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Abstract The aim of this paper is to investigate the

progressive manner in which students gain fluency with

cultural algebraic modes of reflection and action in pattern

generalizing tasks. The first section contains a short dis-

cussion of some epistemological aspects of generalization.

Drawing on this section, a definition of algebraic general-

ization of patterns is suggested. This definition is used in

the subsequent sections to distinguish between algebraic

and arithmetic generalizations and some elementary naı̈ve

forms of induction to which students often resort to solve

pattern problems. The rest of the paper discusses the

implementation of a teaching sequence in a Grade 7 class

and focuses on the social, sign-mediated processes of

objectification through which the students reached stable

forms of algebraic reflection. The semiotic analysis puts

into evidence two central processes of objectification—

iconicity and contraction.

Keywords Algebraic thinking � Contraction �
Generalization � Iconicity � Objectification � Meaning �
Semiotics � Signs

Oh my God! How are you going to find the 100th

Term?

Renée, a Grade 7 student

1 The same and the different

Since concepts neither derive from logical rules—as sug-

gested by rationalism—nor from external impressions—as

suggested by empiricism—the origin of all concepts, Vy-

gotsky argued, is to be found in generalizations (Vygotsky,

1986). Without being able to make generalizations, we

would be reduced to living in a world of mere particulars a,

b, c,…. Everything would be different from everything

else. Knowledge would be reduced to a perpetual a = b.

To assert that a is equal to b—or that a and b are analogous

as the Greek etymology suggests (Fried, 2006), like when

we say that two particular trees are equal despite some

differences—means to select some features of a and b and

to dismiss some others. This cognitive act entails the for-

mation of a concept—a generalized entity—that does not

fully coincide with any of its instances.

The crucial point in an account of generalization is,

hence, to account for the manner in which we come to

notice the same and the different. At any rate, this is by no

means the result of a contemplative act. As Kant put it:

I see a fir, a willow, and a linden. In firstly comparing

these objects, I notice that they are different from one

another in respect of trunk, branches, leaves, the like;

further, however, I reflect only on what they have in

common … and abstract from their size, shape, and so

forth; thus I gain a concept of tree. (Kant, 1974, p. 100)

Our ability to notice differences in things is indeed one of

the basic components of cognition. Without it, we would be
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unable to sort the amazing amount of sensorial stimuli that

we receive from the exterior, and the world in front of us

would be reduced to an amorphous visual, tactile and aural

mass. However, as many of Kant’s commentators have

pointed out, things are a good deal more complicated than

Kant himself suggested. Noticing the differences and

similarities that lead to the concept of a tree or any other

concept is something that occurs in social activities

subsumed in cultural traditions conveying ideas about the

same and the different. Some cultures make finer or

different categorizations of trees, plants and colors than

others.

Now, since we come into culture in a progressive way,

generalization is both something ubiquitous (Mason, 1996)

and something that has to be learned. Mathematical gen-

eralizations are perhaps the clearest example. As current

research conducted in fields like Ethnomathematics and the

history of mathematics suggests, there are varied possible

ways of dealing with the basic underlying ideas of math-

ematics—e.g., quantity, shape, space, and time (Crump,

1990; D’Ambrosio, 2006; Gell, 1992; Høyrup, 2007;

Perret-Clermont, 2005; Radford, 2008). To reflect mathe-

matically requires one to see particulars as something

general in a cultural sense.

2 Algebraic pattern generalizations

Despite what the previous section may suggest, my interest

in mathematical generalization did not arise out of theo-

retical concerns. It was the other way around. It arose in the

course of a longitudinal classroom-based research that I

began conducting in the 1990s. In the classrooms I was

working with, the generalization of patterns was (and still

is) used as a route to algebra. The main idea was that a

certain experience with the numerical exploration of pat-

terns would pave the road to algebraic thinking. Algebra,

indeed, was supposed to start with the students’ first use of

notations.

The use of notations, however, does not seem to be the

best way to understand the emergence of algebraic think-

ing. Algebraic thinking is not about using letters but about

thinking in certain distinctive ways. As I have argued

elsewhere (Radford, 2006a), Chinese mathematicians

thought in algebraic ways without using letters (Martzloff,

1997) and Euclid used letters without thinking algebrai-

cally (Unguru, 1975).

This epistemic stance towards algebraic thinking leads

us to the following question. If the emergence of algebraic

thinking is not characterized by the use of notations, what

then is the difference between algebraic and arithmetic

pattern generalizations? To answer this question it is worth

noting that what we now term algebra emerged as a

sophisticated way of calculating on indeterminate

quantities.1

The dividing line between the arithmetic and algebraic

generalization of patterns should hence be located in dif-

ferences in what is calculable within one domain as

opposed to the other. While in both domains some gener-

alizations do certainly occur, in algebra, a generalization

will lead to results that cannot be reached within the

arithmetic domain.

In this same line of thought, in a previous paper (Rad-

ford, 2006a), I suggested the following definition.

Generalizing a pattern algebraically rests on the capability

of grasping a commonality noticed on some particulars

(say p1, p2, p3,…,pk); extending or generalizing this com-

monality to all subsequent terms (pk + 1, pk + 2, pk + 3, …),

and being able to use the commonality to provide a direct

expression of any term of the sequence.

There are different aspects involved in this definition.

First, a local commonality, say C, is noticed in a few

members of the sequence, S. As mentioned previously, this

step requires that one make a choice between what counts

as the same and the different. Second, this commonality C

is then generalized to all the terms of the sequence. While

the generalized commonality C was what Peirce called an

abduction—i.e. ‘‘a general prediction’’ (Peirce, 1931–1958,

CP 2.270), hence something only plausible—in the last part

of the generalization process C becomes the warrant to

deduce expressions of elements of the sequence that remain

beyond the perceptual field. Direct expression of the terms

of the sequence requires the elaboration of a rule—more

precisely a schema in Kant’s terms (Radford, 2005)—

based on indeterminate quantities, in this case variables.

Figure A summarizes the architecture of an algebraic

generalization of patterns.

Let us give a short example of algebraic pattern gener-

alization here by referring to a regular Grade 8

mathematics lesson. In this lesson, the students dealt with

the sequence shown in Fig. B. After continuing the

sequence up to Fig. 5 and calculating the number of circles

in Figs. 25 and 100, they had to find a formula for the

number of circles in Fig. n.

The students worked in small groups and, in one group,

a student noticed that the number of circles could be cal-

culated by adding the number of the figure twice and then

adding one. To explain her idea to her group-mates, she

referred to the first three figures of the sequence: ‘‘You

would do 1 plus 1, plus 1; 2 plus 2, plus 1; 3 plus 3, plus

1…’’ Then she concluded: ‘‘You add [the number of] the

1 These calculations were carried out in the context of word-problem

solving (concerning Babylonian algebra, see e.g. Høyrup 2002) and

pattern investigations (concerning Greek mathematics, see e.g.

Manitius 1888, Ver Eecke 1926, and a summary in Radford 2001).
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figure by itself […], then after this, plus 1’’, leading the

group to the formula (n + n) + 1.

We see here that the students inferred a commonality C

from a few particular cases. Then, this commonality was

(implicitly) generalized to the rest of the terms of the

sequence.2 Next, the abduction C became an hypothesis

and then the rule was calculated. Thus, under the

assumption that C is true, the formula (n + n) + 1 has to

be true, too.

The previous definition of algebraic pattern generaliza-

tion helps us to distinguish it from other strategies that

students often use to deal with patterns. In particular, as we

shall see in the next section, it is possible to distinguish

between algebraic and arithmetic generalizations of

patterns.

3 Arithmetic pattern generalizations

Ferdinand Rivera presented some results at the PME 2006

Conference (Rivera, 2006) from a study about pattern

generalization with Grade 6 students (11 years old). In the

case in question, the students were presented with a slightly

modified version of the sequence shown in Fig. A. The

terms started with one circle and increased by two circles.

The students had to write a message to an imaginary Grade

6 student clearly explaining what s/he must do in order to

find out how many circles there were in any given figure of

the sequence.

One of the students noticed that the number of circles in

the few given terms increased by 2. The student general-

ized this commonality to the rest of the terms, but failed at

providing a direct rule allowing one to calculate the

number of circles in any figure. The student said: ‘‘You

start at one and keep adding two until you get the right

number of circles in all’’.

Although there is a generalization in this procedure,

according to our definition, it is not of an algebraic nature. I

will call a pattern generalization of this type an arithmetic

one.

Algebraic and arithmetic generalizations are not the

only two strategies used by students to deal with patterns.

There is also a third strategy, which I will discuss in the

next section.

4 Naı̈ve inductions

In the course of several investigations with different

cohorts of Grade 7 or Grade 8 students, we have often

noticed that, to deal with patterns such as the previous

one, the students resort to a method based on guessing the

rule. For instance, after noticing that there were 3, 5, and

7 circles in the first three terms of the sequence referred

to in Fig. A, one group of students tried the rule or for-

mula ‘‘the number plus 2’’ or n + 2, which worked for the

first term, but then noticed that it did not work for the

second term. They then switched to 2n + 2, and then to

2n + 1. Since the last formula led to the expected results

when n was successively substituted by 1, 2, and 3, the

students concluded that the sought formula was indeed

2n + 1. The question is: Is this procedure an algebraic

pattern generalization?

If we go back to our definition, we see that the students

made three consecutive abductions. None of these abduc-

tions, however, resulted from inferring a commonality

among the first three figures. The abductions were indeed

mere guesses. Upon closer inspection, it turns out that the

abductions did not lead to a rule produced by a general-

ization, but a rule obtained by induction, i.e. a procedure

based on probable (or likely) reasoning and whose con-

clusion goes beyond what is contained in its premises. This

is a type of induction that I will qualify as naı̈ve to dis-

tinguish it from other more sophisticated types of

induction.3

Abduction Transforming  the abduction n from  C

Particulars
P 1, P 2, …, P k

Noticing a commonality C Making  C  a hypothesis Producing the expression of pn

Deducing p

Fig. A The architecture of

algebraic pattern generalizations

Fig. 1 Fig. 2 Fig. 3

Fig. B A sequence used in a Grade 8 mathematics lesson

2 Although strictly speaking, there is nothing that guarantees that C
applies to the other terms, there is no reason to believe the opposite

either, i.e. that at a certain point the terms will start behaving

differently. The way the question is asked tilts the scale towards the

idea that, all things being equal, the commonality should apply to the

terms that follow.

3 The concept of induction has been the object of a vast number of

investigations in epistemology and in education; (see e.g. Peirce in

Hoopes, 1991, pp. 59–61; Polya, 1945, pp. 114–121; Poincaré, 1968

p. 32 ff.).
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5 A broad comparison

The architecture of naı̈ve inductions and arithmetic pattern

generalizations are different from the architecture of

algebraic pattern generalizations shown in Fig. A.

In arithmetic pattern generalizations, the last arrow is

missing, reflecting the fact that the rule was not deduced

from the assumption that C is true—the calculation with

indeterminate numbers was not achieved. It is this char-

acteristic that François Vieta related to the analytic nature

of algebra to distinguish it from calculation with particular

or concrete numbers.

In naı̈ve inductions, the structure is very simple, as

shown in Fig. C.

Although the rule may be expressed in the alphanumeric

system (i.e. through notations), the generalization is not

algebraic. As mentioned earlier in this paper, it is not

notations which make thinking algebraic; it is rather the

way the general is thought about. One practical result that

comes out of this is the following. In the use of patterning

activities as a route to algebra, we—teachers and educa-

tors—have to remain vigilant in order not to confuse

algebraic generalizations with other forms of dealing with

the general; we also have to be equipped with adequate

pedagogical strategies for making the students engage with

patterns in an algebraic sense.

The need to offer students the possibility of becoming

engaged with patterns in an algebraic sense led our team to

the design of a teaching sequence that we implemented in a

Grade 7 class.4 In the rest of this paper, I shall deal with the

first part of the teaching sequence.

6 The teaching sequence

6.1 The general discussion

The teaching sequence started with a general class dis-

cussion about the classical toothpick sequence shown in

Fig. D.

The students determined (without difficulty, of course)

that there were 3, 5, and 7 toothpicks in Figs. 1, 2, and 3.

Then, the teacher asked the class what to do in order to find

a rule that would allow one to find the number of tooth-

picks in ‘‘big’’ figures such as Fig. 100. The students

suggested that the number of toothpicks always increases

by two. The teacher translated this numeric abduction into

a geometric one: on the blackboard, she circled the two

rightmost toothpicks in Figs. 2 and 3 (see Fig. E).

Then, she made it apparent for the students that Fig. 1

can also be seen in a similar manner (see Fig. F) and wrote,

above the terms, the constant number between them,

indicating, with an arrow, the utmost left toothpick of Term

1 and the number of toothpicks under each term, as shown

in Fig. F.

She then asked the class the question about the number

of toothpicks in Fig. 100. The answer came from the back

of the class. One student replied:

1. Student: 201 toothpicks.

2. Teacher: O.K., can you explain how you arrived at

201?

3. Student: The first figure starts with 1; then you add two

each time. So I did a hundred times two, that’s two

hundred (inaudible).

4. Teacher: (Noticing that many students did not follow

the idea, she added) If you add two to each of the

Guessing the expression of pn
Particulars

P 1, P 2 , …, Pk

Abduction

Fig. C The architecture of naı̈ve inductions

Fig. D The introductory example discussed by the teacher and the

students

Fig. E The teacher circled some parts of two elements of the

sequence

Fig. F Through a complex use of signs, the teacher emphasized one

of the possible ways in which the terms of the sequence could be read

4 The team was comprised of two teachers (Tammy Cantin and Rita

Venne-Beaudry), three researchers (Serge Demers, Monique Grenier

and Luis Radford) and four research assistants (Isaias Miranda,

Emilie Fielding, Mia Coutu and Julie Deault).
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figures, and if I ask you to go to the 100th figure, how

many + 2s will you do?

5. Another student: A hundred!

6. Teacher: (Synthesizing the idea) Plus two, plus two,

plus two, a hundred times, it’s like saying a hundred

times two.

I have presented the teacher’s efforts at making apparent

for the students the kind of reasoning that was expected

from them in some detail. In a pilot project conducted in

2001 in a Grade 7 class, we noticed that, for this and for

other similar patterns (overall those defined only numer-

ically, without geometric support) the vast majority of

students resorted to naı̈ve inductions. The first part of the

lesson was hence devoted to a general discussion of a

particular problem allowing the teacher to pinpoint certain

crucial elements that we wanted the students to notice. By

circling certain toothpicks in the particular figures on the

blackboard, a commonality was emphasized; by counting

the toothpicks in a specific way (‘‘1 + 2’’, ‘‘1 + 2 + 2’’,

‘‘1 + 2 + 2 + 2’’) the teacher paved the way for the

formation of the rule underlying the generalization. In line

2 of the previous excerpt, the teacher asked for an

explanation. In line 4, in an explicit way, she transformed

the abduction into a hypothesis (see the conditional term

‘‘if’’ at the beginning and middle of the utterance). Then, in

line 6, she linked the repeated addition to the multiplicative

sense of the calculations on which the generalization is

based.

The design of the teaching sequence and its imple-

mentation in the classroom were backed by the Theory of

Knowledge Objectification (Radford, 2006b). According to

this theory, the basic problem of learning does not have to

do with letting the students construct their own knowledge.

It is not a question of the students being incapable of

constructing knowledge. On the contrary, students are

tremendously creative. However, nothing guarantees that

their idiosyncratic procedures and ideas will necessarily

converge with the cultural ones conveyed by the mathe-

matics curriculum. The central educational problem is

rather to have the students making sense of sophisticated

cultural ways of reflecting about the world—in this case,

algebraic ways of acting and reflecting—that have been

constituted over the course of centuries.

Making sense of cultural ways of mathematical reflec-

tion does not consist, of course, of a mere transmission of

knowledge. In the previous passage, the teacher did not

transmit the generalizing method. The sophisticated form

of generalization was noticed by the class in a joint student-

teacher interaction that was much more than an exchange

of points of view. This kind of interaction has a profound

epistemic value: it is a complex unitary and dialectical

process carried out by the teacher and the students in which

learning becomes entangled with teaching (Bartolini Bussi,

1998, p. 69). It includes cognitive aspects such as formu-

lating (lines 1, 3), reformulating (line 4), noticing (Figs. E

and F), interpreting (lines 1, 2), emphasizing (line 6), etc.

All attempts at transmitting knowledge are doomed to

failure, for as Vygotsky and his collaborators insisted again

and again, learning is a genetic process that develops in a

progressive manner (Vygotsky, 1986, p. 146). The Theory

of Knowledge Objectification thematizes this genetic pro-

cess as an active and creative process of noticing and

making sense of the conceptual object that is the goal, in

Leont’ev’s (1978) sense, of the activity. Naturally, the

teacher can ‘‘see’’ this conceptual object; the students

cannot. The teacher’s pedagogical actions are precisely

framed by this asymmetrical epistemic relationship

(Radford, 2006c).

I call objectification the process of making the objects of

knowledge apparent. Since these objects are general, they

cannot be fully exhibited in the concrete world. Teachers

and students then resort to signs, body, tools—in short to

all sorts of artifacts that I have termed elsewhere semiotic

means of objectification (Radford, 2003a). Thus, the

elliptic signs used by the teacher to encircle specific

toothpicks in the figures, the digits, the numerical expres-

sions, the pointing gestures, the linguistic terms—like the

traveling metaphor of ‘‘going to the 100th figure’’—are all

semiotic means of objectification.

Let us return to the classroom. Since the teacher wanted

to make sure that the students really understood, the calcu-

lation of the number of toothpicks in Fig. 100 was followed

by other questions. Working in small groups of three or four

members, the students were then asked to deal with three

similar problems. The first one was framed in the context of

an amount of money that increased at a constant rate from an

initial stipulated amount of money. The initial amount of

money played the same role as the left toothpick indicated

by the arrow in Fig. E. The next two problems presented a

challenge: the initial object was not given in the statement of

the problem; the students had to find it. In addition to this, in

these two problems the sequences were purely numeric. In

the first one, the constant difference between consecutive

terms was a decimal number; in the second one, a negative

number. Our choice of decimal and negative numbers

resulted from our intention to discourage the students from

using naı̈ve inductions (see Radford, 2006a, footnote 2, p. 17

that makes reference to the pilot study).

6.2 The first problem

Here is the statement of the first problem:

Marc saves $3 a week. He started off with $12.

Iconicity and contraction
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We asked the students how much money Marc would

save by the end of the third, fifth and 100th weeks. The

students were asked to explain their procedure. Two other

tasks were: to explain in words how to calculate the amount

of money saved by the end of any week and to find an

algebraic formula giving the amount of money saved after

n weeks.

The interaction analysis that follows focuses on one of

the small groups of students: Mélanie, Judy, Kathy, and

Renée.

As anticipated, the first part of the problem did not

present major difficulties:

7. Mélanie: O.K. you go 100 times…
8. Judy: So that would be like 3 times 100 […]

12 + 3 times 100, because you start with $12.

But when the students had to explain how to calculate the

amount of money by the end of any week in words, some

difficulties appeared:

9. Mélanie: So we will say: you have to add 12 + 3, and

then, you add the number of weeks.

To talk about any week—as opposed to a particular week,

such as week 3 or week 10—requires that students deal

with indeterminate quantities. It entails an abstraction that

may present some difficulties for them (Radford, 2003a).

For instance, here, the multiplicative structure of the rule

objectified in the classroom discussion (lines 1–6) vanishes

and is replaced by an additive one (line 9). Judy intervened

and suggested the following algebraic generalization:

10. Judy: You multiply 3 by the number of weeks and

then you add 12.

Although writing the rule in notations was not obvious for

all the students, the difficulties were overcome:

11. Mélanie: I don’t understand the thing with n, it’s the

only thing that I don’t understand.

12. Kathy: Me neither.

13. Judy: n is like a box with a question mark inside it,

because you don’t know what it is.

14. Renée: 3 + 12 whatever, 3 + 12 times n.

15. Judy: The formula would be 12 + 3 times n (she

writes 12 + 3n).

In line 13, Judy suggests a metaphor for dealing with the

meaning of n. This is followed by Renée’s formula, which

mixes up the role of numbers 12 and 3—another example

of the difficulties arising from the abstraction of the context

(compare lines 14 and 15).

Although the understanding of the students in the group

is not equal, the process of objectification is well on its

way. The next problem was decidedly more challenging for

the students.

6.3 The second problem

In this problem, the students were presented with the four

first terms of a numeric sequence, as shown below:

0.42 0.75 1.08 1.41

Term 1 Term 2 Term 3 Term 4

They were asked to find Terms 5, 6, and 7 and to answer

similar questions as in the previous problem.5

The students noticed without difficulty that the terms

increase by 0.33 and used this increase to calculate the

following three terms one after the other (see Fig. G).

When they tackled the question of calculating Term 100,

they said:

16. Judy: Yes, O.K. (reading the problem) Find Term

100 in this sequence. Explain your procedure. Oh my!

17. Mélanie: Well, it would be like 2.40 times…
18. Judy: No, 33 times 100 […] No, it’s 42 plus 33 times

100. Wait a minute, I’m going to try something…
19. Renée: It’s 33 times 100.

20. Mélanie: We’re at 2.40 for Term 7. And Term 8

would be 3…we have to do 33 times 33 plus, 33

divided by something.

21. Renée: 33 times 100.

22. Mélanie: No, that would be too big of a number […]

23. Renée: 33 plus something times 100.

The students have a sense that a multiplication has to be

carried out, but 2.40 (the 7th term) cannot be one of the

multiplied terms, as suggested by Mélanie in line 17. We

see some of the difficulties arising from a situation in

which the numbers do not get their meaning from a

concrete context (as was the case in the previous problem).

The meaning must now result from abstract positional

relations between numbers.

5 In the previous problems, there was essentially just one form of

expressing the general term of the sequence. Thus, as discussed

previously, in the first problem given to the students, the general term

was 12 + 3n. In the second and following problems, the nth term of

the sequence can be expressed by an infinite number of polynomials.

Generally speaking, a sequence p1, p2, p3,…,pk of k terms (k ‡ 1) can

be interpolated by polynomials of degree k – 1, k, k + 1, etc. One of

the reviewers suggested that we should have used sequences having

one solution only. I do not think so. As we shall see, the fact that there

were an infinite number of solutions to express the general term in the

second and following problems never occurred to the students, nor did

it become a problem during their first contacts with algebra.

Sensitivity to this problem can only arise if one already knows a

great deal about polynomials, which of course was not the case with

our Grade 7 students. In using patterns as a route to algebraic

generalizations, our focus was on linear patterns.
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The students continued discussing for a while. They

agreed that the multiplication should be 100 · 0.33, i.e. 33.

They still had to add the starting point:

24. Mélanie: Now, you’ve got 33, then you add your

[point] 42, so 30.42.

25. Judy: No, we already calculated Term 1, if we do

0.33 times 100.

26. Mélanie: I don’t understand what you’re trying to tell

me.

27. Judy: Look, if we do 0.33 times 100, we’ve done

Term 1 up to Term 100, but we haven’t found the one

before.

28. Renée: You have to do + 33 to give…, that’s true.

29. Kathy: Wouldn’t you start with your 42?

In lines 25 and 27, Judy appropriately pointed out that

when they multiplied 0.33 times 100, Term 1 was already

considered in the calculations and that consequently 0.42

was not the starting point.

Therefore, Judy suggested calculating a particular term

and using it to test the rule:

30. Judy: If we do a term that we haven’t found yet, but

that isn’t too big … We can go like Term 7 plus 0.33,

plus 0.33 which gives us an answer. We can know

what the good answer is and if we’ve got the good

procedure for finding the answer.

But this amounts to giving up the algebraic character of the

generalization and falling into the unstable and unpredict-

able realm of naive inductions! It amounts to recapitulating

…
The teacher decided to intervene.

31. Teacher: (Pointing to the toothpick sequence on the

blackboard) Knowing that you’re starting with one

toothpick, you add 2 of them, you add 2 of them, you

add 2 of them. Have you determined how the terms

increase?

32. Judy : Plus 33.

33. Teacher: 0.33, O.K. What’s your starting point?

34. Judy : 0.42.

35. Teacher: Pardon?

36. Judy: 0.42.

37. Teacher: You have your [first] figure, but that’s not

your starting point. You told me (referring to the

toothpick sequence) that [here] it was 1 because you

had 1 [toothpick] at the start.

38. Judy: So our starting point would be 0.01 […] [The

first term] would then be equal to 0.34

39. Renée: [The first term,] it’s 42.

40. Judy: We would have to use another number […] So,

we would have to do 0.09 plus 0.33. So it would be

0.09 plus 0.33 […] Because [point] 42 minus 0.33

gives 0.09.

6.3.1 Iconicity

The teacher’s intervention was directed towards getting the

students to pay attention to the introductory toothpick

problem in order to see how the starting point was identi-

fied. This is an objectifying process based on iconicity—

i.e. a manner of noticing similar traits in a previous pro-

cedure. Although the recourse to this strategy kept the

students moving along the lines of knowledge objectifica-

tion, the students still had a long way to go. It is in the

genetic nature of knowledge objectification to go from the

fuzzy identification of what Husserl (1970) called an

objectivity (e.g., an object, a procedure, a reasoning, a state

of affairs, etc.) to a clearer picture of it. Objectification is

indeed made up of various layers of intelligibility, and

iconicity is one of the processes which allows us to make

the progressive transition from fuzziness, to one of those

clearer and more intelligible layers of objectification. A

token of the fuzziness through which the students were still

reflecting while on their way to making sense of a more

sophisticated manner of reflection-an algebraic one-can be

seen in the students’ need to test the stated rule:

41. Judy: Here we can try if it’s right. We have Term 7

that is 2.40; Term 8, that is + 0.33; then Term 9 that

would be + 0.33 again. (She tests the formula and

seeing that it works, says) That’s it! It would be

0.9 + 0.33 times our number.

Despite all the ‘‘good’’ reasons to believe in the formula,

they needed to test it. The formula’s epistemic certainty did

not result from the apodeictic or indisputable assurance of

the calculations, but from its validity as tested on one

known case. Conviction will come later on. It will come

with the increased awareness of the meaning of the

numeric terms involved in the calculations and the

students’ growing familiarity with the targeted cultural

mode of mathematical thinking. Ontogenetically speaking,

mathematical certainty does not come from within math-

ematics only, but also from the relationship between the

knowing subject and the object of knowledge, as mediated

by social activity.

Fig. G The successive calculation of Terms 5, 6, and 7. From

Kathy’s worksheet
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6.3.2 Contraction

The earlier intense discussion resulted in the objectification

of the calculations to find some particular terms of the

sequence. Asking the students to explain to someone how

to do the calculations for any term of the sequence intro-

duces two new elements. On the one hand, it introduces the

encounter with a generic Other.6 On the other hand, the

students now have to deal with a particular but unspecified

number, requiring a higher level of abstraction (Radford,

2003a)—the level of variables (Bardini, Radford, & Sab-

ena, 2005). It also puts the students in a situation where

they have to summarize their previous mathematical

experience. Summarizing is another genetic process of

knowledge objectification. It leads one to making a choice

between what counts as relevant and irrelevant; it leads to a

contraction of expression and a concomitant deeper level

of consciousness and intelligibility:

42. Judy: O.K. well, you do, you multiply 0.33 by the

number of the term that you want to find. Then, you

add 0.09 then that gives you your answer.

43. Mélanie: People are going to wonder how we found

0.09.

44. Judy: You say that we did [point] 42 minus [point]

33.

This contraction process is even more visible in the next

passage, where Judy suggests the symbolic formula:

45. Judy: It would be like 0.09 + 0.33 times n.

We shall now turn to the third problem and continue

focusing on the process through which the students

objectify the generalizing rule.

6.4 The third problem

In this problem, the students were presented with the four first

terms of a decreasing numeric sequence, as shown below:

11 9 7 5

Term 1 Term 2 Term 3 Term 4

The students noticed that the terms diminished by two

and continued the sequence up to Term 7. Then they had to

find Term 100. Quickly, Judy sketched the general struc-

ture of the rule:

46. Judy: It’s something, minus 2 times 100. Don’t you

understand what I said?

47. Mélanie: Yes […] We know that the terms decrease

by 2.

The ‘‘something’’ (line 46) that has to be placed at the

beginning of the formula is the starting point of the

sequence, which, as the students realized in the previous

example, should not be confused with the first term. But,

when the calculations were eventually carried out, the

negative numbers became the focus of attention and the

application of the intuited general rule to a particular case

became problematic:

In Judy’s group, the discussion focused on the size of the

term (Is it reasonable to expect something around -200?):

48. Renée: It’s supposed to give us a negative, oh yes.

49. Mélanie: We know that it’s going to be –100 or –200

or something else like that. It’s pretty hard when it’s

negatives […] We’re already at –1. So, –1 –2 would

be –3, right ? Then, –5, –7, –9, –11, –13, –15, –17,

–19, –21, –23, so, if we kept going for a long time, we

would be able to get to [Term] 100 […]

50. Judy: Yes. The number that we’re going to find has to

be odd, because they’re all odd numbers.

51. Mélanie: Yes, O.K. […] we know that it’s going to be

negative odd, right, right? […] We look, like,

clueless. Look at the board there.

52. Judy: Look at this here, then at this here [i.e. the

problem on the blackboard], it’s mixing me up,

because it’s not the same thing. [….] (talking about

the sequence on the blackboard). We start with a

small number and we go up.

53. Mélanie: [Here] (referring to the decreasing

sequence) we start with a big number and then we

go down.

The loss of control over the calculations led the students,

in line 49, to come back to the iterative procedure of

subtracting 2 to the terms. In their attempt to regain control

over the situation, the students noticed that the result is a

negative odd number, but, of course, this information was

not of much help (lines 50–51).

Mélanie and Judy, then, suggested to their group-mates

that they do something that they did not do in the previous

problem—resort to the iconicity of procedures in search of

the same thing (or what Vergnaud (1990) would term the

invariants).

Following Mélanie’s suggestion (line 51), Judy turned to

the blackboard and scrutinized the traces of the previous

activity on the toothpick problem. She then suggested

interpreting the sequence as a toothpick decreasing

sequence whose first term is 11:

6 Otherness is in fact a crucial aspect of knowledge objectification, as

Hegel remarked in another context (Hegel, 1977).
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54. Mélanie: I don’t understand, I don’t understand, I

don’t understand. I understand the problem, it’s

just…
55. Renée: It’s too complicated.

56. Judy: O.K. (She draws a figure made of 11 toothpicks

as shown in Fig. H), look here. We have three little

sticks.

57. Mélanie: You’re going to mix us up with the little

sticks. No offense but, you’re going to mix us up.

58. Judy: Look! 3, 4, 5, 6, 7, 8, 9, 10, 11. (She counts the

little sticks that she has drawn on the page.) O.K. so

this (she indicates the figure she has drawn) could be

our Term 1.

59. Mélanie: [You have to do] like term 100!

60. Judy: It’s the same as that, but there [referring to the

problem on the blackboard] we just add some more,

and here we add less.

Iconicity rests on making a distinction between the same

and the different. Naturally, for the students, the central

problem was how to recognize those characteristics that

they were looking for in the many signs that were on the

blackboard. As the dialogue shows, instead of looking at

what is the same, the students focused on what was

different (increasing versus decreasing sequences; see lines

52 and 53). Being able to discriminate between the same

and the different is, as mentioned in Sect. 1, a crucial step

towards generalization. In lines 56 and 58, Judy suggested

drawing a toothpick figure having 11 toothpicks. They

would then proceed to remove two toothpicks at a time.

This is certainly an interesting and creative effort at

reconceptualizing the problem, but what could they do to

enter into the negatives in this way? The teacher went to

see the group and asked whether or not they had calculated

Terms 5–7:

61. Judy: I found up to [Term] 14.

62. Teacher: (Asking in an ironic tone) You’re not going

to get to [Term] 100 like that?! (The students smile.)

[…] O.K., you just have to go back to what you just

did. In the problem, even if there is a minus 2, it

doesn’t mean that the process for arriving at the rule

is different. It’s the same thing. So here, I’m asking

you to find the 100th term. So, what do you do each

time?

63. Judy: Minus 2, so that would be like minus some-

thing, minus 2 times 100 […]

64. Teacher: O.K. (seeing that Kathy does not seem

convinced continues). If it was + 2 then, it’s the same

thing […] It’s the same thing: 100 times minus 2.

[…] minus 2 plus minus 2 plus minus 2 plus minus 2

plus minus 2 plus minus 2 …
65. Mélanie: It’s like negative 200.

In line 62, the teacher emphasizes the fact that having a

positive or negative constant difference between consecu-

tive terms in a sequence does not affect the way the

repeated addition must be carried out. To accentuate this

key aspect, she says three times: ‘‘It’s the same thing’’

(lines 62 and 64). And to convey the idea of a repeated

addition of numbers, she utters the sentence ‘‘minus 2 plus

minus 2 plus minus 2 plus minus 2 plus minus 2 plus minus

2’’. To highlight the dissymmetrical role of numbers and

actions, the term ‘‘plus’’ is pronounced at a cadence that

distinguishes it from the occurrences of the term ‘‘minus

2’’. Figure I shows the waveform of prosodic analysis

conducted with Praat—a voice analysis dedicated software

(Boersma & Weenink, 2006).7 The waveform shows an

excerpt of the teacher’s utterance and indicates two things.

First, that the utterance, although comprising 17 words,

was uttered very quickly; second, that the cadence of the

utterance was made in such a way as to clearly distinguish

two chunks of information: the number (minus 2) and the

repeated action of adding. The short duration of the

utterance intimates the idea that the focus of attention is not

on the successive results obtained if the calculations were

to be carried out term after term; rather, the focus of

attention should be put on a synthetic and global result. The

cadence of the utterance shows the role of rhythm as a

semiotic means of objectification. Rhythm allows the

teacher to highlight the monotony of additive actions,

thereby calling the students’ attention to the sought-for

meaning, i.e. that the sequence of actions can be contracted

in a multiplicative form.

What remained to be tackled was the other part of the

rule, the part involving the starting point. The teacher

continued:

66. Teacher: Yes, you started off well; it’s just that

you’re missing something. Look at Term 1 (She

points to Term 1; see Fig. J), what does 11 represent?

67. Judy and Mélanie: Term 1.

Fig. H Left, Judy draws Term 1. Right, a cleaned, calqued version of

Term 1

7 Prosody refers to all those features to which speakers resort in order

to mark the ideas conveyed in conversation in a distinctive way.

Typical prosodic elements include intonation, prominence (as indi-

cated by the duration of words) and perceived pitch. Some works on

prosody include Bolinger (1983), Goodwin, Goodwin & Yaeger-Dror

(2002), Roth (2007) and Selting (1994).
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68. Teacher: And how did you arrive at 11? (The students

explain.) […] Let’s go back to [problem 2] again. (She

goes back to problem 2 and pointing to Term 1 says)

0.42 is your first term (see Fig. J). You told me that the

difference was 0.33 (see Fig. J) […] But there (pointing

to 0.09) 0.09, 9 hundredth, where does it come from?

69. Judy: We did 0.42 minus 0.33 which gave us 0.09

(see Fig. J).

70. Teacher: […] We have the same genre of problem

here (She indicates a place on Renée’s sheet). 11,

how did you arrive at 11? What happened there?

71. Judy: 13 – 2.

72. Mélanie: O.K., so we know it’s 13.

73. Judy: […] So, 13 plus minus 2 times 100 (she writes

13 + – 2 · 100).

The iconic process of objectification launched from lines

66 to 70 allows the students, with the help of the teacher, to

identify the similar features in the generalizing rule (line

71) and attains a clear formulation by lines 72 and 73.

Figure J highlights the prominent coordination of gestures,

words, and symbols in what we have termed elsewhere a

semiotic node (Radford et al., 2003b), i.e. a segment of the

students’ semiotic activity where knowledge becomes

objectified. The next day, when the activity was resumed,

the students produced the formula 13 + – 2 · n.

The teacher’s intervention can be better understood as

an intervention occurring in the Vygotskian Zone of

Proximal Development (Vygotsky, 1986). The students

could not have completed the objectification of knowledge

by themselves. However, they were not far away from it.

The teacher’s punctual and precise intervention helped the

students to recognize the different elements of the gener-

alizing rule and formulate it by themselves.

Let us quickly see what happened in another group

formed by three students: Vicky, Paul and Sylvain.

As in the first two problems, in problem 3, Vicky’s

group underwent a process of objectification similar to that

in Judy’s group: the students suggested –2 · 100 + 11.

After a comparison with the previous problem and with the

help of the teacher, they finally realized that the term to be

added to –2 · 100 was not 11 but 13. When they had to

explain the rule, they summarized it as follows:

74. Paul: You have to do the difference, the difference

between the…
75. Vicky: (Interrupting) The difference (she looks at

problem number 2) times the number of the term,

plus your first term.

76. Paul: The first term before. The term before your first

term.

Fig. I A Praat edited prosodic analysis of a 1.58 s excerpt of the

teacher’s utterance. The waveform indicates the temporal and

rhythmic organization of the utterance: ‘‘plus minus 2 plus minus 2

plus minus 2’’

Fig. J Picture 1, the teacher

points to Term 1 in Problem 3.

To emphasize similarities, in

pictures 2 and 3, the teacher

makes reference to Problem 2

and points to 0.42 (Term 1) and

to the constant difference (0.33),

respectively. In Picture 4, Judy,

right after having pointed to

0.42, points to 0.33 and says

‘‘which gave us 0.09’’ (line 69)
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77. Vicky: Yeah. (Continuing her explanation) and the

first, the first term.

78. Paul: Your term before Term 1. (He makes gestures

on the table.)

79. Vicky: Your pre-term.

80. Paul: (He laughs.) Your pre-term, O.K. […]

81. Vicky: Plus, what are we going to call the thirteen

then?

82. Sylvain: The term before the first term.

In Problem 1 (i.e. the ‘‘Money-Problem’’) the use of letters

was not clear for this group. Sylvain strongly disagreed

with Paul about using a letter for the number of weeks:

83. Sylvain: (Talking to Paul) you and your letters…! It’s

the number of weeks! We can’t put a letter! What

does a letter mean?!

In problem 3, the passage to the symbolic expression did

not pose difficulties. Sylvain said:

84. Sylvain: O.K., so minus 2, times n, plus 13.

The teacher was busy discussing with another group at the

back of the classroom. Vicky and her group-mates were

about to start the next problem on the activity sheet. It was

clear that after reflecting and becoming engaged in the

classroom discussion and then in three similar problems,

the constitution of the algebraic generalizing rule had

become relatively stable for this group. But I wanted to see

to what extent the objectification had been achieved. I took

off the headphones that I wear behind the camera and went

to talk to Vicky’s group, which happened to be the group I

was videotaping:

85. Luis: So, do you know what to do now in order to find

any given one [term] in a sequence of numbers like

these (pointing to the activity sheet)?

86. Vicky and Paul: Yes.

87. Luis : Let’s suppose that I gave you some kind of

sequence of numbers, alright? What would you do?

88. Paul: You have to find the one before.

89. Luis: Tell me all of the steps.

90. Vicky: O.K., we would do, uh…the difference (She

points to the difference ‘‘–2’’ in her sheet) times the

number of the term, plus the term before the first

term, like the term that we started with.

In line 90, Vicky summarizes the steps to be followed in a

sentence. The steps to be followed have become clear. The

schema has been objectified to an unprecedented layer of

generality. There are no numbers or examples in the rule.

The traces of concrete sensuous activity can only be

distinguished through an incidental pointing gesture indi-

cating the particular constant difference ‘‘–2’’ that, as

particular, remains now outside the realm of speech.

Precise general terms now replace the place that particulars

occupied in the students’ prior mathematical experience. A

remarkable contraction focused on the same and the

relevant has been achieved. The students now recognize

that the nature of the terms of the sequence (natural

numbers, decimals, negative numbers, etc.) does not

matter. The nature of numbers belongs to the different;

the same belongs to actions carried out on remarkable

numbers: the starting point or ‘‘the term before the first

term’’, as Vicky says; the (constant) difference, the

(indeterminate) number of the term.

As confidence is gained, testing the rule becomes an

unnecessary procedure. Neither Vicky’s nor Judy’s group

felt the need to test the rule in problem 3. The teaching-

learning sequence secured a space for algebraic pattern

generalization to become a way of reflecting on lineal

sequences.

7 Synthesis and concluding remarks

In this paper, I argued that algebraic pattern generalizations

are not characterized by the use of notations but rather by

the way the general is dealt with. I suggested that algebraic

pattern generalizations entail (1) the grasping of a com-

monality, (2) the generalization of this commonality to all

terms of the sequence under consideration and (3) the

formation of a rule or schema that allows one to determine

any term of the sequence directly. However, from an

ontogenetic viewpoint, the linking of these three central

elements is not without difficulties. Thus, generally

speaking, numeric patterns are reputedly difficult not

because of the difficulties that the students encounter in

grasping the commonality, but because the students tend to

fail at using it to form a direct and meaningful rule. As

Rossi Becker and Rivera comment, the students

usually employ trial-and-error and finite differences

as strategies for developing closed forms or partially

correct recurrence relations with hardly any sense of

what the coefficient and the constant in the linear

pattern represent. (Rossi Becker & Rivera, 2006,

p. 96)

One of the dangers of using patterns as a route to algebra

is indeed the fact that students often make recourse to trial

and error or naı̈ve inductions instead of resorting to alge-

braic generalizations (MacGregor and Stacey, 1993; Castro

Martı́nez, 1995).

The teaching sequence partially described in this paper

was an attempt at providing the students with a teaching-

learning environment in which they could reflect algebra-

ically on pattern generalizations (limiting such a reflection

to linear polynomials). The design and implementation of
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the teaching sequence was based on the Theory of

Knowledge Objectification. As formulated within this

theory, the central educational problem is to offer the

students the possibility of securing, as much as possible,

particular historically constituted modes of thinking. Now,

fluency with the latter cannot result from mere transmis-

sion. The Theory of Knowledge Objectification thematizes

the process of becoming fluent with historically constituted

modes of thinking as social processes of objectification. By

processes of objectification, it is meant the active and

creative social processes of sense-making in the course of

which students notice and come to master, through prac-

tice, cultural mathematical forms of reflection and action

and, at the same time, achieve the development of deeper

layers of subjectivity and consciousness.8

The teaching sequence discussed in this paper was ori-

ented towards the students’ attainment of elementary

algebraic forms of thinking and was based on three prob-

lems of increasing complexity. We paid particular attention

to the way in which the noticed commonality (the constant

increase or decrease between consecutive terms) was

transformed from abduction to hypothesis and how this

hypothesis could give rise to the deduction of a schema or

rule. By varying the context of the problems, we wanted to

investigate the manner in which the students’ reasoning

evolved towards stable forms of algebraic reflection.

Two distinctive processes of objectification played a

crucial role in the evolution of students’ mathematical

experience: iconicity and contraction.

Iconicity is not merely the contrast between two given

conceptual forms. It is the process through which the stu-

dents draw on previous experiences to orient their actions

in a new situation. In other words, iconicity is based on the

projection of an earlier experience onto a new one-a pro-

jection that works on the progressive identification of the

similar and the different and that makes possible, through a

back and forth movement, the emergence of the second

conceptual form (here a generalizing procedure). In some

cases, iconicity may remain in the background of dis-

course, as appears to be the case in the link between the

discussion summarized in Fig. F and line 3 on the one

hand, and line 8, on the other. In other cases, resorting to

iconicity seems much more difficult, as in problem 2. In

line 31, the teacher did indeed have to call the students’

attention to the procedure followed in the toothpick pattern

(Fig. D). In line 37, there is an evocation of the relevant

elements in the original context and the projection of these

onto the new context of the decimal sequence. It is in the

course of this projection that the numbers of the new

context acquire a new meaning: the decimal number 0.09 is

the iconic projection of the leftmost toothpick of the first

term of the sequence and enters the universe of discourse

with the same attributes as the former: as the starting point

of the sequence.

Iconicity reappeared in the third problem, this time under

the students’ initiative. In a very creative act, Judy interpreted

the new Term 1 as made up of toothpicks (see Fig. H). This is

a way of establishing similarities between two different

contexts. However, the idea, as we saw, was received with

skepticism and then forgotten. The teacher intervened and, in

line 62, suggested that similarities were to be found else-

where. Similarities were to be found-not in the elements of

the two sequences-but in the repeated additions, regardless of

the fact that in the first case, the number to be added was

positive and in the second case, negative.

But iconicity is not a mere matter of logic. It is first of

all a matter of making apparent the relevant similar. And,

because similar things are similar in some respects (and

hence different in others), to emphasize the similarity of

repeated additions, the teacher made recourse to prosody.

She used rhythm to project the idea of repeated addition in

the new context, treating the disturbing constant difference

‘‘–2’’ as an ordinary number (see Praat prosodic analysis in

Fig. I), much as the number ‘‘2’’ was used in the toothpick

context.

Contraction-the second main process of objectification

in the analysis-makes it possible to cleanse the remnants of

the evolving mathematical experience in order to highlight

the central elements that constitute it. Contraction is indeed

a necessary condition of knowledge attainment. We can

easily imagine the difficulties that we would experience if

we needed to pay attention to each and every detail of our

surroundings and the experience we make of them. We

would need to attend to an amazing number of things that

go beyond of the threshold of consciousness (Nørretran-

ders, 1998). Contraction is the mechanism for reducing

attention to those aspects that appear to be relevant. This is

why, in general, contraction and objectification entail for-

getting. We need to forget to be able to focus. This is why

to objectify is to see, but to see means at the same time to

renounce seeing something else.

Contraction depends on the semiotic systems through

which objectification occurs. There are in fact two types of

8 One of the reviewers found my reference to different theories

(epistemology, semiotics, psychology, and phenomenology) unnec-

essary, if not unpleasant, in my account of the students’ processes of

generalization. As all teaching and learning phenomena, the students’

processes of generalization are very complex. A single viewpoint (be

it epistemological, psychological, or semiotic) is certainly insufficient

for offering a satisfactory scientific explanation. The traditional

psychologism from which Mathematics Education emerged in the

1970s is no longer a possibility. Cognition is much too complicated a

phenomenon; understanding it requires that we make recourse to

several viewpoints. My paper is an attempt at going beyond self-

contained disciplines. It is about a coherent multidisciplinary

approach. That which my reviewer sees as a move into the darkness

of theorizing, I see as the emergence of light.
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contraction: within a same set of semiotic systems (which

Arzarello (2006) calls a Semiotic Bundle) and between

semiotic systems. In the semiotic system of language and

gestures, contraction (produced e.g., during the summary of

a procedure) leads to a shorter statement having fewer and

better articulated words, accompanied perhaps by shorter

or more precise gestures. Lines 42, 73, and 75–77 are

examples of the first type of contractions. The symbolic

formulas produced by the students are examples of the

second type: they are contractions of experiences lived and

objectified through speech and gestures now being

expressed in the alphanumeric semiotic system of algebra.

As fluency is gained, contraction increases. The students’

overt actions and sensuous experiences become embedded

in the way signs are used to reflect and carry out mathe-

matical activities.

I do not think that iconicity and contraction exhaust all

the types of processes of objectification that take place

during the students’ attainment of the historically consti-

tuted algebraic mode of thinking. There may be some other

subtle types of objectification that only further analyses can

reveal. All in all, the analysis presented here suggests that

one of the central problems posed by algebraic general-

ization is the fact that it imposes the economy of particular

actions. In turn, this economy creates a distance between

the original context and the new one—a new plane of

mathematical generality and subjective consciousness—

where signs and numbers acquire a non-contextual, rela-

tional mode of signification.
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