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Abstract

Discovery of copy number variations (CNVs), a major category of structural variations, have

dramatically changed our understanding of differences between individuals and provide an

alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain

and copy loss events and their detection genome-wide is now possible using high-through-

put, low-cost next generation sequencing (NGS) methods. However, accurate detection of

CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting

from various systemic biases. We have developed an integrated platform, iCopyDAV, to

handle some of these issues in CNV detection in whole genome NGS data. It has a modular

framework comprising five major modules: data pre-treatment, segmentation, variant call-

ing, annotation and visualization. An important feature of iCopyDAV is the functional annota-

tion module that enables the user to identify and prioritize CNVs encompassing various

functional elements, genomic features and disease-associations. Parallelization of the seg-

mentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we

show the effect of sequencing coverage, read length, bin size, data pre-treatment and seg-

mentation approaches on accurate detection of the complete spectrum of CNVs. Perfor-

mance of iCopyDAV is evaluated on both simulated data and real data for different

sequencing depths. It is an open-source integrated pipeline available at https://github.com/

vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/.

Introduction

With the advent of high throughput sequencing techniques, there has been considerable inter-

est in identifying population-specific structural variants (SVs), and their possible role in dis-

ease. Among various structural variations, copy number variations (CNVs) are shown to

contribute significantly to human genome diversity and predisposition to disease. CNVs com-

prise deletions and duplications of DNA segments of size� 50bp and maybe as large as 1Mbp,

spanning about ~9.5% of human genome [1]. This may lead to alterations in protein-coding

PLOSONE | https://doi.org/10.1371/journal.pone.0195334 April 5, 2018 1 / 37

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Dharanipragada P, Vogeti S, Parekh N

(2018) iCopyDAV: Integrated platform for copy

number variations—Detection, annotation and

visualization. PLoS ONE 13(4): e0195334. https://

doi.org/10.1371/journal.pone.0195334

Editor: Ulrich Melcher, Oklahoma State University,

UNITED STATES

Received:December 29, 2017

Accepted:March 20, 2018

Published: April 5, 2018

Copyright: © 2018 Dharanipragada et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: PD acknowledges University Grants

Commission (UGC), India, for Research

assistantship.

Competing interests: The authors have declared

that no competing interests exist.

https://github.com/vogetihrsh/icopydav
https://github.com/vogetihrsh/icopydav
http://bioinf.iiit.ac.in/icopydav/
https://doi.org/10.1371/journal.pone.0195334
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195334&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195334&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195334&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195334&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195334&domain=pdf&date_stamp=2018-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195334&domain=pdf&date_stamp=2018-04-05
https://doi.org/10.1371/journal.pone.0195334
https://doi.org/10.1371/journal.pone.0195334
http://creativecommons.org/licenses/by/4.0/


regions through gene dosage imbalance or gene disruption, or through changes in the expres-

sion of non-coding genes and regulatory elements.

Formation of CNVs is mainly driven by inaccurate repair and mistakes in replication. One

major repairing mechanism of DNA double strand breaks (DSB) is homologous recombina-

tion. The repair mechanism may misalign the DSBs to another homologous region, resulting

in non-allelic homologous recombination (NAHR) (aided by repeats and segmental duplica-

tions). This mechanism is usually observed in the formation of recurrent CNVs. Another

repair mechanism at DSB sites involves non-homologous end joining (NHEJ) and microho-

mology-mediated end joining (MMEJ) and may lead to deletion/insertions (aided by repeats).

Unlike NAHR, these mechanisms do not require any template for joining the DSBs. CNVs can

also be generated due to mistakes in the replication process, viz., polymerase slippage and tem-

plate switching. In template switching, DNA replication fork stalls, lagging strand disengage

from the DNA and shifts to another replicating DNA fragment and restarts the process,

termed as fork stalling and template switching (FoSTeS) (aided by repeats). This mechanism

results in the generation of non-recurrent CNVs. Mobile element insertion (MEI) is a mecha-

nism that allows transposable elements to make their copies and insert in new locations that

are usually flanked with inverted repeats (mediated by retrotransposons, DNA transposons

and endogeneous retroviruses) [2,3].

Traditional approaches such as karyotyping, fluorescence in situ hybridization (FISH) and

array-based methods such as comparative genomic hybridization (arrayCGH) and single-

nucleotide polymorphism (SNP) arrays, are now being replaced by high-throughput, next gen-

eration sequencing (NGS) based approaches, due to the reducing cost and higher resolution of

these techniques. Various strategies used in the detection of CNVs in NGS data are: paired-

end mapping (PEM), split-read (SR), depth-of-coverage (DoC), de novo assembly (AS) and

their combinatorial methods. Each of these approaches has their own strengths and shortcom-

ings, limiting the detection of the complete spectrum of CNVs by any particular approach. For

instance, PEM and SR based approaches accurately detect small CNVs, however, these are not

suitable for predicting insertions larger than the insert size and fail to identify CNVs in low

complexity regions and segmental duplications. De novo assembly-based methods provide an

unbiased approach to predict novel genetic variants as these methods are independent of refer-

ence based read alignment. However, these methods require read coverage� 30× and are

highly computationally demanding. The Depth-of-Coverage (DoC) based approaches are

most popular due to their ability to determine the absolute copy number of the variant region

in single-read data, but, suffer from precise breakpoint predictions of the CNV calls.

In this study we highlight various issues in DoC based approaches. These approaches are

based on the assumption that read depth is approximately proportional to the copy number of

the DNA region. However, due to various systemic biases, detection of CNVs is so not trivial.

Two major biases affecting the read depth are GC bias and mappability bias [3]. Correcting for

these two biases, called data pre-treatment, is an important step and various approaches have

been proposed (summarized in Table 1). The GC content is not uniform along the human

genome and PCR amplification step is biased resulting in fewer reads from low GC or high

GC regions. This introduces a bias in correct estimation of read-depth (RD) signals in low or

high GC regions, called GC bias. Filtering out low and high GC regions, normalizing the read

depth in a bin based on its GC content (in absence of control sample), or taking the ratio of

copy number in corresponding bins in case-control samples may aid in addressing this bias.

Another major bias that affects CNV calling in DoC-based approaches is handling of ambigu-

ous reads, called mappability bias. In the read alignment step, ambiguous reads may either be

aligned to the best scoring position, k-best scoring positions, to all possible positions [4], or

randomly assigned to any one of the possible positions [5,6]. This results in non-uniform read
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depth. The problem is more prominent in the case of short reads (36–150 bp). Choosing an

appropriate threshold for filtering mappability regions, and/or normalizing reads in a bin with

respect to the mappability score of the bin can help in addressing this bias. In this study, using

iCopyDAV, we show that appropriate handling of GC bias and mappability bias methods is

dependent on the bin size, type of CNVs to be detected and the sequencing coverage.

Another major step in DoC based approach is segmentation. In this step, the objective is to

cluster read depth signals of similar intensities, and those deviating from the mean read depth

signal are identified as variant regions. Read depth signals are very noisy because of several fac-

tors: sequencing error, mapping error (multiple mapping, mismatching), presence of SNPs

and indels. Major challenge in segmentation is to distinguish spurious variant regions from

true copy variant regions. Various segmentation approaches have been proposed (summarized

in Table 1) which can be majorly categorized as change-point detection algorithms followed

by a merge procedure [13], or statistical hypothesis testing that assumes read-depth signal

obeys a certain probability distribution (e.g., Poisson, negative-binomial) [9,11]. Using iCopy-

DAV, we show that these methods suffer from under-cut or over-cut problem and need to be

judiciously chosen depending on the type and size of CNVs to be detected and the sequencing

coverage of the data.

To analyze the functional impact of CNVs, information regarding their overlap with vari-

ous functional elements, viz., protein-coding genes, non-coding RNAs, genomic regulatory

elements (promoters and enhancers), etc., known CNVs and disease association is desirable.

Table 1. Some of the popular data pre-treatment and segmentation methods in DoC-based approaches are listed.

Step Method Tool

Data pre-treatment:
GC bias correction

Filter reads based on GC content
score

Control-FREEC [7], OncoSNP-seq [8]

Matched-control based ratio CNV-seq [9], CNAseg [10], JointSLM [11],
CNVrd2 [12]

Loess regression ReadDepth [13], cnvHiTSeq [14], CNAnorm
[15], SMASH [16]

Median approach RDXplorer [17], CNVnator [18]

Mean fragment count-based
correction

GCcorrect [19], DeepTools [19]

Quantile normalization GROM-RD [20]

Rolling median approach CNVkit [21]

Data pre-treatment:
Mappability

Ignore all multi-reads BIC-seq2 [22], Segseq [23]

Randomly assign reads CNVnator [18]

Filter reads based on mappability cut-
off threshold

Control-FREEC [7], CONIFER [24]

Normalize using mappability score CNAseg [10], ReadDepth [13], HMMcopy
[25]

Segmentation Circular binary segmentation (Top-
down)

ReadDepth [13], CNAnorm [15],
SMASH [16]

Mean-shift (Top-down) CNVnator [18]

Event-wise testing (Bottom-up) RDXPlorer [17]

Hidden Markov model (Bottom-up) HMMcopy [25], MGP-HMM [26]

Total variation minimization
(Bottom-up)

CNV-TV [27]

LASSO-regression (Top-down) Control-FREEC [7]

Shifting-level model (Bottom-up) JointSLM [11]

Convex hull-based model (Bottom-
up)

CNV-CH [28]

https://doi.org/10.1371/journal.pone.0195334.t001
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Though numerous independent annotation tools are available for functional annotation of

CNVs (summarized in Table 2), in our knowledge no CNV detection tool has the annotation

component. Visualization of CNVs is also an important feature, and aid in analyzing distribu-

tion of CNVs across the chromosome/genome and identify CNV clusters.

Previous studies [36,37] have shown that using multiple methods may improve the reliabil-

ity of CNV prediction compared to any single approach. Integrated platforms have been devel-

oped that incorporate either different strategies viz., PEM, SR, DoC methods (e.g., CNVer

[38], ERDS [39] and Clever [40]) or merge output from various tools that are based on differ-

ent strategies (e.g., HugeSeq [41], SVMerge [42] and MetaSV [43]). Though these platform

perform better than single approaches, these do not provide user the flexibility to choose the

type of approach (es). Also, most of these platforms do not provide annotation and visualiza-

tion features. Thus, there clearly exists a need for an end-to-end pipeline providing both vari-

ant calling and annotation to the predicted variants on a single platform. With this objective

we developed an integrated platform, iCopyDAV, for CNV detection in whole genome NGS

data based on DoC approaches. It has a modular framework and comprises five major steps:

Data pre-treatment (handling GC bias and mappability bias), Segmentation (divisive and

agglomerative approaches), CNV calling (type and copy number), Annotation (functional ele-

ments, known CNVs, clinical associations and structural features) and Visualization (GC pro-

file and CNV distribution plots). It is different from various integrated platforms in that it

provides the user with various options at every step of the pipeline: starting from choosing

appropriate bin size to methods for removing GC and mappability biases, and segmentation,

and provides an end-to-end solution with its annotation and visualization features. Thus, in

iCopyDAV, the users can customize their workflow depending on the type and size of the

CNVs to be detected and the sequencing coverage of the data. If desired, the user can also

merge CNV calls from various workflows (union or intersection) in iCopyDAV. An important

feature of iCopyDAV is its computational efficiency due to parallelization of the segmentation

algorithms incorporated enabling faster detection of CNVs even in high sequence coverage

whole genome data.

Table 2. Some of the popular annotation and visualization methods for CNVs are listed.

Step Tool Features

Annotation CNVannotator [29] Functional elements, Structural elements (SD), Known CNVs (DGV, dbVar), Clinical features (CNVD)

DeAnnCNV [30] Functional elements, Known CNVs (dbVar), Clinical features (ClinVar)

SG-ADVISOR [31] Functional elements, Known CNVs (DGV, Scrips-Wellderly Genome, 1000 Genome project), Clinical
features (OMIM, ClinVar, HGMD)

cnvScan [32] Functional elements, Known CNVs (DGV, 1000 Genome project), Clinical features (OMIM, ClinVar,
DECIPHER, ExAC)

ANNOVAR [33] Functional elements, Structural elements (SD)

Visualization (Integrated with
tool)

Control-FREEC [7] Complete chromosome view

CNAnorm [15] Complete chromosome view

ReadDepth [13] Complete chromosome view, GC bias correction

Visualization (Standalone) CNView (GenVisR)
[34]

Complete chromosome view, specific coordinates along with the gene annotations from UCSC genome
browser

cnvCurator [35] Interactive visualizer, Editing the CNV breakpoints

cnvKit [21] Complete chromosome view, User defined coordinates, across the samples

SD: Segmental duplications, DGV: Database of Genomic Variants, CNVD: Copy number variation in Disease, dbVar: Database of Genomic Structural Variants,

HGMD: Human Gene Mutation Database, OMIM: Online Mendelian Inheritance in Man, DECIPHER: Database of Genomic Variation and Phenotype In Humans

using Ensembl Resources, ExAC: Exome Aggregation Consortium

https://doi.org/10.1371/journal.pone.0195334.t002
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Materials andmethods

iCopyDAV is an open-source pipeline implemented in a combination of programming lan-

guages (C++, R and bash) which are easy to understand and modify. The flowchart of the pro-

posed CNV detection pipeline is given in Fig 1. Aligned sequence reads in BAM format is the

primary input to the program. Additionally, files containing bin-wise GC content and mapp-

ability scores for all chromosomes need to be provided for data pre-treatment. For human ref-

erence genome assemblies (hg18/hg19), read length = 100 bp and default bin-size (100 bp),

these files are made available at http://bioinf.iiit.ac.in/icopydav/. Step-by-step instruction for

generating these files for any bin-size is given in the tutorial along with a sample configuration

file. The pipeline doesn’t require matched-control sample or paired-end reads and can be used

for CNV detection in samples from species other than human (however, functional annotation

and visualization is available only for human genome assembly hg18/hg19). The pipeline has

a modular framework and is command-line based, offering the user flexibility in configuring

it as per their requirement. iCopyDAV is freely available at GitHub (https://github.com/

vogetihrsh/icopydav) and can also be accessed via Docker’s container image at http://bioinf.

iiit.ac.in/icopydav/. In this case the user need to first install Docker on the local machine and

then run the pipeline; all the dependencies will get installed automatically (instructions pro-

vided in the tutorial).

Fig 1. Flowchart of the iCopyDAV pipeline (input from user: ‘green’, computational steps: ‘Yellow’, Output: ‘Blue’).

https://doi.org/10.1371/journal.pone.0195334.g001
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1. Data preparation

The first step in any depth of coverage based approach is to compute the read depth profile

along the length of the chromosome. This is typically computed over an appropriate window

or bin size, instead of at every base, to reduce random fluctuations and obtain a smoothed read

depth profile. For this the reference genome is binned into non-overlapping windows and the

read count in each bin, called its read depth (RD) value, is computed. Bin size is a very crucial

parameter in accurate detection of CNVs and is dependent on the sequencing coverage; low

sequence coverage data requiring larger bin size for reliable CNV prediction. Since smaller bin

size would result in smaller breakpoint error, high sequence coverage data is required for accu-

rate detection of small CNVs (� 1Kbp) [17]. In iCopyDAV, the user may set the bin size judi-

ciously depending on the sequence coverage and the size of the CNVs to be detected (default

100 bp) (~ 500 bp for low (4–6×), ~100 bp for medium (20–30×) and ~ 30 bp bin size for very

high coverage data (~ 100×) [18]). Alternately, one may use the function calOptBinSize to

obtain an optimal bin size for a given sequencing coverage using the expression λ = (no. of

reads � bin size)/genome size, where λ, the mean number of reads per bin, is obtained using

negative binomial distribution [13]. For this, a configuration file providing information

regarding the total length of the chromosome, expected percentage of gain and loss (default:

0.05), FDR (0.01) and dispersion values (default: 3) needs to be provided by the user. For the

chosen bin size, the function prepareData will construct the ‘coordinate file’ of non-overlap-

ping bins required as input for the pre-treatment step.

2. Data pre-treatment and filtering

NGS techniques generate short sequence reads (36–150 bp), suffer from non-uniform cover-

age since sequencing is biased with respect to DNA content, i.e., some regions amplify more

efficiently than others, introduce platform-specific sequencing artefacts and high base-call

error rates during DNA fragmentation (sonication), library preparation or sequencing steps.

This greatly affects the quality of alignment, especially in low complexity regions of the

genome. Systemic biases such as GC-bias and mappability bias are two leading causes of non-

uniform coverage of reads. If not corrected, the read-depth signal computed from raw aligned

reads may not represent the true copy number along the length of the genome. Below we dis-

cuss the approaches used in iCopyDAV to handle these biases.

GC-bias correction. A common observation across all NGS platforms is the under-repre-

sentation of DNA fragments from low GC or high GC regions of the genome resulting in a

bias in the estimation of RD signals in these regions. In iCopyDAV, two approaches are pro-

vided for GC-bias correction: (i) Local Polynomial Regression fitting (Loess) algorithm [44]

and (ii) Median approach by Yoon et al [17]. The user also has an option to not opt for GC

bias correction. In Loess regression approach, reads in bins with similar GC content within an

interval of 0.001 are clubbed together. Loess correction is applied to each bin, computed based

on the difference in the average read depth value of the bin and median read depth value for

the whole genome (span = 0.75 (default), controls degree of smoothness). The median read

depth is computed in such a way that GC adjustments do not have any effect on the overall

median of the data. In the Median approach for GC bias correction, the corrected read depth

of each bin i is given by the expression,

~r i ¼ ri

m

mGC

ð1Þ

where ri is the read count of the ith bin, mGC is the median read count of all bins having the

same G+C content as the ith bin, and m is the overall median read count of all the bins. The R
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functions loessGCCorrection [13] and gcCorrectionYoon [17] perform GC bias correction by

Loess-regression and Median-based approaches, respectively. GC profile plot generated helps

the user to confirm whether the read depth in low and high GC content regions are properly

correctly (shown in S1 Fig). Both these approaches require a file containing bin-wise GC con-

tent scores which can be obtained from UCSC genome browser [45] for human reference

genome (available with 5 bp as bin size). Using this one can compute the GC scores file (gcfile)

for any specific bin size and genome assembly using the function prepareData in iCopyDAV

(the GC score files for bin size = 100 bp are available for hg18 and hg 19 assemblies at the

website).

Handling mappability bias. Mappability of a region in the reference genome is defined as

the probability that a read originating from it is unambiguously mapped back to it. It depends

on the length of the reads, the number of mismatches allowed during the mapping step and

the reference assembly used. Reads that cannot be uniquely mapped to the genome are consid-

ered unmappable, and the genomic positions from where they originate are called as unmap-

pable regions. Bin-wise mappability scores (0–1) can be computed along the chromosome/

genome. Regions of low mappability score (< 0.5) correspond to repetitive or low-complexity

regions in the genome. For handling mappability bias in iCopyDAV, the user may define the

mappability cut-off score, Mth (default = 0.5), with ‘0’ corresponding to no mappability bias

correction. Then bins with mappability scores>Mth are only considered for subsequent steps

in the pipeline. Mappability score tracks can be obtained from UCSC genome browser and

computed for any bin size, similar to the construction of GC score file discussed above or by

using gem library [46]. Using function prepareData one can generate mappability file (map-

file) for any desired bin size by using the mappability score file for 100 bp bin size (available at

the website).

In iCopyDAV, the module pretreatment calculates raw RD values for the bin coordinate

file, corrects the raw RD values of each bin appropriately using one of the above GC bias cor-

rection methods and filters low mappable reads. For this bin coordinate file (z), mappability

scores (mapfile) and GC content scores (gcfile) are required.

3. Segmentation

The pre-treated data is now ready for the segmentation step to identify contiguous regions

having same copy number (i.e., similar read count values). In iCopyDAV, we provide two seg-

mentation approaches: Total Variation Minimization (TVM) algorithm based on agglomera-

tive (or bottom-up) approach, wherein the adjacent bins having similar RD values are merged

into larger segments, and Circular Binary Segmentation (CBS) algorithm based on divisive (or

top-down) approach, in which the genomic regions are divided into segments such that the

bins in a segment have similar read depth (RD) values. In both these approaches, the segmen-

tation process is viewed as a change point-detection problem, with change-points as the geno-

mic locations where read depth changes. The two segmentation approaches are briefly

discussed below.

Total variation minimization (TVM) approach. We have implemented the TVM

approach proposed by Duan et al [27] in C++. In this approach, the read depth profile is

assumed to be a piecewise constant function of plateaus and basins modelling duplication and

deletion events respectively along the length of the chromosome. At every step, two adjacent

bins with minimum deviation in their RD signals are merged into a single segment with aver-

age RD value of the two merged segments and the process is continued iteratively. At every

merging step, a total variation penalized least squares (v) is used to fit the RD profile using the

iCopyDAV: Integrated platform for detection, annotation and visualization of copy number variations
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equation:

v ¼ min
1

2

Pn

i¼1
ðyi � xiÞ

2
þ l

Pn�1

i¼1
�ðxiþ1

� xiÞ

� �

ð2Þ

where the first term on the right is the fitting error between original signal yi and the recovered

smooth signal xi in the ith bin; the second term is the total variation penalty imposed when a

change-point is detected between xi and xi+1 and λ is the penalty parameter which controls the

trade-off between fitting error and penalty caused by the change-points [27]. Schwarz informa-

tion criterion (SIC) has been implemented to compute the optimal value of λ [47], given by

SICðlkÞ ¼ m lnðnÞ þ

Pn

i¼1
ðyi � ~xiÞ

2

s2
ð3Þ

where mean of yi in a segment is used as the amplitude xi i.e., for a given segment spanning i to

i+l region, ~x i ¼ ~x iþ1
¼ ::: ¼ ~x iþl ¼

Piþl

i yi

lþ1
. Here m is the number of segments, σ2 variance of

noise, and optimal λ is achieved at:

l̂ ¼ arg mink SICðlkÞ ð4Þ

Once l̂ is known, the optimal smoothed signal of yi is ~x iðl̂kÞ and a CNV is identified as a

segment with change-points at i and i+l and having amplitude below or above the predefined

cut-off values.

Circular binary segmentation (CBS) approach. CBS is a recursive algorithm that parti-

tions the bins x1, x2. . .xn into a set of segments such that the read depth values in each segment

are similar. The basic approach is as follows. In each step, it identifies an interval i. . .j such that

the read depth values xi,. . .,xj are all similar and significantly different from the rest of the

regions, x1,. . .,xi-1 and xj+1,..,xn. If no such interval is identified, then the whole region x1,. . .,xn

is identified as a segment with no change point detected, else three intervals xi,. . .,xj, x1,. . .,xi-1

and xj+1,..,xn are obtained (considering the genome with periodic boundary conditions (circu-

lar) effectively results in two segments, xi,. . .,xj and xj+1,..,xi-1, with the larger fragment having

average copy number 2). To determine if the segment xi,. . .,xj is significantly different from

the other regions, the null hypothesis of no difference is assumed and t-statistic is computed

for each interval i. . .j, defined as

Ti;j ¼
mi::j � �mi::j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ni::j
þ 1

n�ni::j

q ð5Þ

where ni..j (= j-i+1) is number of bins in the interval i. . .j, n-ni..j is the total number of bins in

x1,. . .,xi-1 and xj+1,. . .xn, mi::j ¼
xiþ...þxj

ni::j
is the mean read depth in the interval i. . .j and �mi::j ¼

ðx1þ...þxi�1Þþðxjþ1þ...þxnÞ

n�ni::j
is the mean read depth for the remaining regions x1,. . .,xi-1 and xj+1,..,xn.

This procedure is applied recursively to every interval i. . .j and the interval that maximizes the

t-statistic, i.e., Tmax = max1�i<j�n |Ti,j| is greater than a threshold (determined using a permu-

tation test), the null hypothesis of no difference is rejected and the interval xi,. . .xj is identified

as a copy variant region. The Bioconductor package, DNAcopy [48], is incorporated for circu-

lar binary segmentation in the pipeline.

The segmentation step being computationally intensive, TVM is parallelized using Open-

MPI [49], while for CBS, parallel implementation of the ‘segment’ function, ParDNAcopy [50]

is considered. This is achieved by dividing the reference sequence into ‘p’ equal parts (default

iCopyDAV: Integrated platform for detection, annotation and visualization of copy number variations
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p = 32) with an overlap of 20 bins/windows between adjacent parts (to handle copy number

variant regions at the boundaries). The parameter p is an optional parameter and can be set

according to available CPU cores. The segmentation is applied independently and in parallel

on each of the p parts and, after the segmentation, the parts are merged back in proper order

to identify segments having similar RD signal. Thus, by utilizing multi-core architecture, iCo-

pyDAV is much faster (~ 8-fold) than most other CNV detection programs. It has been shown

that CBS approach is suited for identifying large CNVs [13], while the efficacy of TVM

approach is shown in the detection of small CNVs [27]. Thus, by combining the results of the

two approaches, one would be able to detect wider range of CNVs in iCopyDAV.

Function runSegmentationwith parameter -t for TVM and -d for CBS generates a coordi-

nate file containing both normal and variant regions along with their corresponding RD

values.

4. Variant calling

In this step, the segmented regions with deviant copy number are identified and reported with

their start/end coordinates, type of event (duplication or deletion) and absolute copy number.

First, the average RD value for the whole chromosome is computed by using a simple iterative

convergence algorithm to ensure that the RD value of the variant regions is ignored while com-

puting the mean. This is achieved by iteratively computing the average RD value of the seg-

ments, ignoring those with very high and very low RD values at every step. The iteration stops

until the mean RD across the chromosome converges. The mean RD value of the chromosome

is then used to define the upper and lower thresholds for identifying the deviant regions

(allowing 5% error). For its simplicity and effectiveness, empirical thresholds given below are

used to identify the variant regions and their absolute copy number:

Upper Threshold ðUTÞ ¼ 1:45� ðMean RD valueÞ

Lower ThresholdðLTÞ ¼ 0:55� ðMean RD valueÞ

Absolute Copy Number of a Region ¼
RD value of the Region

Mean RD value of Chromosome

� �

� 2 ð6Þ

Regions with RD value> upper threshold (UT) are reported as duplications and those

with< lower threshold (LT) as deletions. To handle inaccurate splitting of a variant region

due to the hard threshold used in the variant calling step, two adjacent variant regions of size x

bp and y bp separated by a small non-variant region of size n bp are merged in the post-pro-

cessing step if they are of the same event type (gain/loss), have similar copy number, and satisfy

the following condition [51]:

n

ðx þ y þ nÞ
� 0:2 ð7Þ

In iCopyDAV, variant calling is done on the files generated in the segmentation step by the

using function callCNV. The variant regions are reported in a tab separated format (BED) con-

taining chromosome number, start and stop positions of CNVs, event type (duplication: 1,

deletion: 0) and absolute copy number.

5. Annotation and visualization

The annotation module in iCopyDAV identifies various structural and functional elements in

the vicinity of (or within) the predicted CNVs and are summarized in Table 3. Using the

iCopyDAV: Integrated platform for detection, annotation and visualization of copy number variations
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function annotate, the user can obtain four categories of annotations mapped to the CNVs,

viz., (1) functional elements, (2) clinical associations, (3) known CNVs reported in the Data-

base of Genomic Variants (DGV), and (4) other structural variations (e.g., Segmental duplica-

tions, repeats) and genomic regions such as telomeres, centromeres. Based on these

annotations, the CNVs are assigned priority: high, medium or low.

It has been observed that large CNVs may affect multiple protein-coding genes or truncate

a functional gene which may lead to clinical conditions via mechanisms of gene dosage imbal-

ance (haploinsufficiency and triplosensitivity), gene disruption or gene fusion events, includ-

ing non-coding variant effects [65]. Long non-coding RNAs (lncRNAs) and regulatory

elements including enhancers and miRNA target regions spanning CNVs have been shown to

have a direct/indirect impact on gene regulation [66]. From literature there is evidence to sup-

port CNVs in the non-coding regions can also be pathogenic by a position effect mechanism

[65]. In iCopyDAV, we provide annotations of protein-coding and non-coding genes and

other functional elements encompassing CNVs. For clinical significance of the predicted

CNVs, information from four resources is incorporated. Disease association is obtained from

ClinVar [51] and OMIM [52] databases, and pathogenicity information from ClinVar, while

haploinsufficiency and genic intolerance information is obtained from DECIPHER [53] and

ExAC [54], respectively. When a single functional copy of a gene is insufficient to maintain

normal function, it is said to be haploinsufficient [59]. Based on the predicted probability,

higher ranks (e.g. 0–10%) indicate a gene is more likely to exhibit haploinsufficiency, while the

genic intolerance scores obtained from ExAC, indicate whether a genic CNV can be identified

Table 3. Structural and functional annotations provided by the annotatemodule in iCopyDAV.

Annotation Feature Method/source Database Overlap Criteria Priority
class

Functional Protein-coding gene Refseq [52] UCSC genome
browser

>1 bp Medium

Gene elements (exon, UTR, start/stop) Gencode [53] Gencode >1 bp Medium

Enhancers Vista [54] UCSC genome
browser

>1 bp Medium

lincRNA Cufflinks [55] UCSC genome
browser

>1 bp Medium

miRNA target sites TargetScanS [56] UCSC genome
browser

>1 bp Medium

Clinical Pathogenicity & disease ClinVar [57] ClinVar 50% with CNV High

OMIM disease ID OMIM [58] OMIM 50% with CNV High

Haploinsufficiency index DECIPHER [59] DECIPHER >1 bp High

Genic intolerance of rare CNV ExAC [60] ExAC >1 bp High

Known DGV Id DGV [61] DGV 50% with CNV Low

Structural Heterochromatin and telomeric
regions

Cytoband [45] UCSC genome
browser

50% with CNV NA

Segmental duplication Whole-genome assembly comparison method (WGAC)
[62]

UCSC genome
browser

50% with CNV NA

Tandem repeats TRFinder [63] UCSC genome
browser

50% with CNV NA

Interspersed repeats RepeatMasker [64] UCSC genome
browser

50% with CNV NA

OMIM: Online Mendelian Inheritance in Man, DECIPHER: Database of Genomic Variation and Phenotype in Humans using Ensembl Resources, ExAC: Exome

Aggregation Consortium, DGV: Database of Genomic Variants

https://doi.org/10.1371/journal.pone.0195334.t003
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as a common functional genetic variation relative to expected genome-wide variation. The pre-

dicted CNVs are also searched against the Database of Genomic Variants (DGV) [55] to iden-

tify known, population-specific CNVs. This would help in filtering out common population-

specific CNVs and enable prioritization of phenotype-specific rare CNVs. The structural geno-

mic features in the vicinity of the predicted CNVs, e.g., segmental duplications, tandem repeats

and interspersed repeats, and their localization (e.g., heterochromatin, telomeric regions) are

extracted from UCSC Genome Browser. These structural annotations provide insight into the

mechanism of CNV formation. For example, CNVs in the proximity of segmental duplica-

tions, interspersed repeats and tandem repeats are likely to be formed as a result of non-allelic

homologous recombination (NAHR). Based on the extent of overlap one can distinguish

between true CNVs from other structural variations.

The above annotations are collated and CNVs are assigned a priority based on their proba-

ble functional impact. CNVs overlapping with clinically significant variants are given ‘High’

priority, while overlap with DGV CNVs is given ‘low’ priority. Novel CNVs which span any of

the functional elements are assigned ‘medium’ priority, while no such categorization is pro-

vided for CNVs with structural annotations.

The visualization module in iCopyDAV, plot, allows the user to plot the distribution of

CNVs along the chromosome or a region of interest (user defined coordinates), which can be

downloaded in ‘.png’ format. The distribution of CNVs is also depicted as an ideogram.

Results

The performance of iCopyDAV is evaluated on simulated sequence data and real chromosome

data. In simulation experiment, the performance of the two segmentation algorithms in iCopy-

DAV is assessed in their ability to identify CNVs of varying size, breakpoint accuracy and copy

event (gain/loss) as a function of sequencing coverage (5× - 50×). The choice of data pre-treat-

ment and segmentation methods on variant calling are also discussed. For the analysis on real

data, Chr1 of NA12878 Caucasian sample (CEPH) is considered at two sequencing depths (6×

and 35×). The predicted CNVs in each are validated against 6 different studies reported in

Database of Genomic Variants (DGV) for NA12878 sample. Finally, the functional analysis of

predicted CNVs is discussed.

1. Simulation experiment

To simulate CNV detection in a real genome with all its complexities and compositional

biases, a contiguous segment of length 40Mb from position 75,671,302 to 115,671,302 of

human chromosome 4 (hg18 assembly) is taken, referred as ’reference’. In a copy of this ’refer-

ence’ sequence, 24 CNVs of lengths varying from 100–5000 bases, comprising both duplica-

tions and deletions (copy number 1, 3 and 4) are inserted (summarized in S1 Table). This is

then concatenated with the ’reference’ to simulate a diploid genomic sequence, referred as

’simulated sequence’ hereafter. Single end reads of length 50 bp are generated from this simu-

lated sequence using ART simulator [67] at six different sequencing depths, 5×– 50×. Reads

are aligned to the ‘reference’ using Bowtie2 aligner [68] to obtain alignment files in BAM for-

mat. For each sequencing depth, this exercise is repeated 50 times and the predictions are aver-

aged over these repetitions.

Analysis of simulated data. For the simulated data, GC bias correction is carried out

using Median-based approach and regions of low complexity regions are removed using

mappability threshold, Mth = 0.5 (default). A small bin size of 50 bp is considered. Perfor-

mance of the two segmentation approaches is evaluated using F-score, defined as the harmonic

iCopyDAV: Integrated platform for detection, annotation and visualization of copy number variations
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mean of precision and recall (sensitivity):

F ¼
2� recall � precision

ðrecall þ precisionÞ
ð8Þ

where, recall is defined as the proportion of true CNV predictions (TP) to the total number of

CNVs inserted (P):

Recall ¼
TP

P
¼

Number of CNVs correctly predicted

Total number of actual CNVs
ð9Þ

and precision is defined as the ratio of correctly predicted CNVs (TP) to the total number of

CNV predictions (TP + FP):

Precision ¼
TP

TP þ FP
¼

Number of CNVs correctly predicted

Total number of CNVs predicted
ð10Þ

The criterion for ‘true positive’ considered here is reciprocal overlap of 50% or more

between the predicted and actual CNVs. Performance of iCopyDAV is assessed at four levels

in the simulated experiment: (i) size of CNVs, (ii) breakpoint accuracy, and (iii) event type

(duplication/deletion) as a function of sequencing depth, and (iv) for comparison with three

other DoC based approaches.

Performance of CNVs on simulated data. Size of CNVs: To analyze the efficacy of iCo-

pyDAV in the detection of ‘small’ and ‘large’ CNVs, the inserted CNVs are split into two

groups: small (0.1–1 Kb) and large (> 1–5 Kb). CNVs larger than 5Kb are not considered here

as most algorithms perform well in the detection of large CNVs. Homozygous deletions and

copy gain> 4 are also not considered as these are easy to detect. Fig 2(A) and 2(B) respectively

depict the F-scores and precision-recall curves as a function of sequencing depth for the two

CNV sets, the ‘dashed’ curves corresponding to the performance of� 1 Kb CNV set, and the

solid curves for> 1 Kb CNVs. It is observed from Fig 2(A) that the prediction accuracy for

CNVs> 1Kb is quite good, greater than 90% for sequencing coverage�10×, while that for

CNVs� 1 Kb it is ~50% for sequencing depth (� 30×) with both the segmentation approaches.

This clearly indicates that larger CNVs can be easily detected even in low coverage data by any

segmentation approach, but higher sequencing depth is required for the detection of smaller

CNVs (especially for single copy gain/loss events). From Fig 2(A) it is observed that TVM

approach performs marginally better than CBS approach in the detection of small CNVs (� 1

Kb) in low coverage data (< 30×).

High recall values indicate that most of the true CNVs are correctly detected, while high

precision values indicate fewer false positives. In general, a balance between the two is desired

for any algorithm. It is observed from Fig 2(B) that both recall and precision are high and com-

parable for TVM and CBS approaches in the detection of CNVs of size> 1Kb and approach

‘1’ with increase in sequencing coverage (� 20×). However, for detecting CNVs of size�1 Kb,

we observe that CBS has a better recall while TVM gives better precision (~ 1 even at 5×), with

the overall performance being marginally better for TVM approach (Fig 2(A)). This suggests

that for the detection of small CNVs (�1Kb), a combination of the two approaches may be

useful.

Breakpoint accuracy: The error in accurate detection of the start/end boundaries of pre-

dicted CNVs is defined as the breakpoint error. The breakpoint error in the prediction of 24

CNVs in our simulation experiment as a function of sequencing coverage is summarized as

boxplots in Fig 3. As expected, the average breakpoint error and the variation in the error

decrease with increase in the sequencing depth. This may probably be due to reliability in the

iCopyDAV: Integrated platform for detection, annotation and visualization of copy number variations
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alignment of reads and better resolution of the segmentation approaches at higher sequencing

coverage. For 30× and higher sequencing coverage, the median breakpoint error is about ~ 2

bin sizes for both the approaches, but with higher variation observed in the case of CBS

approach ~ 109 (62–490) compared to the case of TVM approach, ~105 (54–195) at 30×

sequence coverage. Very large variation in the breakpoint error is observed in the case of CBS

approach, though the Median value is comparable in the two cases, especially for low coverage

data (� 30×). This probably could be due to the requirement of larger bin sizes for optimal

performance of CBS segmentation approach in low sequence coverage data. Since TVM

approach performs well with smaller bin sizes, a better resolution of the breakpoints is

observed in this case (� 30×).

Type of CNVs: To see if there is any bias in the detection of copy gain or copy loss events,

the F-scores are computed for the two segmentation algorithms and depicted in Fig 4 for each

case. No difference is observed in the detection of large copy gain and copy loss events (> 1

Kb), and F-scores are observed to approach ~ 1 for sequencing coverage� 20× for both the

segmentation approaches. For sequencing coverage< 20×, a slight bias in the detection of

copy gain events is observed suggesting that it is easier to detect duplications than deletions in

low sequence coverage data. But this bias is likely to be due to copy number 4 events which are

easier to detect compared to single copy gain and copy loss events (3 and 1). In the detection

Fig 2. (a) F-score plots, and (b) Recall & Precision plots as a function of sequencing depth. In (b) Recall and precision values are depicted by ‘closed’ and ‘open’ symbols
respectively. Performance of TVM (‘circle’) and CBS (‘triangle’) is shown for the two CNV sets: small (� 1Kb) shown as dashed lines and large (> 1Kb) as solid lines.
Error bars represent standard deviation in each group. Bin size = 50 bp.

https://doi.org/10.1371/journal.pone.0195334.g002

Fig 3. Box plots representing breakpoint error in CNV detection as a function of sequencing coverage using (a) TVM and (b) CBS segmentation approaches in
simulated data. Bin size = 50 bp.

https://doi.org/10.1371/journal.pone.0195334.g003
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of small CNVs (� 1 Kb), TVM approach is much better in detecting copy gain events while

the performance of both the approaches is very poor in detecting copy loss events (when

sequencing depth is� 20×).

Effect of bin size: The bin size is an important parameter and affects CNV detection by

DoC-based approaches. We observe that optimal performance for TVM approach is observed

on using small bin size (~50 bases), while for CBS approach larger bin sizes are required (see

S2 Fig), when sequence coverage is low (� 20×). For high sequence coverage data, no such

dependence on bin size is observed and a small bin size is desirable for breakpoint accuracy.

Since small bin size result in smaller breakpoint error, TVM approach is best suitable when

sequence coverage is low as observed above in computing breakpoint accuracy.

Comparison with other DoC-based Methods: The performance of iCopyDAV on simu-

lated data is compared with three DoC-based tools, viz. CNVnator [18], ReadDepth [13] and

Control-FREEC [7], using their default parameters for data pre-treatment and segmentation

approaches. Bin size is set to 50 bp in Control-FREEC, CNVnator and TVM segmentation

algorithm in iCopyDAV; while for ReadDepth and CBS approach in iCopyDAV, optimal bin

size is computed using negative binomial distribution for each sequencing depth: 1800 bp

(5×), 900 bp (10×), 500 bp (20×), 400 bp (30×), 300 bp (40×) and 200 bp (50×). We expect the

difference, if any, in the performance of these tools to arise as a consequence of different pre-

treatment and segmentation approaches. For instance, CNVnator uses Median approach for

GC bias correction and Mean-shift algorithm for segmentation; Control-FREEC uses

Fig 4. Performance of TVM (‘circle’) and CBS (‘triangle’) approaches in predicting copy gain (‘closed’ symbol) and copy loss (‘open’ symbol) events in simulated
data is shown.Dashed line corresponds to detection of small CNVs (� 1 Kb) and solid line for large CNVs (> 1 Kb). Bin size = 50 bp.

https://doi.org/10.1371/journal.pone.0195334.g004

iCopyDAV: Integrated platform for detection, annotation and visualization of copy number variations

PLOSONE | https://doi.org/10.1371/journal.pone.0195334 April 5, 2018 15 / 37

https://doi.org/10.1371/journal.pone.0195334.g004
https://doi.org/10.1371/journal.pone.0195334


Polynomial fitting for GC bias correction and Lasso-regression for segmentation, while Read-

Depth uses Loess regression for GC bias correction and circular binary segmentation (CBS).

For this comparative analysis, in iCopyDAV, Median approach is used for GC bias correction

for both TVM and CBS approaches. Different approaches are used for handling mappability

bias in these tools; low mappable regions are filtered by setting a mappability threshold (Mth).

In Control-FREEC (Mth = 0.85), iCopyDAV (Mth = 0.5), and ReadDepth (Mth = 0.75 and

additionally normalized by Mth), while multi-reads spanning low mappable regions are ran-

domly assigned in CNVnator. All the tools consider raw read depth values for segmentation,

except ReadDepth which uses log-transformed values. From Fig 5 we observe that both TVM

(cyan circles) and CBS (red triangles) approaches in the iCopyDAV pipeline perform better

than the other three DoC-based approaches and the combined predictions from TVM+CBS

(black pluses) show further improvement in prediction. For the combined predictions of TVM

and CBS, we consider the Union of the set of CNVs detected by the two segmentation

approaches, that is, CNVs detected by either of the two approaches. For the CNVs detected by

both the approaches, the farthest start/stop boundaries are considered. It may be noted that

though both ReadDepth and CBS in iCopyDAV uses the same segmentation approach, the

performance of CBS is better than ReadDepth for sequencing coverage< 40× due to the differ-

ence in data pre-treatment approaches in two cases.

From the comparison of recall and precision values of CBS and TVM in iCopyDAV with

the three DoC-based tools, we observe higher recall with both TVM and CBS approaches for

the detection of CNVs� 1 Kb, while for the detection of CNVs> 1 Kb all the DoC-based

methods showed recall values approaching ‘1’ with increase in sequencing coverage (S3(A)

Fig). The precision ~ 1 with both CBS and TVM in the detection of small and large CNVs

Fig 5. Performance (F-score) of iCopyDAVwith three other DoC-based tools (using default parameters for data pre-treatment and segmentation approaches)
shown as a function of sequencing coverage. Error bars represent standard deviation in each group.

https://doi.org/10.1371/journal.pone.0195334.g005
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(even at 5× sequencing coverage for TVM), while precision values (combined of small and

large CNVs) of ReadDepth, CNVnator, and Control-FREEC are ~ 0.71, ~ 0.51 and ~ 0.26,

respectively, at 30× coverage (S4(B) Fig). Also, it is observed that in case of ReadDepth and

Control-FREEC, a reduction in precision is observed with increase in sequencing depth due to

increase in the number of false positives. This clearly indicates the importance of appropriate

normalization of read depth signals. We observe that the performance of iCopyDAV is further

improved by combining the output of the two segmentation approaches (S5 Fig), especially for

small CNVs (� 1 Kb).

2. Real data

To test the efficacy of iCopyDAV on real data, we consider Chromosome 1 of NA12878 Cau-

casian (CEPH) sample which is most extensively studied and well-annotated for structural var-

iations by various studies. To study the effect of sequence coverage on CNV prediction, data

for this sample is considered at two different sequencing depths: low (6×) and high (35×). For

low sequence coverage data (6×) obtained from the 1000 Genome Project consortium (2015)

[62] (sample ID: SRR622461), paired-end reads of size 100bp are aligned to Chromosome 1

(hg18 assembly) using BWA-MEM (with default parameters) to obtain the alignment file in

BAM format. For high sequence coverage data (35×), alignment file available in BAM format

is downloaded from the 1000 genome project. For this sample paired-end reads of size 36 bp

have been mapped to hg18 assembly using MAQ aligner. Considering bin size of 300 bases,

the function prepareData is used to construct the ‘coordinate file’ of non-overlapping bins

and GC score files (gcfile) that are required as input for the pre-treatment step. Mappability

score tracks are obtained from UCSC genome browser and mappability files (mapfile) are con-

structed for the two samples independently as the reads are of different lengths. Below we dis-

cuss our analysis for different combinations of data pre-treatment and segmentation

approaches on the NA12878 sample at two sequencing depths, 6× and 35×.

a. Low sequence coverage data. For various combinations of data pre-treatment and seg-

mentation approaches in iCopyDAV, the number, type and size of CNVs predicted in low

sequence coverage data are summarized in Fig 6. A large variation is detected in the type and

size of CNVs. The number of CNVs predicted is very large using CBS approach in the case of

no GC bias correction (for both high and low mappability cut-offs), clearly indicating the need

for removing GC bias in this case. However, on using TVM segmentation approach, the num-

ber and type of CNVs predicted are comparable for Loess GC bias corrected and uncorrected

data. The other major observation is that Median GC bias corrected data (with either TVM or

CBS segmentation approach) resulted in very small number of CNVs, especially deletions,

compared to other combinations. It is observed that for Loess GC bias corrected data, the

number of deletion events are reduced on increasing mappability cut-off fromMth = 0.5 to

0.8. On the other hand, the duplications events are seen to increase on increasing mappability

cut-off fromMth = 0.5 to 0.8 for all the cases. To test the reliability of predictions for various

combinations of data pre-treatment and segmentation approaches, below we discuss recall and

precision of the CNV calls by comparing with annotations in Database of Genomic Variations

(DGV).

To access the reliability of various data pre-treatment and segmentation approaches in low

sequence coverage data, variant calls are benchmarked against six studies reported in DGV for

the sample NA12878 (summarized in S2 Table). Of these, four studies are based on SNP-array

technique (Altshuler et al [69], Cooper et al [70], McCarroll et al [71] and Redon et al [72]),

while the fifth study is a collection of CNVs predicted from four different techniques, viz., Fos-

mid mapping (Kidd et al [73]), array-CGH (Conrad et al [74]), SNP-array (McCarroll et al
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[71]) and whole shotgun sequencing (Mills et al [75]) and reported as ‘Gold standard’ in Mills

et al [36]. The sixth study is based on sequence-based techniques (part of the 1000 Genome

Project [76]) and comprises experimentally validated set of CNVs. For evaluating the perfor-

mance, a predicted CNV is considered to be a true call (true positive) if� 50% overlap is

observed between prediction and annotation or vice versa. Due to large variation in the size of

predicted and annotated CNVs, many-to-one (number of small adjacent CNV predictions

mapping to a single large annotated CNV) and one-to-many mappings (a single large pre-

dicted CNVmapping to a number of small annotated CNVs) is typically observed. In such sit-

uations, to avoid over-estimation of recall, all adjacent predictions mapping to a single

annotation are merged and counted as a ‘single’ CNV call while computing recall, and a single

CNV prediction mapping to m annotated CNVs is counted as m CVN calls to avoid under-

estimation while computing precision values. That is, recall is computed as the fraction of

number of annotations (l) overlapping with the CNV predictions to the total number of anno-

tations (m), i.e., recall = l/m, and precision is computed as the fraction of the number of true

predictions (x) overlapping with the annotations to the total number of CNVs predicted (y),

i.e., precision = x/y. Also, due to redundancy among the annotated CNV sets across the six

studies, we assess our predictions independently on those studies.

Fig 6. Size distribution of copy gain (solid) and copy loss (striped) events shown for various combinations of data pre-treatment and segmentation approaches in
low sequence coverage data (6×) for Chr 1 of NA12878 sample. Bin size = 300 bp.

https://doi.org/10.1371/journal.pone.0195334.g006
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Recall and precision values of CNV predictions for various GC bias correction and segmen-

tation approaches are depicted in Fig 7(A) and 7(B) for two mappability cut-off values,

Mth = 0.5 and 0.8, respectively. The recall values are plotted as bar graphs while the precision

values are averaged across the six studies and depicted as a ‘black square’ (connected by a

dashed line) for each combination of GC bias correction and segmentation approaches.

From Figs 6 and 7 we observe that the small number of CNV predictions observed in the

case of Median + (TVM/CBS) combination resulted in low values of recall and precision for

Mth = 0.5. However, on increasing Mth to 0.8, recall and precision improved in case of TVM

segmentation approach. For Loess + CBS combination, though the number of CNV predic-

tions is quite high, low recall and precision values observed suggest that majority of these are

likely to be false positives. In the case of TVM approach, the recall and precision values for no

GC bias correction case are comparable to GC bias corrected (Loess) data, indicating its

robustness in CNV detection in raw, untreated data. Thus, Loess + TVM combination in iCo-

pyDAV with Mth = 0.5 results in the best performance for low coverage data. We also observe

that duplications are detected more accurately (46%) than deletions (12%) in this case, indicat-

ing that detection of deletion events is difficult in low coverage data. Similar observations were

made in chromosomes 2 and 21 of NA12878 (results not shown).

b. High sequence coverage data. A similar analysis is carried out on high sequencing cov-

erage data (35×) of Chr 1, NA12878 sample and the results are summarized in Figs 8 and 9.

We again observe a large variation in the type and size of CNVs predicted for different combi-

nations of data pre-treatment and segmentation approaches (Fig 8). This clearly suggests that

one should judiciously choose the pre-treatment options along with the segmentation

approaches. As in the case of low coverage data, large number of CNVs are predicted (mainly

deletions) using CBS approach in the case of no GC bias correction, which are significantly

reduced on removing GC bias (much more on using Median approach compared to Loess

approach). This clearly indicates the need for GC bias correction when using CBS segmenta-

tion approach. However, using TVM segmentation approach, the number of CNV predictions

are comparable for GC bias corrected (Loess/Median) and uncorrected data when mappability

cut-off, Mth = 0.8. This suggests that TVM segmentation approach is able to handle GC bias

and this correction step may be skipped when using higher mappability cut-off values. As in

the case of low coverage data, in this case also the Median approach for GC bias correction

resulted in fewer CNVs (mainly deletions) with both TVM and CBS approaches compared to

other combinations. A clear reduction in the number of CNVs (mainly deletions) is observed

on increasing the mappability cut-off from 0.5 to 0.8, except for Median of GC bias corrected

data. Thus, a clear dependence of the segmentation results on data pre-treatment choices is

observed. As before, we assess the reliability of the CNV calls for various combinations of data

pre-treatment and segmentation approaches by comparing with six studies annotated in DGV

for the NA12878 sample.

In Fig 9(A) and 9(B) recall and precision values are depicted for two mappability thresholds,

Mth = 0.5 and 0.8, respectively, in the case of high sequence coverage data. As before, recall

values are plotted as bar graphs for the six studies annotated in DGV and an average precision

value across all the six studies is depicted as a black ‘square’ for various combinations of GC

bias correction and segmentation approaches. As expected, higher recall and precision values

are observed in this case (Fig 9) compared to low coverage data (Fig 7). From Fig 9(A) we

observe that though high recall values are obtained for all combinations of data pre-treatment

and segmentation approaches (except Median+CBS), when mappability cut-off, Mth = 0.5, the

precision values are low (except Median+TVM), indicating a large number of false positives.

The precision values are observed to improve for GC bias corrected data (Loess/Median) on

increasing the mappability threshold to 0.8 as seen in Fig 9(B), and optimal performance is
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Fig 7. Performance of iCopyDAV is shown for low sequence coverage data (6×) of Chr 1 of NA12878 for mappability threshold values (a) 0.5 and (b) 0.8. Recall and
precision values for various combinations of GC bias correction and segmentation algorithms are computed with respect to the six studies reported in DGV. Bin
size = 300 bp.

https://doi.org/10.1371/journal.pone.0195334.g007
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observed for Loess+TVM andMedian+CBS combinations with a trade-off in recall and preci-

sion values. Thus, it is clear from this analysis that to reduce false positives, appropriate filter-

ing of reads is required depending on the sequence coverage in DoC-based methods. Further,

it may be noted that in the case of high sequence coverage data, Median approach for GC bias

correction resulted in higher recall and precision values compared to Loess approach or uncor-

rected data, while it is other way round in the case of low sequence coverage data.

Here, we would like to mention that the six DGV studies considered for evaluating the per-

formance of iCopyDAV are not truly gold standards and each of these methods have their

own advantages and limitations in CNV detection. For example, SNP array-based techniques

show high sensitivity (up to 1 bp resolution) in identifying CNVs compared to other array-

based techniques such as array-Comparative Genomic Hybridization (arrayCGH), BAC and

FOSMID. However, this method suffers from limited coverage of the genome with only 3

reported CNVs in Cooper et al to 15 in McCarroll et al (S3 Table), and thus misses out on

many true CNVs. Further, the overlap among these four studies itself is quite low, just 2

CNVs. On individually analyzing the performance of iCopyDAV on the four SNP array-based

studies reported in DGV (Altshuler et al [69], Cooper et al [70], McCarroll et al [71] and

Redon et al [72]), we observe recall values ranging from 67% - 78% and precision from 13% -

70% with TVM approach for GC bias corrected data (Loess), and much higher recall values

Fig 8. Size distribution of copy gain (solid) and copy loss (striped) events shown for various combinations of data pre-treatments and segmentation approaches
in high sequence coverage data (35×) for Chr 1 of NA12878 sample. Bin size = 300 bp.

https://doi.org/10.1371/journal.pone.0195334.g008
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Fig 9. Performance of iCopyDAV is shown on high sequence coverage data (35×) of Chr 1 of NA12878 sample for mappability threshold values (a) Mth = 0.5 and (b)
Mth = 0.8. Recall and precision values for various combinations of GC bias correction and segmentation algorithms are computed independently for the six studies
reported in DGV. Bin size = 300 bp.

https://doi.org/10.1371/journal.pone.0195334.g009
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75–100% but with very lower precision 11% - 30% on using Median+CBS approach

(Mth = 0.8). Low precision values obtained for some of the SNP array-based studies is due to

very small number of CNVs reported in these studies (3–15).

In Mills et al [36] study, 43 deletions are referred as ‘gold standard’ and have been collated

from four studies using diverse CNV detection methods (Fosmid mapping, array-CGH, SNP-

array and whole genome shotgun sequencing). High recall (~ 60%) and precision (~ 52%) val-

ues are observed with Median+CBS approach (Mth = 0.8) in detecting copy loss events. The

precision improved to ~ 83% on using Loess+ TVM approach but with lower recall (~ 33%),

suggesting that Median+CBS approach is better at detecting copy loss events. CNVs reported

in 1000 Genome project (1000 GP) are collated from various NGS-based approaches [17,18,

77–80] and experimentally verified by PCR (small CNVs) and arrayCGHmethods (large

CNVs). In iCopyDAV, Median+CBS combination (Mth = 0.8) resulted in best recall (37%)

and precision (41%) values for 1000 GP CNVs, while Median+TVM combination (Mth = 0.8)

resulted in higher precision (56%) but at the cost of low recall value (18%). A cross comparison

of deletions reported in 1000 GP (validated set) with those reported in Mills et al (‘gold stan-

dard set’) and iCopyDAV predictions (Median+CBS, Mth = 0.8) using 50% overlap criteria

was carried out. We observe that 32 of the CNV-deletions reported in Mills et al dataset had an

overlap with 1000 GP CNVs, while 30 CNV-deletions in iCopyDAV overlapped with 1000 GP

CNVs, indicating the reliability of the iCopyDAV predictions. We also observed that 33 (size:

700 bp– 431 Kb) of 1000 GP CNV-deletions are not identified by any of the six studies, includ-

ing iCopyDAV. This disagreement of CNV predictions between different approaches clearly

indicates the dependence of the approach used for CNV detection.

Size and Type of CNVs: The size of the CNVs reported in the six DGV studies range from

617 bp to 542 Kb, with median size 5600 bp. Hence, to see if there is any bias in the size of

CNVs detected in iCopyDAV, we split the predictions into two sets: ‘small’ (� 5 Kb) and

‘large’ (> 5 Kb), and evaluate the performance of these two sets independently. Bias, if any, in

the detection of the type of CNVs (copy gain or copy loss events) is also carried out. The F-score

values for various size and type of CNVs detected in iCopyDAV are summarized in Table 4 for

various combinations of data pre-treatment and segmentation approaches in the case of high

coverage data. From the table it may be noted that Median+CBS approach shows optimal per-

formance in the detection of both ‘small’ and ‘large’ CNVs, and also in the detection of ‘copy

gain’ and ‘copy loss’ events. The Loess+TVM approach, on the other hand, performs equally

well in the detection of ‘large’ CNVs and ‘copy gain’ events, while its performance is poor in the

detection of ‘small’ CNVs. This again indicates that appropriate combination of pre-treatment

and segmentation approaches need to be considered for optimal performance. On combining

the results of the two segmentation approaches (TVM+CBS), we observe that the overall recall

Table 4. Performance of various combinations of GC bias correction and segmentation approaches in the detection of CNVs of different size (small/large) and type
(copy gain/loss) are summarized for high sequence coverage data (Mth = 0.8).

Method F-score Overall

Small
(� 5Kb)

Large
(> 5Kb)

Gain Loss Recall Precision F-score

Loess + TVM 0.26 0.59 0.34 0.47 0.34 0.59 0.43

Loess + CBS 0.39 0.17 0.25 0.40 0.26 0.49 0.34

Median + TVM 0.20 0.49 0.35 0.41 0.26 0.56 0.35

Median + CBS 0.42 0.57 0.33 0.58 0.50 0.46 0.48

Median + (TVM + CBS) 0.44 0.60 0.33 0.59 0.51 0.47 0.49

Loess + (TVM + CBS) 0.43 0.57 0.38 0.59 0.43 0.58 0.49

https://doi.org/10.1371/journal.pone.0195334.t004
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is higher with Median approach (0.51) while precision is higher on using Loess approach (0.58)

for GC bias correction. No dependence on GC bias correction method (Loess/Median) is

observed on the overall performance, which is marginally improved compared to the individual

segmentation approaches. Thus, in iCopyDAV the user can merge results from various work-

flows to improve the predictive power and remove the dependence of pre-treatment methods.

On considering the intersection (consensus) of CNVs obtained fromMedian + (TVM + CBS)

and Mth = 0.8, the precision is significantly improved (~ 63%), but at the cost of low recall val-

ues (~26%). Similar observations were made on other chromosomes of NA12878 and in high

coverage genome sequence data of NA12891 and NA12892 Caucasian samples (results not

shown).

Comparison with other Depth-of-Coverage based Methods: To evaluate the performance

of iCopyDAV with other CNV detection tools, the combined set of CNVs obtained using

Median + (CBS+TVM) on Chr1 of NA12878 (35×) is compared with three popular DoC-

based methods, viz., ReadDepth (RD) [13], Control-FREEC (CF) [7] and CNVnator [18]. The

window size is fixed at 300 bp for all the tools (including iCopyDAV) and mappability thresh-

old is set at 0.8 in RD, CF and iCopyDAV (there is no provision to filter reads based on mapp-

ability in CNVnator) and the results are summarized in Table 5.

In Table 5, a large variation is observed in the number (63–265), size (0.6–7.6Mb) and type

of CNVs predicted by the four DoC-based approaches. Additionally, CF and CNVnator

reported a large CNV event of 18 Mb at the locus chr1:123Mb-141Mb that overlaps with the

centromere region, CF reported it as a ‘gain’ while CNVnator reported it as a ‘loss’. In Read-

Depth and iCopyDAV this region is filtered out in the pre-treatment step as ‘unmappable’

region, and we do not consider this 18 Mb region for the comparative analysis. We also

observe that large number (108) and size (6 Mb) of copy gain events are detected by Read-

Depth, while CNVnator results in a large number of copy loss events (189) with a total span of

4.4 Mb. The number of CNVs detected by CF is low (especially copy loss, ~ 12) compared to

the other DoC approaches, though the span is much larger (1.9 Mb) compared to that in RD

and iCopyDAV. The large number of CNVs observed in CNVnator is due to no option of fil-

tering low mappable regions (~ 204 of the predicted CNVs have an average mappability

value< 0.8). On the other hand, the low number of CNVs predicted using CF is likely to be

due to narrow range of GC-rich regions considered (> 0.35 and< 0.55). It is observed that ~

18–23 CNVs predicted by other DoC-based methods fall in regions with GC content< 0.35

and> 0.55.

In Fig 10 is depicted the performance of four DoC based approaches with the six studies

reported in DGV. We observe that CNVnator exhibits high recall values for all the six studies,

however the precision is the least in this case (~ 0.25), indicating that majority of its predic-

tions are false positives. It depicts high recall with 1000 GP compared to the other methods,

Table 5. Comparison of CNVs detected in iCopyDAV (combined approach, median + (CBS +TVM)) with ReadDepth, Control-FREEC and CNVnator (Mth = 0.8,
window size 300 bp).

iCopyDAV ReadDepth Control-FREEC CNVnator

Total
(Size in Mb)

120
(0.6)

177
(6.4)

64
(25.2)

266
(27.6)

Total 120
(0.6)

177
(6.4)

63�

(5.2)
265�

(7.6)

Gain 70 (0.4) 108 (6.0) 51� (3.3) 76 (3.2)

Loss 50 (0.2) 69 (0.4) 12 (1.9) 189� (4.4)

�Numbers after removing large CNV spanning centromere region in the chromosome.

https://doi.org/10.1371/journal.pone.0195334.t005
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possibly because CNVnator was one of the methods considered for annotation in this study.

The high precision value of iCopyDAV and recall values comparable with ReadDepth (and only

slightly lower compared to CNVnator), clearly indicates the reliability of CNV predictions by

iCopyDAV. Since the six studies reported in DGV are not truly gold standard, it is possible that

the CNVs predicted by iCopyDAV but not reported in any of the six studies may be true novel

CNVs. An analysis revealed 28 CNVs detected by iCopyDAV that are not reported in the six

DGV studies. When compared with the other three DoCmethods, all of them were detected by

at least one of the other three DoCmethods and four CNVs (copy gain) are detected by all the

four methods (S5 Table). A preliminary analysis of these four CNVs reveals that two of these

CNVs at locus Chr1:14323800–143258700 and one CNV at Chr1:146173200–146197800 span

the NBPF genes cluster, which is known to have evolutionary significance (discussed below in

functional annotation analysis), but is not reported in DGV for NA12878 sample. The fourth

CNV at Chr1:85752900–85778400 span the gene DDAH1, a key regulator in the breakdown of

asymmetric dimethylarginine (ADMA). It has been shown that raised levels of ADMA are

strongly correlated with increased risk of cardiovascular diseases [81].

Computation time: The iCopyDAV platform is computationally very efficient and can

even be run on a desktop. The entire pipeline (data pre-treatment, variant calling and annota-

tion steps) on Chromosome 1 of high coverage data (35×) took ~ 14 minutes CPU time on a

32 AMDOpteron with 2.4 GHz machine. Data pre-treatment step (computing read depth,

filtering low mappable regions and correcting for GC bias) is computationally the most

demanding step, requiring about ~ 10 minutes, while segmentation and variant calling steps

took about ~ 4 minutes and the other steps just a few seconds. On the same machine the

Fig 10. Performance of iCopyDAVwith three DoC-based methods, ReadDepth, Control-FREEC, and CNVnator (using default parameters) is shown for high
sequence coverage data (35×) of Chr 1 of NA12878 sample.

https://doi.org/10.1371/journal.pone.0195334.g010
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processing time required by ReadDepth and CNVnator is ~ 110 minutes and 130 minutes,

respectively (~ 8–9×), while the time taken by Control-FREEC is comparable, ~ 15 minutes.

We recommend a minimum requirement of 4 CPUmachine running at 1.6 GHz for efficient

performance of iCopyDAV.

Visualization and functional interpretation of predicted CNVs: The distribution of

CNVs along the chromosome can give insights about CNV-enriched regions, and association

with other functional elements such as protein-coding genes, etc. which are likely to have phe-

notypic characteristics. In iCopyDAV, using the function plot, the distribution of predicted

CNVs can be visualized along the length of the chromosome or any region of interest (user-

defined coordinates). The CNVs obtained using (TVM+CBS) approach for chromosome 1 of

NA12878 sample on Median GC bias corrected data and mappability threshold, Mth = 0.8 are

shown in Fig 11. A high resolution graph displaying copy gain events in ‘red’ and copy loss

events in ‘blue’ on an ideogram (upper) and a 2d-plot (lower) is generated as shown in Fig 11

Fig 11. The location of CNVs, gain in ‘red’ and loss in ‘blue’ is shown (a) along Chr 1 of NA12878 sample, and (b) at the locus 1q21.1 spanning NBPF gene-family,
which is rich in segmental duplications.

https://doi.org/10.1371/journal.pone.0195334.g011
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(A). In Fig 11(B) the distribution of the CNVs at the locus 1q21.1 (Chr1:142,400,001–

148,000,000) clearly indicates a cluster of CNVs encompassing NBPF-gene family, enriched

with segmental duplications.

To enable the users to analyze the biological significance of predicted CNVs, functional and

structural annotations are provided by the function annotate in iCopyDAV. Four categories of

annotations are reported, viz., functional elements (genes, exons, promoters, lncRNAs, miR-

NAs, etc.), clinical relevance, structural features (segmental duplications, tandem repeats, etc.)

and mapping to known CNVs reported in Database of Genetic Variants (DGV). Below we

briefly discuss the functional analysis of CNVs obtained by Median+ (TVM+CBS) approach

(Mth = 0.8) on using this module. The complete list of CNVs detected on Chr 1 is given in S6

Table along with annotations.

a. Functional elements annotation: Using the function annotate, we identified 46 protein-

coding genes (26 gain and 20 loss) mapping to 54 CNVs (35 copy gain and 19 copy loss

events). To understand the role of these CNV-genes and identify any genotypic-phenotypic

characteristics associated with Caucasian population, we carried out a systematic analysis of

these genes. Copy loss of the Late Cornified Envelop-gene cluster (LCE1D, LCE1E, LCE3B,

LCE3C and LCE3D) at locus 1q21.3 that is known to be part of epidermal differentiation com-

plex is observed. These are involved in keratinization which in turn effects the melanosome

distribution. In a study by de Cid et al [82], copy deletion of LCE3B and LCE3C is shown to be

a risk factor for psoriasis in Western European patients. Copy loss of gene BMP8A at 1p34.2 is

associated with reduced risk of Ankylosing Spondilytis in Korean populations [83]. Other

functional elements encompassing the CNVs include eight long non-coding RNA (lncRNAs),

TCONS_l2_00001057, TCONS_l2_00001060, TCONS_l2_00001061, TCONS_00001651,

TCONS_00001652, TCONS_00002569, TCONS_00001785 and TCONS_00000355, spanning

5 CNVs (all gain) at loci 1p36.13 and 1q32.1. The functional significance of these lncRNAs is

unknown, however, lncRNAs and their interaction with miRNA obtained from lncBase [84]

reveal that 3 lncRNAs, TCONS_l2_00001060, TCONS_l2_00001061 and TCONS_00002569

are associated with risk of Breast neoplasm. One enhancer (element_809) spanning copy loss

at 1p22.3 is observed in the vicinity of CNV-gene LMO4, which acts as a cell cycle regulator.

Copy number variation of miRNA is known to affect the binding and regulation of miRNA

target genes involved in various biological processes and may contribute to lethal diseases

including cancer. We identified one miRNA-gene, MIR4654, spanning copy loss at 1q23.3 and

three miRNA target sites (mir-368, mir-23 and mir-1/206) spanning 30 UTR of CNV-gene

SEC22B at 1q21.1 (gain). Gene SEC22B, regulated by mir-206, has been identified to play a

role in the progression and development of Alzheimer’s disease [85]. Thus, we see that a sys-

tematic analysis of the functional regions overlapping with CNV predictions can help in iden-

tifying predisposition to diseases and in carrying out genotype-phenotype association studies.

b. Clinical relevance: For identifying the clinical relevance of CNV-genes, information

from four resources, viz., ClinVar, OMIM, ExAC and DECIPHER, is collated and provided in

iCopyDAV. The annotation results from these four resources for Chr 1 of NA12878 sample is

summarized in the S6 Table. ClinVar reported three CNVs at loci 1q21.1 (2 copy gain events)

and one at locus 1q41 (copy loss) to be ‘Pathogenic’. From literature review it is found that autism

spectrum disorders are implicated with gain at 1q21.1 (5100 bp), and Loeys-Dietz syndrome asso-

ciated with copy loss at 1q41 (600 bp). We also observe 26 CNVs identified at locus 1p36 charac-

terized as ‘uncertain significance’ and association to Ductal Breast Carcinoma (DBC) phenotype

from ClinVar. These CNVs (copy gain) span six genes CDK11A and CDK11B, NBPF1, MST1P2,

CROCCP2 and ESPNP genes, of which the last three are pseudogenes. Two CDK family genes,

CDK11A and CDK11B, are known to play multiple roles in cell cycle progression, cytokinesis

and apoptosis, while the gene NBPF1 acts as a tumor suppressor by arresting cell cycle at G1
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stage in Neuroblastoma [86]. Six copy loss genes (ST3GAL3, VANG, SLC1A7, LMO4, ERI3,

XPR1) exhibit genic intolerance score> 0 in ExAC database, of which three genes (LMO4, ERI3

and XPR1) are also characterized as intolerant with haploinsufficient score ranging from 0–25%

in DECIPHER. This implicates possible deleterious effect of copy variation of these genes. For

instance, gene LMO4 (1p22.3) is a cell cycle transcriptor regulator and plays an important role in

controlling cell cycle and cell proliferation [87]. The under-expression of this gene is linked with

reduced breast cancer cell proliferation and cell cycle arrest at G2/M stage [87]. A CNV is found

to be spanning intron-2 of the gene XPR1 (1q25.3), which is known to play a role in phosphate

homeostasis, mediating phosphate export from the cell. Another four copy loss genes (VAV3,

WDR47, NOS1AP andMSH4) are reported to have a haploinsufficient score< 25%, indicating

these copy deletions may be pathogenic. Copy deletions are observed in the intronic regions for 9

of these haploinsufficient genes (except LMO4), however, their effect on the phenotype is not yet

known. In recent studies, it has been shown that CNVs in introns regulate the expression of the

genes directly through change in the intronic length, or variations in the regulatory regions

(enchancers or CTCF binding sites) and non-coding functional RNA genes spanning them.

c. Structural annotation: About ~ 36% of predicted CNVs (42 copy gain and 2 copy loss)

are observed to be overlapping with segmental duplications (SD) on Chr 1 of NA12878 Cauca-

sian sample. The CNVs in the vicinity of SDs indicate their mechanism of formation via Non-

allelic Homologous Recombination (NAHR). NAHR occurs by alignment followed by cross-

ing over between two non-allelic, highly similar DNA sequences (repeats). Repeats on the

same chromosome and in the same orientation mediate a duplication and/or deletion. In

accordance with previous studies [88,89], NBPF gene-cluster spanning SD segments at 1q21.1

locus is identified: NBPF8 (gain: 3.7), NBPF10 (gain: 3.1), NBPF12 (gain: 5.2), NBPF20 (gain:

5.8) and NBPF25P (gain: 5.3), shown in Fig 11(B). These CNV-genes are reported to be

formed as a consequence of human-lineage specific copy amplification which occurred about

~100 million years ago. The CNV-gene, NBPF1 (gain: 5.9) spanning 1p36.2 is a known pri-

mate-specific amplification, a common copy gain event observed in human and apes. These

recently evolved NBPF gene clusters are characterized by highly conserved domains of

DUF1220. O’Blenesis et al [89] showed a high copy number of DUF1220 protein domain in

humans (272 copies) compared to chimpanzee (90–125 copies) and similar numbers are

observed in our analysis. These amplifications are fixed in the population as a result of positive

selection and have been identified to contribute in neuron number, brain size and cognitive

ability that occurred specifically in humans (and other primates) [90]. Low copy number of

DUF1220 is shown to result in brain growth abnormalities, leading to microencephaly, while

high copy numbers of the domains are associated with macroencephaly [91]. A number of

CNVs are also observed to be overlapping with tandem and interspersed repeats: 9 copy gain

and 5 copy loss events spanning tandem repeats, with an average of 4 tandem repeats per CNV

(range: 1–32), and 5 copy gain and 4 copy loss events have their breakpoints overlapping the

interspersed repeats, with 1 CNV overlapping Long terminal repeat retrotransposons (LTR)

and the rest with LINEs (listed in S6 Table). Six out of nine copy gain events at Chr1:121053

000–121055700, Chr1:121056900–121057500, Chr1:121185900–121186800, Chr1:147299700–

147302400, Chr1:152953200–152953800 and Chr1:222266700–222268800 have a> 90% over-

lap with tandem repeats and two copy gain events at Chr1:5657700–5658600 and Chr1:14681

6400–146819400 have an overlap> 90% with LINES. Thus, the extent of overlap with other

known structural variants can help in understanding the mechanism of the predicted CNV

(partial overlap at breakpoints), or a common CNV fixed in population (> 90% overlap).

d. Known CNVs: After discarding CNVs having> 90% overlap with other structural vari-

ants based on our structural annotation analysis, we have a total of 112 CNVs predicted on

Chr 1 of NA12878 Caucasian sample. Of these, 106 (~ 95%) are reported in Database of
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Genomic Variants (DGV) on considering� 50% overlap criteria. The six CNVs which are not

reported in DGV include two copy gain (Chr1:45248700–45249300 and Chr1:81627600–

81630300) and four copy loss (Chr1:44519700–44520300, Chr1:87567000–87567900 (spanning

LMO4 gene), Chr1:211583100–211583700 and Chr1:219713700–219714300), spanning a total

of 6600 bp. Since the majority of CNVs reported in DGV are obtained from array-based tech-

niques, these smaller CNVs, ranging from 600 bp to 2700 bp are likely to be missed by these

approaches. Among these six CNVs, copy gain at Chr1:81627600–81630300 (span intron-1 of

gene LPHN2) and copy loss at Chr1:211583100–211583700 are also identified as copy variant

regions by ReadDepth and CNVnator, respectively.

Thus, using the annotation module in iCopyDAV, we identified 43 CNVs that may be of

clinical importance (high priority) and 36 CNVs that may have certain effect on gene expres-

sion (medium priority) (see S6 Table). It may be noted that ~ 70% of these CNVs are also pre-

dicted by at least one of the three other DoC-based methods (ReadDepth, CF and CNVnator),

and ~ 94% also reported in DGV, indicating the reliability of iCopyDAV in identifying and

categorizing the variants.

Discussion and conclusion

Copy number variation is implicated in numerous complex diseases. A large number of meth-

ods have been proposed for CNV detection using NGS data to carry out genome-wide associa-

tion studies. However, it is not being used to its full potential due to number of issues

associated with NGS based CNV detection. Comparative analysis of various CNV detection

tools have shown major differences in the type, size and copy number of the CNVs predicted

raising concerns about the validity of the results. To understand the discrepancy in the results

across various tools, in this study we analyze the impact of different data pre-treatment

options, bin size and sequencing depth on the segmentation approaches and breakpoint accu-

racy. The analysis is carried out using iCopyDAV, an integrated platform developed by us for

CNV detection in whole genome NGS data using DoC-based approaches.

In the DoC-based approaches for CNV detection, to handle non-uniform distribution of

reads along the genome, data pre-treatment step is very crucial in accurate detection of abso-

lute copy number of the variant regions, and in reducing false positives and false negatives.

Two major steps in data pre-treatment involve correcting for mappability bias and GC bias.

Here we show that methods for the correction of these two biases greatly affect the number

and type of copy variants detected and these should be judiciously chosen depending on the

sequencing depth and the segmentation method used. We present our results for two thresh-

old values for filtering of low mappability reads (Mth = 0.5 and 0.8) and two methods for

removing GC bias based on normalization (Median) and regression (Loess) approach, respec-

tively on two segmentation methods, one divisive (CBS) and the other agglomerative (TVM)

approach. The major results of our analysis are summarized in Table 6.

A marked difference in CNV predictions by the two segmentation approaches is observed,

especially in low coverage data. We note that mappability threshold value is dependent on the

sequencing depth, and lower cutoff (Mth = 0.5) results in optimal performance in low coverage

data (6×), while high coverage data (35×) requires a larger cutoff value of Mth = 0.8 for accu-

rate detection of CNVs. Also, in general, lower numbers of CNV predictions are obtained on

using TVM segmentation approach compared to CBS approach for a given value of Mth and

sequencing depth. The two methods for GC bias correction also show a clear dependence on

the sequencing depth and segmentation approach used. For instance, in low sequence coverage

data, Median GC corrected data resulted in negligibly small number of copy loss events (with

both the segmentation approaches), irrespective of the mappability threshold value. This
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indicates that Median approach is not suitable for detection of copy loss events in low coverage

data. Also, in high coverage data, reduction in the copy gain events is observed with both the

GC bias correction methods (higher in Loess corrected data), compared to in low coverage

data. We observe that different combinations of data pre-treatment and segmentation methods

show varied performance in the detection of different type and size of CNVs. For example,

Loess+TVM gives the most reliable results in low coverage data (with Mth = 0.5 or 0.8), while

Median+TVM performs better in high coverage data when Mth = 0.5. When Mth = 0.8, both

Median+CBS and Loess+TVM result in reliable predictions. These results clearly indicate the

inter-dependence of data pre-treatment and segmentation methods.

Apart from data pre-treatment, we show that bin size and sequencing depth are two other

very crucial parameters that affect the CNVs detected in a given segmentation method. For

optimal performance, bin size needs to be appropriately chosen according to the coverage of

the data and the segmentation method. It is noted that very large bin sizes are required for low

coverage data with CBS segmentation approach (also ReadDepth and Control-FREEC). No

such dependency is observed with TVM approach, and a small bin size (~ 100 bases) can result

in accurate detection even in low sequence coverage data in this case. Since smaller bin sizes

result in smaller breakpoint error, this makes TVM the method of choice in the case of low

coverage data. From our simulated experiment, we observe that for the detection of

CNVs� 500 bases, the performance of iCopyDAV (TVM) is reliable, with an F-score of ~ 0.9

or higher at 30× sequencing coverage. Most CNV detection approaches have shown similar

performance but in the detection of very large CNVs (> 10Kb). This makes iCopyDAV an

attractive CNV tool for the detection of small CNVs, especially with customizable data pre-

treatment options. We also observe that larger CNVs (> 5Kb) are easily detected compared to

smaller CNVs in low sequence coverage data, but no such dependence is observed in high

sequence coverage data. Improved performance is also observed for the detection of both

small and large copy gain and copy loss events with increase in sequencing depth. iCopyDAV

is under active development and we anticipate incorporating additional features to extract

Table 6. Comparative analysis of various parameters affecting variant calling in TVM and CBS segmentation
approaches.

Segmentation Method: TVM

Bin size Small, no dependence on sequencing depth

Breakpoint error Small

Sequencing depth (6×!
35×)

Reduction in CNVs predicted on increasing sequencing depth (both gain and loss), No
significant difference in gain events for any data pre-treatments

Mappability cutoff
(0.5!0.8)

Loss (reduction), Gain (increase) in Low coverage, no significant difference in High
coverage

Loess vs Median Reduction in no. of CNVs predicted with Median, No Loss events (low coverage)

No GC vs GC bias
corrected data

No difference in case of High coverage (Mth = 0.8), indicating no need for GC bias
correction in this case

Segmentation Method: CBS

Bin size Dependent on sequencing depth, requires larger bin sizes at low coverage

Breakpoint error Large, dependent on sequencing depth

Sequencing depth (6×!
35×)

Large reduction in Gain events (from low to high coverage)

Mappability cutoff
(0.5!0.8)

Large reduction in Loss events (for No GC, Loess), No difference (Median)

Loess vs Median Large reduction in number of CNVs predicted (Loess), No difference (Median)

No GC vs GC bias
corrected data

Large difference observed, clearly indicating the need for GC bias correction

https://doi.org/10.1371/journal.pone.0195334.t006
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paired-end information (and implement split-read based approaches). This would help in

refining the breakpoint accuracy to 1bp and also enable detection of very small CNVs (< 500

bases) accurately. We have shown our results on both simulated and real data and observe con-

sistency in the predictions for various combinations studied. We hope that the suggestions of

this study would aid the researchers in making appropriate choices in the data pre-treatment

step in using DoC-based approaches for CNV detection.

The advantage of an integrated platform such as iCopyDAV allows the user to customize

the workflow for CNV detection depending on the type and size of CNVs to be detected and

the sequencing depth. It also allows easy integration of results from different workflows within

the same platform to detect a wider spectrum of CNVs. We observe that sensitivity (recall) in

identifying true CNVs is higher on using CBS approach, while precision is higher with TVM

suggesting that the overall performance can be improved by combining the results of the two

approaches. Also, detection of duplications using TVM approach shows higher precision com-

pared to deletions, as observed in simulated experiment. Thus, combining predictions from

the two approaches lead to an improved performance compared to the individual methods.

Additionally, the advantage of Depth-of-coverage (DoC) based approaches implemented in

iCopyDAV is that absolute copy number of the variant regions can be obtained.

iCopyDAV provides more functionalities than other tools. It can handle CNV detection in

both single as well as paired-end whole genome NGS data (though currently it does not use

the paired-end information) and also when no control sample is available. An important fea-

ture of iCopyDAV is the visualization module that helps the user to generate high quality CNV

distribution plots along the chromosome or user defined coordinates, and on the ideogram.

The annotation module in iCopyDAV aids in functional, structural and evolutionary analysis

of predicted CNVs and prioritize the CNVs based on their functional and clinical relevance. It

is accurate (> 95% agreement with DGV annotations) and is computationally very efficient

and takes only a couple of minutes to scan a complete chromosome due to the parallel imple-

mentation of the segmentation approaches. It is freely available and can be easily downloaded

as Docker’s image and is currently compatible with two widely used human reference genome

assemblies, hg18 and hg19. iCopyDAV is a unique pipeline providing a complete end-to-end

solution from data pre-treatment to annotation and visualization of CNVs. The modular

framework of iCopyDAV has been designed with the anticipation to extend iCopyDAV to

detection of other DNA variants, namely, single nucleotide variations (SNVs), insertions and

deletions (indels), etc. and also incorporate paired-end and split-read based strategies to fur-

ther improve the resolution of CNV boundaries.

Supporting information

S1 Fig. GC profile of reads before (red) and after (blue) GC correction using Loess regres-

sion implemented in iCopyDAV.

(TIF)

S2 Fig. Performance of TVM (depicted by ‘circle’) and CBS (depicted by ‘triangle’) on

using window/bin size as 50 bp (‘open’ symbol) and using optimal bin size (‘closed’ sym-

bol) in simulated data.

(TIF)

S3 Fig. (a) Recall and (b) Precision of DoC-based tools to identify small (� 1 Kb) and large

CNV (> 1 Kb) indicated in ‘solid’ and ‘dashed’ lines respectively, in simulated data.

(TIF)
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S4 Fig. (a) Recall and (b) Precision of DoC-based tools to identify all sizes of CNVs in simu-

lated data.

(TIF)

S5 Fig. Performance of iCopyDAV (TVM, CBS and their combination) and comparison

with other DoC based tools to identify small (� 1 Kb) and large CNV (> 1 Kb) indicated

in ‘solid’ and ‘dashed’ lines respectively, in simulated data.

(TIF)

S1 Table. Loci of various CNVs inserted in position Chr4:75,671,302–115,671,302 (40 MB)

of hg18 reference assembly for generating simulated data (coordinates with respect to ‘ref-

erence’ sequence not reference genome assembly).

(TIF)

S2 Table. List of studies considered for benchmark for CNVs predicted in Chr1 of

NA12878 samples. All CNVs listed in these six studies are extracted for Chromosome 1 of

NA12878 sample that are of size� 600 bp (2 bin size), mappability� 0.5 and are mapped to

hg18 human reference genome.

(TIF)

S3 Table. Summary of CNVs predicted in Chr1 of NA12878 for low sequence coverage

data (6×) using various combinations of GC correction and mappability thresholds.

(TIF)

S4 Table. Summary of CNVs predicted in Chr1 of NA12878 for high sequence coverage

data (35×) using various combinations of GC correction and mappability thresholds.

(TIF)

S5 Table. CNVs predicted by iCopyDAV (Combined set of Median+(TVM+CBS)) that

overlap with CNVs predicted by other DoC-based methods but do not overlap with any

annotations for Chr1 of NA12878 sample considered for benchmark.

(TIF)

S6 Table. List of CNVs identified in Chr 1 of NA12878 using iCopyDAV and their annota-

tions (SD- segmental duplications, LINE- Long Interspersed Nuclear Elements, LTR- Long

Terminal Repeat Retrotransposons, ‘�’—ClinVar, ‘†’–DECIPHER Haploinsufficiency

score (0–25% HI score, reported for copy loss), ‘C’–ExAC genic intolerance (score> 0,

reported for copy loss), DBC- Ductal Breast Carcinoma).

(XLSX)
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