agents 
take the role of “opponents” that try to achieve the optimal 
challenge level for the skill level of each user. The research 
challenge is to find the optimal challenge level for all user drivers 
in a shared simulation space that (1) involves both controllable 
entities (“opponents”) and non-controllable entities (users) and 
(2) is highly dynamic, with dependencies between entities being 
created and destroyed in real time. We try to solve this problem by 
modeling the scenario as a distributed constraint optimization 
problem (DCOP). The main contribution of our paper is the 
application of a DCOP algorithm to such a new type of 
application scenario. We evaluate our approach by running 
scenarios both in terms of speed and optimality of the solutions 
proposed by the DCOP algorithm. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Multi-agent systems; 
I.6.3 [Simulation and Modeling]: Applications 

General Terms 
Algorithms, Design, Human Factors 

Keywords 
Distributed constraint optimization, coordination, real-time 
challenge balancing, social interaction 

1. INTRODUCTION 
During the past decade, multi-agents systems (MAS) have been 
successfully applied to solve various types of sustainability issues. 
Examples include smart grid management, reduction of energy 
consumption in buildings, and traffic management 
[24][20][2][12]. 

In traffic management, the goal is to minimize traffic congestion 
by creating optimal traffic control strategies. To solve traffic 
control problems, MAS techniques are used to synchronize 
adjacent traffic signals (conceptualized as agents), with the goal of 
letting vehicles cross as many intersections as possible without 
stopping [2]. The difficulty is to determine which direction should 
be synchronized so as to maximize network throughput, and 
consequently minimize travel times and negative impacts of traffic 
on the environment [3]. 

While we share the goal of reducing fuel consumption and CO2 
emissions with those MAS-based traffic control applications, the 
controllable agents in iCO2, our multi-user three-dimensional 
(3D) eco-driving training space, serve a completely different 
purpose.  Rather than facilitating traffic flow, controllable agents 
act as “opponents” to the user driver by creating eco-
circumstances (“obstacles”), i.e. traffic situations that make eco-
driving difficult for the user. We implemented two types of 
opponents: fixed position and moving opponents. A traffic signal 
is an opponent (agent) with a fixed position that can impact all 
user drivers approaching it. As an opponent, the traffic signal can 
turn “yellow” at a certain moment and put the user driver in an 
“eco-safety dilemma” state: (1) strong braking or acceleration will 
avoid crossing the red light, but is an eco-unfriendly driving style; 
(2) keeping the speed is an eco-friendly option but has the risk of 
running the red light. Computer-controlled vehicles, on the other 
hand, are moving opponents. Their behavior can impact the 
vehicles (both user-controlled and computer-controlled) following 
on the same lane. E.g. a braking operation will induce braking in 
the following vehicles, as collisions have to be avoided.  

The difficulty level of the eco-circumstance, or challenge, we 
want to create is determined by the user’s individual skill level. It 
is known that users get frustrated when the difficulty level of the 
interaction in the simulation space is too high and loose interest if 
it is too low [5]. So the opponents (traffic signal, computer-
controlled vehicles) should adapt the difficulty level to the user’s 
current skill level. This technique is called real-time, or dynamic, 
challenge balancing (RCB) [15]. Existing approaches for RCB are 
limited to the “one opponent vs. one user” case. Our training 
environment, on the other hand, is a “social” driving environment, 
where multiple users are expected to practice eco-driving in the 
same simulation space at the same time. Therefore, to create 
challenges for each individual user, multiple opponents are 
necessary. 

To summarize, the technical challenge of our eco-driving 
environment is to find a set of actions for the opponents that 
generate the optimal challenge level for each user in the scenario. 
A solution to this problem is complicated by several factors: (1) 
all entities (users and opponents) share the same driving space and 
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thus their actions have direct and often unwanted influences on 
others. For instance, the attempt to create a high-difficulty eco-
circumstance for one user driver may accidentally create a high 
level challenge for another user driver (following behind the first 
user), who should instead experience a low-difficulty eco-
circumstance; (2) user drivers are non-controllable entities that 
might also create unwanted eco-circumstances for other users; (3) 
the solution has to be found in real-time. 

In this paper, we will represent our problem as a distributed 
constraint optimization problem (DCOP) [14]. In DCOP 
applications, each agent holds a variable and can change its value 
to achieve a globally optimal solution. To our knowledge, DCOP 
algorithms have not yet been applied to scenarios that are 
comparable to the heterogeneity of our multi-user multi-opponent 
real-time eco-driving scenario. Hence, the main contribution of 
this paper is a new application for DCOP algorithms and the 
presentation of results from a series of simulation runs that 
involve human users, a kind of “participatory simulation” [11]. 

The remainder of the paper is organized as follows. In Section 2, 
we discuss related work.  Section 3 describes the core technical 
contribution of our paper: (1) offline Q-learning, (2) online 
challenge balancing, and (3) the translation of our multiuser, 
multi-agent application scenario to a DCOP. Section 4 presents 
the experiment and its results. Section 5 concludes the paper. 

2. RELATED WORK 
This section reviews related work on existing applications of 
multi-agent systems for traffic control problems, as well as on 
real-time challenge balancing systems. 

2.1 Multi-Agent Systems in Traffic Control 
Although our use of controllable agents in traffic is completely 
different from their use in ‘usual’ traffic control problems, we will 
discuss applications of multi-agent systems in traffic control to 
highlight similarities and differences. 

The control of traffic signals is typically based on pre-established 
traffic signal plans that are designed to work with given nominal 
volume of vehicles. As this approach cannot cope with changes in 
these volumes [13], there is a need for approaches that allow for 
dynamic synchronization of adjacent lights. An approach based on 
swarm intelligence is proposed in [17]. Traffic signal agents see 
signal plans as tasks to be executed. They receive stimuli to 
change the tasks (i.e. chose a different plan) based on the amount 
of “pheromone” in each direction. This pheromone is 
continuously produced by vehicles waiting at the red light. 
Although traffic signals are able to achieve synchronization, the 
time needed to converge can be high. This approach is not 
suitable for highly dynamic environments where decisions have to 
be made in real time. 

An agent-based mechanism for intersection control that minimizes 
fuel consumption is proposed in [19]. The work uses a 
reservation-based protocol directed towards autonomous guided 
vehicles (AGV), such as in [8]. Intersections use an emission 
model to estimate the increase in emissions, and assign time slots 
to vehicles in order to minimize emissions. Such an approach 
could be applied to our case, if we reverse the goal and assign 
time slots to maximize (rather than minimize) the emissions.  
However, our application also involves human users and there is 

no guarantee that they will respect the assigned time slot, as the 
AGVs do.  

A DCOP-based approach to coordinate traffic signals is proposed 
in [16]. In this scenario, each agent is assigned a variable which 
indicates the direction of synchronization of a certain intersection. 
Adjacency between intersections represents a constraint between 
their variables, and the cost is determined by whether they are 
synchronizing in the direction with more incoming vehicles or 
not. In trying to solve the DCOP, agents eventually reach a 
configuration of minimum cost. When the traffic pattern changes 
the cost increases and the DCOP algorithm is automatically 
reactivated. Our model is also based on dynamic DCOPs. In our 
case, however, the topology of the constraint graph is also 
dynamic, since it depends on the position of each entity (user 
driver or moving opponent) on the road at a certain moment. 
Furthermore, as mentioned above, we also account for nodes that 
we cannot control, representing users. 

2.2 Real-time Challenge Balancing 
Real-time challenge balancing [15], a.k.a. dynamic difficulty 
adjustment [10], consists in adapting the challenge level of the 
system to the user’s skill level in real time. The concept is based 
on Csikszentmihalyi’s flow theory [6], which describes the state 
of “flow”, a psychological state of full engagement and intrinsic 
motivation of performing the task at hand. This state can only be 
achieved if there is a balance between the challenge of the task 
and the skill of the performer. There is evidence that by keeping 
the challenge level and the user skill in equilibrium, users will be 
motivated to continue the task for longer periods of time, thus 
making training more effective. 

In applications of RCB, the challenge is usually measured by a 
heuristic function that is called “challenge function”. There is no 
general model for the challenge function, since it is application-
dependent. By keeping track of this function, an application is 
able to detect when the challenge leaves a desirable range and can 
decide when to intervene. 

Existing RCB methods include behavior-based approaches [22], 
neuro-evolutionary approaches [15], and an approach based on 
“challenge sensitive action selection” [1]. In the last mentioned 
approach, an agent is trained offline by standard tabular Q-
learning [25] to learn a winning strategy against the user. When 
online, the system keeps track of a “level” n, which represents the 
user’s skill level. By periodically analyzing the challenge 
function, the level n can be increased or decreased if the challenge 
is too low or too high, respectively. The agent then deliberately 
chooses not to perform the action with the best Q-value, but the 
nth best action for a given state, in order to match the user’s skill. 
In our approach, the same method is used to train the 
“opponents”. 

It is important to note that all the RCB methods mentioned above 
focus on “one opponent vs. one user” scenarios, where one agent 
is an opponent that has to adapt to a user’s performance. By 
contrast, our eco-driving scenario includes multiple users and 
multiple opponents, all sharing the same action (driving) space. 
Hence we have to deal with situations where we want to calibrate 
challenges for users with different skills in the same area. A traffic 
light cannot simultaneously turn “red” for one player and stay 
“green” for another. Hence, there is a need for an approach that 
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considers all entities involved, users and opponents, and tries to 
find a set of actions that optimizes challenges for all users. 

3. MULTIUSER RCB WITH DISTRIBUTED 
CONSTRAINT OPTIMIZATION 
In this section, we describe our application scenario and the 
application of DCOP methods to achieve the best possible 
challenge level for multiple users in real time. Following Andrade 
[1], we differentiate the offline learning phase from the online 
adaptation phase. Importantly, our online adaptation phase 
extends previous work on challenge balancing to the multi-user 
case, by using distributed constraint optimization. 

3.1 The iCO2 Application 

 

iCO2 is an online tool for practicing eco-safe driving with 
multiple networked users. In September 2012, iCO2 was launched 
as an application on Facebook.1 The 3D scenario depicts an area 
in Tokyo of about 1 km2. Users can control the direction and 
speed of the car operating a mouse-based interface (see Figure 1). 
The interface will change its color to indicate eco-friendliness in a 
continuous color range from green (eco-friendly) to red (eco-
unfriendly), based on the EMIT emission model [4]. As a first 
approximation, eco-friendliness is defined by smooth acceleration 
and deceleration only. 
iCO2 is designed as a computer game, where the user (or player) 
tries to drive as far as possible with a given amount of fuel. To 
receive more fuel, the user has to pass “checkpoints” which are 
spread around the city. The distance between checkpoints 
increases and the amount of fuel each checkpoint yields decreases. 
Colliding with other cars or running a red light will result in a fuel 
penalty. 
As a tool for eco-driving practice, the iCO2 application has two 
unique features: (1) unlike existing single-user tools from major 
car makers, our application supports multiple drivers in a shared 
space, just like in a real traffic situation; (2) the application can 
dynamically create situations (eco-circumstances) that make eco-
driving driving difficult. Eco-circumstances are created by two 
types of computer-controlled agents (“opponents”): traffic signals 
(opponents) and opponent cars. 

                                                                 
1 http://www.facebook.com/icotwo/ 

The traffic signal perceives oncoming cars and decides when to 
turn to “red”. The goal of this opponent is to generate the 
“yellow-light dilemma”, where the driver does not know whether 
to brake or to accelerate and cannot avoid choosing an eco-
unfriendly action [21]. The opponent car perceives the car behind 
it and decides whether to accelerate, to brake or to keep the speed. 
The goal of this opponent is to induce an eco-unfriendly behavior 
on the immediately following car, by suddenly braking hardly and 
accelerating hardly. The opponent car is controlled by the 
intelligent driver model (IDM) [23]. Braking and accelerating 
behavior is achieved by adjusting parameters in the IDM. 

3.2 Offline Learning of Q-Values 
To avoid situations where the behavior of opponents (traffic 
signals and opponent cars) makes eco-driving for the user too easy 
or too difficult, we apply real-time challenge balancing to the 
opponents’ actions [15]. 
In the offline learning phase, we train our opponents to achieve 
challenge balancing against one user. Using Q-learning, the 
opponents learn an optimal policy to make eco-driving difficult 
for the user. The learning phase generates two q-tables, one for 
the traffic signal and one for the opponent car. Note that there is 
no learning after the tables are generated. 

3.3 Online Adaption based on the Challenge 
Function 
In the online adaptation phase, an opponent can decide not to 
choose the optimal action (provided by the Q-table), but select 
progressively less and less suboptimal actions until one matches 
the user’s challenge requirements. A challenge function informs 
the decision by evaluating the average challenge faced by a user in 
real-time, using the following heuristic: 

 
Here  is the instantaneous challenge at a time ;  is the fuel 
consumption, calculated by the EMIT model;  is the 
acceleration of the car, squared because high and low values of 
the acceleration should be avoided;  is the rate of crossing 
red traffic lights; and  is the rate of collisions with other 
vehicles. The constants , ,  and  represent the 
weights for each component in the equation. The instantaneous 
challenge is calculated at a fixed sampling rate of 300ms, and 
accumulated according to a linear interpolation: 

 
Here  is the accumulated challenge at a time . At each 
second, the current accumulated challenge is added to a moving 
average of size 10. The average challenge is the result of the 
moving average (i.e. it will always contain the accumulated 
challenge of the previous 10 seconds). At a rate of 10 seconds, the 
average challenge is evaluated and, if it crosses a threshold, a sub-
optimal action is chosen. For instance, if the challenge is too high, 
the opponent will start to choose the action with the 2nd-best Q-
value, and if the average challenge continues high at the next 
evaluation point, the 3rd-best Q-value is selected, and so on. This 
technique is called “challenge-sensitive action selection”. 

Figure 1. A screenshot of the iCO2 application on Facebook. 
The blue “wheel” (mid-right) is the driving interface. It shows 

“green” to indicate eco-friendly driving behavior 

927



 

 

Figure 2. Left: Example traffic situation involving traffic signal, user driven cars (labeled with challenge requirements) and 
opponent cars. Right: DCOP graph structure corresponding to the situation on the left. The root is always a traffic signal (tl), and 
each branch represents a lane of the street. Constraints represent dominance relationships. All leaf nodes are user agents (ui). o3 is 

not considered in the computation as it is non-controlling 
During the online phase, all opponents use the two tables to look 
up an action policy for individual users. When multiple users 
share the same area, a more advanced method is required, as we 
have to find an optimal set of actions for multiple opponents to 
execute, so that challenge is optimal for all users involved. Such a 
method will be described in the next section. 

3.4 Multiuser Challenge Adaptation based on 
Distributed Constraint Optimization 
In distributed constraint optimization problems (DCOP), each 
agent is assigned to one or more variables and these have 
interdependencies. The goal is to find an optimal assignment for 
the variables to minimize or maximize a global cost function [7]. 

A DCOP is formally defined by (following the notation of [7]):  

 A set of N agents, , whereby an 
agent is either computer-controlled (an opponent) or 
user-controlled. 
 

 A set of n variables, . In our case, 
each agent holds a single variable, hence n = N. 
 

 A set of domains , where the value 
of  is taken from . Each  is assumed to be finite 
and discrete. 

 
 A set of cost functions  where each  is a 

function . Cost functions 
can also be called constraints. 

  
 A distribution mapping  assigning each 

variable to an agent.  means that  is 
responsible for choosing a value for .  is given 
knowledge of , , and all  involving . 
 

 A global cost function  defined as an aggregation (e.g. 
summation) over the set of cost functions. 
 

 An assignment  representing the values of 
each variable , taken from their domains . 

 
A DCOP is represented by a constraint graph, where the nodes are 
the variables and a link between two nodes exists when there is a 

constraint over two variables. Agents whose variables share a 
constraint are called “neighbors”. Agents are only allowed to see 
their neighbors, and may exchange messages with them. 
In our application, each agent represents either an opponent or a 
user. In the case of an opponent, the variable associated with it 
indicates the action that the opponent will choose to execute. 
Since the users are non-controllable entities, the variable indicates 
the action that we predict the user to execute. The prediction is 
based on (1) the current environment state (car’s position, 
acceleration, speed, and distance to the light) and (2) the actions 
that the car ahead may perform (i.e. the value of the parent node). 
It is important to note that not all opponents involved in the 
DCOP may influence the prediction of a certain user’s action. To 
reflect this, we introduce the concept of “dominance”. An agent 
(opponent or user) is dominant over another agent (opponent or 
user) if the actions of the former directly influence the behavior of 
the latter. In our application: 

1. A traffic signal is dominant over an agent Ai, if Ai is in 
front of the traffic light and there is no other agent Aj in 
the environment between Ai and the traffic light. 

2. An opponent/user car is dominant over an agent Ai, if Ai 
is behind the opponent/user car, in the same lane, and 
there is no other agent Aj in the environment between Ai 
and the opponent/user car. 

An opponent is called non-controlling if it is not dominant over 
any other agent (at a particular moment). Non-controlling 
opponents are not part of the constraint graph, since they cannot 
influence any user. In our scenario, DCOPs always involve a 
traffic light. Hence, we obtain a tree-like structure, where the 
traffic light is the root, each branch represents a lane, and the leaf 
nodes are users (see Figure 2 (right)). This means that if agent Ai 
is dominant over agent Aj, the node controlled by Ai is a parent 
node of the node controlled by Aj. Hereafter, we refer to the nodes 
using tree notation (parent node and child node). Once the 
structure is determined from the position of the traffic lights, 
opponent cars and users in the 3D environment, we can start with 
distributed constraint optimization. 
The domain of a variable in the DCOP depends on the type of the 
agent controlling that variable. If the variable corresponds to a 
traffic signal node, there are two available actions, “change color” 
and “not change color”: D = {C, NC}. If the variable corresponds 
to an opponent car node, the available actions are braking, 
keeping the speed and accelerating: D = {B, KS, A}. In the case 
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of the user node, the domain is the output of the prediction 
function, which is also “braking”, “keeping speed”, or 
“accelerating”: D = {B, KS, A}. Even though the user is allowed 
to change lanes, this is not covered by the prediction function. 
The existence of constraints is solely based on the dominance 
relationship between agents. The cost of existing constraints 
depends on whether there is a conflict between the agent’s actions 
or not. A conflict occurs when (a) a parent node (dominant agent) 
executes an action that raises an inadequate challenge for the child 
node (in case it is a user node); (b) a child node executes an action 
that is conflicting with its parent node’s value. As an example of 
the latter type of conflict, consider an opponent car that is in front 
of a traffic light and decides to accelerate, while the light decides 
to change to red. If the car is very close to the light, it may be able 
to accelerate and cross in time; hence both actions can be 
executed independently. However, if the car is slightly further 
away, it may be forced to brake, even if it had chosen to accelerate 
(recall that opponents never cross a red light). This unwanted 
braking will affect the following cars and hence, this kind of 
conflict should be detected beforehand. 
The cost of each constraint between two agents, f(xi,xj), is 
computed according to the Algorithm 1. 

Algorithm 1: Calculates the cost f (xi, xj), where xi is parent of xj 

if (xj is opponent car) then 

   predictedj  PredictAction(xj, xi, di) 

   if (predictedj > xj) then // predictedj is less restrictive than xj 

             f (xi, xj)  0 

   else 

             f (xi, xj)  ∞ 

   end if  
else 

   predictedj, chalj  PredictChallengeAndAction(xj, di) 

   if (predictedj != xj) 

           f (xi, xj)  ∞ 

   else 

           f (xi, xj)  |(max challenge – avgChallenge(xj)) - (chalj)|  

end if 

Case 1: When the child node xj is an opponent car, we predict the 
action of the opponent car given the value of the parent xi, and the 
current state. Then we compare the predicted action with the 
desired action (dj, the value of xj). This comparison is based on 
the restrictiveness of the action, “brake” being the most restrictive 
action and “accelerate” being the least restrictive one. If the 
predicted action is more restrictive than the desired one, they are 
conflicting, and the constraint has infinite cost. Otherwise, there is 
no cost (f (xi, xj) = 0).  
Case 2: When the child node xj is a user, we similarly predict the 
action that the user car will execute, given the value of the parent 
xi and the current state. Furthermore, we predict the challenge that 
this action represents by using the challenge function. If the 
predicted action is different from the value of the child node xj, 
there is infinite cost. This is necessary because the DCOP 
algorithm investigates all the possible values for each node. Since 
the user node should always represent a predicted action, values 

that are inconsistent with it should yield infinite cost. If the 
predicted action is the same as the value of the child node xj, the 
cost is the difference between the predicted challenge and the 
ideal challenge for that user. The ideal challenge for a user is the 
difference between the maximum challenge and the current 
average challenge for the user. 
For the prediction of the actions of opponent car and the user car, 
we use the Intelligent Driver Model (IDM) [23]. The IDM is a 
parameterized equation that calculates the ideal acceleration, 
based on the headway (distance to the front vehicle) and speed of 
the front vehicle. Hence the prediction is based on headway and 
speed. Another parameter is the “prediction time”, which indicates 
how far ahead the function is looking. If the parent node is a 
traffic signal, we use the IDM with Intersection Management 
(IDM-IM) [9], which is the IDM with additional capabilities to 
indicate how a car behaves at an intersection. If the parent is a car, 
the usual IDM is used.  
The acceleration output of the IDM is the used to determine: 

 The predicted action: negative accelerations are mapped 
to the “brake” action, positive to the “accelerate” action, 
and around zero (given a threshold) to the “keep speed” 
action 

 The challenge (in case of a user node): using the 
predicted acceleration as input to the emission model 
and to the challenge function 

Algorithm 2: Calculates the predicted action PredictAction 
PredictAction(xj, xi, di) 

predSpeed  speed(xi) + acceleration(xi)*predictTime 

myPredSpeed  speed(xj) + acceleration(xj)*predictTime 

predPosition  position(xi) + speed(xi)*predictTime + 
acceleration(xi)*predictTime2/2 

myPredPosition  position(xj) + speed(xj)*predictTime + 
acceleration(xj)*predictTime2/2 
predAcceleration  IDM(myPredSpeed – predSpeed, 
distance(myPredPosition, predPosition)) 

if (|predAcceleration| < ) then 

       return keep speed 
else if (predAcceleration > 0) 

       return accelerate 

else 
       return brake 

In order to take advantage of the tree structure, we use the 
DTREE algorithm [18], a complete and linear-time algorithm for 
solving DCOPs that can be represented as a tree network. In 
DTREE, there is an initial step of selecting the root node, which is 
not implemented in our case, since our application has a unique 
root node (the traffic signal). When the algorithm starts, leaf 
nodes calculate the lowest cost they can achieve for each of their 
parent’s values, and send a UTIL message to their parent, 
informing the lowest cost table. Parents aggregate the values 
received from their children to find out, for each possible action, 
the best utility they can achieve. When the messages reach the 
root node, it is able to choose an assignment for itself and send it 
back to their children, as a VALUE message. Each child node, 
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then, chooses its own value, based on the pre-calculated utilities 
and its parent’s assignment. The algorithm finishes when the 
VALUE messages reach the leaf nodes. After the DTREE is 
finished, each of the opponents involved in the DCOP executes its 
chosen action (node assignment) in the real world. 

4. EXPERIMENT 
To investigate the suitability of the proposed approach to our 
scenario, we conducted a pilot study involving human users. The 
purpose of the study was two-fold. 

 Performance: we wanted to test the performance of the 
DCOP algorithm in a real-time situation with non-
controllable agents (i.e. users). 

 Scalability: we wanted to investigate the scalability of 
the algorithm, as our scenario allows having multiple 
users and computer-controlled entities simultaneously. 

Regarding performance, we hypothesized that a linear-time 
algorithm as the DCOP calculation would not be a bottleneck for 
the application. As to scalability, we speculated that if the number 
of agents (users and opponents) grows, either the size of the 
graphs, or the frequency of the calculations of DCOPs will 
increase to a point where the number of agents becomes a 
bottleneck to finding the optimal solution. 

Furthermore, we wanted to assess how the challenge function for 
users develops over time. This can provide us an insight into the 
quality of the current challenge function and into how events 
inside the environment (e.g. participation in DCOPs, collisions, 
stopping at crossings, etc.) relate to the calculated challenge. 

4.1 Method 
4.1.1 Subjects and Design 
We had 30 subjects (19 male, 11 female), on average 27.6 of age. 
Most subjects were students at institution. Subjects were paid an 
amount equivalent to USD 10 for participation. 

Since it is difficult to have a large number of users driving at the 
same time in a controlled experiment, we also used computer-
controlled cars to represent users in the scenario. We call such car 
“IDM-Eco-Car”, because it is driven by the IDM, but 
parameterized to drive in an eco-friendly way. Traffic signals or 
opponent cars do not differentiate between IDM-Eco-Cars and 
human users. The IDM-Eco-Car is currently a limited 
representation of the user, as e.g., it cannot change lanes. 
Opponent cars are not allowed to change lanes. Both the opponent 
cars and the IDM-Eco-Cars always respect the red light and never 
collide.  Finally, human users are allowed to drive freely among 
the opponent cars and IDM-Eco-Cars.  

4.1.2 Materials and Procedure 
Subjects drove in a networked 3D simulation space representing 
Yasukuni Street, a major street in Tokyo (see Fig. 1). For the 
purpose of the study, the road was made a closed circuit (no turns, 
no cars coming in the opposite direction). Traffic signals are 
distributed along the road. To increase unpredictability of the 
scenario some traffic signals are opponents, others stay green all 
the time. Groups of opponent cars are created at distributed spots 
along the road, usually close to a traffic signal. This was done 
with the intention of increasing the probability of having users 
and opponents in front of a traffic signal at the same time. 

Each subject was assigned to a computer with a mouse, a monitor 
and headphones. Subjects were positioned so that they could not 
see each other’s screen. Subjects drove in groups of three at a time 
(10 groups in total), and were instructed to try to accelerate 
smoothly and to avoid sharp braking. They were told to respect the 
traffic rules (avoid collisions and crossing the red light) and drive 
with the speed of up to 60 km/h. 

The experiment was divided into one practice session and three 
experimental sessions, where the number of computer-controlled 
cars was increased in a controlled manner. In the practice session, 
three users practice driving together for five minutes; there are 
only users and traffic light opponents. 

In the experimental sessions, three users drive around the circuit 
together for 10 minutes. 

 Session I: nine opponent cars, divided into three groups 
of three cars, are created along the road. 

 Session II: 18 opponent cars, divided in 3 groups of 6, 
plus 3 IDM-Eco-Cars. 

 Session III: 27 opponent cars, divided in 3 groups of 9, 
plus 6 IDM-Eco-Cars. 

Each time a DCOP is solved, the agents involved, graph structure, 
time taken and final assignment is logged. We also logged driving 
behavior data, such as position, speed, acceleration, fuel 
consumption, emission, etc., at a constant sampling rate of 100ms. 

4.2 Results 
The results of our pilot study are summarized in Table 1. The 
traffic signal is included in the size of the DCOP (e.g. a problem 
of size 7 should have one signal and 6 cars). As expected, when 
the number of entities in the scenario grows, the number of 
DCOPs to be solved also grows, as well as the size of the DCOP.  
Even though 33 computer-controlled cars and 3 human users 
shared the same circuit in Session III, the DCOP maximum size 
did not exceed 11 variables (traffic light included).  

Table 1. Results per session 
 Session I Session II Session III 

Number of 
opponent cars 

9 18 27 

Number of IDM-
Eco-Cars 

0 3 6 

Average time per 
DCOP 

1.026s 1.004s 1.012s 

Maximum time 2.089s 2.076s 2.162s 

Number of DCOPS 
solved 

127 449 750 

Average size of 
DCOPs 

4.496 4.897 5.352 

Maximum size 7 9 11 

Graph reconstructs 
(lane changing) 

1 2 3 
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The study showed that regardless of the growth in size, the 
average time taken to solve the DCOPs remained approximately 
constant (1 second). Even if 1 second appears slow for graphs of 
such small size, it is important to note that this value does not 
represent solely the algorithm runtime. Since all of the graphics 
and logic complexity of the application runs in a single thread, the 
exchange of messages between agents has a natural delay, even if 
it runs locally. Hence, the actual time consumed by the DCOP 
algorithm might be much smaller than 1 second. 
As a metric for the level of “dynamics” (rate of change of the 
position of user cars) of the traffic situation, we counted the 
number of reconstructions of the DCOP graph due to lane 
changing. First, the graph is always reconstructed when a car 
crosses the traffic signal (i.e. leaves the graph). It would also be 
reconstructed if a vehicle enters the relevant area. However, such 
situation was not foreseen in our experiment. Second, the lane 
changing action induces a reorganization of the existing variables 
and indicates how “dynamic” did the user cars behave, when 
inside the DCOP area. However, while users were allowed to 
freely move within the scenario, few graph reconstructions were 
detected in each session (see Table 1).  
Although challenge balancing was not the focus of this study, we 
also looked at whether the DCOP calculations have any effect on 
the value of the challenge function over time. Fig. 3 shows the 
example for one user in Session II. For this experiment, the 
challenge function was weighted so that it could assume values 
within the range [0-4]. The peak at 2min50s indicates a vehicle 
collision (challenge value raises because of the collision itself, 
and the sudden deceleration generated by it). The figure shows 
that, overall, the challenge for this user remained low throughout 
the whole session. This could indicate many things: opponents’ 
behavior is not aggressive enough, user was not affected by 
challenge balancing (as this would have yielded a generally higher 
challenge, in average) or that the challenge function needs to be 
adjusted. Further investigation is necessary to establish a direct 
relation between the participation in the DCOPs and the change in 
the value of the challenge function. 

 
Figure 3. Challenge function over time, for one certain user in 
Session II. Vertical dotted lines represent DCOPs in which this 
user participated. 

5. DISCUSSION AND CONCLUSIONS 
The aim of this paper is to investigate multi-agent scenarios 
involving controllable agents and non-controllable agents (users) 
for the purpose of letting users practice eco-driving in an 
engaging and motivating way. This is achieved by adjusting the 
difficulty level for each of them. This aim led to the creation of 

iCO2, a Facebook application based on our multiuser networked 
3D virtual environment technology. Unlike existing online 
training environments, which support a single user driver only, 
drivers in iCO2 share the same simulation space. Further, by 
introducing “opponents” (for users) to the environment, we try to 
create situations for user that make it difficult to drive in an eco-
friendly way. 

The research challenge is to find an adequate challenge level for 
all users (drivers) in spite of the high interdependency of a traffic 
situation consisting of multiple agents, including computer-
controlled cars and users. To address this problem, we cast the 
scenario as a distributed constraint optimization problem (DCOP), 
and apply the DTREE algorithm [18] to find an optimal solution. 

To test the algorihm on our scenario, we conducted a pilot study 
involving human drivers. The study revealed that the algorithm 
does not represent a bottleneck for the application and is suitable 
for a real-time application. However, more stress tests are 
necessary, since increasing the number of computer-controlled  
cars in the scenario did not raise the size of the DCOPs as much 
as expected. This might be due to the fact that our experiment 
involved 10s rather than 100s of computer-controlled vehicles 
besides the user drivers. To increase the amount of realistic 
“ambient traffic”  (IDM-Eco-Cars), we have to increase the 
varibility of parameter settings of the IDM and implement further 
driving behaviors, such as lane changing. We expect that traffic 
with hundreds of cars will create more challenge for the DCOP 
algorithm, and interesting trade-offs between different algorithms 
might be observed. 

In addition we want to increase the number of simultaneous user 
drivers in the driving simuation space. For that purpose, 
developed iCO2, a Facebook application that supports massively 
multiuser driving simulation (see the link in Footnote 1). As a 
next step, we will organize an eco-driving ‘contest’ on this 
popular social networking service, which will allow us to gather 
large numbers of users in the scenario. This might lead to large-
scale user study, which is hard to conduct in a laboratory 
environment.   

Further, the granularity of the behavior (learned by Q-learning) of 
the opponent cars is rather coarse. We consider to retrain the car 
opponents with larger set of behaviors, with different levels of 
acceleration and braking. 

In conclusion, we hope that our eco-driving training scenario can 
provide an innovative and challenging environment for testing 
DCOP algorithms. To the best of our knowledge, existing 
algorithms have not yet been applied to such potentially highly 
dynamic application environments involving heterogeneous types 
of agents. 
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