
ID-Based Encryption for Complex Hierarchies with Applications to

Forward Security and Broadcast Encryption

Danfeng Yao∗ Nelly Fazio† Yevgeniy Dodis † Anna Lysyanskaya∗

Abstract

A forward-secure encryption scheme protects secret keys from exposure by evolving the
keys with time. Forward security has several unique requirements in hierarchical identity-based
encryption (HIBE) scheme: (1) users join dynamically; (2) encryption is joining-time-oblivious;
(3) users evolve secret keys autonomously.
We present a scalable forward-secure HIBE (fs-HIBE) scheme satisfying the above properties.
We also show how our fs-HIBE scheme can be used to construct a forward-secure public-key
broadcast encryption scheme, which protects the secrecy of prior transmissions in the broadcast
encryption setting. We further generalize fs-HIBE into a collusion-resistant multiple hierarchical
ID-based encryption scheme, which can be used for secure communications with entities having
multiple roles in role-based access control. The security of our schemes is based on the bilinear
Diffie-Hellman assumption in the random oracle model.

1 Introduction
The idea of an identity-based encryption (IBE) scheme is that an arbitrary string can serve as
a public key. The main advantage of this approach is to largely reduce the need for public key
certificates and certificate authorities, because a public key is associated with identity information
such as a user’s email address. A first scheme for identity-based encryption (BF-IBE) was based
on the bilinear Diffie-Hellman assumption in the random oracle model by Boneh and Franklin [11].
In IBE schemes private key generator (PKG) is responsible for generating private keys for all users,
and therefore is a performance bottleneck for organizations with large number of users. Hierarchical
identity-based encryption (HIBE) schemes [9, 22, 26] were proposed to alleviate the workload of a
root PKG by delegating private key generation and identity authentication to lower-level PKGs.
In a HIBE scheme, a root PKG needs only to generate private keys for domain-level PKGs, who in
turn generate private keys for users in their domains in the next level. The organization of PKGs
and users forms a hierarchy that is rooted by the root PKG. To encrypt a message, Alice needs to
obtain the public parameters of Bob’s root PKG, and the ID for Bob and for those domain-level
PKGs that are on the path from the root to Bob; there are no lower-level parameters. Gentry and
Silverberg [22] extended BF-IBE scheme and presented a fully scalable hierarchical identity-based
encryption (GS-HIBE) scheme. Later, a HIBE construction with a weaker notion of security was
given by Boneh and Boyen [9]. Most recently, new IBE and HIBE constructions that can be proved
to have the full security without the random oracle model [8, 36] were given.

∗Department of Computer Science, Brown University, Providence, RI 02912, {dyao, anna}@cs.brown.edu.
†Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York,

NY 10012, {fazio, dodis}@cs.nyu.edu

1

Due to the inherent key-escrow property1, the standard notion of HIBE security crucially de-
pends on secret keys remaining secret. Key exposure is a realistic threat over the lifetime of such
a scheme. To mitigate the damage caused by the exposure of secret key information in HIBE, one
way is to construct a forward-secure hierarchical identity-based encryption (fs-HIBE) scheme that
allows each user in the hierarchy to refresh his or her private keys periodically while keeping the
public key the same. A forward-secure public-key encryption scheme has recently been presented by
Canetti, Halevi and Katz [13]. But surprisingly, a practical fs-HIBE scheme has several unique re-
quirements that cannot be achieved by trivial combinations of the existing fs-PKE schemes [13, 27]
and HIBE scheme [9, 22].

Apart from being interesting on its own, fs-HIBE is a useful tool that lends itself to several
applications. One such application is the implementation of forward secrecy for public-key broadcast
encryption. While forward secrecy is an important requirement in any context, it is especially
needed for broadcast encryption [7, 18, 20, 29, 37]. This is because by design an adversary can
freely listen to any broadcast and store it. Then, should the adversary ever succeed in recovering
any user’s secret key, she will manage to decrypt all past broadcasts that such user was authorized
to receive unless we have forward secrecy.

Below, we discuss the notion of forward security for HIBE in more detail, and then explain why
it cannot be trivially achieved by existing techniques such as a combination of fs-PKE [13] and
HIBE [9, 22] schemes.

1.1 Forward Security

The central idea of forward secrecy is that the compromise of long-term keys does not compromise
past session keys and therefore past communications. This notion was first proposed by Günther
[21] and later by Diffie et al. [14] in key exchange protocols. The notion of non-interactive forward
security was proposed by Anderson [3] in 1997 and later formalized by Bellare and Miner [4], who
also gave a forward-secure signature scheme followed by a line of improvement [1, 30]. In this model,
secret keys are updated at regular intervals throughout the lifetime of the system; furthermore,
exposure of a secret key corresponding to a given interval does not enable an adversary to break
the system (in the appropriate sense) for any prior time period. The model inherently cannot
prevent the adversary from breaking the security of the system for any subsequent time period.
Bellare and Yee [6] provided a comprehensive treatment of forward security in the context of private
key based cryptographic primitives.

The first forward-secure public-key encryption (fs-PKE) scheme was given by Canetti, Halevi,
and Katz [13] based on the Gentry-Silverberg HIBE [22] scheme. The fs-PKE scheme constructs
a binary tree, in which a tree node corresponds to a time period and has a secret key. Children
of a node w are labeled w0 and w1, respectively. Given the secrets corresponding to a prefix of
a node representing time t, one can compute the secrets of time t. In order to make future keys
computable from the current key, the secrets associated with a prefix of a future time are stored in
the current key. After the key for the next time period is generated, the current decryption key is
erased. The state-of-the-art fs-PKE scheme [13] is based on the decisional bilinear Diffie-Hellman
assumption [11] in the standard model. Canetti, Halevi and Katz also gave a more efficient scheme
in the random oracle model [13].

1A PKG knows the private keys of its child nodes.

2

1.2 Requirements of an fs-HIBE Scheme

Intuitively, forward security in a HIBE scheme implies that compromise of the current secret key of
a user only leads to the compromise of the user and his descendants’ subsequent communications.
We will give a formal definition of security in Section 2.3. Our design of a forward-secure HIBE
scheme also takes system properties such as scalability and efficiency into consideration. This is
essential in the management of large scale distributed systems. Below, we define the requirements
for a scalable forward-secure HIBE scheme.

• New users should be able to join the hierarchy and receive secret keys from their parent nodes
at any time.

• Encryption is joining-time-oblivious, which means that the encryption does not require knowl-
edge of when a user or any of his ancestors joined the hierarchy. The sender can encrypt the
message as long as he knows the current time and the ID-tuple of the receiver, along with the
public parameters of the system.

• The scheme should be forward-secure.

• Refreshing secret keys can be carried out autonomously, that is, users can refresh their secret
keys on their own to avoid any communication overhead with any PKG.

Surprisingly, the design of an fs-HIBE scheme that fulfils the above system requirements turns
out to be non-trivial, despite the fact that both HIBE [22] scheme and fs-PKE [13] scheme are
known. Intuitive combinations of the two schemes fail to achieve all the desired system features.
Next, we explain why this is the case.

1.3 Some Forward-Secure HIBE Attempts

In this section, we make three simple forward-secure HIBE constructions based on HIBE scheme
[22] and fs-PKE scheme [13], and explain why these naive schemes do not satisfy the requirements
of a practical fs-HIBE scheme.

1.3.1 Scheme I

Consider a scheme based on the HIBE [22] scheme. The user with a given ID tuple (ID1, . . . , IDh)
maintains two sub-hierarchies (subtrees): the time subtree that evolves over time for forward
security (as in fs-PKE [13]), and the ID subtree to which other nodes are added as children join the
hierarchy. To encrypt a message for this user at time t, use the HIBE with identity (ID1, . . . , IDh, t).
The user can decrypt this message using HIBE decryption, using the fact that he knows the key
from the time subtree. The user’s children are added to the hierarchy into the ID subtree.

The problem with this scheme is combining dynamic joins with forward security. Suppose a
user never erases the secret key corresponding to the root of his ID subtree. Then should this key
ever be exposed, the forward secrecy of his children is compromised. On the other hand, if this
secret key is ever erased, then no nodes can be added as children of (ID1, . . . , IDh) in the hierarchy,
and so this scheme will not support dynamic joins.

The lesson we learn from this failed scheme is that all keys must be evolved together.

1.3.2 Scheme II

Let us try to repair Scheme I by making sure that the key from which children’s keys are derived
is also evolving over time. In Scheme II, the public key of a user consists of alternating ID-tuples

3

and time strings, which is referred to as an ID-time-tuple. The private key of a user serves three
purposes: decryption, generating private keys for new children, and deriving future private keys
of the user. The public key of a newly joined child is the parent’s ID-time-tuple appended with
the child’s ID. That key is in turn used for generating keys for lower-level nodes further down the
hierarchy. For example, if Alice joins Bob, the root, at time (January, Week 1) and Eve joins Alice
at time (January, Week 2), Eve’s public key is (Bob, January, Week 1, Alice, January, Week 2,
Eve). Encrypting a message to Eve requires the sender to know when Eve and all her ancestors
joined the system. Therefore Scheme II is not joining-time-oblivious.

The lesson we learn from the failed Scheme II is that the keys must evolve in a way that is
transparent to the encryption algorithm.

1.3.3 Scheme III

In our final unsuccessful attempt, Scheme III, a user adds a child to the hierarchy by giving him or
her secret keys that depend both on the current time and on the child’s position in the hierarchy.
This is achieved by requiring that messages may only be decrypted by those who know two keys: one
corresponding to the current time and the other corresponding to their positions in the hierarchy.
Each user autonomously evolves his time key, and gives his newly joined children his time key in
addition to their ID keys.

It is easy to see that this scheme is not forward-secure. An adversary who joins the hierarchy at
the beginning of time can corrupt a user at any future time and obtain his or her ID key. Moreover,
this adversary can derive any past time key (because he joined at the beginning of time). Thus,
this adversary may decrypt any past message addressed to the exposed user.

For the same reason, the multiple hierarchical identity-based encryption (MHIBE) scheme gen-
eralized from Scheme III is not collusion-resistant, where the ciphertext for a user with multiple
identities can be decrypted if some other individuals collude. MHIBE scheme is useful for secure
communications with entities having multiple identities, and is described in Section 1.4.3 and 5.

1.3.4 Comparisons

All the above trivial approaches fail. Therefore, constructing a forward-secure hierarchical ID-based
encryption scheme that is both secure and scalable is not so straightforward. Our implementation,
which is described in next Section, is still based on GS-HIBE [22] scheme and fs-PKE [13] scheme.
Yet, it overcomes the problems existing in naive combinations of the two schemes, and satisfies
the requirements of supporting dynamic joins, joining-time-obliviousness, forward security, and
autonomous key updates.

1.4 Our Contributions

We make several contributions in this paper. First, we present a scalable and joining-time-oblivious
forward-secure hierarchical identity-based encryption scheme that allows keys to be updated au-
tonomously. Second, we show how our fs-HIBE scheme can be used to obtain a forward-secure
public-key broadcast encryption (fs-BE) scheme. Third, we generalize our fs-HIBE scheme and
discuss its application in secure communications with entities having multiple roles in role-based
access control (RBAC) [33].

4

Figure 1: A schematic drawing of keys for ID-
tuple (Hospital, ER, Doctor, Bob) at time period
(2004, January, Week 1) in a forward-secure HIBE
scheme. The ID-tuple (Hospital, ER, Doctor, Bob)
of Bob is on x-axis. The tuple representing time
period (2004, January, Week 1) is on y-axis. The
origin represents the root identity (Hospital) and
the highest-level time period (2004). The dark
node represents Bob’s key at Week 1. The grey
nodes correspond to keys of Bob’s ancestors at
Week 1. Each white node represents an inter-
mediate key. Secret keys at both the grey and
white nodes can be used to compute private keys
for Bob.

Week 1

January

2004

BobHospital DoctorER

1.4.1 Forward-Secure HIBE Scheme

Our fs-HIBE protocol is based on the HIBE scheme by Gentry and Silverberg [22] and forward-
secure public-key encryption (fs-PKE) [13] scheme due to Canetti, Halevi and Katz. It satisfies the
requirements of dynamic joins, joining-time-obliviousness, forward security, and autonomous key
updates.

A HIBE scheme involves only one hierarchy, whereas an fs-HIBE scheme has two hierarchies:
ID and time. Each (ID-tuple, time) pair can be thought of as a point on the two-dimensional grid
as follows. On the x-axis, we start with the identity of the root Public Key Generator in the ID
hierarchy (e.g. Hospital), then in position (1,0) we have the identity of the first-level PKG (e.g.
ER). In position (2,0) there is the identity of the second level PKG (e.g. Doctor), and in position
(3,0) there may be another PKG or an individual user (e.g. Bob). Thus the x-axis represents
an ID-tuple, for example (Hospital, ER, Doctor, Bob). Similarly, the y-axis represents the time.
Divide a duration of time into multiple time periods and arrange them as leaf nodes of a tree.
Internal nodes of the tree represent the time spans associated with their child nodes. Then, the
origin of the grid corresponds to the root of the time hierarchy (e.g. 2004). In position (0, 1) we
have the first level of the time hierarchy (e.g. January), and in position (0, 2) there is the next
level of time hierarchy (e.g. Week 1). Thus a time period can be expressed as a tuple on the y-axis,
for example (2004, January, Week 1). Figure 1 gives a schematic drawing of the correspondence
between the tuples and keys in fs-HIBE.

In an fs-HIBE scheme, the secret key of an (ID-tuple, time) pair is associated with some path
on the grid. For each grid point on that path, there is a corresponding element in this secret key.
Such a path (secret key) is not joining-time-oblivious: it depends on when the user, as well as the
nodes higher up, join the system. However, when encrypting, the sender does not have to know the
path. What is non-trivial here is that, the path (secret key) and ciphertext of our fs-HIBE scheme
are designed in such a way that we do not need to come up with a separate ciphertext for each
possible path in order to achieve joining-time-obliviousness.

Our fs-HIBE scheme has collusion resistance and chosen ciphertext security in the random oracle
model [5] assuming the difficulty of the bilinear Diffie-Hellman problem [11, 13, 22], provided that
the depths of the ID hierarchy and time hierarchy are bounded by constants. The formal definitions
and proofs of the scheme are given in the paper. The complexities of various parameters in our
fs-HIBE scheme are summarized in Table 1 and are discussed in Section 6.

5

1.4.2 Forward-Secure Broadcast Encryption Scheme

We show how our fs-HIBE scheme can be used to construct a scalable forward-secure public-key
broadcast encryption (fs-BE) scheme, which protects the secrecy of prior transmissions. A broadcast
encryption (BE) [15, 16, 23, 24, 28, 31, 32, 35] scheme allows content providers to securely distribute
digital contents to a dynamically changing user population. Each active user is issued a distinct
secret key when he joins the system, by a trusted center. In comparison with the symmetric-key
setting, a public-key BE scheme of [15] has a single public key associated with the system, which
allows the distribution of the broadcast workload to untrusted third parties.

In a scalable forward-secure public-key broadcast encryption (fs-BE) scheme, users should be
able to update their secret keys autonomously, and the trusted center should allow users to dynam-
ically join the broadcast system at any time while achieving forward security. In addition, each
content provider does not need to know when each user joins the system in order to broadcast
the encrypted contents. The encryption algorithm of an fs-BE scheme should only depend on the
current time and the set of authorized users, and thus be joining-time-oblivious. Applying our
fs-HIBE to the public-key BE scheme [15] yields such an fs-BE scheme.

1.4.3 Multiple Hierarchical ID-Based Encryption

We further generalize our forward-secure hierarchical ID-based encryption scheme into a collusion-
resistant multiple hierarchical identity-based encryption (MHIBE) scheme, and describe its ap-
plication in secure communications with individuals who have multiple roles in role-based access
control (RBAC) [33]. In large-scale organizations, a user may own multiple identities, each of which
is represented by an ID-tuple. In MHIBE, a message can be encrypted under multiple ID-tuples
(identities) and can be decrypted only by those who have all the required identities. The collusion-
resistant property cannot be achieved using separate HIBE schemes. We note that the fs-HIBE
scheme is a special case of our MHIBE scheme, in that in fs-HIBE scheme, time can be viewed
as another identity of a user. Therefore the identities in MHIBE scheme capture a broad sense of
meaning.

1.5 Outline of the Paper

The rest of the paper is organized as follows. In Section 2 we give definitions for fs-HIBE scheme
and its security. In Section 3, we first recall the bilinear Diffie-Hellman assumption [11], and then
give the construction of an fs-HIBE scheme and analyze the security. In Section 4, we show how an
fs-HIBE scheme can be used to add forward secrecy to a public-key broadcast encryption scheme.
In Section 5, we describe the multiple hierarchical ID-based encryption scheme. The complexity
analysis is given in Section 6. Section 7 is the conclusion.

2 Forward-secure HIBE (fs-HIBE)
This section defines the notion of forward secrecy for HIBE scheme and the related security.

In an fs-HIBE scheme, secret keys associated with an ID-tuple are evolved with time. At any
time period i an entity joins the system (hierarchy), its parent node computes its decryption key
corresponding to time period i and other values necessary for the entity to compute its own future
secret keys. Once the newly joined entity receives this secret information, at the end of each period
it updates its secret key and erases the old key. During time period i, a message is encrypted under
an ID-tuple and the time i. Decryption requires the secret key of the ID-tuple at time i.

6

2.1 Notations

Time Period: As usual in forward-secure public-key encryption [13] scheme, we assume for sim-
plicity that the total number of time periods N is a power of 2; that is N = 2l.
ID-tuple: An entity has a position in the hierarchy, defined by its tuple of IDs: (ID1, . . . , IDh).
The entity’s ancestors in the hierarchy are the users / PKGs whose ID-tuples are {(ID1, . . . , IDi) :
1 ≤ i < h}. ID1 is the ID for the root PKG.

Keys: There are two types of keys: skw,(ID1,...,IDh) and SKi,(ID1,...,IDh). The node key skw,(ID1,...,IDh)

is the key associated with some prefix w of the bit representation of a time period i and a
tuple (ID1, . . . , IDh). SKi,(ID1,...,IDh) denotes the key associated with time i and an ID-tuple
(ID1, . . . , IDh). It consists of sk keys as follows: SKi,(ID1,...,IDh) = {ski,(ID1,...,IDh), skw1,(ID1,...,IDh) :
w0 is a prefix of i}. When this causes no confusion, we denote the keys as skw,h and SKi,h, respec-
tively.

2.2 fs-HIBE: Syntax

Forward-secure Hierarchical ID-Based Encryption (fs-HIBE) scheme: an fs-HIBE scheme
is specified by five algorithms: Root Setup, Lower-level Setup, Update, Encrypt, and

Decrypt:
Root Setup: The root PKG takes a security parameter k and the total number of time periods N ,
and returns params (system parameters) and the initial root key SK0,1. The system parameters
include a description of the message space M and the ciphertext space C. The system parameters
will be publicly available, while only the root PKG knows the initial root key.
Lower-level Setup: This algorithm is run by the parent of a newly joined child at time i to
compute the child’s private key. During a time period i, a lower-level entity (user or lower-level
PKG) joins in the system at level h. Its parent at level h − 1 computes the entity’s key SKi,h

associated with time period i. The inputs are the parent’s private key SKi,h−1, time i, and the
ID-tuple of the child. (Note that the functionality of our Lower-level Setup includes the
functionality of both the Lower-level Setup and the Extraction algorithm in the HIBE [22]
scheme. This simplifies the protocol without any loss of generality.)
Update: During the time period i, an entity (PKG or individual) with ID-tuple (ID1, . . . , IDh)
uses SKi,h to compute his key SK(i+1),h for the next time period i + 1, and erases SKi,h.
Encrypt: A sender inputs params, the index i of the current time period, M ∈ M and the
ID-tuple of the intended message recipient, and computes a ciphertext C ∈ C.
Decrypt: During the time period i, a user with the ID-tuple (ID1, . . . , IDh) inputs params,
C ∈ C, and its secret key SKi,h associated with time period i and the ID-tuple, and returns the
message M ∈M.
Encryption and decryption must satisfy the standard consistency constraint, namely when SKi,h is
the secret key generated by algorithm Lower-level Setup for ID-tuple (ID1, . . . , IDh) and time
period i, then: ∀M ∈M,

Decrypt(params, SKi,h, C) = M, where C ← Encrypt(params, i, (ID1, . . . , IDh),M)

2.3 fs-HIBE: Security

We allow an attacker to make lower-level setup queries. Also, we allow the adversary to choose the
time period and the identity on which it wishes to be challenged. Notice that an adversary may
choose the time period and the identity of its targets adaptively or nonadaptively. An adversary

7

that chooses its targets adaptively first makes lower-level setup queries and decryption queries, and
then chooses its targets based on the results of these queries. A nonadaptive adversary, on the
other hand, chooses its targets independently from the results of the queries he makes. Security
against an adaptive-chosen-target adversary, which is captured below, is the stronger notion of
security than the non-adaptive one. It is also stronger than the selective-node security defined in
the fs-PKE scheme by Canetti et al. [13].
Chosen-ciphertext Security (CCA2): We say an fs-HIBE scheme is semantically secure against
adaptive chosen ciphertext, time period, and identity attack, if no polynomial time bounded ad-
versary A has a non-negligible advantage against the challenger in the following game.

Setup: The challenger takes a security parameter k, and runs the Root Setup algorithm. It
gives the adversary the resulting system parameters params. It keeps the root secrets to itself.
Phase 1: The adversary issues queries q1, . . . , qm, where qi is one of the followings2:

1. Lower-level setup query (ti, ID-tuplei): the challenger runs the lower-level setup algo-
rithm to generate the private key SK(ti, ID-tuplei)

corresponding to
(ti, ID-tuplei), and sends SK(ti,ID-tuplei)

to the adversary.

2. Decryption query (ti, ID-tuplei, Ci): the challenger runs the lower-level setup algorithm
to generate the private key SK(ti,ID-tuplei)

corresponding to the pair (ti, ID-tuplei), runs the
Decryption algorithm to decrypt Ci using SK(ti,ID-tuplei)

, and sends the resulting plaintext to
the adversary.

These queries may be asked adaptively. Also, the queried ID-tuplei may correspond to a position
at any level in the ID hierarchy, and the adversary is allowed to query for a future time and then
for a past time.
Challenge: Once the adversary decides that Phase 1 is over, it outputs two equal length plaintexts
M0,M1 ∈M, a time period t∗ and an ID-tuple∗ on which it wishes to be challenged. The constraint
is that no lower-level setup query has been issued for ID-tuple∗ or any of its ancestors for any time
t ≤ t∗.

The challenger picks a random bit b ∈ {0, 1}, and sets C∗ = Encrypt(params, t∗, ID-tuple∗,Mb).
It sends C∗ as a challenge to the adversary.
Phase 2: The adversary issues more queries qm+1, . . . , qn, where qi is one of3:

1. Lower-level setup query (ti, ID-tuplei), where the time period ti and ID-tuplei are under the
same restriction as in Challenge: the challenger responds as in Phase 1.

2. Decryption query (ti, ID-tuplei, Ci) 6= (t∗, ID-tuple∗, C∗): the challenger responds as in Phase 1.

Guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′. We
define its advantage in attacking the scheme to be |Pr[b = b′]− 1

2 |.

3 A Forward-secure HIBE Scheme
Here, we present a forward-secure hierarchical identity-based encryption scheme. Following the
presentation standard in the IBE literature [11, 22], we first present an fs-HIBE with one-way
security. One-way security is the weakest notion of security. It means that it is hard to recover a

2In the random oracle model, the adversary may also issue public key queries. Public key query (ti, ID-tuplei):
challenger runs a hash algorithm on (ti, ID-tuplei) to obtain the public key H(ti ◦ ID-tuplei) corresponding to
(ti, ID-tuplei), where H is a random oracle.

3In the random oracle model, the adversary may also issue public key query. Public key query (ti, ID-tuplei): the
challenger responds as in Phase 1.

8

plaintext with a passive attack. A standard technique, due to Fujisaki and Okamoto [19], converts
one-way security to CCA2 security in the random oracle model. For completeness, we give our
definition of one-way security in the Appendix B, and the Fujisaki-Okamoto conversion of the one-
way secure fs-HIBE in the Appendix C. Our scheme, which is based on the HIBE scheme of Gentry
and Silverberg [22] and the fs-PKE scheme of Canetti, Halevi and Katz [13, 27], overcomes the
scalability and security problems that exist when naively combining the two schemes as described
in Section 1.3. Next, we first give the number theoretic assumptions needed in our scheme, and
then describe the algorithms in our construction. Proofs of security of our fs-HIBE scheme are
shown in the Appendix D.

3.1 Assumptions

The security of our fs-HIBE scheme is based on the difficulty of the bilinear Diffie-Hellman (BDH)
problem [11]. Let G1 and G2 be two cyclic groups of some large prime order q. We write G1

additively and G2 multiplicatively. Our schemes make use of a bilinear pairing.
Admissible pairings: Following Boneh and Franklin [11], we call ê an admissible pairing if
ê : G1 ×G1 → G2 is a map with the following properties:

1. Bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in G1 ×G1 to the identity in G2.

3. Computable: There is an efficient algorithm to compute ê(P,Q) for any P,Q ∈ G1.

We refer the readers to papers by Boneh and Franklin [11] and Boneh and Silverberg [12] for
examples and discussions of groups that admit such pairings.
Bilinear Diffie-Hellman (BDH) Parameter Generator: As in IBE [11] scheme, a randomized
algorithm IG is a BDH parameter generator if IG takes a security parameter k > 0, runs in time
polynomial in k, and outputs the description of two groups G1 and G2 of the same prime order q
and the description of an admissible paring ê : G1 ×G1 → G2.
BDH Problem: As in IBE [11] scheme, given a randomly chosen P ∈ G1, as well as aP, bP, and
cP (for unknown randomly chosen a, b, c ∈ Zq), compute ê(P,P)abc.

For the BDH problem to be hard, G1 and G2 must be chosen so that there is no known algorithm
for efficiently solving the Diffie-Hellman problem in either G1 or G2. Note that if the BDH problem
is hard for a paring ê, then it follows that ê is non-degenerate.
BDH Assumption: As in IBE [11] scheme, we say a BDH parameter generator IG satisfies the
BDH assumption if the following is negligible in k for all PPT algorithm A:

Pr[(G1, G2, ê)← IG(1
k);P ← G1; a, b, c← Zq : A(G1, G2, ê, P, aP, bP, cP) = ê(P,P)abc]

3.2 fs-HIBE: Implementation

For simplicity of description, our fs-HIBE construction makes use of a version of fs-PKE scheme
due to Katz [27]. In Katz’s scheme, time periods are associated with the leaf nodes of a binary tree
(Rather than with all tree nodes as in the scheme by Canetti et al. [13]. Our fs-HIBE scheme can
also be realized based on the fs-PKE scheme by Canetti et al., which will give faster key update
time. The complexity discussion of our scheme is in Section 6).

We construct a full binary tree of height l, as in Katz’s scheme [27]. The root of this tree is
labeled ǫ; all other nodes are recursively labeled as follows: if the label of a node is w, then its left
child is labeled w0, and its right child is labeled w1. This way, for each time period i ∈ {0, N − 1},
there is a leaf labeled with the binary representation of i. Following the fs-PKE scheme [13], we

9

denote the k-bit prefix of a word w = w1w2 . . . wd by w|k, that is, w|k = w1 . . . wk for k ≤ d. The
word w is of length d, i.e. |w| = d. Let w|0 = ǫ and w = w|d.

At the beginning of time, public parameters are generated. At time t, the entity at level h with
ID-tuple (ID1, . . . , IDh) holds a secret key SKt,(ID1,...,IDh). Recall that we denote key SKt,(ID1,...,IDh)

as SKt,h when this causes no confusion. SKt,h consists of (skt,h, {skw,h}), where w are all the labels
of the right sibling, if one exists, of each ancestor of the node labeled t in the complete binary tree.
skw,h are also called node keys. At the beginning of time, as public parameters are generated, the
values sk0,1 and sk1,1 are created by the root PKG, whose ID is ID1. Each skw,h, where w is any
string, can be used to compute an skw,u, where u > h, for tuple (ID1, . . . , IDu) who is a descendant
of (ID1, . . . , IDh). The algorithm to use is Lower-Level Setup.

Each skw,h, where w is any string, is also used to compute the value sk(w◦b),h, where b = 0
or 1. They are the child nodes of w on the binary tree. The algorithm for doing so is Compute

Next, which is defined as follows. In Compute Next, an entity (a PKG or a user) with ID-tuple
(ID1, . . . , IDh) uses the value skw,h associated with a node w to compute values sk(w0),h and sk(w1),h

for the two child nodes of w. Compute Next is a helper function and is called by the algorithm
Root Setup and Update.

We must delete all information from which skt′,h for t′ < t can be inferred. The algorithm for
computing the keys for the next time period and erasing old keys is Update.

The public parameters, time t, and ID-tuple (ID1, . . . , IDh) are all that a sender needs in order
to send an encrypted message to ID-tuple (ID1, . . . , IDh) at time t using algorithm Encrypt.

The value skt,h is all that the user with tuple (ID1, . . . , IDh) needs in order to decrypt at time
t. The algorithm for doing so is Decrypt.

Let us look at the contents of each skw,h more closely. It has two components Sw,h and Qw,h.
Sw,h is a point in G1, and Qw,h contains a set of Q-values, which will be explained later. If w
represents a leaf on the binary tree, Sw,h and the Q-values in Qw,h together are used for decryption
for ID-tuple (ID1, . . . , IDh) at time w. If w is an internal node on the binary tree, these values are
used for generating future decryption keys.

Computing Sw,h makes use of |w|×h number of secret values sw|k,(ID1,...,IDj), where 1 ≤ k ≤ |w|
and 1 ≤ j ≤ h. The shorthand notation for sw|k,(ID1,...,IDj) is sk,j, when w|k and (ID1, . . . , IDj) are
clear from the context. Given a node w on the binary tree and an ID-tuple (ID1, . . . , IDh), there
is a secret value sk,j for every (time, ID-tuple) combination, where time corresponds to a node
that has some prefix w|k of node w (including w itself and excluding the root node ǫ) and ID-tuple
is some ancestor (ID1, . . . , IDj) of ID-tuple (ID1, . . . , IDh) (including itself). Each sk,j is chosen
randomly from Zq.

Each sk,j is also used for computing Qk,j, which is called a Q-value. For each sk,j there is a
Q-value Qk,j, which is an element in G1. Q-values are used in Decrypt. Qw,h is a set of Q-values.
All sk,j values are erased once Sw,h and Q-values are computed. The construction is shown below.

Construction Let IG be a BDH parameter generator for which the BDH assumption holds.
Root Setup(1k, N = 2l): The root PKG with ID1 does the following:

1. IG is run to generate groups G1, G2 of order q and bilinear map ê.

2. A random generator P ← G1 is selected along with random sǫ ← Zq. Set Q = sǫP .

3. Choose a cryptographic hash function H1 : {0, 1}∗ → G1. Choose a cryptographic hash func-
tion H2 : G2 → {0, 1}

n for some n. The security analysis will treat H1 and H2 as random ora-
cles [5]. The message space isM = {0, 1}n. The ciphertext space is C = G

l×h
1 ×{0, 1}n where h

is the level of the recipient. The system parameters are params = (G1, G2, ê, P,Q,H1,H2).

10

All operations of fs-HIBE are performed under params. The master key is sǫ ∈ Zq.
The root PKG needs to generate not only the sk key associated with the current time pe-
riod 0, but also the sk keys corresponding to the internal nodes on the binary tree whose
bit representations are all 0 except the last bit. The sk key for time 0 is denoted as sk0l,1.
The rest of sk values are used by the root PKG to generate keys for future time periods, and
are represented as {sk1,0, sk(01),1, . . . , sk(0l−11),1}. These values are generated recursively as
follows.

(a) Set the secret point S0,1 to sǫH1(0 ◦ ID1), and S1,1 to sǫH1(1 ◦ ID1).
(b) Set secret key sk0,1 = (S0,1, ∅) and sk1,1 = (S1,1, ∅). Root PKG uses sk0,1 to recur-

sively call algorithm Compute Next (defined below) to generate its secret keys. Let
(skw00,1, skw01,1) = Compute Next(skw0,1, w0, ID1), for all 1 ≤ |w0| ≤ l − 1.

(c) Set the root PKG’s secret key for time period 0 as SK0,1 = (sk0l,1, {sk1,1, sk(01),1, . . . , sk(0l−11),1}),
and erase all other information.

Compute Next(skw,h, w, (ID1 . . . IDh)): This is a helper method and is called by the Root Setup

and Update algorithms. It takes a secret key skw,h, a node w, and an ID-tuple, and outputs keys
sk(w0),h, sk(w1),h for time nodes w0 and w1 of (ID1 . . . IDh). (Note that this is similar to the
Extraction algorithms in the Gentry-Silverberg HIBE and the Derivation algorithm in the
fs-PKE schemes, only here we extract keys corresponding to nodes in the time hierarchy for a given
ID-tuple.)

1. Parse w as w1 . . . wd, where |w| = d. Parse ID-tuple as ID1, . . . , IDh. Parse skw,h associated
with time node w as (Sw,h,Qw,h), where Sw,h ∈ G1 and Qw,h = {Qk,j} for all 1 ≤ k ≤ d and
1 ≤ j ≤ h, except for k = 1 and j = 1.

2. Choose random s(d+1),j ∈ Zq for all 1 ≤ j ≤ h.

3. Set S(w0),h = Sw,h +
∑h

j=1 s(d+1),jH1(w0 ◦ ID1 . . . IDj).

4. Set S(w1),h = Sw,h +
∑h

j=1 s(d+1),jH1(w1 ◦ ID1 . . . IDj).

5. Set Q(d+1),j = s(d+1),jP for all j ∈ [1, h].

6. Set Q(w0),h and Q(w1),h to be the union of Qw,h and Q(d+1),j for all 1 ≤ j ≤ h.

7. Output sk(w0),h = (S(w0),h,Q(w0),h) and sk(w1),h = (S(w1),h,Q(w1),h).

8. Erase s(d+1),j for all 1 ≤ j ≤ h.

Lower-level Setup(SKi,(h−1), i, (ID1 . . . IDh)): Let Eh be an entity that joins the hierarchy
during the time period i < N − 1 with ID-tuple (ID1, . . . , IDh). Eh’s parent generates Eh’s key
SKi,h using its key SKi,(h−1) as follows:

1. Parse i as i1 . . . il where l = log2 N . Parse SKi,(h−1) as (ski,(h−1), {sk(i|k−11),(h−1)}ik=0).

2. For each value skw,(h−1) in SKi,(h−1), Eh’s parent does the following to generate Eh’s key
skw,h:
(a) Parse w as w1 . . . wd, where d ≤ l, and parse the secret key skw,(h−1) as (Sw,(h−1),Qw,(h−1)).
(b) Choose random sk,h ∈ Zq for all 1 ≤ k ≤ d. Recall that sk,j is a shorthand for

sw|k,(ID1...IDj) associated with time node w|k and tuple (ID1 . . . IDj).
(c) Set the child entity Eh’s secret point

Sw,h = Sw,(h−1) +
∑d

k=1 sk,hH1(w|k ◦ ID1 . . . IDh).

11

(d) Set Qk,h = sk,hP for all 1 ≤ k ≤ d. Let Qw,h be the union of Qw,(h−1) and Qk,h for all
1 ≤ k ≤ d.

(e) Set skw,h to be (Sw,h,Qw,h).

3. Eh’s parent sets Eh’s SKi,h = (ski,h, {sk(i|k−11),h}ik=0), and erases all other information.

Update(SKi,h, i + 1, (ID1 . . . IDh)) (where i < N − 1): At the end of time i, an entity (PKG or
individual) with ID-tuple (ID1, . . . , IDh) does the following to compute its private key for time i+1,
as in the fs-PKE scheme [13, 27].

1. Parse i as i1 . . . il, where |i| = l. Parse SKi,h as
(sk(i|l),h, {sk(i|k−11),h}ik=0). Erase ski|l,h.

2. We distinguish two cases. If il = 0, simply output the remaining keys as the key SK(i+1),h for

the next period for ID-tuple (ID1, . . . , IDh). Otherwise, let k̃ be the largest value such that
ik̃ = 0 (such k̃ must exist since i < N − 1). Let i′ = i|k̃−11. Using ski′,h (which is included as
part of SKi,h), recursively apply algorithm Compute Next to generate keys sk(i′0d1),h for

all 0 ≤ d ≤ l − k̃ − 1, and sk
(i′0d−k̃ ,h)

. The key sk
(i′0d−k̃ ,h)

will be used for decryption in the

next time period i + 1; the rest of sk keys are for computing future keys. Erase ski′,h and
output the remaining keys as SK(i+1),h.

Encrypt(i, (ID1, . . . , IDh),M) (where M ∈ {0, 1}n):

1. Parse i as i1 . . . il. Select random r ← Zq.

2. Denote Pk,j = H1(i|k◦ID1 . . . IDj) for all 1 ≤ k ≤ l and 1 ≤ j ≤ h. Output 〈i, (ID1, . . . , IDh), C〉,
where C = (rP, rP2,1, . . . , rPl,1, rP1,2, . . . , rPl,2, . . . , rP1,h, . . . , rPl,h,M⊕H2(ê(Q,H1(i1◦ID1))

r)).

Decrypt(i, (ID1, . . . , IDh), SKi,h, C):

1. Parse i as i1 . . . il. Parse SKi,h associated with the ID-tuple as (ski,h, {sk(i|k−11),h}ik=0) and
the key ski,h as (Si,h,Qi,h). Parse Qi,h as {Qk,j} for all 1 ≤ k ≤ l and 1 ≤ j ≤ h, except for
k = 1 and j = 1.

2. Parse C as (U0, U2,1, . . . , Ul,1, U1,2, . . . , Ul,2, . . . , U1,h, . . . , Ul,h, V).

3. M = V ⊕H2(
ê(U0,Si,h)

g), where g is: Πl
k=1Π

h
j=2ê(Qk,j, Uk,j)Π

l
k=2ê(Qk,1, Uk,1).

Verification of the correctness of our Decrypt algorithm is shown in the Appendix A. In Appendix
C, using Fujisaki-Okamoto padding [19] and the help of random oracles H3 and H4, algorithm
Encrypt and Decrypt can be converted into ones with chosen ciphertext security, as in BF-IBE
[11] and GS-HIBE [22].

Theorem 3.1. Suppose there is a nonadaptive adversary A that has advantage ǫ against the one-
way secure fs-HIBE scheme for some fixed time t and ID-tuple, and that makes qH2

> 0 hash queries
to the hash function H2 and a finite number of lower-level setup queries. If the hash functions H1,
H2 are random oracles, then there is an algorithm B that solves the BDH in groups generated by
IG with advantage (ǫ− 1

2n)/qH2
and running time O(time(A)).

Theorem 3.2. Suppose there is an adaptive adversary A that has advantage ǫ against the one-
way secure fs-HIBE scheme targeting some time and some ID-tuple at level h, and that makes
qH2

> 0 hash queries to the hash function H2 and at most qE > 0 lower-level setup queries. Let
l = log2 N , where N is the total number of time periods. If the hash functions H1, H2 are random
oracles, then there is an algorithm B that solves the BDH in groups generated by IG with advantage
(ǫ(h+l

e(2lqE+h+l))
(h+l)/2 − 1

2n)/qH2
and running time O(time(A)).

The proofs of the theorems are in the Appendix D.

12

4 Application: Forward-Secure Broadcast Encryption
In this section, we show how the fs-HIBE scheme can be used to build a scalable forward-secure
public-key broadcast encryption (fs-BE) scheme which is joining-time-oblivious. In what follows,
N denotes the total number of time periods, E denotes the universe of users and E = |E|.

4.1 fs-BE: Syntax

Forward-Secure Broadcast Encryption (fs-BE): An fs-BE scheme is specified by five poly-
time algorithms KeyGen, Reg, Upd, Enc, Dec:
KeyGen: The key generation algorithm, is a probabilistic algorithm run by the center to set up
the parameters of the scheme. KeyGen takes as input a security parameter k and possibly rmax

(where rmax is a revocation threshold, i.e. the maximum number of users that can be revoked).
The input also includes the total number E of users in the system and the total number of time
periods N . KeyGen generates the public key PK and the initial master secret key MSK0.
Reg: The registration algorithm, is a probabilistic algorithm run by the center to compute the
secret initialization data for a new user. Reg takes as input the master secret key MSKt at time
t, the identity u of the user and the current time period t < N − 1 and outputs the new secret
key USKt,u.
Upd: The key update algorithm, is a deterministic algorithm run by an entity (center or user) to
update its own secret key of time t into a new secret key valid for the following time period t + 1.
For a user, Upd takes as input the public key PK, the identity u of a user, the current time period
t < N − 1, and the user’s secret key USKt,u, and outputs the new user’s secret key USKt+1,u. For
the center, the algorithm takes as input the public key PK, the current time period t < N , and
the key MSKt, and outputs the secret key MSKt+1.
Enc: The encryption algorithm, is a probabilistic algorithm that each content provider can use to
encrypt messages. Enc takes as input the public key PK, a message M , the current time period
t and a set R of revoked users (with |R| ≤ rmax, if a threshold has been specified to the KeyGen

algorithm), and returns the ciphertext C to be broadcast.
Dec: The decryption algorithm, is a deterministic algorithm run by each user to recover the content
from the broadcast. Dec takes as input the public key PK, the identity u of a user, a time period
t < N , the user’s secret key USKt,u and a ciphertext C, and returns a message M .

An fs-BE scheme should satisfy the following correctness constraint: for any pair (PK,MSKt)
output by the algorithm KeyGen(k, rmax, N,E), any t < N , any R ⊆ E , (|R| ≤ rmax), any user
u ∈ E \ R with secret key USKt,u (properly generated for time period t) and any message M , it
should hold that:

M = Dec(PK,u, t,USKt,u,Enc(PK,M, t,R)).

4.2 fs-BE: Security

In fs-BE scheme, if a user leaks his or her secret key and is not revoked by a content provider,
the security of subsequent communications broadcasted by such provider is compromised. As a
matter of fact, the forward security of broadcast encryption schemes guarantees that this is the
only case where unauthorized access to the broadcast content may occur. The advantage of the
adversary is not significantly improved even if she corrupts multiple users at different time periods.
We formalize the security definition of fs-BE below.
Chosen-ciphertext Security: An fs-BE scheme is forward-secure against chosen-ciphertext at-
tack if no polynomial time bounded adversary A has a non-negligible advantage against the chal-
lenger in the following game:

13

Setup: The challenger takes security parameters k, rmax, and runs the KeyGen algorithm, for the
specified number of users E and time periods N . It gives the adversary the resulting system public
key PK and keeps the initial master secret key MSK0 secret to itself.
Phase 1: The adversary issues, in any adaptively-chosen order, queries q1, . . . , qm, where qi is one
of the followings:

1. Corrupt query (u, t): the challenger runs algorithm Reg(MSKt, u, t) to generate the private
key USKt,u corresponding to user u at time t, and sends USKt,u to the adversary.

2. Decryption query (u, t, C): the challenger first runs the Reg(MSKt, u, t) algorithm to recover
private key USKt,u corresponding to user u at time t, and then runs decryption algorithm
Dec(PK,u, t,USKt,u, C) to decrypt C, and sends the resulting plaintext to the adversary.

Challenge: Once the adversary decides that Phase 1 is over, it outputs two equal-length plaintexts
M0,M1 ∈ M, and a time period t∗ on which it wishes to be challenged. The challenger picks a
random bit b ∈ {0, 1}, and set C∗ = Enc(PK,Mb, t

∗,Rt∗), where Rt∗ = {u | A asked a query
Corrupt(u, t), for some t ≤ t∗}. It sends C∗ as a challenge to the adversary.
Phase 2: The adversary issues more queries qm+1, . . . , qn, where qi is one of:

1. Corrupt query (u, t): the challenger first checks that either u ∈ Rt∗ or t > t∗ and if so, it
responds as in Phase 1. Notice that if a bound rmax was specified in KeyGen, then the
adversary is restricted to corrupt at most rmax distinct users via Corrupt queries.

2. Decryption query (u, t, C): the challenger first checks that either C 6= C∗ or u ∈ Rt∗ or t 6= t∗

and if so, it responds as in Phase 1.

Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins the game if b = b′. We define its
advantage in attacking the scheme to be |Pr[b = b′]− 1

2 |.

4.3 fs-BE: A Construction Based on fs-HIBE

Here, we show how our fs-HIBE scheme can be applied to the construction of the public-key
broadcast encryption of [15] to obtain a forward-secure public-key BE scheme. Dodis and Fazio
[15] provided a construction that extends the symmetric-key broadcast encryption scheme of Naor
et al. [31] to the public-key setting, based on any secure HIBE scheme: for ease of reference, we
include it in Appendix E.1. The construction of [15] also applies to the scheme of Halevy and
Shamir [24], that improves upon the work of [31]. The symmetric-key BE scheme of Halevy and
Shamir is an instance of the Subset Cover Framework [31]. The main idea of the framework is to
define a family S of subsets of the universe E of users in the system, and to associate each subset
with a key, which is made available to all the users belonging to the given subset. To broadcast a
message to all the subscribers except those in some set R, a content provider first covers the set of
privileged users using subsets from the family S. This is done by identifying a partition of E \ R,
where all the subsets are elements of S. Then, the provider encrypts the message for all the subsets
in that partition. To decrypt, a user u /∈ R first identifies the subset in the partition of E \ R to
which he belongs, and then recovers the corresponding secret keys from his secret information.

In the public-key BE scheme [15], the subsets containing a given user are organized into groups,
and a special secret key, protokey, is associated with each of these groups. A user only needs to
store these protokeys, from which he can derive the actual decryption keys corresponding to all the
subsets in the group. Such an organization of the subsets of the family S produces a hierarchy, in
which the leaves are elements of S and each internal node corresponds to a group of subsets. Using
HIBE, a secret key can be associated with each internal node in the hierarchy, and constitutes the
protokey for the group corresponding to that internal node.

14

In order to add forward secrecy in the public-key BE scheme, we essentially apply the fs-HIBE
scheme to the above hierarchy. In fs-BE scheme, a protokey is associated with not only a node in
the hierarchy, but also with a time period t. In the KeyGen operation, the center runs the Root

Setup algorithm of fs-HIBE to compute its master secret SK0,1. This key evolves with time, and is
used by the center to compute protokeys for users. In the Reg operation, a user joins the broadcast
at some time t, and the center uses its current master secret key SKt,1 to derive protokeys for the
user by running the Lower-level Setup of fs-HIBE. The center and users evolve their secret
keys with time autonomously by calling the Update algorithm of fs-HIBE. In the Enc algorithm,
a content provider uses the Encrypt algorithm of fs-HIBE to encrypt the message not only with
respect to the nodes in the hierarchy that represents the subsets in the partition of E \ R, but
also to the current time t. In the Dec operation, the user first runs the Lower-Level Setup

algorithm of fs-HIBE to derive the current secret keys from his protokey at time t. These secret
keys are used for decryption. The construction of our fs-BE scheme is given in Appendix E. We
analyze the complexity of fs-BE operations in Section 6.

5 Multiple Hierarchical Identity-Based Encryption Scheme
ID-based cryptographic schemes have been used in complex access control scenarios [25, 34]. In this
paper, we generalize the fs-HIBE into a collusion resistant multiple hierarchical ID-based encryption
(MHIBE) scheme, where a message can be encrypted under multiple ID-tuples. The applications
of MHIBE scheme include secure communications with users having multiple identities.

Motivations for MHIBE In role-based access control systems (RBAC) [33], individuals are
assigned roles according to their qualifications, and access decisions are based on roles. The use of
roles to control access is proven to be an effective means for streamlining the security management
process [33]. Communications to a specific role may need to be protected so that messages can
be read only by members of that role. This can be done using a shared key approach, which can
be realized by an HIBE scheme. Members of a role are given a secret group key that is used for
decrypting messages encrypted with the group public key of that role, which is an ID-tuple in HIBE.
For example, the public key of the role doctor in the Emergency Room at a hospital is the ID-
tuple (Hospital, ER, doctor), and members of the role doctor are given the corresponding private
key in HIBE. The hierarchical structure of public keys in HIBE makes it particularly suitable
for managing role communications in large organizations. This group key approach is efficient
and scalable compared to encrypting the message with individual recipients’ personal public keys,
because a message is encrypted only once (under the public key of the role).

A user may have multiple roles. Some messages are intended to be read only by those who have
multiple roles, and should not be recovered by collusions among role members. For example, the
intended message recipients are those who must take on both role doctor in ER and role research
manager at the affiliated medical school of the hospital. In healthcare systems, medical data such
as patient records are extremely sensitive, therefore, achieving this type of secure communications
is important. However, the GS-HIBE [22] scheme provides cryptographic operations only if the
message is encrypted under one identity (ID-tuple). It cannot be used for communications to an
intersection of identities. Note that the Dual-Identity-Based Encryption scheme by Gentry and
Silverberg [22] is different from what we want to achieve here. The word “dual” in their scheme
[22] refers that the identities of both the sender and the recipient, rather than just the recipient,
are required as input into the encryption and decryption algorithms.

To solve the problem of secure communications to members having multiple roles, we develop a

15

multiple hierarchical identity-based encryption (MHIBE) scheme, where encryption is under mul-
tiple ID-tuples. In addition, it can be used for authenticating multiple hierarchical identities in the
hidden credential protocol [25], where the success of authentication of identities is implied if one
can correctly decrypt the message encrypted with the required identities of the intended recipi-
ents. What makes the problem interesting is that the intersection of identities is different from the
union of identities, which implies that a proper scheme should be collusion-resistant: secure even
if adversaries with partial roles collude. In other words, it requires that compromising the private
keys of individual identities does not compromise the messages encrypted with the intersection of
identities. This property cannot be achieved by the broken Scheme III described in Section 1.3,
where two separate HIBE schemes are used, as it is not collusion-resistant.

Next we use an example to describe the MHIBE scheme, including key acquisition, encryption,
and the properties of MHIBE implementation generalized from our fs-HIBE scheme.

5.1 Identity-set and Joining-path-obliviousness

In MHIBE, we define an identity-set as the set of identities that a user has, each represented as an
ID-tuple. For example, Bob’s identity-set is {(Hospital, ER, Doctor), (Hospital, School, Manager)}.
An ancestor E′ of a node E has the same number of ID-tuples in its identity-set as that of E, and
for each ID-tuple T in the identity-set of E, there is an ID-tuple in the identity-set of E′ such that
it is either the ancestor of T in HIBE or the same as T . In addition, the ancestor E′ of the node
E cannot be E. All ancestors of node E are capable of generating secret keys for E.

In an MHIBE scheme, Bob may obtain his key directly from either of the two ancestor entities.
One is the entity whose identity-set is {(Hospital, ER), (Hospital, School, Manager)}. And the
other has the identity-set {(Hospital, ER, Doctor), (Hospital, School)}. Bob’s parents obtain
their keys from their parents in the same way. The highest-level ancestor in this example is the
hospital and has the identity-set {Hospital, Hospital} (not {Hospital}). The root secret sǫ used for
computing the private key for identity-set {Hospital, Hospital} may be the same as the root secret
used in regular HIBE scheme [22]. The private key is set to sǫH1(Hospital ◦ Hospital). Bob’s key
can be computed only by his ancestors in the MHIBE scheme. An MHIBE scheme needs to be
joining-path-oblivious. This means that encryption should be oblivious of the path from which the
receiver and his ancestors acquire their private keys. Having the receiver’s identity-set is sufficient
to encrypt a message. For example, the sender does not need to know whether Bob obtains his keys
from entity {(Hospital, ER), (Hospital, School, Manager)} or from entity {(Hospital, ER, Doctor),
(Hospital, School)}.

5.2 Properties of Our MHIBE Implementation

Our fs-HIBE scheme naturally gives rise to an MHIBE scheme. In fs-HIBE, a message is encrypted
under both an ID-tuple and the current time. This can be viewed as the encryption under two tuples,
one being the current time. Therefore, the identities in MHIBE scheme capture a broader sense
of meaning. The MHIBE scheme generalized from our fs-HIBE scheme supports dynamic joins
and joining-path-oblivious encryption. More importantly, it is collusion-resistant, which cannot
be achieved by using multiple separate HIBE [22] schemes. In our MHIBE implementation, a
message encrypted under {(Hospital, ER, Doctor), (Hospital, School, Manager)} or {(Hospital,
School, Manager), (Hospital, ER, Doctor)} requires different decryption keys. We note that in this
scheme, the fact that a user holds the private key corresponding to multiple identities does not
imply that he or she has the private key to any subset of identities.

We omit the details of MHIBE scheme (definition of security, description of scheme, and proof

16

of security), as this is a direct generalization of fs-HIBE scheme. The complexities of various
parameters of our MHIBE scheme are shown in Table 1 in Section 6.

6 Discussions
We analyze the complexity of our fs-HIBE scheme, the generalized MHIBE scheme, and the fs-
BE scheme in Table 1 showing running time complexities and key sizes. Key generation time of
fs-HIBE and MHIBE is the time to generate secret keys for a child node by the parent. Key
generation time of fs-BE scheme is the running time of Reg algorithm. In our fs-HIBE scheme,
the time periods correspond to leaf nodes of a binary tree, and the key update time is O(h log N),
where N is the total number of time periods and h is the length of an ID-tuple. Because of the
node arrangement, the key generation time and key update time of our fs-HIBE scheme grows
logarithmically with the total number of time periods N . Faster key update time (O(h)) can be
achieved, if the time periods are associated with all the nodes of the tree in a pre-order traversal,
as in the fs-PKE scheme by Canetti et al. [13]. Because the realization of such an fs-HIBE scheme
can be easily derived from the construction in Section 3.2, it is omitted in this paper. We show the
optimized running time in Table 1.

Even dropping the joining-time-obliviousness requirement (as in the naive Scheme II of Section
1.3), our implementation cannot achieve a ciphertext with linear length O(h+log N). It remains an
interesting open question whether a general fs-HIBE scheme with linear complexity can be realized.

Parameters fs-HIBE MHIBE fs-BE

Key generation time O(h log N) O(hm) O(log3 E log N)
Encryption time O(h log N) O(hm) O(r log E log N)
Decryption time O(h log N) O(hm) O(r + log E log N))

Key update time O(h) N/A O(log3 E)
Ciphertext length O(h log N) O(hm) O(r log E log N)
Public key size O(h + log N) O(hm) O(r log E + log N)
Secret key size O(h log N) O(hm) O(log3 E log N)

Table 1: Dependency of parameters of our fs-HIBE, MHIBE, and fs-BE schemes on the total number
N of time periods, the length h of an ID-tuple, the number m of ID-tuples in an identity-set in
MHIBE, the total number E of fs-BE users and the number r of actual revoked users in fs-BE
scheme. Key generation time of fs-HIBE and MHIBE is the time to generate secret keys for a child
node by the parent. Key generation time of fs-BE scheme is the running time of Reg algorithm.

7 Conclusion
The Multiple Hierarchical Identity-Based Encryption (MHIBE) scheme is an ID-Based encryption
scheme for complex hierarchies. The generalization of a collusion-resistant MHIBE scheme from
the Hierarchical Identity-Based Encryption (HIBE) scheme is significant, because MHIBE scheme
conveniently lends itself to a wide range of applications that cannot be accomplished using HIBE
schemes. To demonstrate this, we presented in detail a forward-secure HIBE scheme and a forward-
secure Broadcast Encryption scheme. We also described the application of MHIBE in the access
control paradigm. The forward-secure applications derived from our MHIBE scheme are joining-
time-oblivious and support dynamic joins, which make them scalable.

17

8 Acknowledgements
We are grateful to Shai Halevi and Jonathan Katz for helpful discussions. The first author is
thankful to Seth Proctor at Sun Microsystems Lab for his helpful comments.

References
[1] M. Abdalla, S. K. Miner, and C. Namprempre. Forward-secure threshold signature schemes.

In Topics in Cryptography — CT-RSA ’01, volume 2020 of LNCS, pages 441–456. Springer-
Verlag, 2001.

[2] J. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Advances
in Cryptology — Eurocrypt ’02, volume 2332 of LNCS, pages 83–107. Springer-Verlag, 2002.

[3] R. Anderson. Two remarks on public-key cryptology. Invited lecture, 4th ACM Conference
on Computer and Communications Security, 1997. Available at http://www.cl.cam.ac.uk/

ftp/users/rja14/.

[4] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In Advances in
Cryptology — Crypto ’99, volume 1666 of LNCS, pages 431–448. Springer-Verlag, 1999.

[5] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient
protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM, 1993.

[6] M. Bellare and B. Yee. Forward security in private-key cryptography. In CT-RSA, volume
2612 of LNCS, pages 1–18. Springer-Verlag, 2003.

[7] S. Berkovits. How to broadcast a secret. In Advances in Cryptology — Eurocrypt ’91, volume
547 of LNCS, pages 535–541. Springer-Verlag, 1991.

[8] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. To appear
at Crypto ’04. Available at http://eprint.iacr.org/2004/173/.

[9] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption without random
oracles. In Advances in Cryptology — Eurocrypt ’04, volume 3027 of LNCS, pages 223–238.
Springer-Verlag, 2004.

[10] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. Extended
version of [11], http://www.cs.stanford.edu/~dabo/papers/ibe.pdf.

[11] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In Advances
in Cryptology — Crypto ’01, volume 2139 of LNCS, pages 213–229. Springer-Verlag, 2001.

[12] D. Boneh and A. Silverberg. Applications of multilinear forms to cryptography. Contemporary
Mathematics, 324:71–90, 2003.

[13] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In Advances
in Cryptology — Eurocrypt ’03, volume 2656 of LNCS, pages 255–271. Springer-Verlag, 2003.

[14] W. Diffie, P. van Oorschot, and W. Wiener. Authentication and authenticated key exchanges.
In Designs, Codes and Cryptography, volume 2, pages 107–125, 1992.

[15] Y. Dodis and N. Fazio. Public-key broadcast encryption for stateless receivers. In Digital
Rights Management — DRM ’02, volume 2696 of LNCS, pages 61–80. Springer, 2002.

[16] Y. Dodis and N. Fazio. Public-key trace and revoke scheme secure against adaptive chosen
ciphertext attack. In Public Key Cryptography — PKC ’03, volume 2567 of LNCS, pages
100–115. Springer-Verlag, 2003.

18

[17] Y. Dodis and J. Katz. Chosen ciphertext security of multiple encryption. Manuscript. Rump
Session at Crypto 2003, 2003.

[18] A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology — Crypto ’93, volume
773 of LNCS, pages 480–491. Springer-Verlag, 1993.

[19] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Advances in Cryptology — Crypto ’99, volume 1666 of LNCS, pages 537–554.
Springer-Verlag, 1999.

[20] A. Garay, J. Staddon, and A. Wool. Long-lived broadcast encryption. In Advances in Cryp-
tology — Crypto 2000, volume 1880 of LNCS, pages 333–352. Springer-Verlag, 2000.

[21] C. Günther. An identity-based key exchange protocol. In Advances in Cryptology — Eurocrypt
’89, volume 434 of LNCS, pages 29–37. Springer-Verlag, 1989.

[22] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In Advances in Cryptology
— Asiacrypt ’02, volume 2501 of LNCS, pages 548–566. Springer-Verlag, 2002.

[23] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in groups of
low-state devices. In Advances in Cryptology - Crypto ’04, LNCS.

[24] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In Advances in Cryptology
— Crypto ’02, volume 2442 of LNCS, pages 47–60. Springer-Verlag, 2002.

[25] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials. In Proceedings of
the 2nd ACM Workshop on Privacy in the Electronic Society, pages 1–8, October 2003.

[26] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In Advances in
Cryptology — Eurocrypt ’02, volume 2332 of LNCS, pages 466–481. Springer-Verlag, 2002.

[27] J. Katz. A forward-secure public-key encryption scheme. Cryptology ePrint Archive, Report
2002/060, 2002. http://eprint.iacr.org/.

[28] C. Kim, Y. Hwang, and P. Lee. An efficient public key trace and revoke scheme secure against
adaptive chosen ciphertext attack. In Advances in Cryptology — Asiacrypt 2003, volume 2894
of LNCS, pages 359–373. Springer-Verlag, 2003.

[29] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In Advances in
Cryptology — Eurocrypt ’98, volume 1403 of LNCS, pages 512–526. Springer-Verlag, 1998.

[30] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatures with
an unbounded number of time periods. In Advances in Cryptology — Eurocrypt ’02, volume
2332 of LNCS, pages 400–417. Springer-Verlag, 2002.

[31] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless receivers. In
Advances in Cryptology — Crypto ’01, volume 2139 of LNCS, pages 41–62. Springer-Verlag,
2001.

[32] M. Naor and B. Pinkas. Efficient trace and revoke schemes. In Financial Cryptography — FC
’00, volume 1962 of LNCS, pages 1–20. Springer-Verlag, 2000.

[33] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29, Number 2:38–47, 1996.

[34] R. Tamassia, D. Yao, and W. H. Winsborough. Role-based cascaded delegation. In Proceedings
of the ACM Symposium on Access Control Models and Technologies (SACMAT ’04), pages 146
– 155. ACM Press, June 2004.

[35] W. Tzeng and Z. Tzeng. A public-key traitor tracing scheme with revocation using dynamics
shares. In Public Key Cryptography — PKC ’01, volume 1992 of LNCS, pages 207–224.

19

Springer-Verlag, 2001.

[36] B. R. Waters. Efficient identity-based encryption without random oracles. Cryptology ePrint
Archive, Report 2004/180, 2004. http://eprint.iacr.org/.

[37] C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs. In Pro-
ceedings of the ACM SIGCOMM ’98, pages 68 – 79. ACM Press, 1998.

20

A fs-HIBE: Verification of Correctness
We now verify that decryption of fs-HIBE in Section 3.2 is performed correctly. When encrypting,
we have ê(Q,H1(i1 ◦ ID1))

r = ê(P,H1(i1 ◦ ID1))
rsǫ . Recall Ukj = rPkj = rH1(i|k ◦ ID1 . . . IDj).

ê(U0, Si,h)

Πl
k=1Π

h
j=2ê(Qk,j, Uk,j)Π

l
k=2ê(Qk,1, Uk,1)

=
ê(rP, sǫP1,1 +

∑l
k=1

∑h
j=2 sk,jPk,j +

∑l
k=2 sk,1Pk,1)

Πl
k=1Π

h
j=2ê(sk,jP,Uk,j)Π

l
k=2ê(sk,1P,Uk,1)

=
ê(P,P1,1)

rsǫΠl
k=1Π

h
j=2ê(rP, sk,jPk,j)Π

l
k=2ê(rP, sk,1Pk,1)

Πl
k=1Π

h
j=2ê(sk,jP, rPk,j)Π

l
k=2ê(sk,1P, rPk,j)

= ê(P,P1,1)
rsǫ = ê(P,H1(i1 ◦ ID1))

rsǫ

B fs-HIBE: One-way Identity-Based Encryption
As in HIBE [22] schemes, the proof of security of our fs-HIBE system makes use of a weaker notion
of security, which is one-way encryption (OWE). One-way security differs from chosen-ciphertext
security in that decryption queries are not allowed and the challenge is guessing the message, as
opposed to distinguishing ciphertexts of two messages. We say an fs-HIBE scheme is one-way if no
polynomial time adversary has a non-negligible advantage against the challenger in the following
game. (Phase 1 is omitted for nonadaptive adversary.)
Setup: The challenger takes a security parameter k and runs the Root Setup algorithm. It gives
the adversary the resulting system parameters params. It keeps the root keys to itself.
Phase 1: The adversary makes lower-level setup queries as in the Phase 1 of chosen-ciphertext
security in Section 2.34.
Challenge: Once the adversary decides that Phase 1 is over, it outputs a new time period t and
a new ID-tuple on which it wishes to be challenged. The challenger picks a random M ∈ M and
sets C = Encrypt(params, t, ID-tuple,M). It sends C as a challenge to the adversary.
Phase 2: The adversary issues more lower-level setup queries. The restrictions are the same as in
the queries at Phase 2 of chosen-ciphertext security5. The challenger responds as in Phase 1.
Guess: The adversary outputs a guess M ′ ∈ M. The adversary wins the game if M = M ′. We
define the adversary’s advantage in attacking the scheme to be Pr[M = M ′].

C fs-HIBE with CCA2 Security
Fujisaki-Okamoto padding [19] is used to convert the fs-HIBE scheme with one-way security to an
fs-HIBE scheme that is chosen ciphertext secure in the random oracle model as follows. The basic
fs-HIBE scheme refers to the scheme described in Section 3.2.

Root Setup: As in the basic fs-HIBE scheme, but in addition choose hash function H3 : {0, 1}n×
{0, 1}n → Zq and H4 : {0, 1} → {0, 1}n.
Compute Next: As in the basic fs-HIBE scheme.
Lower-level Setup: As in the basic fs-HIBE scheme.
Encrypt(i, (ID1, . . . ,IDh),M): To encrypt M ∈ M with the time i and ID-tuple (ID1, . . . , IDh),
do the following:

4In the random oracle model, the adversary also makes public key queries.
5More public key queries are made in the random oracle model.

21

1. Compute Pk,j = H1(i|k ◦ ID1 . . . IDj), for 1 ≤ k ≤ l, and 1 ≤ k ≤ h;

2. Choose a random σ ∈ {0, 1}n;

3. Set r = H3(σ,M);

4. Set the ciphertext C to be:
(rP, rP2,1, . . . , rPl,1, rP1,2, . . . , rPl,2, . . . rP1,h, . . . , rPl,h, σ ⊕ H2(g

r),M ⊕ H4(σ)) where g =
ê(Q,P1,1) ∈ G2.

Decrypt(i, (ID1, . . . , IDh), C): Let C ∈ C be the ciphertext encrypted using the time i and the
ID-tuple.

1. Parse C as (U0, U2,1, . . . , Ul,1, U1,2, . . . , Ul,2, . . . , U1,h, . . . , Ul,h, V,W).

2. If (U0, U2,1, . . . , Ul,1, U1,2, . . . , Ul,2, . . . , U1,h, . . . , Ul,h) /∈ Gl×h
1 , reject the ciphertext. Decryp-

tion of C proceeds as follows:

(a) Compute V ⊕H2(
ê(U0,Si,h)

g) = σ, where g is: Πl
k=1Π

h
j=2ê(Qk,j, Uk,j)Π

l
k=2ê(Qk,1, Uk,1).

(b) Compute W ⊕H4(σ) = M ;
(c) Set r = H3(σ,M) and test if (U0, U2,1, . . . , Ul,1, U1,2, . . . , Ul,2, . . . , U1,h, . . . , Ul,h, V) is a

basic fs-HIBE encryption of M using r, time i, and (ID1, . . . , IDh); if not, it rejects the
ciphertext;

(d) Output M as the decryption of C.

D fs-HIBE: Proof of Security
The proof of one-way security against nonadaptive chosen time and target adversary is given in
Section D.2. Phase 1 is omitted for the nonadaptive adversary in the one-way security definition.
The proof of one-way security against adaptive chosen-target adversary is given in Section D.3,
which may be converted to a proof of chosen-ciphertext security using similar proof techniques as
shown in IBE [10] scheme. In our proofs, we use similar arguments to the ones in the proofs of
IBE [11] and HIBE [22] scheme to show that the adversary B who uses an fs-HIBE adversary A to
break BasicPub (shown below) does not abort with non-negligible probability.

D.1 BasicPub

To analyze the security of fs-HIBE scheme, we make use of a public-key encryption scheme called
BasicPub [11], which was presented by Boneh and Franklin in the proof of their IBE scheme. Boneh
and Franklin showed that BasicPub is one-way secure in the random oracle model under the BDH
assumption [11]. To show that our fs-HIBE scheme is secure, we give a reduction from breaking
fs-HIBE scheme to BasicPub. We use the techniques of Gentry and Silverberg in the proof of
HIBE [22] scheme.

BasicPub is a public-key encryption scheme, specified by three algorithms: Generate Key,

Encrypt and Decrypt.

Generate Key:

1. Run IG on input k to generate two groups G1, G2 of the same prime order q and a bilinear
map ê : G1 ×G2 → G2. Choose an arbitrary generator P ∈ G1.

2. Pick random sǫ ∈ Zq and set Q = sǫP .

3. Pick a random point P1 ∈ G1.

4. Choose a cryptographic hash function H2 : G2 → {0, 1}
n.

22

The message space is M = {0, 1}n. The ciphertext space is C = G1 × {0, 1}
n. The public key is

(G1, G2, ê, P,Q, P1,H2). The private key is S1 = sǫP1.

Encrypt: To encrypt M ∈M, do the following:

1. Choose a random r ∈ Zq.

2. Set the ciphertext to be: C = (rP,M ⊕H2(g
r)) where g = ê(Q,P1) ∈ G2.

Decrypt: Let C = (U, V) ∈ C be the ciphertext. To decrypt C, compute: V ⊕H2(ê(U,S1)) = M .

D.2 fs-HIBE scheme – Targeting a specific ID-tuple and time period

Lemma D.1. Let H1 be a random oracle from {0, 1}∗ to G1. Let A be a nonadaptive adversary
against the one-way secure fs-HIBE scheme that makes a finite number of lower-level setup queries
and has advantage ǫ against fs-HIBE for some fixed time t0 and ID-tuple0. Then there is an OWE
adversary B that has advantage at least ǫ against BasicPub. Its running time is O(time(A)).

Proof: Let us construct an OWE adversary B that uses A to gain advantage ǫ against BasicPub.
The game between the challenger and the adversary B starts with the challenger first generating a
random public key by running the key generation algorithm of BasicPub. The result is a public key
Kpub = (G1, G2, ê, P,Q, P1,H2), with Q = sǫP , and a private key S1 = sǫP1. The challenger then
picks a random plaintext M ∈M and encrypts M using the encryption algorithm of BasicPub. It
gives Kpub and the resulting ciphertext C = (U, V) to algorithm B. Algorithm B is supposed to
output a guess for M .

Let the ID-tuple0 and time period t0 be the ID-tuple and the time period for which A has an
advantage against fs-HIBE scheme. Then A and B agree to use the ID-tuple and the time period.

Let us first give an overview of what follows. B has essentially two goals to accomplish in order
to succeed in this game. One is to be able to answer H1 queries and lower-level setup queries
made by A, without knowing sǫ or sǫP1. Recall that SKti,hi

denotes the private key associated
with time ti and ID-tuple (ID1 . . . IDhi

). It consists of a series of (skti,hi
, {skw,hi

}) values, each
of which contains an Sw,hi

and Qw,hi
= {Qk,j for all 1 ≤ k ≤ |w| and 1 ≤ j ≤ hi}. A private

key SKti,hi
is valid if the following holds. Each skw,h in SKti,hi

, where w is any string, has

to have the correct distribution, that is, Sw,hi
= Sw,(hi−1) +

∑|w|
k=1 sk,hi

H1(w|k ◦ ID1 . . . IDhi
) =

S(w||w|−1),hi
+

∑hi

j=1 s|w|,jH1(w◦ID1 . . . IDj) =
∑|w|

k=1

∑hi

j=1 sk,jH1(w|k◦ID1 . . . IDj), and Qk,j = sk,jP

for some sk,j ∈ Zq, for all 1 ≤ k ≤ |w| and 1 ≤ j ≤ hi. In the above expression, we let S0,j and
Sk,0 be the identity element in G1, for all j and k. Recall w|k denotes the first k-bit prefix of w,
w1 . . . wk.

The other goal of B in this proof is to convert his challenge ciphertext C into an fs-HIBE
ciphertext C ′, so that it can be correctly decrypted by a private key of associated with the target
t0 and ID-tuple0. Adversary B interacts with A as follows:

Setup: B gives A the fs-HIBE system parameters params = (G1, G2, ê, P,Q,H1,H2). H1 is a
random oracle controlled by B. Let N = 2l be the total number of time periods. The target time
period t0 may be represented as t0,1 . . . t0,l.
H1-queries: At any time, algorithm A can query the random oracle H1. This oracle will be used
to store the Point-tuplei = {Ti,k,j = H1(ti|k ◦ IDi,1 . . . IDi,j) : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}, Secret-tuplei

{si,k,j : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}, and Scalar-tuplei {bi,k,j : 1 ≤ k ≤ l, 1 ≤ j ≤ hi} corresponding
to Time-ID-pairi (ti, (IDi,1 . . . IDi,hi

)). In responding to these queries, algorithm B maintains a list
H list

1 containing tuples of the form (Time-ID-pairi, Point-tuplei, Scalar-tuplei, Secret-tuplei). This
list is initially empty.

23

The time period t0 together with the ID-tuple0 creates a Time-ID-pair, which are denoted as
Time-ID-pair0. Algorithm B adds Time-ID-pair0 with to H list

1 as follows:

1. sets s0,1,1 = 1;

2. picks a random s0,k,j ∈ Zq, for 1 ≤ k ≤ l and 1 ≤ j ≤ h0 except for k = 1 and j = 1;

3. picks a random b0,k,j ∈ Zq, for 1 ≤ k ≤ l and 1 ≤ j ≤ h0;

4. sets T0,1,1 = b0,1,1P1, and T0,k,j = b0,k,jP for 1 ≤ k ≤ l and 1 ≤ j ≤ h0 except for k = 1 and
j = 1.

Algorithm B then puts the followings in H list
1 : ((t0,1, . . . , t0,l), (ID0,1, . . . , ID0,h0

)), (T0,1,1, . . . , T0,1,h,
. . ., T0,l,1, . . . , T0,l,h0

), (b0,1,1, . . . , b0,1,h0
, . . . , b0,l,1, . . . , b0,l,h0

), (s0,1,1, . . . , s0,1,h0
, . . . , s0,l,1, . . . , s0,l,h0

).
Once that is done, A queries H1 about Time-ID-pairi (ti, (IDi,1 . . . IDi,hi

)). Let us first briefly
describe how B answers this query. B has to be ready in case A makes a lower-level setup query for
this Time-ID-pairi. So an appropriate SKti,hi

must be concocted. Recall that SKti,hi
associated

with time ti and ID-tuplei (IDi,1, . . . , IDi,hi
) consists of a series of (skti,hi

, {skw,hi
}) values, each of

which contains an Sw,hi
and Qw,hi

= {Qk,j for all 1 ≤ k ≤ |w| and 1 ≤ j ≤ hi}.
For Time-ID-pairi (ti, (IDi,1 . . . IDi,hi

)), B answers H1 query by computing the point-tuple values
Ti,k,j = H1(ti|k ◦ IDi,1 . . . IDi,j) : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}. B also chooses Scalar-tuplei and Secret-
tuplei for Time-ID-pairi. Scalar-tuplei, {bi,j,k} for all 1 ≤ k ≤ l, 1 ≤ j ≤ hi, is a set of values chosen
from Zq. Secret-tuplei, {si,j,k} for all 1 ≤ k ≤ l, 1 ≤ j ≤ hi, is another set of values chosen from
Zq. si,1,1 = 1 for all i. Some of the values in Scalar-tuplei and Secret-tuplei for Time-ID-pairi are
inherited from some existing Time-ID-pair in H list

1 , and others are freshly generated by B.
At lower-level setup queries B uses these values to generate the key SK for some Time-ID-pair.

With in key SK, the value Sti,hi
is computed as the sum of the products of the values in the

Secret-tuple and Point-tuple. Because of possible overlaps among the Time-ID-pairs, some of the
values in some existing Point-tuple, Scalar-tuple and Secret-tuple associated with Time-ID-pairi

are used for Time-ID-pairi′ , where i′ > i.
In order for B to generate valid S values without knowing sǫ or sǫP1, B does a trick at choosing

one of the T values for Time-ID-pairi, so that this special T has a term with the negative sign that
contains sǫ. These two terms with sǫ are conveniently canceled out with each other when computing
Sti,hi

. B has to be careful at choosing this special T , which contains sǫ with the negative sign, since
only one such T is needed.

However, for a Time-ID-pair (t, (ID1, . . . , IDh)), cancellations may occur twice. This is the case
when the adversary A first queries (t|1, (ID1, . . . , IDh)), where t|1 is the first bit of a time period t.
ThenA queries ((t|1, . . . , t|l), ID1), where l = |t|, followed by the query ((t|1, . . . , t|l), (ID1, . . . , IDh)).
Note that the adversary A may not be able to directly query about t|1, but in order to answer her
(other) queries, B may need to compute the key associated with (t|1, (ID1, . . . , IDh)) as the node
key sk1,h, which is for deriving future secret keys in fs-HIBE. Therefore, B has to handle the case
when the cancellation occurs twice. This is done by choosing a T value that contains a positive sǫ,
and placing it at the position where both cancellations occur.

In order to see if the trick of choosing special T values is necessary for some Time-ID-pairi, B
compares Time-ID-pairi to both the target Time-ID-pair0 and the existing ones in H list

1 as follows.
For each Time-ID-pairg in H list

1 , let v be the maximal such that (ti,1 ◦ IDi,1, . . . , ti,v ◦ IDi,1) =
(tg,1 ◦ IDg,1, . . . , tg,v ◦ IDg,1), where ti,1 denotes the first bit of ti, etc. And let w be the maximal
such that (IDi,1 ◦ ti,1, . . . , IDi,w ◦ ti,1) = (IDg,1 ◦ tg,1, . . . , IDg,w ◦ tg,1). For 1 ≤ k ≤ v and 1 ≤ j ≤ w,
if Ti,v,w is null, set Ti,k,j = Tg,k,j, bi,k,j = bg,k,j, and si,k,j = sg,k,j.

24

Once the above comparison is done, let v be the maximal such that Ti,v,1 is not null (Ti,v,1 is
given a value from the above), and let w be the maximal such that Ti,1,w is not null.

Let x ≤ v be the maximal such that (ti,1 ◦ IDi,1, . . . , ti,x ◦ IDi,1) = (t0,1 ◦ ID0,1, . . . , t0,x ◦ ID0,1),
and y ≤ w be the maximal such that (IDi,1 ◦ ti,1, . . . , IDi,y ◦ ti,1) = (ID0,1 ◦ t0,1, . . . , ID0,y ◦ t0,1).

The purpose of these comparisons is to see if the trick of choosing the special T is needed. The
details are as follows.

1. If 0 < x < v and 0 < y < w and Ti,v,w is null, algorithm B picks a random bi,v,w ∈ Zq, sets
si,v,w = b−1

i,v,w and Ti,v,w = bi,v,wbi,1,1P1.

2. If 0 < v = x < l (implying that Ti,v+1,1 is null), algorithm B picks a random bi,v+1,1 ∈ Zq and
a random si,v+1,1 ∈ Zq, sets Ti,v+1,1 = bi,v+1,1P − s−1

i,v+1,1bi,1,1P1.

3. If 0 < w = y < hi (implying that Ti,1,w+1 is null), algorithm B picks a random bi,1,w+1 ∈ Zq

and a random si,1,w+1 ∈ Zq, sets Ti,1,w+1 = bi,1,w+1P − s−1
i,1,w+1bi,1,1P1.

4. If 1 < v = x < l and 1 < w = y < hi, (implying that Ti,v+1,w+1 is null), algorithm B picks a
random bi,v+1,w+1 ∈ Zq, sets si,v+1,w+1 = b−1

i,v+1,w+1, sets Ti,v+1,w+1 = bi,v+1,w+1bi,1,1P1.

5. For 1 ≤ k ≤ l and 1 ≤ j ≤ hi and Ti,k,j is null, algorithm B picks a random bi,k,j ∈ Zq and a
random si,k,j ∈ Zq except for si,1,1 which is set to 1, and sets Ti,k,j = bi,k,jP .

Algorithm B then puts the following in H list
1 : ((ti,1, . . . , ti,l), (IDi,1, . . . , IDi,hi

)), (Ti,1,1, . . . , Ti,l,hi
),

(bi,1,1, . . . , bi,l,hi
), (si,1,1, . . . , si,l,hi

). B returns (Ti,1,1, . . . , Ti,l,hi
) to A.

Note that Ti,k,j is always chosen uniformly in G1 and is independent of A’s view as required.
Using above methods, B also stores the corresponding tuples that are necessary to compute the

node keys at lower-level setup queries. Recall for time ti and ID-tuplei (ID1, . . . , IDhi
), node keys

are denoted as skw,hi
, where w are all the labels of the right sibling, if one exists, of each ancestor

of the node labeled ti in the complete binary tree. They can also be written as {sk(ti|k−11),hi
}ti,k=0.

For each time node w, B compares (w, ID-tuplei) with existing tuples in H list
1 , the same way as

comparing (ti, ID-tuplei). Node keys together with the decryption key skti,hi
are what B needs to

return in a lower-level setup query. We omit the details of how B prepares for node keys in this
proof, as it is essentially the same as preparing the decryption key shown above.

Lower-Level Setup Queries: At any time, A may make a lower-level setup query on any time
period ti and ID-tuplei, given ti > t0, or ID-tuplei 6= ID-tuple0 and its ancestor. B responds to this
query as follows:

1. Run the above algorithm for responding to H1-queries to obtain the appropriate tuple (Time-
ID-pairi, Point-tuplei, Scalar-tuplei, Secret-tuplei) in H list

1 .

2. Define Si,ti,hi
=

∑l
k=1

∑hi

j=1 si,k,jsǫTi,k,j where
si,1,1 := 1 for all i. B also gives A the corresponding
{Qi,k,j = si,k,jQ : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}.
Let ski,ti,hi

= (Si,ti,hi
,Qi,ti,hi

), where Qi,ti,hi
= {Qi,k,j = si,k,jQ : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}.

ski,ti,hi
is what ID-tuplei needs to decrypt messages at ti.

3. Using similar method for computing ski,ti,hi
, B also computes the node keys {ski,(ti|k−11),hi

}ti|k=0

corresponding to time ti and ID-tuplei. It can be verified that those node keys have the cor-
rect distribution. Using these node keys B can derive keys SK that are associated with any
time t > ti or descendants of ID-tuplei with the correct distribution.

25

We leave to the readers the verification that shows the private key, in particular Sti,hi
for Time-

ID-pairi is computable by B and has the correct distribution. Note that B does not know sǫ nor
sǫP1.

Challenge: At any time, A may request a challenge ciphertext from B on the ID-tuple0 and time
period t0. Let C = (U, V) be the challenge ciphertext given to algorithm B. B sets the fs-HIBE
ciphertext C ′ to be

(b−1
0,1,1U, b−1

0,1,1b0,2,1U, . . . , b−1
0,1,1b0,l,1U,

b−1
0,1,1b0,1,2U, . . . , b−1

0,1,1b0,l,2U,

. . .

b−1
0,1,1b0,1,hU, . . . , b−1

0,1,1b0,l,h0
U, V)

B responds to A with the challenge C ′. Note that C ′ is an fs-HIBE encryption of M under
ID-tuple0 and t0 as required. To verify this, first observe that the decryption key corresponding to
ID-tuple0 and t0 is S′ = sǫT0,1,1 +

∑h0

j=2

∑l
k=1 s′k,jT0,k,j +

∑l
k=2 s′k,1T0,k,1 along with the additional

information {s′k,jP : 1 ≤ k ≤ l and 1 ≤ j ≤ h0} (except s′1,1) for some set {s′k,j : 1 ≤ k ≤ l and 1 ≤
j ≤ h0} (except s′1,1).

Second, observe that :

ê(b−1
0,1,1U,S′)

Πl
k=1Π

h0

j=2ê(b
−1
0,1,1b0,k,jU, s′k,jP)Πl

k=2ê(b
−1
0,1,1b0,k,1U, s′k,1P)

= ê(b−1
0,1,1U, sǫT0,1,1)

= ê(b−1
0,1,1U, sǫT0,1,1)

= ê(b−1
0,1,1U, sǫb0,1,1P1)

= ê(U, sǫP1)

The correct decryption of C ′ is M .
Guess: Eventually, A outputs a guess M ′. B outputs M ′ as its guess for the decryption of C.

Claim: A’s view is identical to its view in the real attack. Furthermore, Pr[M = M ′] ≥ ǫ. The
probability is over the random bits used by A, B and the challenger.
Proof of Claim: All responses to H1-queries are as in the real attack since each response is
uniformly and independently distributed in G1. All responses to lower-level setup queries are valid.
Finally, the challenge ciphertext C ′ given to A is the fs-HIBE encryption of the random plaintext M
under the ID-tuple0 and time period t0 chosen by A. Therefore, by the definition of the algorithm
A, it will output M ′ = M with probability at least ǫ.

D.3 fs-HIBE scheme – Adaptively chosen target ID-tuple and time period

Lemma D.2. Let H1 be a random oracle from {0, 1}∗ to G1. Let A be an adaptive adversary
against the one-way secure fs-HIBE scheme that makes a finite number of lower-level setup queries
and has advantage ǫ of targeting an fs-HIBE time and ID-tuple. Let h be the level of the ID-tuple
and l = log2 N where N is the total number of time periods. Then there is an OWE adversary B
that has advantage at least ǫ((h + l)/e(2lqE + h + l))(h+l)/2 against BasicPub and running time is
O(time(A)).

26

Proof. We show how to construct an OWE adversary B that uses A to gain advantage against
BasicPub. The game between the challenger and the adversary B starts with the challenger first
generating a random public key by running the key generation algorithm of BasicPub. The result
is a public key Kpub = (G1, G2, ê, P,Q, P1,H2), with Q = sǫP , and a private key S1 = sǫP1. The
challenger then picks a random plaintext M ∈M and encrypts M using the encryption algorithm
of BasicPub. It gives Kpub and the resulting ciphertext C = (U, V) to algorithm B. Algorithm B
is supposed to output a guess for M .

As in the proof for Lemma D.1, in Phase 1 B answers lower-level setup queries for some time
ti and ID-tuplei made by A making use of coin flips. In computing private keys, B uses coin flips
to guess if an ID-tuple and a time period will be chosen by A as the target. At Challenge, A
picks a target time and ID-tuple. B runs lower-level setup for the targets, the coin flips of which
determine whether B can continue the game or not. If B can continue to play, it converts his
challenge ciphertext C into an fs-HIBE ciphertext and gives it to A. In Phase 2, adversary B
answers more lower-level setup queries the way it did in Phase 1. Eventually, A outputs a guess,
which is used as the guess by B.

Similar to the proof for nonadaptive adversary in Section D.2, in order to answer Lower-level
Setup queries, B does a trick to cancel the term with the unknown sǫ in the private key. Only here,
B decides whether to do the trick or not by flipping coins. For the case when cancellations occur
twice, B puts a positive term that contains sǫ at a proper position.

Adversary B interacts with A as follows:

Setup: B gives A the fs-HIBE system parameters params = (G1, G2, ê, P,Q,H1,H2). H1 is a
random oracle controlled by B. Let N = 2l be the total number of time periods.
H1-queries: At any time, algorithm A can query the random oracle H1. Essentially, this oracle
will be used to store the Point-tuplei = {Ti,k,j = H1(ti|k ◦ IDi,1 . . . IDi,j) : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}
corresponding to Time-ID-pairi (ti, (IDi,1 . . . IDi,hi

)). In responding to these queries, algorithm
B maintains a list H list

1 containing tuples of the form (Time-ID-pairi, Point-tuplei, Scalar-tuplei,
Secret-tuplei, ID-Coin-tuplei, Time-Coin-tuplei). For the i-th query, Time-ID-pairi, Point-tuplei,
Scalar-tuplei, and Secret-tuplei may be matrices, whereas ID-Coin-tuplei is an array of length
hi and Time-Coin-tuplei is an array of length l. The sizes of the Point-tuple, secret-tuple, and
Scalar-tuple are the length of ID-tuple times l. H list

1 list is initially empty.
A queries H list

1 about Time-ID-pairi (ti, (IDi,1 . . . IDi,hi
)). For the overlapping portion of the

tuples, the corresponding items in H list
1 are copied as shown next. For each Time-ID-pairg in H list

1 ,
let v be the maximal such that (ti,1 ◦ IDi,1, . . . , ti,v ◦ IDi,1) = (tg,1 ◦ IDg,1, . . . , tg,v ◦ IDg,1), and let w
be the maximal such that (IDi,1 ◦ ti,1, . . . , IDi,w ◦ ti,1) = (IDg,1 ◦ tg,1, . . . , IDg,w ◦ tg,1). For 1 ≤ k ≤ v
and 1 ≤ j ≤ w, if Ti,v,w is null, set Point-tuple Ti,k,j = Tg,k,j, Scalar-tuple bi,k,j = bg,k,j, Secret-tuple
si,k,j = sg,k,j, ID-Coin-tuple ci,j = cg,j , and Time-Coin-tuple c′i,k = c′g,k.

Once the above comparison is done, let v be the maximal such that Ti,v,1 is not null (Ti,v,1 is
given a value from the above), and let w be the maximal such that Ti,1,w is not null.
B computes the values for the rest part as follows.

1. If 0 ≤ v < l (implying that Ti,v+1,1 is null), for k ∈ (v, l], algorithm B does the follows:
(a) Pick a random bi,k,1 ∈ Zq;
(b) If k = 1, generate a random time coin c′i,1 ∈ {0, 1} so that Pr[c′i,1 = 1] = δ for some δ

that will be determined later. If c′i,1 = 1, set Ti,1,1 = bi,1,1P1; else set Ti,1,1 = bi,1,1P . Set
si,1,1 = sǫ.

27

(c) Else if c′i,k−1 = 1, generate a random time coin c′i,k. If c′i,k = 1, pick a random si,k,1 ∈ Zq

and set Ti,k,1 = bi,k,1P ; else choose a random pi,k,1 ∈ Zq, set Ti,k,1 = bi,k,1P−p−1
i,k,1bi,1,1P1,

and define si,k,1 = pi,k,1sǫ (B does not have to compute si,k,1).
(d) Else if c′i,k−1 = 0, set c′i,k = 0, pick a random si,k,1 ∈ Zq and set Ti,k,1 = bi,k,1P .

2. If 1 ≤ w < hi (implying that Ti,1,w+1 is null), for j ∈ (w, hi], algorithm B does the follows:
(a) Pick a random bi,1,j ∈ Zq;
(b) Set ci,1 = c′i,1. If ci,j−1 = 1, generate a random coin ci,j as in the above step 1b.

If ci,j = 1, pick a random si,1,j ∈ Zq and set Ti,1,j = bi,1,jP ; else choose a random
pi,1,j ∈ Zq, set Ti,1,j = bi,1,jP − p−1

i,1,jbi,1,1P1, and define si,1,j = pi,1,jsǫ (B does not have
to compute si,1,j).

(c) If ci,j−1 = 0, set ci,j = 0, pick a random si,1,j ∈ Zq and set Ti,1,j = bi,1,jP .

3. If ci,1 = 1 (i.e. c′i,1 = 1), let 1 < x ≤ l be the minimal such that c′i,x = 0, and let 1 < y ≤ hi

be the minimal such that ci,y = 0. If such x and y both exist and Ti,x,y is null, algorithm B
does the follows:
(a) Pick a random bi,x,y ∈ Zq;
(b) Define si,x,y = sǫb

−1
i,x,y (B does not have to compute si,x,y);

(c) Set Ti,x,y = bi,x,yTi,1,1;

4. For 2 ≤ k ≤ l and 2 ≤ j ≤ hi and Ti,k,j is null, algorithm B does the follows:
(a) Pick a random bi,k,j ∈ Zq;
(b) Pick a random si,k,j ∈ Zq;
(c) Set Ti,k,j = bi,k,jP ;

Algorithm B then puts the following in H list
1 : ((ti,1, . . . , ti,l), (IDi,1, . . . , IDi,hi

)), (Ti,1,1, . . . , Ti,l,hi
),

(bi,1,1, . . . , bi,l,hi
), (si,1,1, . . . , si,l,hi

), (ci,1, . . . , ci,hi
), and (c′i,1, . . . , c

′
i,l). B returns (Ti,1,1, . . . , Ti,l,hi

)
to A.

Note that Ti,k,j is always chosen uniformly in G1 and is independent of A’s view as required.
Using above methods, B also stores the corresponding tuples that are necessary to compute the

node keys at lower-level setup queries. Recall for time ti and ID-tuplei (ID1, . . . , IDhi
), node keys

are denoted as skw,hi
, where w are all the labels of the right sibling, if one exists, of each ancestor

of the node labeled ti in the complete binary tree. They can also be written as {sk(ti|k−11),hi
}ti,k=0.

For each time node w, B compares (w, ID-tuplei) with existing tuples in H list
1 , the same way as

comparing (ti, ID-tuplei) pair. Node keys together with the decryption key skti,hi
are what B needs

to return in a lower-level setup query. We omit the details of how B prepares for node keys in this
proof, as it is essentially the same as preparing the decryption key shown above.

Lower-Level Setup Queries: At any time, A may make a lower-level setup query on any time
period ti and ID-tuplei. B responds to this query as follows:

1. Run the above algorithm for responding to H1-queries to obtain the appropriate tuple (Time-
ID-pairi, Point-tuplei, Scalar-tuplei, Secret-tuplei, ID-Coin-tuplei, Time-Coin-tuplei) in H list

1 .

2. If ci,hi
= 1 and c′i,l = 1, then B aborts.

3. Define Si,ti,hi
=

∑l
k=1

∑hi

j=1 si,k,jTi,k,j. B also gives A the corresponding
{Qi,k,j = si,k,jP : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}.
Let ski,ti,hi

= (Si,ti,hi
,Qi,ti,hi

), where Qi,ti,hi
= {Qi,k,j : 1 ≤ k ≤ l, 1 ≤ j ≤ hi}. ski,ti,hi

is
what ID-tuplei needs to decrypt messages at ti.

4. Using similar method for computing ski,ti,hi
, B also computes the node keys {ski,(ti|k−11),hi

}ti|k=0

28

corresponding to time ti and ID-tuplei. It can be verified that those node keys, if B does not
aborts, have the correct distribution. Using these node keys B can derive keys SK that are
associated with any time t > ti or descendants of ID-tuplei with the correct distribution.

Readers can verify that each sk key is always computable by B, if B does not abort. Note
that B does not know sǫ nor sǫP1, but does know Q = sǫP . The definition of Ti,k,j when ci,j = 0
and ci,(j−1) = 1 is designed to cause certain cancellations to occur in the computation of Si,k,j,
so that this point can be computed by B even though Si,(k−1),j or Si,k,(j−1) may not. Similarly,
cancellations occur when c′i,k = 0 and c′i,(k−1) = 1. The definition of Ti,k,j when ci,j = 0 and c′i,k = 0

(j > 1 and k > 1) handles the case when both of the above described cancellations happen.

Challenge: Once adversary A decides that Phase 1 is over, it outputs an ID-tuple (ID1, . . . , IDh)
and time period t on which it wishes to be challenged. Adversary B responds as follows:

1. Run the H1-query to obtain the Point-tuple (T1,1, . . . , Tl,h), Secret-tuple (s1,1, . . . , sl,h), Scalar-
tuple (b1,1, . . . , bl,h), ID-Coin-tuple (c1, . . . , ch), and Time-Coin-tuple (c′1, . . . , c

′
l). If cj = 0

for some 1 ≤ j ≤ h or c′k = 0 for some 1 ≤ k ≤ l, then B reports failure and terminates. The
attack on BasicPub failed.

2. Otherwise, we know T1,1 = b1,1P1 and Tk,j = bk,jP for all 1 ≤ k ≤ l and 1 ≤ j ≤ h except for
k = 1 and j = 1. Let C = (U, V) be the challenge ciphertext given to algorithm B. B sets
the fs-HIBE ciphertext C ′ to be

(b−1
1,1U, b−1

1,1b2,1U, . . . , b−1
1,1bl,1U,

b−1
1,1b1,2U, . . . , b−1

1,1bl,2U,

. . .

b−1
1,1b1,hU, . . . , b−1

1,1bl,hU, V)

B responds to A with the challenge C ′. Note that C ′ is an fs-HIBE encryption of M under
the target ID-tuple and t as required. To verify this, first observe that the decryption key
corresponding to target ID-tuple and t is S′ = sǫT1,1 +

∑h
j=2

∑l
k=1 s′k,jTk,j +

∑l
k=2 s′k,1Tk,1

along with the additional information {s′k,jP : 1 ≤ k ≤ l and 1 ≤ j ≤ h} (except s′1,1) for
some set {s′k,j : 1 ≤ k ≤ l and 1 ≤ j ≤ h} (except s′1,1).
Second, observe that :

ê(b−1
1,1U,S)

Πl
k=1Π

h
j=2ê(b

−1
1,1bk,jU, s′k,jP)Πl

k=2ê(b
−1
1,1bk,1U, s′k,1P)

= ê(b−1
1,1U, sǫT1,1)

= ê(b−1
1,1U, sǫT1,1)

= ê(b−1
1,1U, sǫb1,1P1)

= ê(U, sǫP1)

The correct decryption of C ′ is M .

Phase 2: Adversary B responds to more lower-level setup queries the way it did in Phase 1.
Guess: Eventually, A outputs a guess M ′. B outputs M ′ as its guess for the decryption of C.

Claim: A’s view is identical to its view in the real attack. Furthermore, Pr[M = M ′] ≥ ǫ. The
probability is over the random bits used by A, B and the challenger.

29

Proof of Claim: All responses to H1-queries are as in the real attack since each response is
uniformly and independently distributed in G1. All responses to lower-level setup queries are valid.
Finally, the challenge ciphertext C ′ given to A is the fs-HIBE encryption of the random plaintext
M under the ID-tuple and time period chosen by A. Therefore, by the definition of the algorithm
A, it will output M ′ = M with probability at least ǫ.
Probability: Suppose A makes a total of qE lower-level setup queries. For each lower-level setup
query, the adversary B needs to compute O(l) number of sk keys, including the sk key for the
queried time and sk keys for computing future secret keys. The probability that B aborts when
answering any one of the sk keys is ≤ δ2. The probability that B does not abort in any one lower-
level setup query is ≥ (1 − δ2)l. Therefore, the probability that B does not abort in Phase 1 or 2
is at least (1− δ2)l×qE .

The probability that it does not abort during the challenge step is δh+l−1. The overall prob-
ability that B does not abort is ≥ (1 − δ2)lqEδh+l. The latter value is maximized at δopt =
√

(h + l)/(2lqE + h + l). Using δopt , the probability that B does not abort is at least
((h + l)/e(2lqE + h + l))(h+l)/2.

If h and l are O(1) and qE is polynomial in the security parameter, then ((h + l)/e(2lqE +
h + l))(h+l)/2 is non-negligible in the security parameter, and we have a polynomial reduction from
BasicPub to fs-HIBE for adaptive chosen-ciphertext-target adversaries.

D.4 Security Proof for fs-HIBE scheme

To complete the proof for Theorem 3.1 fs-HIBE scheme, we need the following result, which is
Lemma 4.3 of [10], says that solving BDH reduces to breaking BasicPub.

Lemma D.3. Suppose that A is an OWE adversary with advantage ǫ against BasicPub that makes
a total of qH2

queries to the hash function H2, and suppose that H2 is a random oracle. Then there
is an algorithm B that solves the BDH problem for IG with advantage at least (ǫ − 1

2n)/qH2
and

running time O(time(A)).

Theorem 3.1 for fs-HIBE scheme follows by combining Lemma D.1 and Lemma D.3. Theorem
3.2 for fs-HIBE scheme follows by combining Lemma D.2 and Lemma D.3.

E Construction of fs-BE scheme
We divide our construction of the fs-BE scheme into two parts. First, we describe how the Subset
Difference method is extended to the public-key setting in the BE scheme [15]. At high level, this
is done by constructing a tree T ′

SD in such a way that its leaves correspond to the subsets of the
cover family (described below), and is used for computing secret keys of users. Then, we apply the
fs-HIBE scheme to the tree T ′

SD to obtain an fs-BE scheme in Section E.2. Detailed description of
each algorithm in fs-BE scheme is also given.
Notations in this section: In what follows, S denotes a subset, not a secret key. MSKt,1 is the
secret key of the center at time t, and USK is the secret key of a user. SKt,ID-tuple is the secret
key in fs-HIBE that is associated with a time period t and an ID-tuple.

E.1 The public-key Broadcast Encryption scheme

Here, we describe the necessary knowledge of the public-key broadcast encryption [15] needed in
order to understand the fs-BE scheme. We refer readers to broadcast encryption papers [15, 31]
for a complete description of the subset-cover framework and the public-key broadcast encryption

30

scheme. The construction of the public-key broadcast encryption [15] scheme is based on the Subset-
Cover Framework [31], in particular, on the Subset Difference (SD) method. In the SD method,
users are associated with the leaves of a complete binary tree TSD of height n = log2 E, where E
is the total number of users in the system. The generic subset Sij is defined in terms of two nodes
ui, uj ∈ TSD, and consists of all the leaves of the subtree rooted at ui except those in the subtree
rooted at uj, where ui is an ancestor of uj. Node ui is called the primary root, and uj is called the
secondary root of Sij.

In the public-key broadcast encryption [15] scheme, a labeled tree T ′
SD is defined, whose leaves

correspond to all the subsets Sij in the family S. Nodes in the tree T ′
SD are called vertices, in order

to distinguish them from nodes in the tree TSD. The tree T ′
SD is constructed from the tree TSD as

follows:

1. For each internal node u in TSD, a vertex w is added as the child to the root of T ′
SD. Therefore,

at Level1 of the tree T ′
SD there are exactly E − 1 vertices. These vertices correspond to all

the possible primary roots ui of a generic subset Sij .

2. To each vertex w at Level1 of T ′
SD (corresponding, by Step 1, to an internal node u in TSD),

attach two children wℓ and wr corresponding respectively to the left and right children of
node u in TSD.

3. For each vertex w at Level2 (and recursively at lower levels):
(a) if w is labeled with the symbol ⊥, then w is a leaf in T ′

SD;
(b) if w corresponds to a leaf u in TSD, then w is given a single child labeled ⊥;
(c) otherwise, w must correspond to an internal node u in TSD. Then, w is given three

children labeled wℓ, wr, and ⊥, where wℓ and wr correspond respectively to the left and
right children of node u in TSD (as in Step 2).

Each leaf vertex v that is labeled with the symbol ⊥ in T ′
SD corresponds to a subset of the cover

family S as follows. Consider the path p from the root of T ′
SD down to such a leaf v. Let wi be

the second vertex in the path p (i.e., wi is a vertex at Level1), and wj be the second-to-last vertex
in p (i.e. wj is the parent of v). Then, associated with v is the subset Sij , whose primary root is
the node ui corresponding to vertex wi, and whose secondary root is the node uj corresponding to
vertex wj.

E.2 Construction of a Forward-Secure Broadcast Encryption scheme using fs-
HIBE

The central idea of constructing an fs-BE scheme is to use fs-HIBE over the tree T ′
SD that is defined

in Appendix E.1. Each vertex in T ′
SD is given an ID, which is unique among its siblings. Then,

a vertex w in T ′
SD can be associated with an ID-tuple (denoted ID-tuplew) by simply considering

the sequence of IDs corresponding to each of w’s ancestors (including vertex w itself). For a vertex
w in T ′

SD and a time period t, there is a secret key SKt,ID-tuplew
, which can be computed using

the Lower-Level Setup algorithm of fs-HIBE. Therefore, at any time period t, each vertex w in
T ′

SD is associated with an ID-tuplew and a secret key SKt,ID-tuplew
.

Construction:

• KeyGen(k, rmax, E,N): Run algorithm Root Setup(k,N) of fs-HIBE. Set PK = params
and MSK0 = SK0,1.

• Reg(MSKt, u, t): Each user u is represented as a leaf in tree TSD. Consider the path from the
root of TSD to u; let u0, u1, . . . , un ≡ u be all the ancestors of u, and denote by vh the sibling
of uh, h = 1, . . . , n. For 1 ≤ i < j ≤ n consider the subset difference Sui,vj

and the associated

31

leaf lui,vj
in T ′

SD; let wui,vj
be the parent of lui,vj

. Then, starting from MSKt = SKt,1,
recursively apply the Lower-Level Setup algorithm of fs-HIBE to derive the secret key
SKt,ID-tuplei,j

corresponding to ID-tuplei,j associated to vertex wui,vj
. Set the user’s secret

key USKt,u = {〈ID-tuplei,j, SKt,ID-tuplei,j
〉 | 1 ≤ i < j ≤ n}.

• Upd(PK,u, t,USKt,u): For each 〈ID-tuplei,j , SKt,ID-tuplei,j
〉 ∈ USKt,u, 1 ≤ i < j ≤ n, run

algorithm Update(t, ID-tuplei,j, SKt,ID-tuplei,j
) of fs-HIBE to compute SKt+1,ID-tuplei,j

and erase SKt,ID-tuplei,j
. Return USKt+1,u = {〈ID-tuplei,j, SKt+1,ID-tuplei,j

〉 | 1 ≤ i < j ≤

n}. For the center, call the Update(t,MSKt) of fs-HIBE to compute the master secret key
MSKt+1 for time period t + 1.

• Enc(PK,M, t,R): First run the Cover algorithm (cf. Naor et al. [31]) to partition the set
E \ R into the subsets {Si1,j1, . . . , Siz ,jz}. (The Cover algorithm guarantees that z < 2|R|.)
Recall that each subset Sih,jh

(h = 1, . . . , z), corresponds to a leaf luh,vh
in the tree T ′

SD: let
ID-tupleh be the ID-tuple associated to the leaf luh,vh

. For each ID-tupleh, (h = 1, . . . , z), run
algorithm Encrypt(params, t, ID-tupleh,M) of fs-HIBE to compute ciphertext Ch. Return
C = 〈ID-tuple1, . . . , ID-tuplez, C1, . . . , Cz〉.

6

• Dec(PK,u, t,USKt,u, C): By definition of the Reg algorithm, if the ciphertext C =〈ID-tuple1,
. . . , ID-tuplez, C1, . . . , Cz〉 was constructed for a subset R of revoked users which does not in-
clude u, then among the ID-tuples in C, there exists one (say, ID-tupleh) which is a descendent
of one of the ID-tuples (say, ID-tuplei,j) for which user u received the corresponding secret
key when he joined the system. Let SKt,ID-tuplei,j

be the value of such a secret key at time

period t. Starting from SKt,ID-tuplei,j
, recursively apply Lower-Level Setup of fs-HIBE

to derive the secret key SKt,ID-tupleh
corresponding to ID-tupleh. Then, run algorithm

Decrypt(params, t, ID-tupleh, SKt,ID-tupleh
, Ch) of fs-HIBE to obtain the corresponding

message M .

6In fact, this only achieves gCCA security [2]. In order to achieve CCA2 security using “parallel encryption”, it
is necessary to resort to the techniques demonstrated in [17]. We omit the details.

32

