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Abstract 

Critically ill patients often acquire neuropathy and/or myopathy labeled ICU-acquired weakness. The current insights 

into incidence, pathophysiology, diagnostic tools, risk factors, short- and long-term consequences and management 

of ICU-acquired weakness are narratively reviewed. PubMed was searched for combinations of “neuropathy”, “myo-

pathy”, “neuromyopathy”, or “weakness” with “critical illness”, “critically ill”, “ICU”, “PICU”, “sepsis” or “burn”. ICU-acquired 

weakness affects limb and respiratory muscles with a widely varying prevalence depending on the study population. 

Pathophysiology remains incompletely understood but comprises complex structural/functional alterations within 

myofibers and neurons. Clinical and electrophysiological tools are used for diagnosis, each with advantages and 

limitations. Risk factors include age, weight, comorbidities, illness severity, organ failure, exposure to drugs nega-

tively affecting myofibers and neurons, immobility and other intensive care-related factors. ICU-acquired weakness 

increases risk of in-ICU, in-hospital and long-term mortality, duration of mechanical ventilation and of hospitalization 

and augments healthcare-related costs, increases likelihood of prolonged care in rehabilitation centers and reduces 

physical function and quality of life in the long term. RCTs have shown preventive impact of avoiding hyperglycemia, 

of omitting early parenteral nutrition use and of minimizing sedation. Results of studies investigating the impact of 

early mobilization, neuromuscular electrical stimulation and of pharmacological interventions were inconsistent, 

with recent systematic reviews/meta-analyses revealing no or only low-quality evidence for benefit. ICU-acquired 

weakness predisposes to adverse short- and long-term outcomes. Only a few preventive, but no therapeutic, strate-

gies exist. Further mechanistic research is needed to identify new targets for interventions to be tested in adequately 

powered RCTs.
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Introduction

Muscle weakness is a frequent problem in the intensive 

care unit (ICU). �e weakness can be due to primary neu-

romuscular disorders that trigger the need for intensive 

care, such as Guillain–Barré Syndrome, myasthenia gravis, 

amyotrophic lateral sclerosis or multiple sclerosis, among 

others, but these conditions only account for < 0.5% of all 

ICU admissions [1]. More often, however, muscle weak-

ness develops as a secondary disorder while patients are 

being treated for other life-threatening conditions. �e 

latter has been labeled “ICU-acquired weakness” with 

the implication that this neuromuscular dysfunction has 

no plausible etiology other than the critical illness and its 

treatments [2]. ICU-acquired weakness is typically gener-

alized, symmetrical, and affects limb (proximal more than 

distal) and respiratory muscles, whereas facial and ocular 

muscles are spared [3, 4]. Muscle tone is almost invariably 

reduced. Deep tendon reflexes can be reduced or normal. 

Weakness may originate from a neurogenic disturbance 

“critical illness polyneuropathy” (CIP), a myogenic distur-

bance “critical illness myopathy” (CIM), or a combination 

thereof labelled “critical illness neuromyopathy” [2, 5, 6]. 

Electrophysiological examination shows typical patterns of 

abnormalities. Also, the pronounced loss of muscle mass, 

that can exceed 10% over the 1st week in ICU, has been 
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associated with functional impairment [7, 8]. Severe disuse 

muscle atrophy has been put forward as a separate entity 

of ICU-acquired weakness in the absence of electrophysi-

ological abnormalities [4].

Prevalence of ICU-acquired weakness varies widely with 

the studied patient population and risk factors, the tim-

ing of assessment, the methods used for diagnosis, and 

inconsistent accounting for patients’ pre-hospital muscle 

function or overall functional status (often overlooking age-

related frailty) [4, 6, 9–12]. A systematic review reported a 

median prevalence of 43% (interquartile range 25–75%) 

over 31 studies [13]. Diaphragm dysfunction may develop 

more often than limb muscle weakness [14].

We here review the current insights into the patho-

physiology, diagnostic tools, risk factors, short- and long-

term consequences and management of ICU-acquired 

weakness.

Pathophysiology
�e pathophysiology of ICU-acquired weakness remains 

incompletely understood, in part explained by practical 

and ethical issues complicating the study of underlying 

mechanisms in human patients. Indeed, mechanistic stud-

ies require harvesting of muscle or nerve biopsies, which is 

an invasive procedure. Also, the possibility to interfere with 

biological processes in human patients, e.g., by administer-

ing activators or inhibitors of assumed central players, is 

inherently limited in view of potential risks for the patients. 

However, studies in animal models have added valuable 

insights and, together with available patient study results, 

allowed to attribute ICU-acquired weakness to complex 

structural/functional alterations within the central nervous 

system, the peripheral nerves and the myofibers. In Fig. 1, 

the major pathways assumed to be involved, comprising 

loss of muscle mass and loss of muscle function, are briefly 

summarized in a conceptual framework [5, 15–17].

Muscle atrophy

�e catabolic state of critical illness, with reduced ana-

bolic effector hormones and increased catabolic hor-

mones [18], and the mechanical unloading due to 

immobilization/denervation, explain the pronounced 

muscle wasting that contributes to weakness of myo-

genic origin in ICU patients [7]. Such loss of muscle mass 

is due to imbalanced protein turnover, with a reduced 

protein synthesis relative to accelerated breakdown by 

activated proteolytic systems, such as the ubiquitin–pro-

teasome system [7, 8, 16].

Muscle dysfunction

Several factors contribute to loss of muscle function dur-

ing critical illness.

Structural muscle alterations

Muscle biopsies show signs of inflammation or necro-

sis, pronounced infiltration of muscle with (or myofiber 

conversion to) adipose tissue and fibrosis in a remarkably 

high proportion of critically ill patients [8].

Microcirculatory disturbances

Microcirculatory changes include vasodilation and 

increased permeability, which allow leukocyte extravasa-

tion and tissue infiltration, local cytokine production and 

edema formation with increased intercapillary distance 

[5, 6, 15]. �ese changes can compromise perfusion and 

oxygen delivery. Involvement of edema-induced com-

pression damage to muscles and nerves remains debated. 

Nevertheless, hypoperfusion may contribute to neuronal 

injury, axonal degeneration, and to a chronic membrane 

depolarization of terminal motor axons.

Bioenergetic failure

Insufficient oxygen supply to mitochondria may com-

promise mitochondrial energy production. However, 

the mitochondrial dysfunction in critical illness appears 

explained by impaired oxygen utilization, due to direct 

mitochondrial damage further aggravated by inflam-

mation, hyperglycemia and free radicals, rather than by 

impaired oxygen delivery [15]. Dysfunctional mitochon-

dria not only compromise energy provision but also 

amplify the production of free radical and reactive oxy-

gen species, eliciting a vicious cycle of macromolecular 

and organelle damage.

Inadequate autophagy activation

Initially, increased autophagy was assigned a detrimental 

role as a contributor to muscle atrophy [15]. However, it 

has become clear that this important cellular quality con-

trol mechanism is actually insufficiently activated during 

critical illness, allowing accumulation of damage to mito-

chondria and other cellular components [19]. Impaired 

clearance of such damage results in degenerative changes 

which compromise muscle function, thus contributing to 

ICU-acquired weakness [8, 19, 20].

Take‑home messages 

Critically ill patients frequently acquire muscle weakness while in 
the ICU, which adversely affects short- and long-term outcomes. No 
effective treatments are currently available whereas partial preven-
tion of ICU-acquired weakness is possible by avoiding hypergly-
cemia, by postponing parenteral nutrition to beyond the first ICU 
week, and by minimizing sedation. Further mechanistic research is 
warranted in order to identify novel preventive and/or therapeutic 
strategies that can be tested in adequately powered RCTs.
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Fig. 1 Mechanisms implicated in the development of ICU-acquired weakness. A conceptual framework is shown of the major pathways that are 

assumed to be involved in the loss of muscle mass and loss of muscle function that contribute to the development of ICU-acquired weakness [5, 8, 

15–17]. ATP adenosine triphosphate, PCr phosphocreatine, ROS/RNS reactive oxygen species/reactive nitrogen species. Mitochondria, proteins, neu-

rons and ion channels indicated in green represent healthy organelles, molecules and cells, whereas grey symbols point to damaged/dysfunctional 

organelles, protein aggregates, cells and ion channels



640

Membrane and ion channel dysfunction

Sodium channel inactivation is thought to contribute 

to the rapid, reversible hypo-excitability or in-excita-

bility of nerve and muscle membranes in patients with 

ICU-acquired weakness [15]. Altered intracellular cal-

cium homeostasis further contributes to impaired mus-

cle contractility by affecting the excitation–contraction 

coupling.

Central nervous system involvement

Recent evidence suggests that central nervous system 

involvement with failure of coordinated repetitive firing 

within the motor neurons can be a very early event, pre-

ceding electrical failure in axons and nerve–muscle cou-

pling [17].

Diagnosis
Several techniques are used to diagnose ICU-acquired 

weakness. �ese methods assess peripheral and/or res-

piratory muscles. Tables 1 and 2 give an overview of cur-

rently available techniques, with their advantages and 

disadvantages.

Assessment of peripheral muscle strength

To diagnose ICU-acquired weakness, ideally, a clinical 

quantification of muscle strength should be performed. 

�is inherently implies a volitional technique, which has 

the drawback that the patients must be awake and coop-

erative and must comprehend the assessor’s instructions. 

As patients are often unconscious or uncooperative, due 

to sedation or delirium, such clinical diagnosis is often 

not possible or is delayed. �e most widely used voli-

tional technique is the 6-grade Medical Research Council 

(MRC) sum score [2, 3, 21, 22]. �is score yields a global 

estimation of motor function, pointing to clinically rel-

evant muscle weakness when below 48 and severe muscle 

weakness when below 36 [11, 41]. However, differentia-

tion in the higher range is difficult. A modified 4-grade 

score showed better inter-rater agreement for diagnosing 

ICU-acquired weakness than the classical 6-grade score 

[23], but requires further validation. �e ordinal scale of 

the MRC sum score limits the sensitivity to detect more 

subtle changes in muscle function. In contrast, hand-held 

dynamometry for measuring handgrip and quadriceps 

strength provides a continuous quantitative measure, but 

representativeness for global muscle strength has been 

questioned [3, 21, 23, 24]. �e “Scored Physical Function 

in Intensive Care Test”, “Functional Status Score for the 

ICU” and “Chelsea Critical Care Physical Assessment 

Tool” provide information about the patients’ functional 

abilities, but are less commonly used [25–27]. Finally, the 

6-minute walking distance (6-MWD) assesses functional 

capacity, but is rather used to evaluate how patients per-

form at discharge and in post-ICU follow-up [27–29].

Electrophysiological assessments are also used to 

diagnose ICU-acquired weakness and can be applied to 

unconscious/uncooperative patients. Although CIP and 

CIM share many features on nerve conduction studies 

and electromyography, differentiation is possible in ideal 

circumstances, particularly when the patient is coopera-

tive and voluntary muscle activation is possible (Table 3) 

[2, 5, 6, 22, 30, 42]. Single nerve conduction studies have 

shown promise as alternative for time-consuming full 

electrophysiological studies [22, 31, 32]. For differential 

diagnosis of CIP and CIM in uncooperative patients, 

direct muscle stimulation shows normal muscle excit-

ability in CIP and reduced muscle excitability in CIM. 

However, expertise is not widely available and differential 

diagnosis is further complicated by the high co-occur-

rence of CIP and CIM.

A variety of imaging techniques have been evaluated 

to assess muscle mass, as a surrogate of muscle strength, 

some of which also can visualize muscle quality. Of these, 

ultrasonography is considered most promising [30, 33]. 

Although ultrasonography allows quick and repeated 

bedside evaluation of measures of muscle quantity and 

quality, it may underestimate muscle and protein loss 

[4, 30, 33, 34]. Furthermore, interpretation of the avail-

able studies is complicated by significant methodological 

defects, small sample sizes, and lack of standardization 

to control for operator dependency [30, 33]. �e clinical 

relevance also remains to be determined [22, 35]. Com-

puted tomography and magnetic resonance imaging can 

accurately and reliably detect infiltration of muscle by 

adipose tissue and quantify fat-free muscle mass, but are 

expensive, require specialized staff and software, and are 

logistically challenging [30, 33]. Furthermore, computed 

tomography exposes patients to a high level of radiation. 

Several of these limitations also apply to dual-energy 

X-ray absorptiometry and neutron activation analysis 

that assess body composition [33]. Bioelectrical imped-

ance measurements also assess body composition, but 

results are affected by edema, skin temperature and posi-

tioning [33].

Finally, nerve and muscle biopsies can provide impor-

tant information and have increased mechanistic 

understanding, but are invasive with potential for com-

plications and require specialized expertise for obtain-

ing the samples and interpreting findings [8, 15, 30, 36]. 

Biopsy analyses may allow differential diagnosis of CIP 

and CIM, but nerve biopsy is too invasive for routine 

clinical use and hence is no longer advised except in the 

context of scientific research (Table 3).

Clearly, many techniques have been developed to assess 

weakness. However, after exclusion of primary causes of 
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Table 1 Diagnosis of ICU‑acquired weakness: assessment of peripheral muscles

Technique Measures Advantages Disadvantages References

Volitional functional testing Functional measurement Patients need to be awake and 
cooperative and comprehend how 
to perform the measurements

Does not differentiate CIPNM from 
deconditioning

MRC sum score—6 categories
 0: no contraction 
 1: contraction without move-

ment
 2: movement, gravity elimi-

nated
 3: movement against gravity
 4: movement against resist-

ance
 5: normal muscle force

Bilateral scoring of:
 Shoulder abduction
 Elbow flexion
 Wrist extension
 Hip flexion
 Knee extension
 Foot dorsiflexion
Significant weak-

ness: < 48/60
Severe weakness < 36/60

Gold standard
Non-invasive, bedside testing
Reliable and valid (at least for 

score 0–3)
High inter-rater reliability 

(provided strict guidelines on 
adequacy and standardized test 
procedures and positions are 
followed)

Overall estimation of motor 
function

May be affected by positioning of 
the patient and availability of limbs 
for assessment (e.g., limitations 
by pain, dressings, immobilizing 
devices)

Ordinal scale, lower sensitivity to 
more subtle changes in muscle 
function, difficulty in differentiation 
between score 4 and 5

Weak correlation with physical 
functioning

[2, 3, 21, 22]

MRC sum score—4 categories
 0: paralysis
 1: > 50% loss of strength
 2: < 50% loss of strength
 3: normal strength

Same muscles as above
weakness: < 24/36 to be 

validated

Non-invasive, bedside testing
Excellent inter-rater reliability
Excellent accuracy in diagnosing 

weakness
Requires less discrimination 

between grades than 6-grade 
score

Concerns on potential subjectivity
Further validation needed

[23]

Hand-held dynamometry Handgrip strength
weakness:
  < 11 kg for men, < 7 kg for 

women
Quadriceps force

Gold standard, quantitative 
measure

Non-invasive, quick and easy 
bedside testing

High inter-rater reliability
High sensitivity and specificity

Significant floor effect
Uncertain whether representative of 

global muscle strength

[3, 21, 23, 
24]

Scored Physical Function in 
Intensive Care Test (PFIT-s)

 Functional abilities scored 0–3

Shoulder flexion strength
Knee extension strength
Sit-to-stand assistance
Step cadence

Feasible and safe
Inexpensive
Evaluates patients’ functional 

abilities
Validated, predictive of key 

outcomes

Floor effect at admission
Ceiling effect at discharge

[25]

 Functional Status Score for 
the ICU

 Functional abilities scored 
0–7

 0: not able to perform
 7: complete independence

Rolling
Transfer from spine to sit
Sitting at the edge of bed
Transfer from sit to stand
Walking

Feasible and safe
Evaluates patients’ functional 

abilities

Has not undergone additional 
psychometric testing for validation 
and scale analysis

[26]

Chelsea Critical Care Physical 
Assessment Tool

Feasible and safe
Evaluates patients’ functional 

abilities

Has not undergone additional 
psychometric testing for validation 
and scale analysis

[27]

Six-minute walk test Distance walked in 6 min Assesses functional capacity Only in late phase [28, 29]

Electrophysiology

 Full nerve conduction studies 
(NCS) and needle electro-
myography (EMG)

CMAP amplitude and 
duration

SNAP amplitude
Nerve conduction velocity
Fibrillation potentials
Positive sharp waves
Motor unit potentials

Can delineate CIPNM from decon-
ditioning

Mildly invasive (EMG)
Requires specialized training
Partially requires patient cooperation 

(EMG)
Anticoagulation therapy is a relative 

contra-indication

[22, 30]

 Single NCS Peroneal CMAP amplitude
Sural SNAP amplitude

Shorter testing duration than full 
four-limb NCS/EMG (5–10 min vs 
60–90 min)

Less painful than full NCS/EMG
Non-invasive
No need for volitional patient 

movement
Good to excellent sensitivity
Good specificity (peroneal nerve)

Abnormal peroneal or sural NCS 
requires follow-up with full NCS/
EMG (and ideally muscle strength 
testing) to confirm a CIPNM 
diagnosis

[31, 32]
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Table 1 (continued)

Technique Measures Advantages Disadvantages References

 Direct muscle stimulation Muscle excitability Can distinguish between CIP and 
CIM

Patient does not need to be awake 
and cooperative

Requires specialized training
Not widely available

Imaging Patient does not need to be awake 
and cooperative

Ultrasonography Evaluation quantity and 
quality

 Muscle area and thickness
 Central tendon thickness
 Muscle angiogenic activ-

ity/vascularization
 Fasciculationsa

 Subcutaneous edema and 
intramuscular fluid

 Fat infiltration
 Intramuscular fibrous 

tissue
 Muscle necrosis and 

fasciitis (more advanced 
stages)

Bedside
Easy and relatively quick
Non-invasive, painless test
Allows repeated measurements, 

valid and practical for daily 
routine use

Equipment available in most ICUs
Relatively inexpensive
Free of ionizing radiation
Close correlation with MRI and 

CT data
Abnormal muscle echogenicity 

is a good screening test and 
predictor of prognosis

Does not measure muscle mass, 
muscle thickness underestimates 
muscle loss as compared with 
cross-sectional area

Operator-dependent, precautions 
needed to obtain reproducible 
results

  Exactly same place for every evalu-
ation

  Minimal amount of pressure
  Sufficient coverage of probe with 

gel
  Transducer perpendicular to 

imaged muscle
  Measure and control for SC tissue 

thickness
Affected by obesity and edema
 Low accuracy to diagnose muscle 

weakness
 Does not discriminate between 

patients with or without weakness 
upon awakening

[3, 4, 22, 30, 
33–35]

 Computed tomography (CT) Infiltration of muscle by 
adipose tissue

Fat-free skeletal muscle

Highly accurate, highly reliable
Valid in patients with severe fluid 

retention
Allows evaluation of the deepest 

muscles

High cost, time-consuming
Highly specialized staff and software 

needed
Transport of patient outside ICU 

needed
High level of radiation exposure (may 

be limited if only a single muscle 
group is assessed)

Inappropriate for repeated monitor-
ing

[30, 33]

 Magnetic resonance imaging 
(MRI)

Infiltration of muscle by 
adipose tissue

Fat-free skeletal muscle

Highly accurate, highly reliable
Valid in patients with severe fluid 

retention

High cost, time-consuming
Highly specialized staff and software 

needed
Transport of patient outside ICU 

needed
Inappropriate for repeated monitor-

ing

[33]

 Dual-energy X-ray absorpti-
ometry

Body composition Rapid
Easily tolerated
Allows whole-body scans

Radiation exposure (minimal)
Expensive
Transport of patient outside ICU 

needed
Specialized personnel needed
Inaccurate with abnormal hydration 

status
Inappropriate for routine, repeated 

monitoring

[33]

 Neutron activation analysis Body composition Very accurate
Valid in patients with severe fluid 

retention
Most often preferred reference for 

evaluating/calibrating alterna-
tive techniques

Time-consuming
Radiation exposure
Equipment available in only a few 

centers

[33]
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Table 1 (continued)

Technique Measures Advantages Disadvantages References

 Bioelectrical impedance 
measurements

Body composition Non-invasive, highly acceptable to 
patients

Rapid and inexpensive
Portable, easily performed at the 

bedside
No radiation exposure
Possibility of repeated monitoring

Distorted by hydration status/edema
Affected by skin temperature
Affected by body position
Special device needed

[33]

Biopsy analyses

 Nerve and muscle biopsies Degeneration and myelina-
tion status of nerve fibers

Muscle fiber atrophy, 
necrosis, inflammation, 
fatty infiltration, fibrosis, 
vacuolation

Have increased mechanistic 
understanding

Invasive (nerve biopsy too invasive 
for routine clinical use) with risk of 
complications (bleeding, wound 
infection, pain)

Specialized expertise needed for 
obtaining and interpreting samples

Prognostic value poorly explored

[8, 15, 30, 
36]

CMAP compound muscle action potential, CT computed tomography, CIPNP critical illness polyneuromyopathy, EMG electromyography, ICU intensive care unit, MRC 

Medical Research Council, MRI magnetic resonance imaging, NCS nerve conduction studies, SC subcutaneous, SNAP sensory nerve action potential

a Sign of spontaneous activity in the muscle and increased excitability of impaired motor nerves

Table 2 Diagnosis of ICU‑acquired weakness: assessment of respiratory muscles

Pdimax maximal transdiaphragmatic pressure, Pdi,tw transdiaphragmatic pressure upon twitch phrenic nerve stimulation, Pet,tw endotracheal tube pressure upon 

phrenic nerve stimulation, SNAP sensory nerve action potential

Technique Measures Advantages Disadvantages References

Volitional functional testing

Functional measurements Patients need to be awake and 
cooperative and comprehend 
how to perform the measure-
ments

Maximal inspiratory 
and expiratory 
pressure

Inspiratory muscle 
strength

Expiratory muscle 
strength

Measures global respiratory muscle strength
High values exclude respiratory weakness
Predictive of duration mechanical ventilation and 

mortality

Low values may also represent 
poor technique

[24, 37, 38]

Transdiaphragmatic 
pressure

Diaphragm strength
weakness:  Pdimax < 60 cm 

 H2O

Specific measure of diaphragm strength
High values exclude respiratory weakness

Invasive, requires esopha-
geal + gastric balloons

Difficult to obtain
Low values may also represent 

poor technique

[38–40]

Non‑volitional functional testing

Transdiaphragmatic 
pressure in response 
to bilateral twitch 
phrenic nerve 
stimulation

Diaphragm strength
weakness: Pdi,tw < 10 cm 

 H2O

Most objective
Predictive of duration mechanical ventilation and 

mortality (better than maximum inspiratory 
pressure)

Invasive
Requires magnetic stimulation
Technically difficult to perform

[37–40]

Phrenic nerve conduc-
tion time

Endotracheal tube 
pressure in response 
to bilateral phrenic 
nerve stimulation 
during airway occlu-
sion

Weakness: Pet,tw < 11 cm 
 H2O

Invasive
Requires magnetic stimulation
Technically difficult to perform

[4, 39]

Imaging

Chest X-rays Diaphragm position Readily available, bedside test Low sensitivity and specificity [38, 40]

Ultrasonography Diaphragmatic excursion
weakness: < 11 mm
Diaphragmatic thicken-

ing fraction
weakness: < 20%

Easy, bedside, non-invasive test
Equipment available in most ICUs
Relatively inexpensive
Relatively good diagnostic performance to 

predict weaning outcome

Limited value during assisted 
breathing

[4, 38–40]
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neuromuscular diseases [1], diagnosis of ICU-acquired 

weakness from a practical point of view is currently lim-

ited to the use of clinical testing and electrophysiological 

studies.

Assessment of respiratory muscle strength

Volitional testing of global respiratory muscle strength 

via maximal inspiratory and expiratory pressure or of 

diaphragm strength via transdiaphragmatic pressure is 

again limited by the requirement of an awake and coop-

erative patient [24, 37–40]. Measurement of transdia-

phragmatic or endotracheal tube pressure in response to 

phrenic nerve stimulation can circumvent this problem, 

but it is invasive, requires magnetic stimulation and is 

technically difficult [4, 37–40]. Also imaging techniques 

are being used. However, chest X-rays have low sensitiv-

ity and specificity and ultrasonography has limited value 

during assisted breathing [4, 38–40].

Risk factors
Several independent risk factors for developing ICU-

acquired weakness have been identified, mostly from 

observational studies, although often not unequivocally 

(Fig. 2).

A first group of risk factors are not modifiable �e sever-

ity of critical illness is an important determinant. �us, 

a higher severity of illness score, sepsis and inflamma-

tion, multiple organ failure, as well as a longer duration 

of mechanical ventilation and ICU stay, were found to be 

predictive [11, 43–45]. In fact, ICU-acquired weakness is 

most frequent in patients with persistent critical illness 

[46]. �e relationship with mechanical ventilation could 

be reciprocal given that prolonged ventilation increases 

the risk of ICU-acquired weakness and diaphragmatic 

dysfunction which, vice versa, increase the risk of pro-

longed ventilation and failed weaning [13]. Another ill-

ness-related risk factor is a high lactate level [45]. Further, 

a higher risk of weakness may apply to women than to 

men, and to older as compared with younger patients [11, 

43, 45]. Also, premorbid disability and frailty may predis-

pose to the severity of weakness. Intriguingly, premorbid 

obesity was found to be an independent protective fac-

tor against development of ICU-acquired weakness and 

against muscle atrophy [47].

Some risk factors are modifiable �ese include the 

degree of hyperglycemia that develops in response to 

the severe stress of critical illness and the administra-

tion of parenteral nutrition (vide infra) [20, 45, 48–51], 

but also several drugs that are used to treat critically 

ill patients. For example, dose and duration of vasoac-

tive medications, mostly β-agonists, are associated with 

a higher risk of ICU-acquired weakness [44]. In meta-

analyses, the use of corticosteroids has been associated 

with risk of ICU-acquired weakness in heterogeneous 

patient populations [52] and when focusing exclusively 

on patients with sepsis [53]. However, one study sug-

gested a protective effect of corticosteroids when hyper-

glycemia as a side effect was avoided [49]. �e reported 

adverse relationship between the use of neuromuscular 

blocking agents (NMBAs) and muscle weakness remains 

Table 3 Features of critical illness polyneuropathy and critical illness myopathy in electrophysiological and biopsy stud‑

ies

Information obtained from [2, 5, 6, 15, 22, 30, 36]. Aggregate diagnostic criteria for CIP and CIM are reported in [5]

CMAP compound muscle action potential, EMG electromyography, MUP motor unit potential, SNAP sensory nerve action potential

a MUPs of long duration, high amplitude and polyphasic appearance can be detected in CIP as a sign of collateral reinnervation of denervated muscle �bers, whereas 

MUPs of short duration and low amplitude are observed in CIM as a sign of reduced functional muscle �bers within each motor unit

b Sensory (sural) nerve and motor nerve (to gracilis muscle) biopsy are no longer advised except as a research procedure

Critical illness polyneuropathy Critical illness myopathy

CMAP amplitude Decreased Decreased

CMAP duration Normal Increased

SNAP amplitude Decreased Normal

Nerve conduction velocity Normal or near normal Normal or near normal

EMG at rest Fibrillation potentials/positive sharp waves Fibrillation potentials/positive sharp waves

MUP voluntary muscle activation Long duration, high amplitude,  polyphasica Short duration, low  amplitudea

Repetitive nerve stimulation Absence of decremental response Absence of decremental response

Direct muscle stimulation Normal muscle excitability Reduced muscle excitability

Nerve  biopsyb Primary distal axonal degeneration of sensory 
nerve fibers, no demyelination

Normal

Muscle biopsy Denervation atrophy of type 1 and 2 muscle fibers Spectrum of abnormalities: myofiber atrophy, angulated fibers, 
necrosis, fatty degeneration, focal or diffuse loss of thick 
filaments
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uncertain [45, 54, 55]. An RCT comparing 48-h infusion 

of cisatracurium with placebo, both under deep sedation, 

in ARDS patients did not observe a significant impact 

[56]. However, a 48-h infusion of cisatracurium with 

concomitant deep sedation tended to increase the risk 

of ICU-acquired weakness as compared with absence of 

routine neuromuscular blockade and lighter sedation tar-

gets, with significance reached for weakness present on 

day 28, but not for weakness present on day 7 or at any 

time through day 28 [57]. Also, when co-administered 

with corticosteroids or infused for > 48  h, NMBAs may 

promote weakness [54]. Certain antibiotics, including 

aminoglycosides and vancomycin, have also been inde-

pendently associated with ICU-acquired weakness [45, 

58]. �e association between sedatives and weakness 

may be indirect, as separating effects of sedatives from 

those of sedation-induced immobility and bed rest is dif-

ficult [62]. Continued sedation is thought to have a more 

pronounced effect on muscle atrophy and weakness than 

when a patient is conscious but immobile in the absence 

of sedation [9].

Acute and long‑term consequences
Developing ICU-acquired weakness elicits a range of 

acute and long-term adverse outcomes (Fig. 3).

Short‑term consequences

�e development and severity of ICU-acquired weak-

ness, as assessed clinically at awakening, have been inde-

pendently associated with higher risk of in-ICU and 

in-hospital death [63, 64]. �is association has mostly 

been documented for limb muscle weakness [14]. It has 

also been observed for diaphragm dysfunction, but not 

unequivocally [14, 65]. Limb and respiratory muscle 

weakness have further been identified as independent 

predictors of prolonged need of mechanical ventilation 

Fig. 2 Overview of risk factors of ICU-acquired weakness. Observational and randomized controlled trials have identified a wide range of non-mod-

ifiable and modifiable risk factors associated with the risk of developing weakness in the ICU [11, 43–58]. *certain antibiotics, such as aminoglyco-

sides and vancomycin, have been independently associated with ICU-acquired weakness, although not unequivocally [45, 57, 59]. Other antibiotics, 

such as clindamycin, erythromycin, quinolones, polymyxin, tetracycline and vancomycin may affect the neuromuscular junction, but have so far not 

been independently associated with ICU-acquired weakness [45, 60, 61]
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[66, 67]. Limb muscle weakness at extubation was inde-

pendently associated with higher extubation failure rates 

in medical patients [68]. Among predominantly surgical 

patients with limb muscle weakness, 80% also showed 

diaphragmatic dysfunction [69]. Extubation failed in 50% 

of them, with need for reintubation within 72 h, among 

whom 50% died in ICU. Muscle weakness has also been 

associated with a longer duration of ICU and hospital 

stay and with increased in-hospital costs [14, 70, 71]. 

Neuromuscular weakness has further been suggested as 

a key mechanism contributing to ICU-acquired swallow-

ing disorders, including post-extubation dysphagia [72]. 

Weakness of the abdominal muscles can impair effective 

cough [3].

Associations do not necessarily reflect causality. How-

ever, a propensity score-matched analysis of patients 

with and without ICU-acquired weakness suggested that 

weakness may not merely be a marker but could also be 

a mediator of poor outcome [70]. Weak patients had a 

lower likelihood for earlier live weaning from mechanical 

ventilation, earlier live ICU discharge and earlier live hos-

pital discharge than patients without weakness (Fig. 4a). 

In addition, in the group of weak patients, 6-MWD at 

hospital discharge was shorter, in-hospital costs were 

higher and more patients were discharged to rehabilita-

tion centers or other hospitals (Fig. 4b).

Clearly, ICU-acquired weakness has been associated 

with worse short-term outcome. However, weakness sta-

tus or any minimal cutoff of the MRC score is not a sole 

determinant of whether a patient can be discharged from 

the ICU, as this decision is based on the patient no longer 

being dependent on vital organ support.

Long‑term consequences

Survivors of critical illness face an increased risk of late 

death [70, 78], which is even higher when patients had 

experienced ICU-acquired weakness [70]. Indeed, in a 

propensity score-matched analysis, one-year mortality 

was higher in weak (MRC sum score < 48) than in not-

weak patients (Fig.  4c) [70]. Strikingly, the likelihood of 

late death was further increased when weakness per-

sisted until ICU discharge, and even more so for patients 

with a more severe degree of persistent weakness (MRC 

sum score < 36, Fig. 4c). An independent association with 

higher one-year mortality was also found for a reduced 

compound muscle action potential (CMAP) on ICU day 

8, irrespective of clinical weakness diagnosed by the MRC 

sum score [42], and for respiratory muscle weakness evi-

denced by a low maximal inspiratory pressure [73]. Even 

a mild reduction in muscle strength not yet meeting the 

threshold of clinically relevant weakness (lower raw MRC 

sum score, but MRC sum score ≤ 55 being most predic-

tive) and nerve/muscle dysfunction (abnormal CMAP) 

at ICU discharge have recently been independently asso-

ciated with a worse five-year survival [77]. Being weak 

(MRC sum score < 48) at hospital discharge has also been 

associated with a worse five-year survival [74].

Following ICU discharge, ARDS patients showed a slow 

improvement in the severe wasting they suffered from in 

ICU and in 6-MWD [79–81]. However, even 5 years after 

ICU discharge, patients still experienced varying degrees 

of weakness and reduced walk and exercise ability [81]. 

New functional disabilities in activities of daily living also 

can persist for at least 8  years after sepsis [82]. A large 

heterogeneous cohort of critically ill patients showed 

lower handgrip force, shorter 6-MWD and reduced 

physical quality of life 5 years after ICU admission [78]. 

Fig. 3 Overview of short-term and long-term consequences of ICU-acquired weakness. The development of weakness in the ICU has been associ-

ated with a wide range of adverse consequences in the short term as well as the long term [14, 42, 63–76]. LOS length of stay
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A small study observed reduced maximal voluntary con-

traction, rate of force development and endurance time 1 

year after ICU discharge, but no signs of neural impair-

ment [83]. Importantly, the acquisition of weakness in 

the ICU appeared to be a major independent determi-

nant of long-term weakness, other morbidities and poor 

quality of life after ICU discharge [75, 76]. Weakness at 

ICU discharge, even if mild and not yet considered as 

clinically relevant, has recently been independently asso-

ciated with lower handgrip force, lower respiratory mus-

cle strength, lower 6-MWD and lower physical quality of 

life with lower physical independence 5 years later (MRC 

sum score ≤ 55 being most predictive), unlike an abnor-

mal CMAP [77]. Interestingly, evaluation of patients 

1 year after ICU discharge suggested that a myogenic 

origin of ICU-acquired weakness had a better progno-

sis with virtually full recovery as compared with a neu-

romyogenic origin that left 50–75% of the patients with 

persisting muscle weakness or even tetraparesis [84, 85]. 

�is illustrates the importance of a differential diagnosis 

between CIP and CIM to predict long-term outcome of 

critically ill patients.

Whether the pathophysiology of the post-ICU weak-

ness is different from that of in-ICU weakness is not clear, 

given that only few studies explored mechanisms under-

lying long-term weakness. A study of 11 prolonged criti-

cally ill patients assessed 6  months after ICU discharge 

showed persistent weakness in all tested patients owing 

to impaired voluntary contractile capacity, whereas 

quadriceps atrophy had resolved in 27% [86]. Muscle 

proteolysis, autophagy, inflammation and mitochondrial 

content had normalized, but patients with sustained atro-

phy showed less satellite cells, which may impair regen-

erative capacity. Co-expressed genes associated with the 

degree of muscle weakness and atrophy showed enrich-

ment in genes involved in skeletal muscle regeneration 

and extracellular matrix deposition [87]. Interestingly, in 

mice, engraftment of mesenchymal stem cells improved 

muscle regeneration and strength after sepsis [88].

Preventive and therapeutic measures
Several interventions have been tested with the aim to 

prevent or treat ICU-acquired weakness, though with 

very limited success [15]. Unfortunately, there is cur-

rently still no effective treatment though prevention has 

been shown to work by targeting specific risk factors.

Avoiding hyperglycemia

Tight glycemic control, targeting normal fasting levels 

with insulin infusion, as compared with tolerating pro-

nounced hyperglycemia, reduced morbidity and mor-

tality of surgical, medical and pediatric ICU patients in 

the context of early use of parenteral nutrition [89–91]. 

However, the optimal glucose target remains contro-

versial, as the largest multicenter RCT showed that 

intermediate blood glucose levels may be safer [92]. 

Nevertheless, strictly targeting fasting normoglycemia 

in surgical and medical ICU patients reduced the risk of 

developing electrophysiological signs of critical illness 

polyneuromyopathy [48, 49]. Achieving normoglycemia, 

rather than the administration of insulin, explained this 

lower risk. �e polyneuromyopathy prevention in turn 

Fig. 4 Impact of ICU-acquired weakness on short-term outcome and one-year and five-year survival. a Kaplan–Meier plots show the cumulative 

proportion of well-matched long-stay patients (ICU stay > 7 days) with (MRC < 48 at first evaluation) and without ICU-acquired weakness (MRC ≥ 48 

at first evaluation) over time who were alive and weaned from the ventilator, discharged alive from the ICU, and discharged alive from the hospital. 

Patients who died were censored after the last patient had been weaned alive, discharged alive from the ICU or discharged alive from the hospital, 

respectively. Plots were redrawn in JMP®Pro14.0.0 (SAS Institute, Cary, NC) from the data described in [70]. Hazard ratios and 95% confidence 

intervals below 1, for the effect of weakness versus no weakness, illustrate a lower chance of earlier live weaning, of earlier live ICU discharge and of 

earlier live hospital discharge for patients with as compared with patients without ICU-acquired weakness. b Medians, interquartile ranges and 10th 

and 90th percentiles of 6-min walking distance at hospital discharge and total billed costs, as well as the distribution of the discharge destination, 

are shown for well-matched long-stay patients (ICU stay > 7 days) with (MRC < 48 at first evaluation) and without ICU-acquired weakness (MRC ≥ 48 

at first evaluation), illustrating worse acute morbidity and higher healthcare-related costs for weak patients, as reported in [70]. c One-year survival 

for matched long-stay patients (ICU stay > 7 days) with (MRC < 48 at first evaluation) and without ICU-acquired weakness (MRC ≥ 48 at first evalu-

ation) are shown (left panel), together with Cox regression estimates for one-year survival for all long-stay patients with ICU-acquired weakness 

according to whether weakness persisted until final examination in the ICU or not (middle and right panel). The survival curves visually display the 

model predicted survival time for the “average” patient according to the Medical Research Council (MRC) sum score at final examination in the ICU 

as described in [70]. The middle panel compares patients who recovered from weakness (MRC ≥ 48 at last evaluation) with all patients who did not 

(MRC < 48 at last evaluation), whereas the right panel further distinguishes persistently weak patients into patients who remained moderately weak 

(MRC 36–47) or severely weak (MRC < 36). One-year survival was lower for weak patients as compared with not-weak patients. Survival was further 

lowered when weakness persisted and was more severe as compared with recovery of weakness at ICU discharge. d Five-year survival is shown for 

patients according to MRC sum score at final examination in the ICU > 55 versus ≤ 55 (left panel), according to normal or abnormal CMAP on day 

8 ± 1 (middle panel), or according to the combined information of the MRC sum score at final examination in the ICU > 55 or ≤ 55 and normal or 

abnormal CMAP on day 8 ± 1 (right panel) (adapted from [77]). Five-year survival was lower for patients with an MRC sum score at final examina-

tion in the ICU ≤ 55 versus > 55 and for patients with an abnormal versus normal CMAP on day 8 ± 1. CMAP compound muscle action potential, HR 

hazard ratio, MRC Medical Research Council sum score

(See figure on next page.)
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partially explained less need of prolonged mechanical 

ventilation, which suggested an impact of this inter-

vention on clinically relevant ICU-acquired respiratory 

muscle weakness.

Avoiding early parenteral nutrition

�e severe caloric deficit that arises from critical illness-

associated anorexia and gastrointestinal dysfunction 

has been associated with muscle atrophy and weakness 

[93]. Muscle atrophy has long been regarded a major 

myogenic component of muscle weakness. Based on 

observational studies and expert opinion, to prevent 

muscle atrophy nutritional guidelines hence advocated 

early full nutrition, preferentially via the enteral route 

but otherwise supplemented via the parenteral route 

[94]. Major emphasis was put on giving enough protein 

as substrate for building muscle mass. However, large 

RCTs showed lack of benefit or even harm by early full 

nutrition and hence no longer support such aggres-

sive feeding strategies. Indeed, supplementing insuf-

ficient enteral nutrition with early parenteral nutrition 

to caloric targets increased complications and delayed 

recovery of critically ill adults and children as compared 

with accepting the macronutrient deficit by withhold-

ing parenteral nutrition in the 1st week in ICU [28, 95]. 

Harm evoked by early parenteral nutrition comprised 

more ICU-acquired weakness and impaired recovery 

thereof, longer dependency on mechanical ventilation 

and a longer stay in the ICU [20, 28, 95]. Early parenteral 

nutrition to caloric targets also did not reduce muscle 

atrophy [20]. Macronutrient doses, and not the route of 

administration, explained the harm. More specifically, 

the early administration of amino acids, but not glucose 

or lipids, appeared to be the culprit [96, 97]. Rather than 

being used for synthesis of muscle proteins, the amino 

acids appeared to be largely broken down and shuttled 

to ureagenesis, possibly explaining the lack of benefit in 

RCTs investigating increased amino acid supplementa-

tion [97–100]. Amino acids also suppress autophagy in 

muscle, which has shown to be a mechanism contribut-

ing to ICU-acquired weakness [20]. Importantly, in these 

studies, micronutrients were infused in recommended 

doses in both groups to avoid deficiencies [28, 95] that 

have also been linked to muscle weakness, among other 

complications of critical illness [101]. In another RCT, 

also early full enteral feeding was unable to improve 

impaired physical function 1 year after ICU admission as 

compared with early hypocaloric feeding [102]. Further 

research is needed to establish the ideal timing of initia-

tion beyond the 1st week, optimal dose and composition 

of artificial nutrition for critically ill patients [93].

Although clinical data are currently still lacking, a series 

of studies in mice, performed in search of mechanisms 

underlying protection against ICU-acquired weakness 

by obesity, revealed that increasing the availability of 

ketone bodies, either through stimulation of endogenous 

ketogenesis or through infusion of exogenous ketones, 

protected against sepsis-induced muscle weakness [103]. 

�is interesting finding still needs to be further explored 

in patients.

Minimizing sedation and early mobilization

As immobility increases the risk of ICU-acquired weak-

ness, (early) mobilization and physical rehabilitation 

were tested to reduce this risk. Such interventions evi-

dently require a policy to minimize sedation [3, 9]. 

Interestingly, daily interruption of sedative infusions 

was shown to reduce the duration of mechanical ven-

tilation and of ICU dependency [104]. Several modes of 

(early) mobilization and rehabilitation have been evalu-

ated, but showed inconsistent results. Although several 

systematic reviews and meta-analyses concluded in 

favor of this intervention, a low quality of evidence was 

pointed out [105–109]. Tipping et  al. concluded that 

active mobilization and rehabilitation improved mus-

cle strength at ICU discharge, enhanced the probabil-

ity of walking without assistance at hospital discharge 

and resulted in more days alive and out of hospital to 

day 180 [105]. High dose rehabilitation in the ICU was 

further suggested to improve some aspects of quality 

of life at 6  months. A more recent analysis concluded 

that early rehabilitation improved only short-term 

physical-related outcomes with low quality of evidence 

for a decreased risk of ICU-acquired weakness as com-

pared with standard care or no early rehabilitation 

[106]. Other systematic reviews that compared early 

mobilization and/or active exercise with delayed exer-

cise emphasized the low quality of evidence in favor of 

early intervention, given the small sample sizes of these 

studies, heterogeneity of studied interventions and out-

comes, high risk of performance bias, high dropout 

rates, and inadequate descriptions of usual care [107, 

108]. Methodological limitations also explained the low 

confidence in the observed associations of the improved 

inspiratory and expiratory muscle strength after inspira-

tory muscle training with shorter ventilator dependency 

[109]. However, several additional studies are ongoing 

which hopefully will shed light on the efficacy of early 

mobilization and rehabilitation.

Barriers to implementation in clinical practice com-

prise the patient’s capability to perform physical activity, 

safety concerns for patients, staff and caregivers, lack of 

expertise and lack of adequate staffing, equipment and 

funding to provide rehabilitation programs [110]. How-

ever, the incidence of potential safety events is low (2.6%) 

and consequences for patient management are even 
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more rare (0.6%), provided that consensus guidelines are 

adequately considered [4, 111].

Neuromuscular electrical stimulation

Because poor alertness and cooperation precludes early 

active mobilization of a large proportion of patients, 

neuromuscular electrical stimulation (NMES) has been 

suggested as an alternative. Several mostly small RCTs 

have been performed in critically ill patients, with vari-

able use of frequencies, intensities and duration of NMES 

and widely varying outcomes, limiting pooling and inter-

pretation of data [112, 113]. Although some studies were 

promising [112], the most recent systematic review and 

meta-analysis did not reveal significant improvement in 

muscle strength or dependency on mechanical ventila-

tion and intensive care with NMES as compared with 

usual care [113].

Drugs

A systematic review of initially promising pharmaco-

logical interventions such as the anabolic steroid oxan-

drolone, growth hormone, propranolol, immunoglobulin 

and glutamine therapy could not recommend any of these 

for adoption in routine practice [114].

Rehabilitation beyond ICU stay

Early interventions to prevent or attenuate the debilitat-

ing consequences of ICU-acquired weakness are obvi-

ously important. It remains unclear, however, whether 

later exercise-based rehabilitation on regular wards and 

after hospital discharge are beneficial, as studies have 

been small. Some studies showed a positive effect related 

to functional exercise capacity, unlike others, but a sys-

tematic review could not support benefits from post-ICU 

physical rehabilitation given the low quality of available 

evidence and heterogeneity [115]. Adequately powered 

RCTs are needed.

Conclusions and clinical implications
Muscle weakness is a frequent complication of criti-

cal illness, with devastating short- and long-term con-

sequences and therefore requires prevention and/or 

treatment. Prevention seems at least in part possible, as 

avoiding hyperglycemia and postponing parenteral nutri-

tion to beyond the 1st week in ICU, have been shown to 

reduce the burden of ICU-acquired weakness. Also early 

mobilization, which requires minimizing sedation, may 

be promising but several ongoing studies are awaited for 

to further clarify its impact on clinically relevant out-

come measures. Further research is required to design 

new preventive and/or therapeutic strategies that can 

be tested in adequately powered RCTs. Based on ani-

mal studies [103], a first interesting candidate to explore 

could be the infusion of ketone bodies or strategies to 

activate ketogenesis.
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