978-1-4799-9972-9/15 $31.00 © 2015 IEEE
DOI 10.1109/MDM.2015.65

2015 16th IEEE International Conference on Mobile Data Management

ICOMOT - A Toolset for Managing loT Cloud
Systems

Hong-Linh Truong, Georgiana Copil, Schahram Dustdar, Duc-Hung Le, Daniel Moldovan, Stefan Nastic
Distributed Systems Group, Vienna University of Technology
E-mail: {truong, e.copil, dustdar, d.le, d.moldovan, s.nastic} @dsg.tuwien.ac.at

Abstract

Developing and operating 1oT cloud systems require novel features for
deploying, controlling, monitoring and testing both loT units and cloud
services in an integrated environment spanning different infrastructures. In this
paper, we demonstrate iCOMOT — a novel toolset offering these features.
Using iCOMOT we can perform various activities, such as dynamically
reconfiguration of sensors, communication protocols, and cloud services in
an elastic manner, suitable for testing and assuring quality of IoT cloud
systems configurations. We will demonstrate our iCOMOT with a real-world
predictive maintenance case study.

1. Introduction

Advances in Internet of Things (IoT) and Cloud computing
have fostered the development of several frameworks for
the so-called IoT cloud or cloud-based M2M platforms [1].
In such platforms, sensors gather and send data to cloud
services to provide large-scale, near-real time data for several
different application domains, such as smart cities, building
management, and logistics. In developing and operating IoT
cloud systems/applications atop such platforms, one of the
great challenges is how to manage sensors, gateways, com-
munications, and services and coordinate their activities to
support the provisioning of suitable, reliable data and services
for further data analytics. To answer this challenge, we need
to carry out several tasks which require novel toolsets as these
tasks are complex, error-prone and time-consuming.

In this work, we will demonstrate i{COMOT — a set of
tools and services that simplify the management of such
sensors, gateways and services. At the edge of the IoT cloud
system, :COMOT employs the concept of software-defined
10T units [2] to abstract and implement sensors and software
components atop gateways for data, control and connectivity
functions. At the cloud data center, :COMOT considers all
software components and resources as elastic service units [3].
Based on that, iCOM OT can support the IoT cloud developer
and provider to carry out the following activities for their IoT
cloud systems:

o Deployment and configuration of software-defined IoT

units at the edges and cloud services at data centers of
IoT cloud platforms

¢ Governance and reconfiguration of software-defined IoT

units capabilities at the edges

o Elasticity analytics and control of gateways and cloud

services based on changes in software-defined IoT units
in a coordinated fashion

299

In this work, we will illustrate these features with our realistic
scenarios for smart city management in the context of predic-
tive maintenance problems. The rest of this paper is structured
as follows: Section 2 discusses our motivating scenarios and
required features. Section 3 explains features of iCOMOT.
We conclude this work in Section 4.

2. Motivating Scenario

Our motivating scenario is in the domain of facility manage-
ment in the cloud. In our scenario, a predictive maintenance
company buys several cloud services in data centers for
handling and managing near-real time sensoring data. Such
sensoring data will be provided for other analytics, such as
predicting possible maintenance problems of equipment (e.g.,
chillers) being sensed. The sensoring data are provided by var-
ious “Things” interfacing to different equipment and facility
systems (such as chillers and electricity systems). Sensoring
data are sent to the cloud services via several gateways,
which are composed of lightweight hardware and software
components deployed in the edge, acting as intermediate nodes
between the cloud and the Things. Things connect to gateways
via different protocols (such as CAN-Bus! and LonWorks?)
and gateways connect to the cloud via different protocols (such
as CoAP3, MQTT* and specific REST/HTTP-based protocols).

In this work, we are interested in the scenario where the
predictive maintenance company needs to manage and control
several sensors and services in order to provide suitable
data for data analytics of chillers in a city. To this end,
the company needs several features to test and manage its
end-to-end IoT cloud system consisting of sensors, gateways
and cloud services and being deployed across different IoT
and cloud infrastructures. For example, several sensors can
be deployed but not all of them would be activated at the
beginning as well as new sensors can be added into the existing
IoT cloud system. Several sensors may be configured with pre-
defined frequencies for reading data from equipment as well
as gateways can be configured with particular communication
protocols. However, at runtime, due to predictive maintenance
analytics, sensors can be reconfigured with different reading
frequencies, leading to different amount of data generated.

1. http://en.wikipedia.org/wiki/CAN_bus
2. http://en.wikipedia.org/wiki/LonWorks
3. http://coap.technology/

4. http://mqtt.org/

IEEE
computer
psouety

Thus, as a consequence, we need to reconfigure gateways
and their cloud connectivity by setting suitable communication
protocols. Furthermore, cloud services at the data centers need
to be controlled to deal with changing incoming sensor data.
As all of these activities are carried on demand and elastic, the
predictive maintenance company needs suitable tool features
for automatic and manual deployment, control and governance
of the above-mentioned IoT cloud system.

3. iCOMOT - IoT Cloud Control, Monitoring
and Testing

3.1. iCOMOT Overview

Figure 1 describes the above-mentioned IoT cloud system
and our i{COMOT main tools and services. i(COMOT is
built atop our services in COMOT [3] — designed for cloud
services — and — IoT units and GovOps [2], [4] — designed for
IoT. Services in COMOT have been extended to support also
features required for testing and managing IoT cloud systems
configurations, such as coordinated deployment, analytics and
control across platforms.

Overall, the Deployment and Configuration will perform
cloud service deployments as well as IoT units deployment
in gateways. For testing, Deployment and Configuration will
deploy emulated gateways and sensors with realistic sample
datasets. IoT Governance is designed for supporting governing
the operation of IoT service units [2], [4], whose capabilities
can be changed via software-defined APIs. The Monitoring
and Analytics is used to provide high-level elasticity metrics
and dependencies (such as, for performance and cost) [S].
Elasticity Control performs elasticity strategies for cloud ser-
vices and IoT units in gateways to assure that the service
will operate properly under elastic workload. Therefore, it
also utilizes information from Monitoring and Analytics and
invokes Deployment and Configuration and loT Governance

In this work, we will show i{COM OT features supporting
the challenges outlined in Section 2 by simplifying the tasks of
the developer and operator. For experiments, we will emulate
gateways and sensors based on our industrial settings, while
cloud services will be based on common services available in
the cloud.

3.2. Deployment and Configuration

While deployment of cloud services has been intensively
researched, deployment of elastic IoT units has just been
investigated recently. iCOMOT supports both types of de-
ployment in an integrated manner and provides a mechanism
to configure different deployments of different parts of the
IoT cloud system to work together. For example, one can
deploy IoT units as sensors separated from the deployment of
cloud services and emulated gateways. In iCOMOT, we use
TOSCA [6] as a means to describe topologies of IoT units
or cloud services to be deployed and we support different

underlying low-level deployment technologies in order to
deploy various types of software, such as virtual machines
and cloud services in the data centers and sensors, communi-
cation middleware and OS containers in the gateways. Both
programmable APIs and GUI are provided for large-scale
deployments. For example, Figure 2 shows an example of
different views on sensor topology and its deployment status.

Another feature is that to allow the activation and deacti-
vation of sensors for specific data analytics. Therefore, our
deployment and configuration allows us to manage states of
sensors and query information about sensors (such as the
location and types of data a sensor provides) so that we can
activate and deactivate sensor instances, depending on analyt-
ics requirements from the cloud. Furthermore, such a detailed
information can also be useful for governance processes that
we will discuss in the next section.

3.3. Governing IoT Units

At runtime, several reasons require us to govern the op-
eration of IoT units, such as sensors, gateways, and their
communications. For example, we might need to change
the data reading sampling rates as well as communication
protocols when we need more fine-grained data in order to
support a reliable analytics. Such activities are performed
through the concept of GovOps. The core feature is that every
IoT unit has capabilities that can be changed at runtime via
software-defined APIs. Thus, when we need to reconfigure loT
units, we can invoke capabilities with suitable parameters.

In :COMOT this is achieved through the implementation
of governance processes, core services to execute capabilities
of IoT units, and the implementation of software-defined
capabilities of IoT units. Listing 1 shows an example of
a governance process for reconfiguring the communication
protocol from CoAP to MQTT for a unit deployed within
a gateway. In this process, we call different actions, each
invokes a capability of the unit. When an action is executed,
our runtime services will change the unit based on different
mechanisms. For example, when the unit implements its
software-defined capabilities via listening runtime variables,
the runtime services could change capabilities by stopping
the unit and changing variables and restarting the unit. An
important feature is that these governance capabilities are
exposed for elasticity actions that we will illustrate in the next
section.

Listing 1. Example of governance process

invokeCapability (){
}

#Start GovOps process
operation

invokeCapability family"familycChangeProto
family/familychangefamily/familyaruments
family?familyargfamily=familycoapfamily" 1

with the normal

#Run coapClient for a few minutes

300

—|—| loT Cloud Systems
(1l -—
Sensor . Sensor = =
Sensors Gateways .. |,Load | EventHandling AP Nyl
...... -4 -data-1> Balariser Web Service il ‘NoSQL BigData)
¥ S
_ The cloud - cloud Message-oriented _J Near-Realtime Data
The edge — 10T units services Middleware [‘ Ana|yt|cs

|

t deploy, configure, govern and control '

L

loT Governance Deployment and Configuration Monitoring and Analytics |metrics| Elasticity Control
GovOps SALSA MELA rSYBL
$ b
! [! invoke |
iCOMOT services and tools
Fig. 1. Overview of iCOMOT and its services and tools
TOPOLOGY | [viRTuAL macHine | [sorrware
id: QueueService i .0 id: QueueUnit 0
state: DEPLOYED | |state:DepLovED~ | |state: DERPLOVED
QueueService u QueueUnit-0 ;
SHCONT
id: evaporator foulingeeta_exv/poskio} 0
% state: DEPLOYED
TOPOLOGY me RACHRE id: evaporator foulingse”supply £emif 0
id: evaporator_fouli S DEPLOMED
state: UNDEPLOYED Sore DERLONED i evaprstor ouln et poft 0
DEPLOYED i N
id: ev;poval:vjouhm._ wtrT space_temp_0,
state: UNDEPLOYED
evaporator_fouling_ch2a_exv_position-0 id: ViennaChillerSensbrs
)] 1/ state: UNDEPLOYED
ViennaChillerSensors id: condenser rul id: ser id: condenser_rule_mpbtor statee™§
state: UNDEPLCNEDJ lsla(z UNDEPLDVED state: UNDEPLOYED
evaporator_fouling ; evaporator fouling_chw_supply_temp-0 ; :m"gfm"gd)y'gn‘“ -
SHCONT
id: low_suction_presslire ch3 cha=r%tA_comprgaor_suctyfh_supgfheatfemp 0
state: ONDEPLOYED
condenser_rule m evaporator_fouling_fcu_ff1_set_point-0 ; id: low_suction_pressire ch3 cha=e¥TA_exv_posj#én_0
state: UNDEPLOYED =R -
TO?OLOGV
&es%ww)—{ nso sucti ~chBidMbB suction presspire ch3 ch3-e#tX percent ol capagyf 0
staxe UNDEPL ED state: UNDEPLDVED state: UNDEPLOYED
id: low_suction_pressfire_ch3 ch3.e#e#® suction_prgsre 0
bty
state: ONDEPLOYED

(a)Example of a topology of sensors

Fig. 2. Examples for a

#First just run coap client normally
/home/ubuntu/coapClient.sh 1 6

#Second start the mgqtt

invokeCapability family"familycChangeProto
family/familychangefamily/familyaruments
family?familyargfamily=familymgttfamily" 2

#Third invoke GovOps process

#and start coapClient

invokeCapability cManager/list

invokeCapability cManager/list

invokeCapabilityMixed family"
familycChangeProtofamily/familychange
family/familyarumentsfamily?familyarg
family=familycoapfamily"

#Fourth just run coap client
/home/ubuntu/coapClient.sh 1 6

301

(b)Example of deployment status of the topology of sensors in (a)

topology of sensors

3.4. Elasticity of Data Cloud Services

When IoT units are deployed and running, several cloud
services will receive data and handle them accordingly. Such
cloud services have pre-defined configurations (such as, only
a few data nodes are used for storing data in Cassandra)
and elasticity strategies are specified to deal with different
situations (e.g., increase the buffer size of the communication
protocol when there is an increasing amount of data). In
tCOMOT this is achieved by using SYBL and its runtime
system [7]. Depending on the monitoring information, cor-
responding elasticity strategies, which can be specified at
a very high-level, will be invoked when the workload of
cloud services change (e.g., as a consequence of changing
data reading frequencies and activating sensors). To support
elasticity control, detailed analytics must be provided in an
end-to-end manner. Another feature is that elasticity strategies
can be also applied to IoT units. In this case, the elasticity

ElasticloTPlatform :

Here you can edit the
requirements:

Choose format in which you want to edit: | sysL

LPT_CO1:CONSTRAINT avgBufferSize
200 #;LPT ST1:STRATEGY CASE
vgBufferSize < 50 #:scaleln;

<

DN_ST1:STRATEGY CASE cpuUsage < 40
%:scaleln;

DET CO1:CONSTRAINT cpullsage < 80 %;

o

Gateway

Remove the Service from Monitering and Control | or ~Undeploy the Service

Quevelnit

LocalProcessingUinit ﬂ;m CONSTRAINT avgBufferSize < 200 #LPT STLSTRATEGY CASE avgBufferSize < 50 #:scaleln;

D

ataControllerUnit

EP_ST1:STRATEGY CASE responseTime <

10 ms AND avgThroughput < 200
operations/s:scaleln;

ElasticloTPlatform

Replace Requirements

2

_571 STRATEGY CASE cpuUsage < 40 %:scaleln;

iﬁ_cm CONSTRAINT cpulisage < 80 %;

LoadBalancerUnit

EventProcessingUnit srl STRATEGY CASE respor
EventProcessingTopology =

<10 ms AND <200

MOMUnit

Fig. 3. Example of using Ul to manage and change elasticity constraints and strategies.

control will invoke IoT governance processes when executing
elasticity strategies for IoT units. This two-ways of interaction
enables us to carry out the elasticity control in a coordinated
manner across the whole IoT system. The control of elasticity
will be done automatic but in many cases, the developer and
the provider want to change, they can use an interactive mode
(see Figure 3).

4. Conclusions and Future Work

In this work, we outlined features of i{COMOT for con-
trolling, monitoring and testing IoT cloud systems consisting
both IoT units and cloud services. A set of features are
provided from different services can be used to simplifying
support activities of developers and providers in deploying
and reconfiguring their systems to enable data provisioning
for reliable data analytics. Currently, we focus on further
integration and testing of ¢«COMOT, of which tools and
services are published under open source and available freely.

Acknowledgment

This paper is partially supported by the European Commis-
sion in terms of the CELAR FP7 project (FP7-ICT-2011-8
#317790) and the H2020 U-Test project.

References

[1]1 A. Botta, W. de Donato, V. Persico, and A. Pescape, “On the integration
of cloud computing and internet of things,” in Future Internet of Things
and Cloud (FiCloud), 2014 International Conference on, Aug 2014, pp.
23-30.

302

[2] S. Nastic, S. Sehic, D. Le, H. L. Truong, and S. Dustdar, “Provisioning
software-defined iot cloud systems,” in 2014 International Conference
on Future Internet of Things and Cloud, FiCloud 2014, Barcelona,
Spain, August 27-29, 2014, 2014, pp. 288-295. [Online]. Available:
http://dx.doi.org/10.1109/FiCloud.2014.52

H. L. Truong, S. Dustdar, G. Copil, A. Gambi, W. Hummer, D. Le,
and D. Moldovan, “Comot - A platform-as-a-service for elasticity in the
cloud,” in 2014 IEEE International Conference on Cloud Engineering,
Boston, MA, USA, March 11-14, 2014. 1EEE, 2014, pp. 619-622.
[Online]. Available: http://dx.doi.org/10.1109/1C2E.2014.44

S. Nastic, M. Voegler, C. Inziger, H.-L. Truong, and S. Dustdar, “rtgovops:
A runtime framework for governance in large-scale software-defined iot
cloud systems,” in The 3rd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering.

D. Moldovan, G. Copil, H. L. Truong, and S. Dustdar, “MELA:
monitoring and analyzing elasticity of cloud services,” in IEEE
5th International Conference on Cloud Computing Technology and
Science, CloudCom 2013, Bristol, United Kingdom, December 2-
5, 2013, Volume 1. 1EEE, 2013, pp. 80-87. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2013.18

T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable cloud
services using TOSCA,” IEEE Internet Computing, vol. 16, no. 3, pp.
80-85, 2012. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/MIC.2012.43

G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “SYBL: an
extensible language for controlling elasticity in cloud applications,”
in 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, CCGrid 2013, Delft, Netherlands, May 13-16, 2013.
IEEE Computer Society, 2013, pp. 112-119. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2013.42

[3]

[4

=

[5]

[6

—

[7

—

