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Conotoxins are small disul	de-rich neurotoxic peptides, which can bind to ion channels with very high speci	city and modulate
their activities. Over the last few decades, conotoxins have been the drug candidates for treating chronic pain, epilepsy, spasticity,
and cardiovascular diseases. According to their functions and targets, conotoxins are generally categorized into three types:
potassium-channel type, sodium-channel type, and calcium-channel types. With the avalanche of peptide sequences generated in
the postgenomic age, it is urgent and challenging to develop an automatedmethod for rapidly and accurately identifying the types of
conotoxins based on their sequence information alone. To address this challenge, a new predictor, called iCTX-Type, was developed
by incorporating the dipeptide occurrence frequencies of a conotoxin sequence into a 400-D (dimensional) general pseudoamino
acid composition, followed by the feature optimization procedure to reduce the sample representation from 400-D to 50-D vector.
�e overall success rate achieved by iCTX-Type via a rigorous cross-validation was over 91%, outperforming its counterpart (RBF
network). Besides, iCTX-Type is so far the only predictor in this area with its web-server available, and hence is particularly useful
for most experimental scientists to get their desired results without the need to follow the complicated mathematics involved.

1. Introduction

Being peptides consisting of about 10 to 30 amino acid
residues, conotoxins are toxins secreted by cone snails for
capturing prey and securing themselves. �is kind of toxins
can bind to various targets, such as G protein-coupled
receptors (GPCRs), nicotinic acetylcholine, and neurotensin
receptors. In particular, they display extremely high speci-
	city and a�nity for ion channels. Ion channels represent a
class of membrane spanning protein pores that mediate the
ux of ions in a variety of cell types. �ere are over 300 types
of ion channels in a living cell [1]. Many crucial functions
in life, such as heartbeat, sensory transduction, and central

nervous system response, are controlled by cell signaling via
various ion channels. Ion channel dysfunction may lead to a
number of diseases, such as epilepsy, arrhythmia, and type II
diabetes. �ese kinds of diseases are primarily treated with
the drugs that modulate the ion channels concerned. Ion
channels are also the important targets for treating virus
diseases (see, e.g., [2–4]). Owing to their importance to
human being’s life, ion channels have become the 2nd most
frequent targets for drug development, just next to GPCRs (G
protein-coupled receptors) [5]. �e following three kinds of
ion channels are usually the targets by conotoxins: potassium
(K) channel (Figure 1), sodium (Na) channel (Figure 2), and
calcium (Ca) channel (Figure 3). Based on their functions
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Figure 1: A ribbon drawing to show the human potassium (K)
channel. Reproduced from Chou [6] with permission.

PN d

PN c

PN b

PN a

Figure 2: A ribbon drawing to show the human sodium (Na)
channel. Reproduced from Chou [6] with permission.

and targeting objects, conotoxins can be classi	ed into the
following three types: (i) K-channel-targeting type; (ii) Na-
channel-targeting type; and (iii) Ca-channel-targeting type.

Although conotoxins are lethally venomous because of
blocking the transmission of nerve impulses, they have been
widely used to treat chronic pain, epilepsy, spasticity, and
cardiovascular diseases. �erefore, conotoxins have been
regarded as important pharmacological tools for neuro-
science research.

It has been estimated that there are more than 100,000
kinds of conotoxins secreted by over 700 kinds ofConus in the
world [8]. However, relatively much fewer conotoxins (about
3,000 peptides) have been experimentally con	rmed and
reported in literature and databases. Moreover, the records
about the functions of conotoxins in public databases are
no more than 300 items. Hence, developing a computational
method to predict the functions of conotoxins has become a
challenging task.

Figure 3: A ribbon drawing to show the calcium (Ca) channel from
hepatitis C virus. Reproduced from [4] with permission.

In a pioneer work, Mondal et al. [9] proposed a method
for predicting conotoxin superfamilies by using the pseu-
doamino acid composition approach [10, 11]. Subsequently, a
series of studies have been reported in predicting conotoxin
superfamilies (see, for example, [12–15]). All these methods
yielded quite encouraging results, and each of them did play
a role in stimulating the development of this area. However,
none of these methods can be used to predict the types of
conotoxins de	ned according to their targeting ion-channels.
For instance, both delta-conotoxin-like Ac6.1 (UniProt acces-
sion number: P0C8V5) [16] and omega-conotoxin-like Ai6.2
[17] (UniProt accession number: P0CB10) belong to the
conotoxin O1 superfamily. However, the former targets the
voltage-gated sodium channels, while the latter targets the
voltage-gated calcium channels.

To deal with this problem, recently, a method was devel-
oped [7] to identify conotoxins among the aforementioned
three types by using their sequence information alone.
However, further work is needed in this regard due to the
following reasons. (i) �e prediction quality can be further
improved. (ii) No web server for the predictionmethod in [7]
was provided, and hence its usage is quite limited, especially
for the majority of experimental scientists.

�e present study was devoted to develop a new predictor
for identifying the conotoxins’ types from the above two
aspects.

As elaborated in a comprehensive review [18] and con-
ducted by a series of recent publications [19–28], to establish
a really useful statistical predictor for a biological system,
we need to consider the following procedures: (i) construct
or select a valid benchmark dataset to train and test the
predictor; (ii) formulate the biological samples with an
e�ective mathematical expression that can truly reect their
intrinsic correlation with the target to be predicted; (iii)
introduce or develop a powerful algorithm (or engine) to
operate the prediction; (iv) properly perform cross-validation
tests to objectively evaluate the anticipated accuracy of
the predictor; (v) establish a user-friendly web server for
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the predictor that is accessible to the public. In what follows,
let us describe how to deal with these procedures one by one.

2. Materials and Methods

2.1. Benchmark Dataset. �e sequences of conotoxins and
their functions were collected from the UniProt [29]. To
ensure its quality, the benchmark dataset was constructed
strictly according to the following criteria. (i) Included were
only those peptides annotated with “conotoxin” and with the
keyword of potassium, calcium, or sodium in their functional
ontologies. (ii) Included were only those conotoxins with
clear functional annotations based on experiment results. In
other words, we excluded those annotated with “uncertain,”
“predicted,” or “inferred from homology” because of lacking
con	dence. (iii) Excluded were those that were annotated
with “immature” due to the incompleteness. (iv) Excluded
were also those that contained any invalid amino acid codes,
such as “B,” “X,” and “Z”. A�er going through the above pro-
cedures, we obtained 195 conotoxins, of which 37 belonged to
the K-channel-targeting type, 86 to the Na-channel-targeting
type, and 72 to the Ca-channel-targeting type.

As elaborated in a comprehensive review [18], a bench-
mark dataset containing many redundant samples with
high similarity would lack statistical representativeness. A
predictor, if trained and tested by a benchmark dataset
with many homologous sequences, might yield misleading
results with overestimated accuracy [30]. To remove the
homologous sequences from the benchmark dataset, a cuto�
threshold of 25% was recommended [31] to exclude those
protein/peptide sequences from the benchmark datasets that
had ≥25% pairwise sequence identity to any other sample
in the same subset. However, in this study we did not use
such a stringent criterion because the currently available
data did not allow us to do so. Otherwise, the numbers of
peptides for some subsets would be very few to have statistical
signi	cance. As a compromise, we set the cuto� threshold
at 80% and used the CD-HIT so�ware [32] to remove those
conotoxin samples that had ≥80% sequence identity to any
other in a same subset. A�er such a screening procedure, we
obtained 112 conotoxin samples for the benchmark dataset S,
as formulated as follows:

S = SK ∪ SNa ∪ SCa, (1)

where the subset SK contains 24 conotoxin samples of K-
channel-targeting type, SNa contains 43 samples of Na-
channel-targeting type, and SCa contains 45 samples of
Ca-channel-targeting type, while the symbol ∪ represents
the union in the set theory. �e codes of 112 conotox-
ins and their sequences are given in Supporting Infor-
mation S1 (see Supplementary Material available online at
http://dx.doi.org/10.1155/2014/286419).

Likewise, we also constructed an independent dataset

S
Ind as formulated by

S
Ind = SInd

K ∪ SInd
Na ∪ SInd

Ca , (2)

where S
Ind
K contains 12 K-conotoxins, SInd

Na contains 37 Na-

conotoxins, and S
Ind
Ca contains 21 Ca-conotoxins. None of

the samples in the independent dataset occurs in the dataset
S of (1), and their detailed sequences are given in Supporting
Information S2.

For simplicity, herea�er, let us use “K-conotoxin,” “Na-
conotoxin,” and “Ca-conotoxin” to represent K-channel-
targeting type conotoxin, Na-channel-targeting type cono-
toxin, and Ca-channel-targeting type conotoxin, respectively.

2.2. �e Dipeptide Mode of Pseudoamino Acid Composition.
Given a conotoxin peptide P with L amino acids, how do
we translate it into a mathematical expression for statistical
prediction? �is is one of the 	rst important problems to
develop a sequence-based predictor for identifying the type
of a conotoxin. �e most straightforward way to formulate
the sample of a conotoxin peptide P with L residues is to use
its entire amino acid sequence, as can be formulated by

P = R1R2R3R4 ⋅ ⋅ ⋅RL, (3)

where R1 represents the 1st residue of the conotoxin pep-
tide and R2 the 2nd residue of the peptide and so forth.
Subsequently, we can utilize various sequence similarity
search based tools, such as BLAST [33], to perform statistical
prediction. Although this kind of sequence model was very
straightforward and intuitive, unfortunately, it failed to work
when a query conotoxin peptide did not have signi	cant
similarity to any of the peptide sequences in the training
dataset. �us, investigators turned to use vectors to represent
the peptide samples. Another reason for them to do so
is that the statistical samples in vector format are much
easier to be handled than in sequence format by many
existing operation engines, such as the correlation angle
approach [34], covariance discriminant (CD) [27, 35–37],
neural network [38–40], optimization approach [41], support
vectormachine (SVM) [22, 23, 42, 43], random forest [44, 45],
conditional random 	eld [20], nearest neighbor (NN) [46,
47]; K-nearest neighbor (KNN) [30], OET-KNN [48–50],
fuzzy K-nearest neighbor [25, 51–55], ML-KNN algorithm
[56], and SLLE algorithm [36].

�e simplest vector used to represent a peptide or protein
sample is its amino acid composition (AAC), as given as
follows:

P = [�1 �2 ⋅ ⋅ ⋅ �20]T, (4)

where �� (� = 1, 2, . . . , 20) is the normalized occurrence
frequency of the �th type of native amino acid in the peptide
chain and T is the transpose operator. �e AAC model was
used by many in predicting various contributes of proteins
(see, e.g., [41, 57–59]). However, as we can see from (4), when
using AAC to represent a peptide or protein sample, all its
sequence order information would be completely lost and
hence limit the prediction quality.

How can we formulate a peptide or protein sequence
with a vector yet still keep considerable sequence order
information? As reported in many recent publications, in
order to incorporate the sequence order information, the
pseudoamino acid composition [10, 11] or Chou’s PseAAC
[60] was proposed. Since the concept of PseAAC was pro-
posed in 2001 [10], it has been penetrating into almost all
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the 	elds of protein attribute predictions (see, e.g., [61–
78]). Recently, the concept of PseAAC was further extended
to represent the feature vectors of DNA and nucleotides
[19, 21, 23, 27, 79], as well as other biological samples (see,
e.g., [80–82]). Because it has been widely and increasingly
used, in addition to the web server “PseAAC” [83] built in
2008, recently three types of powerful open access so�ware,
called “PseAAC-Builder” [84], “propy” [85], and “PseAAC-
General” [86], were established: the former two are for
generating various modes of Chou’s special PseAAC, while
the 3rd one is for those of Chou’s general PseAAC.

According to a comprehensive review [18], the general
PseAAC is formulated by

P = [	1 	2 ⋅ ⋅ ⋅ 	� ⋅ ⋅ ⋅ 	Ω]T, (5)

where the component	� (
 = 1, 2, . . . , Ω) and the dimensionΩ will depend on how to extract the features from the
peptide sequences concerned. For the current study, since
the conotoxin sequences are not long (about 10–30 residues),
we could just consider the sequence order information
between two most contiguous amino acid residues. �us, the
dimension of the vector P in (5) is Ω = 20 × 20 = 400 and
each of the components therein is given by

	� =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

� (AA) when 
 = 1� (AC) when 
 = 2
...

...� (AY) when 
 = 20� (CA) when 
 = 21
...

...� (YW) when 
 = 399� (YY) when 
 = 400,

(6)

where A,C, . . . ,W,Y are, respectively, the single letter codes
of 20 native amino acids, �(AA) is the occurrence frequency
for the dipeptide AA in the conotoxin sequence (see (3)), and�(AC) is for the dipeptide AC and so forth. �e formulation
de	ned by (5)-(6) is actually the dipeptide mode of PseAAC,
which can be automatically generated by the PseAAC server
[83] for a given peptide or protein sequence.

2.3. Feature Selection. �e original raw features usually con-
tain the redundant information and noise thatmay negatively
a�ect the prediction quality [87]. Using the feature selection
techniques to optimize the feature set can not only enhance
the prediction accuracy but also provide useful insights
for in-depth understanding of the action mechanism of
conotoxins. According to the feature selection algorithm [87],
the F-score function is de	ned by

� (�) = ∑3�=1 (� �� − ��)2
∑3�=1 (1/ (�� − 1))∑���=1 (���� − � �� )2

, (7)

where � �� is the average frequency of the �th feature in

the kth dataset, �� the average frequency of the �th feature

in the all datasets concerned, ���� is the frequencies of the�th feature of the jth sequence in the kth dataset, and�� is the number of peptide samples in the kth dataset.
�e program called “fselect.py” was downloaded from
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools to calculate F-
score de	ned in (7).

�e larger the F-score is, the more likely it has a better
discriminative capability [87]. Accordingly, we ranked the
400 dipeptides in (5) according to their F-scores. Subse-
quently, based on the ranked dipeptides, we performed the
incremental feature selection (IFS) strategy to 	nd an optimal
subset of features that yielded the highest predictive accuracy.
During the IFS procedure, the feature subset started with one
feature with the highest F-score. A new feature subset was
composed when one more feature with the second highest F-
score was added. By adding these features sequentially from
the higher to lower ranks, 400 feature sets would be obtained.
�e �th feature set can be formulated as

�� = {�1, �2, . . . , ��} , (1 ≤ � ≤ 400) . (8)

For each of the 400 feature sets, a prediction model
based on the proposed predictive algorithm was constructed
and examined with the jackknife cross-validation on the
benchmark dataset. By doing so, we obtained an IFS curve in
a 2D (dimensional) Cartesian coordinate system with index� as the abscissa (or X-coordinate) and the overall accuracy
as the ordinate (or Y-coordinate). �e optimal feature set is
expressed as

�Θ = {�1, �2, . . . , �Θ} . (9)

with which the IFS curve reached its peak. In other words,
in the 2D coordinate system, when � = Θ, the value of
the overall accuracy was the maximum. �us, we used the Θ
features to build the 	nal predictor.

2.4. Support Vector Machine (SVM). �e classi	cation algo-
rithm used in this work was the support vector machine
(SVM).�e SVM has been widely used in the realm of bioin-
formatics (see, e.g., [19, 22, 23, 88–90]). Its basic principle is
to transform the input vector into a high-dimension Hilbert
space and seek a separating hyperplane with the maximal
margin in this space by using the decision function:

�(
→�) = sgn( �∑
�=1
!�"� ⋅ # (
→�, 
→��) + $) , (10)

where

→�� is the �th training vector, the !� represents the

type of the �th training vector, and #(
→�, 
→��) is a kernel
function which de	nes an inner product in a high dimen-
sional feature space. Because of its e�ectiveness and speed
in nonlinear classi	cation process, the radial basis kernel

function (RBF)#(
→��, 
→��) = exp(−&‖ 
→�� − 
→�� ‖2 ) was used
in the current work.�e original SVMwas designed for two-
class problems. For multiclass problems, several strategies
such as one-versus-rest (OVR), one-versus-one (OVO), and
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DAGSVM have been applied to extend the traditional SVM.
In the present study, we used the OVO strategy for multi-
class prediction. �e concrete SVM so�ware (LibSVM) was
downloaded from http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
A grid searchmethodwas used to optimize the regularization
parameter * and kernel parameter via the jackknife cross-

validation. �e search spaces for * and & are [215, 2−5] and[2−5, 2−15] with steps of 2−1 and 2, respectively. For more
details about SVM, see a monograph [91].

3. Results and Discussion

3.1. Test Method and Criteria. In statistical prediction, the
independent dataset test, subsampling or K-fold crossover
test and jackknife test are the three cross-validation methods
o�en used to check a predictor for its accuracy [92]. However,
among the three test methods, the jackknife test is deemed
the least arbitrary that can always yield a unique result for
a given benchmark dataset [18]. Accordingly, the jackknife
test has been increasingly used and widely recognized by
investigators to examine the quality of various predictors (see,
e.g., [19, 21, 73, 75, 93–95]). �erefore, in this study we also
adopted the jackknife test.

In addition to an objective test method, we also need
a set of metrics to reasonably measure the test outcome.
Here, let us use the criterion proposed in [96, 97] to develop
a set of more intuitive and easier-to-understand metrics;
that is, the correct rates ΛK in predicting K-conotoxins,ΛNa in predicting Na-conotoxins, and ΛCa in predicting Ca-
conotoxins are de	ned by

ΛK = �K − �K
Na − �K

Ca�K
, for the K-conotoxins

ΛNa = �Na − �Na
K − �Na

Ca�K
, for the Na-conotoxins

ΛCa = �Ca − �Ca
K − �Ca

Na�Ca
, for the Ca-conotoxins,

(11)

where �K is the total number of the K-conotoxins inves-
tigated, while �K

Na is the number of the K-conotoxins

incorrectly predicted as the Na-conotoxins, and �K
Ca is the

number of the K-conotoxins incorrectly predicted as the Ca-

conotoxins; �Na is the total number of the Na-conotoxins
investigated, while �Na

K is the number of the Na-conotoxins

incorrectly predicted as the K-conotoxins and �Na
Ca is the

number of theNa-conotoxins incorrectly predicted as theCa-

conotoxins; and�Ca is the total number of the Ca-conotoxins
investigated, while �Ca

Na is the number of the Ca-conotoxins

incorrectly predicted as the Na-conotoxins and �Ca
K is the

number of the Ca-conotoxins incorrectly predicted as the K-
conotoxins. From (11), it follows that

OA = Λ = 1 − �K
Na + �K

Ca + �Na
K + �Na

Ca + �Ca
Na + �Ca

K�K + �Na + �Ca

AA = ΛK + ΛNa + ΛCa3 ,
(12)
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Figure 4: A plot to show the IFS curve, where the abscissa and
ordinate axis denote the number of features and the overall accuracy,
respectively. As shown in the 	gure, the value of the overall accuracy
reached its peak (91.1%) when the top-ranked 50 dipeptide features
were taken into account.

Table 1: List of the 50 optimal features or dipeptides derived
according to (7)–(9) as elaborated in the Section 2.3.

AA AS CC CH CS DH DN EN GA GH

GL GT GY HA HL HS IY KD KK KM

KP LN LV MC MY ND NQ NS PI QK

QT RC RD RF RN RT RW SC SG TE

TF TT VV WG WI YD YH YL YT YY

where OA stands for the overall accuracy and AA for the
average accuracy.

3.2. �e Optimal Features. As mentioned above, it would
be no good for a sample vector to contain either too few
or too many features. �is is because the former would
limit the prediction quality due to lack of information, while
the latter would generate a lot of noise due to redundancy.
�erefore, we should 	nd a set of optimal features, for which
there is minimal redundancy among themselves but maximal
relevancy to the target to be predicted. In the present study,
such an optimal feature-set is none but (9).

Shown in Figure 4 is the IFS curve for the value of OA
against the number of the counted features, as described
in Section 2.3. As can be seen from there, the value of OA
reached its peak of 91.1% when the top-ranked 50 dipeptides
(Table 1) were taken into account.

�e predictor thus obtained via the aforementioned pro-
cedures is called “iCTX-Type,” where “i” stands for “identify”
and “CTX” for “conotoxin.”

A comparison of the current predictor iCTX-Type with
the one in [7] (i.e., to the best of our knowledge, it is the
only existing predictor in this area) is given in Table 2, from
which we can see the following. (i) For four of the 	ve
metrics de	ned in (10)-(11), iCTX-Type yielded higher scores
than the method in [7]. Particularly, iCTX-Type achieved
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Table 2: Comparison of the current method with the one in [7] by the jackknife test on the same benchmark dataset (Supporting Information
S1) according to the metrics de	ned in (11)-(12).

Method Number of features counted ΛK (%) ΛNa (%) ΛCa (%) AA (%) OA (%)

RBF networka 70 91.7 88.4 88.9 89.7 89.3

iCTX-Typeb 50 83.3 97.8 89.8 90.3 91.1
aSee [7].
b�is paper.

higher overall accuracy (OA) and average accuracy (AA). (ii)
Compared with the method of [7] using 70 features, only 50
features were used in the presentmethod (Table 1), indicating
that the iCTX-Type ismore e�cient in excluding redundancy
and noise as well as in capturing the core features.

To further verify the performance of the current predic-
tor, iCTX-Type was also used to identify the samples in the

independent dataset SInd (see Supporting Information S2),
and the success rates (see (11)) thus obtained were 91.7%,
91.9%, and 90.5% for K-, Na-, and Ca-conotoxins, respec-
tively. �ese results are fully consistent with those obtained
by the jackknife test as given in Table 2, furtherindicating that
the new predictor iCTX-Type is quite promising and holds a
high potential to become a useful tool for in-depth studying
ion channel-targeted conotoxins.

To enhance the value of its practical applications [98], a
web server for the new iCTX-Type predictor was established
as described below.

3.3. Web-Server Guide. For the convenience of the vast
majority of experimental scientists, below a step-by-step
guide is provided for how to use the web server to get the
desired results without the need to follow the mathematic
equations that were presented in this paper just for the
integrity in developing the predictor.

Step 1. Open the web server at http://lin.uestc.edu.cn/server/
iCTX-Type and you will see the top page of iCTX-Type
on your computer screen, as shown in Figure 5. Click on
the Read Me button to see a brief introduction about the
predictor and the caveat when using it.

Step 2. Either type or copy/paste the query peptide sequences
into the input box at the center of Figure 5. �e input
sequence should be in the FASTA format. A sequence in
FASTA format consists of a single initial line beginning with a
greater-than symbol “>” in the 	rst column, followed by lines
of sequence data. �e words right a�er the “>” symbol in the
single initial line are optional and only used for the purpose of
identi	cation and description. All lines should be no longer
than 120 characters and usually do not exceed 80 characters.
�e sequence ends if another line starting with a “>” appears;
this indicates the start of another sample sequence. Example
sequences in FASTA format can be seen by clicking on the
Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result.
For instance, when using the three peptide sequences as an

Figure 5: A screenshot to show the top page of the iCTX-Type web
server. Its website address is http://lin.uestc.edu.cn/server/iCTX-
Type.

input and clicking the Submit button, you will see the fol-
lowing shown on the screen of your computer: the outcome
for the 1st query example is “Ca-conotoxin”; the outcome for
the 2nd query sample is “K-conotoxin”; the outcome for the
3rd query sample is “Na-conotoxin.” All these results are fully
consistent with the experimental observations. It takes only a
few seconds for the above computation before the predicted
result appears on your computer screen; the more number of
query sequences, the longer time it usually needs.

Step 4. Click on the Data button to download the benchmark
datasets used to train and test the iCTX-Type predictor.

Step 5.Click on the Citation button to 	nd the relevant papers
that document the detailed development and algorithm of
iCTX-Type.

Caveats. �e input query sequences must be formed by the
single-letter codes of the 20 native amino acids; any other
characters such as “B,” “X,” “U,” and “Z” are invalid and should
not be part of the peptide sequence.

4. Conclusion

It is anticipated that iCTX-Type may become a useful
high throughput tool for both basic research and drug
development, particularly for in-depth investigation into the
mechanisms of ion-channels and developing new drugs to
treat chronic pain, epilepsy, spasticity, and cardiovascular
diseases, among others.

It is instructive to point out that since the binding of
conotoxins to ion-channel is highly selective and speci	c,
the information obtained by iCTX-Type in identifying the
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types of conotoxins may be also very useful for designing
ion channel inhibitors according to the Chou’s distorted key
theory as elaborated in [99] and briefed in aWikipedia article
at http://en.wikipedia.org/wiki/Chou’s distorted key theory
for peptide drugs.
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