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Abstract. In two-server password-authenticated key exchange (PAKE)
protocol, a client splits its password and stores two shares of its password
in the two servers, respectively, and the two servers then cooperate to au-
thenticate the client without knowing the password of the client. In case
one server is compromised by an adversary, the password of the client
is required to remain secure. In this paper, we present a compiler that
transforms any two-party PAKE protocol to a two-server PAKE proto-
col. This compiler is mainly built on two-party PAKE and identity-based
encryption (IBE), where the identities of the two servers are used as their
public keys. By our compiler, we can construct a two-server PAKE proto-
col which achieves implicit authentication with only two communications
between the client and the servers. As long as the underlying two-party
PAKE protocol and IBE scheme have provable security without random
oracles, the two-server PAKE protocol constructed by our compiler can
be proven to be secure without random oracles.

Keywords: Password-authenticated key exchange, identity-based encryp-
tion, Diffie-Hellman key exchange, Decisional Diffie-Hellman problem.

1 Introduction

Bellovin and Merritt [4] were the first to introduce password-based authenticated
key exchange (PAKE), where two parties, based only on their knowledge of
a password, establish a cryptographic key by exchange of messages. A PAKE
protocol has to be immune to on-line and off-line dictionary attacks. In an off-
line dictionary attack, an adversary exhaustively tries all possible passwords
in a dictionary in order to determine the password of the client on the basis
of the exchanged messages. In on-line dictionary attack, an adversary simply
attempts to login repeatedly, trying each possible password. By cryptographic
means only, none of PAKE protocols can prevent on-line dictionary attacks. But
on-line attacks can be stopped simply by setting a threshold to the number of
login failures.

Since Bellovin and Merritt [4] introduced the idea of PAKE, numerous PAKE
protocols have been proposed. In general, there exist two kinds of PAKE settings,
one assumes that the password of the client is stored in a single server and
another assumes that the password of the client is distributed in multiple servers.
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PAKE protocols in the single-server setting can be classified into three cate-
gories as follows.

– Password-only PAKE: Typical examples are the “encrypted key exchange”
(EKE) protocols given by Bellovin and Merritt [4], where two parties, who
share a password, exchange messages encrypted by the password, and estab-
lish a common secret key. The formal model of security for PAKE was firstly
given in [3, 7]. Based on the security model, PAKE protocols [1, 2, 9, 10, 17,
21, 23] have been proposed and proved to be secure.

– PKI-based PAKE: PKI-based PAKE protocol was first given by Gong et al.
[18], where the client stores the server’s public key in addition to share a
password with the server. Halevi and Krawczyk [19] were the first to provide
formal definitions and rigorous proofs of security for PKI-based PAKE.

– ID-based PAKE: ID-based PAKE protocols were proposed by Yi et al. [33,
34], where the client needs to remember a password in addition to the identity
of the server, whereas the server keeps the password in addition to a private
key related to its identity. ID-based PAKE can be thought as a trade-off
between password-only and PKI-based PAKE.

In the single-server setting, all the passwords necessary to authenticate clients
are stored in a single server. If the server is compromised, due to, for example,
hacking or even insider attacks, passwords stored in the server are all disclosed.
To address this problem, the multi-server setting for PAKE was first suggested
in [15, 20], where the password of the client is distributed in n servers.

PAKE protocols in the multi-server setting can be classified into two categories
as follows.

– Threshold PAKE: The first PKI-based threshold PAKE protocol was given
by Ford and Kaliski [15], where n severs, sharing the password of the client,
cooperate to authenticate the client and establish independent session keys
with the client. As long as n − 1 or fewer servers are compromised, their
protocol remains secure. Jablon [20] gave a protocol with similar function-
ality in the password-only setting. MacKenzie et al. proposed a PKI-based
threshold PAKE protocol which requires only t out of n servers to cooperate
in order to authenticate the client. Their protocol remains secure as long
as t − 1 or fewer servers are compromised. Di Raimondo and Gennaro [27]
suggested a password-only threshold PAKE protocol which requires fewer
than 1/3 of the servers to be compromised.

– Two-server PAKE: Two-server PKI-based PAKE was first given by Brainard
[8], where two servers cooperate to authenticate the client and the password
remains secure if one server is compromised. A variant of the protocol was
later proved to be secure in [28]. The first two-server password-only PAKE
protocol was given by Katz et al. [24], in which two servers symmetrically
contribute to the authentication of the client. The protocol in the server
side can run in parallel. Efficient protocols [30–32, 22] were later proposed,
where the front-end server authenticates the client with the help of the back-
end server and only the front-end server establishes a session key with the
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client. These protocols are asymmetric in the server side and have to run in
sequence. Recently, Yi et al. gave a symmetric solution [35] which is even
more efficient than asymmetric protocols [22, 30–32].

In this paper, we will consider the two-server setting for PAKE only. A typical
example is the two-server PAKE protocol given by Katz et al. [24], which is built
upon the two-party PAKE protocol (i.e., the KOY protocol [23]), where two
parties, who share a password, exchange messages to establish a common secret
key. Their basic two-server protocol is secure against a passive (i.e., “honest-but-
curious”) adversary who has access to one of the servers throughout the protocol
execution, but cannot cause this server to deviate from its prescribed behavior.
In [24], Katz et al. also showed how to modify their basic protocol so as to achieve
security against an active adversary who may cause a corrupted server to deviate
arbitrarily from the protocol. The core of their protocol is the KOY protocol.
The client looks like running two KOY protocols with two servers in parallel.
However, each server must perform a total of roughly 70 exponentiations (i.e.,
each server’s work is increased by a factor of roughly 6 as compared to the basic
protocol [24]). In general, this construction implies a compiler which transfers a
two-party PAKE protocol to a two-server PAKE protocol. The compiler employs
a two-party PAKE protocol between the client and the servers.

Our Contribution. In this paper, we propose a new compiler to construct a
two-server PAKE protocol with any two-party PAKE protocol. Our compiler em-
ploys the two-party PAKE protocol between two servers when they authenticate
the client.

To achieve the goal, our compiler needs an identity-based encryption (IBE)
scheme to protect the messages (containing the password information) from the
client to the two servers. The basic idea is: first of all, the client splits its password
into two shares and each server keeps one share of the password in addition to
a private key related to its identity. In key exchange, the client sends to each
server one share of the password encrypted according to the identity of the server.
From the client messages, both servers can derive the same one-time password,
by which the two servers can run a two-party PAKE protocol to authenticate the
client. Our compiler also needs a public key encryption scheme for the servers
to protect the messages (containing the password information) from the servers
to the client. The one-time public key is generated by the client and sent to the
servers along with the password information in the first phase.

In an IBE scheme, the decryption key of a server is usually generated by a
Private Key Generator (PKG). Therefore the PKG can decrypt any messages
encrypted with the identity of the server. As mentioned in [5], using standard
techniques from threshold cryptography, the PKG can be distributed so that the
master-key is never available in a single location. In order to prevent a malicious
PKG from decrypting the password information encrypted with the identity of
a server, a strategy is to employ multiple PKGs which cooperate to generate the
decryption key for the server. As long as one of the PKGs is honest to follow the
protocol, the decryption key for the server is known only to the server. Since we
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can assume that the two servers in two-server PAKE never collude, we can also
assume that at least one of the PKGs do not collude with other PKGs.

We define an ID-based security model for two-server PAKE. Unlike the ID-
based security model for single-server PAKE defined in [33, 34], an adversary
can compromise one of the two servers, each having one share of the password.
Based on our security model, we provide a rigorous proof of security for our
compiler. Our compiler does not rely on the random oracle model as long as the
underlying primitives themselves do not rely on it. For example, by using the
KOY protocol [23] and the Waters IBE scheme [29] and the Cramer-Shoup public
key encryption scheme [12], our compiler can construct a two-server PAKE with
provable security in the standard model.

We also compare our ID-based two-server PAKE protocol with the Katz et
al.’s two-server PAKE protocol [24] with provable security in the standard model.
The Katz et al.’s protocol is password-only, where the client needs to remember
the password only and refer to common public parameters, and each server,
having a public and private key pair, and keeps a share of the password. Our
protocol is identity-based, where the client needs to remember the password in
addition to the meaningful identities of the two servers, and refer to common
public parameters, including the master public key, and each server, having a
private key related to his identity, keeps a share of the password.

In terms of setting, the Katz et al.s protocol is superior to our protocol. How-
ever, in the Katz et al.’s protocol, each server performs approximately six times
the amount of the work as the KOY protocol, whereas in our protocol, each server
performs the same amount of work as the KOY protocol in addition to one IBE
decryption and one public key encryption. In addition, the Katz et al.’s protocol
needs three communications between the client and the servers to achieve im-
plicit authentication, whereas our protocol achieves implicit authentication with
only two communications between the client and the servers.

Organization. In Section 2, we introduce our security model for ID-based two-
server PAKE. In Section 3, we present our ID-based two-server PAKE compiler.
After that, in Section 4, a sketch of security proof for our protocol is provided.
We conclude this paper in Section 5.

2 Definitions

A formal model of security for two-server PAKE was given by Katz et al. [24]
(based on the MacKenzie et al.’s model for PKI-based PAKE [26]). Boneh and
Franklin [5] defined chosen ciphertext security for IBE under chosen identity
attack. Combining the two models, we give an ID-based model for two-server
PAKE.

Participants, Initialization and Passwords. An ID-based PAKE protocol
involves three kinds of protocol participants: (1) A set of clients (denoted as
Client), each of which requests services from servers on the network; (2) A set
of servers (denoted as Server), each of which provides services to clients on the
network; (3) A group of Private Key Generators (PKGs), which generate public
parameters and corresponding private keys for servers.
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We assume that ClientServerTriple is the set of triples of the client and two
servers, where the client is authorized to use services provided by the two servers,
Client

⋂
Server = ∅, User = Client

⋃
Server, and any PKG �∈ User. It is obvious

that ClientServerTriple ⊆ Client× Server × Server.
Prior to any execution of the protocol, we assume that an initialization phase

occurs. During initialization, the PKGs cooperate to generate public parameters
for the protocol, which are available to all participants, and private keys for
servers, which are given to the appropriate servers. The user may keep the public
parameter in a personal device, such as a smart card or a USB flash drive. When
the PKGs generate the private key for a server, each PKG generates and sends
a private key component to the server via a secure channel. The server then
derives its private key by combining all private key components from all PKGs.
We assume that at least one of PKGs is honest to follow the protocol.
Therefore, the private key of the server is known to the server only.

For any triple (C,A,B) ∈ ClientServerTriple, we assume that the client C
chooses its password pwC independently and uniformly at random from a “dic-
tionary” D = {pw1, pw2, · · · , pwN} of size N , where D ⊂ Zp, N is a fixed
constant which is independent of any security parameter, and p is a large prime.
The password is then split into two shares pwC,A and pwC,B and stored at the
two servers A and B, respectively, for authentication. We assume that the
two servers never collude to determine the password of the client. The
client C needs to remember pwC to log into the servers A and B.

For simplicity, we assume that each client C shares its password pwC with
exactly two servers A and B. In this case, we say that servers A and B are
associated with C. A server may be associated with multiple clients.

Execution of the Protocol. In the real world, a protocol determines how users
behave in response to input from their environments. In the formal model, these
inputs are provided by the adversary. Each user is assumed to be able to execute
the protocol multiple times (possibly concurrently) with different partners. This
is modeled by allowing each user to have unlimited number of instances (please
refer to [3]) with which to execute the protocol. We denote instance i of user U
as U i. A given instance may be used only once. The adversary is given oracle
access to these different instances. Furthermore, each instance maintains (local)
state which is updated during the course of the experiment. In particular, each
instance U i is associated with the following variables, initialized as NULL or
FALSE (as appropriate) during the initialization phase.

– sidiU , pid
i
U and skiU are variables containing the session identity, partner iden-

tity, and session key for an instance U i, respectively. Computation of the ses-
sion key is, of course, the ultimate goal of the protocol. The session identity
is simply a way to keep track of the different executions of a particular user
U . Without loss of generality, we simply let this be the (ordered) concatena-
tion of all messages sent and received by instance U i. The partner identity
denotes the identity of the user with whom U i believes it is interacting. For a
client C, skiC consists of a pair (skiC,A, sk

i
C,B), which are the two keys shared

with servers A and B, respectively.
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– acciU and termi
U are boolean variables denoting whether a given instance U i

has been accepted or terminated, respectively. Termination means that the
given instance has done receiving and sending messages, acceptance indicates
successful termination. In our case, acceptance means that the instance is
sure that it has established a session key with its intended partner; thus,
when an instance U i has been accepted, sidiU , pid

i
U and skiU are no longer

NULL.
– stateiU records any state necessary for execution of the protocol by U i.
– usediU is a boolean variable denoting whether an instance U i has begun

executing the protocol. This is a formalism which will ensure each instance
is used only once.

The adversaryA is assumed to have complete control over all communications
in the network (between the clients and servers, and between servers and servers)
and the adversary’s interaction with the users (more specifically, with various
instances) is modelled via access to oracles. The state of an instance may be
updated during an oracle call, and the oracle’s output may depend upon the
relevant instance. The oracle types include:

– Send(C, i, A,B,M) – This sends message M to a client instance Ci, sup-
posedly from two servers A and B. Assuming termi

C = FALSE, this instance
runs according to the protocol specification, updating state as appropriate.
The output of Ci (i.e., the message sent by the instance) is given to the
adversary, who receives the updated values of sidiC , pid

i
C , acc

i
C , and termi

C .
This oracle call models the active attack to a protocol. If M is empty, this
query represents a prompt for C to initiate the protocol.

– Send(S, i, U,M) – This sends message M to a server instance Si, supposedly
from a user U (either a client or a server). Assuming termi

S = FALSE, this
instance runs according to the protocol specification, updating state as ap-
propriate. The output of Si (i.e., the message sent by the instance) is given
to the adversary, who receives the updated values of sidiS , pid

i
S , acc

i
S , and

termi
S . If S is corrupted, the adversary also receives the entire internal state

of S. This oracle call also models the active attack to a protocol.
– Execute(C, i, A, j, B, k) – If the client instance Ci and the server instances

Aj and Bk have not yet been used (where (C,A,B) ∈ ClientServerTriple),
this oracle executes the protocol between these instances and outputs the
transcript of this execution. This oracle call represents passive eavesdropping
of a protocol execution. In addition to the transcript, the adversary receives
the values of sid, pid, acc, and term for client and server instances, at each step
of protocol execution. In addition, if S ∈ {A,B} is corrupted, the adversary
is given the entire internal state of S.

– Corrupt(S) – This sends the private key of the server S in addition to all
password information stored in the server S to the adversary. This oracle
models possible compromising of a server due to, for example, hacking into
the server.

– Corrupt(C) – This query allows the adversary to learn the password of the
client C, which models the possibility of subverting a client by, for example,
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witnessing a user typing in his password, or installing a “Trojan horse” on
his machine.

– Reveal(U,U ′, i) – This outputs the current value of session key skiU,U ′ held

by instance U i if acciU = TRUE, where U ′ ∈ pidiU . This oracle call models
possible leakages of session keys due to, for example, improper erasure of
session keys after use, compromise of a host computer, or cryptanalysis.

– Test(U,U ′, i) – This oracle does not model any real-world capability of the
adversary, but is instead used to define security. Assume U ′ ∈ pidiU , if acc

i
U =

TRUE, a random bit b is generated. If b = 0, the adversary is given skiU,U ′ ,
and if b = 1 the adversary is given a random session key. The adversary is
allowed only a single Test query, at any time during its execution.

Partnering. Let (C,A,B) ∈ ClientServerTriple. For the client instance Ci, let
sidiC = (sidiC,A, sid

i
C,B), where sid

i
C,A (resp., sidiC,B) denotes the ordered sequence

of messages sent to / from the client C and the server A (resp., server B). For the
server instance Aj , let sidjA = (sidjA,C , sid

j
A,B), where sidiA,C denotes the ordered

sequence of messages sent to / from the server A and the client C, and sidjA,B

denote the ordered sequence of message sent to / from the serverA and the server
B. We say that instances Ci and Aj are partnered if (1) sidiC,A = sidjA,C �= NULL

and (2) A ∈ pidiC and C ∈ pidjA. We say that instances Aj and Bk are partnered

if (1) sidjA,B = sidkB,A �= NULL and (2) A ∈ pidkB and B ∈ pidjA.

Correctness. To be viable, a key exchange protocol must satisfy the following
notion of correctness: If a client instance Ci and server instances Aj and Bk runs
an honest execution of the protocol with no interference from the adversary,
then acciC = accjA = acckB = TRUE, and skiC,A = skjA,C , sk

i
C,B = skkB,C and

skiC,A �= skiC,B.

Freshness. To formally define the adversary’s success we need to define a notion
of freshness for a session key, where freshness of a key is meant to indicate that the
adversary does not trivially know the value of the session key. We say a session
key skiU,U ′ is fresh if (1) both U and U ′ are not corrupted; (2) the adversary
never queried Reveal(U,U ′, i); (3) the adversary never queried Reveal(U ′, U, j)
where U i and U ′j are partnered.

Advantage of the Adversary. Informally, the adversary succeeds if it can
guess the bit b used by the Test oracle. We say an adversary A succeeds if it
makes a single query Test(U,U ′, i) to a fresh instance U i, with acciU = TRUE at
the time of this query, and outputs a single bit b′ with b′ = b (recall that b is the
bit chosen by the Test oracle). We denote this event by Succ. The advantage of
adversary A in attacking protocol P is then given by AdvPA(k) = 2 ·Pr[Succ]− 1,
where the probability is taken over the random coins used by the adversary
and the random coins used during the course of the experiment (including the
initialization phase).

An adversary can always succeed by trying all passwords one-by-one in an on-
line impersonation attack. A protocol is secure if this is the best an adversary
can do. The on-line attacks correspond to Send queries. Formally, each instance
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for which the adversary has made a Send query counts as one on-line attack.
Instances with which the adversary interacts via Execute are not counted as on-
line attacks. The number of on-line attacks represents a bound on the number
of passwords the adversary could have tested in an on-line fashion.

Definition 1. Protocol P is a secure two-server protocol for PAKE if, for all
dictionary size N and for all PPT adversaries A making at most Q(k) on-line
attacks, there exists a negligible function ε(·) such that AdvPA(k) ≤ Q(k)/N +
ε(k).

3 Our Compiler for Two-Server PAKE Protocol

3.1 Description of Our Compiler

In this section, we present our compiler transforming any two-party PAKE pro-
tocol P to a two-server PAKE protocol P ′. Besides P , we need an identity-based
encryption scheme (IBE) as our cryptographic building block. If we remove au-
thentication elements from our compiler, our key exchange protocol is essentially
the Diffie-Hellman key exchange protocol [13]. A high-level description of our
compiler is given in Figure 1, in which the client C and two servers A and B
establish two authenticated keys, respectively.

We present the protocol by describing initialization and execution.

Initialization. Given a security parameter k ∈ Z
∗, the initialization includes:

Parameter Generation: On input k, (1) m PKGs cooperate to run SetupP of the
two-party PAKE protocol P to generate system parameters, denoted as paramsP .
(2)m PKGs cooperate to run SetupE of the IBE scheme to generate public system
parameters for the IBE scheme, denoted as paramsE , and the secret master-keyE .
Assume that G is a generator of IBE plaintext group E with an order n. (3) m
PKGs cooperate to choose a large cyclic group G with a prime order q and two
generators g1, g2, and two hash functions, H1 : {0, 1}∗ → Z∗

n and H2 : {0, 1}∗ →
Z∗
q , from a collision-resistant hash family. The public system parameters for the

protocol P ′ is params = paramsP,E
⋃{E,G, n,G, q, g1, g2, H1, H2} and the secret

master-keyE is secretly shared by the PKGs in a manner that any coalition of
PKGs cannot determine master-keyE as long as one of the PKGs is honest to
follow the protocol.

Remark. Taking the Waters’ IBE scheme [29] for example, m PKG agree on
randomly chosen G,G2 ∈ G and each PKG randomly chooses αi ∈ Zp and
broadcast Gαi with a zero-knowledge proof of knowing αi and a signature. Then
we can set G1 = G

∑
i αi as the public master key and the secret master-keyE =

G
∑

i αi

2 . The secret master key is privately shared among m PKGs and unknown
to anyone even if m− 1 PKGs maliciously collude.

Key Generation: On input the identity S of a server S ∈ Server, paramsE , and the
secret sharing master-keyE , PKGs cooperate to run ExtractE of the IBE scheme
and generate a private (decryption) key for S, denoted as dS , in a manner that
any coalition of PKGs cannot determine dS as long as one of the PKGs is honest
to follow the protocol.
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Public: P, IBE,E,G, n,G, q, g1, g2, H1, H2

Client C

pwC

(= pwC,A + pwC,B(mod n))

(= pw∗
C,A + pw∗

C,B(mod q))

Server A

(GpwC,A , g
pw∗

C,A

2 , dA)

Server B

(GpwC,B , g
pw∗

C,B

2 , dB)

pw1
R← Z

∗
n

pw2 = pwC − pw1(mod n)

rc, x1, x2, y1, y2, z
R← Z

∗
q

Wc = grc1 , X = gx1
1 gx2

2 , Y = gy11 gy22 , Z = gz1

h = H1(C,Wc, X, Y, Z)

Ea = IBE(Gpw1h
−1

, A)

Eb = IBE(Gpw2h
−1

, B)

�msg1 = 〈C,Wc, X, Y, Z,Ea〉
�msg2 = 〈C,Wc, X, Y, Z,Eb〉

h′ = H1(C,Wc, X, Y, Z)

ωa = IBD(Ea, dA)
h′
/GpwC,A

= Gpw1−pwC,A

if accPA = TRUE

ra, r1
R← Z

∗
q ,Wa = gra1

S1 = gr11 , T1 = gr12 ,

ha = H2(A,Wa, C,Wc)

U1 = g
pw∗

C,Ah−1
a

2 Zr1

h1 = H2(S1, T1, U1)

V1 = Xr1Y h1r1

accA = TRUE, skA,C = W ra
c

else return ⊥

h′ = H1(C,Wc, X, Y, Z)

ωb = GpwC,B/IBD(Eb, dB)
h′

= GpwC,B−pw2

if accPB = TRUE

rb, r2
R← Z

∗
q ,Wb = g

rb
1

S2 = gr21 , T2 = gr22 ,

hb = H2(B,Wb, C,Wc)

U2 = g
pw∗

C,Bh−1
b

2 Zr2

h2 = H2(S2, T2, U2)

V2 = Xr2Y h2r2

accB = TRUE, skB,C = W
rb
c

else return ⊥

�
�
P (ωa, ωb)

�msgA = 〈A,S1, T1, U1, V1,Wa〉
� msgB = 〈B,S2, T2, U2, V2,Wb〉

h′
a = H2(A,Wa, C,Wc), h

′
1 = H2(S1, T1, U1)

h′
b = H2(B,Wb, C,Wc), h

′
2 = H2(S2, T2, U2)

if {Sx1+h′
1y1

1 T
x2+h′

1y2
1 = V1} ∧ {Sx1+h′

2y1
2 T

x2+h′
2y2

2 = V2} ∧ {(U1/S
z
1 )

h′
a(U2/S

z
2 )

h′
b = g

pwC
2 }

accC = TRUE, skC,A = W rc
a , skC,B = W rc

b

else return ⊥

Fig. 1. Two-Server PAKE Protocol P ′
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Remark. In the Waters’ IBE scheme with m PKG , each PKG computes one
component of the private key for a server S, i.e., (Gαi

2 H(S)ri ,Gri), where H
is the Waters’ hash function, and sends it to the server via a secure chan-
nel. Combining all components, the server can construct its private key dS =

(G
∑

i αi

2 H(S)
∑

i ri ,G
∑

i ri), which is known to the server only even if m−1 PKGs
maliciously collude. In addition, the identity of a server is public, meaningful,
like an e-mail address, and easy to remember or keep. Anyone can write down
the identity of a server on a note.

Password Generation: On input a triple (C,A,B) ∈ Client ServerTriple, a string
pwC , the password, is uniformly drawn from the dictionary D = {pw1, pw2,
· · · , pwN} by the client C, and randomly split into pwC,A and pwC,B such that
pwC,A+pwC,B = pwC(mod n), and pw∗

C,A and pw∗
C,B such that pw∗

C,A+pw∗
C,B =

pwC(mod q), and stored in the servers A and B, respectively. We implicitly
assume that N < min(n, q), which will certainly be true in practice.

Protocol Execution. Given a triple (C,A,B) ∈ Client ServerTriple, the client
C (knowing its password pwC) runs the protocol P ′ with the two servers A

(knowing GpwC,A , g
pw∗

C,A

2 and its private key dA) and B (knowing GpwC,B , g
pw∗

C,B

2

and its private key dB) to establish two session keys, respectively, as shown in
Figure 1.

At first, the client randomly chooses pw1 from Z∗
n and computes pw2 = pwC−

pw1(mod n). Next the client C randomly chooses rc, x1, x2, y1, y2, z from Z∗
q and

computes Wc = grc1 , X = gx1
1 gx2

2 , Y = gy1

1 gy2

2 , Z = gz1 , h = H1(C,W,X, Y, Z),
where (X,Y, Z) is one-time public encryption key and (x1, x2, y1, y2, z) is one-
time private decryption key of the Cramer-Shoup public key encryption scheme
[12].

Next, according to the identities of the two servers A and B, the client C per-
forms the identity-based encryptions Ea = IBE(Gpw1h

−1

, A), Eb = IBE(Gpw2h
−1

,
B).

Then, the client sends msg1 = 〈C,W,X, Y, Z,Ea〉 and msg2 = 〈C,W,X, Y,
Z,Eb〉 to the two servers A and B, respectively.

After receiving msg1 = 〈C,W,X, Y, Z,Ea〉 from C, the server A computes
h′ = H1(C,W,X.Y, Z), ωa = IBD(Ea, dA)

h′
/GpwC,A = Gpw1−pwC,A , where IBD

denotes identity-based decryption.
After receiving msg2 = 〈C,W,X.Y, Z,Eb〉 from C, the server B computes

ωb = GpwC,B/IBD(Ea, dB)
h′

= GpwC,B−pw2 , where h′ = H1(C,W,X, Y, Z).
Because pwC = pwC,A + pwC,B(mod n) and pwC = pw1 + pw2(mod n), we

have pw1 − pwC,A = pwC,B − pw2(mod n) and thus ωa = ωb.
Using ωa and ωb as one-time password, the servers A and B run a two-party

PAKE protocol P to establish a session key. If the server A accepts the session
key as an authenticated key according to P (i.e., accPA = TRUE), it randomly
chooses two integers ra, r1 from Z

∗
q and computes Wa = gra1 , S1 = gr11 , T1 =

gr12 , ha = H2(A,Wa, C,Wc), U1 = g
pw∗

C,Ah−1
a

2 Zr1 , h1 = H2(S1, T1, U1), V1 =
Xr1Y h1r1 , skA,C = W ra

c , where skA,C is the session key between A and C and
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(S1, T1, U1, V1) is the Cramer-Shoup encryption of g
pw∗

C,Ah−1
a

2 . Then the server A
sets accA = TRUE and replies to the client C withmsgA = 〈A,S1, T1, U1, V1,Wa〉.

If the server B accepts the session key as an authenticated key according to P
(i.e., accPB = TRUE), it randomly chooses two integers rb, r2 from Z

∗
q and com-

putes Wb = grb1 , S2 = gr21 , T2 = gr22 , hb = H2(A,Wb, C,Wc), U2 = g
pw∗

C,Bh−1
b

2 Zr2 ,
h2 = H2(S2, T2, U2), V2 = Xr2Y h2r2 , skB,C = W rb

c , where skB,C is the session
key between B and C and (S2, T2, U2, V2) is the Cramer-Shoup encryption of

g
pw∗

C,Bh−1
b

2 . Then the server B sets accB = TRUE and replies to the client C with
msgB = 〈B,S2, T2, U2, V2,Wb〉.

Finally, after the client C receives msgA and msgB, it computes h′
a = H2(A,

Wa, C,Wc), h
′
1 = H2(A,S1, T1, U1), h

′
b = H2(B,Wb, C,Wc), h

′
2 = H2(B,S2, T2,

U2), and check if

S
x1+h′

1y1

1 T
x2+h′

1y2

1 = V1, S
x1+h′

2y1

2 T
x2+h′

2y2

2 = V2, (U1/S
z
1)

h′
a(U2/S

z
2)

h′
b = g

pwC
2 .

If so, the client C sets accC = TRUE and computes two session keys skC,A =
W rc

a , skC,B = W rc
b .

3.2 Correctness, Explicit Authentication, and Efficiency

Correctness. Assume that a client instance Ci and server instances Aj and
Bk runs an honest execution of the protocol P ′ with no interference from the
adversary and the two-party PAKE P has the correctness property.

With reference to Figure 1, the server instances Aj and Bk are able to derive
the same one-time password ωa (= ωb). Because P has the correctness property,
after running P based on ωa and ωb, the server instances Aj and Bk accept the
established session key as an authenticated key. This indicates that the client
C has provided a correct password pwC . Next, the server instances Aj and Bk

compute the session keys with the client C, i.e., skA,C = W ra
c and skB,C = W rb

c ,

and let accjA = TRUE and acckB = TRUE.
With reference to Figure 1, we have h′

a = ha, h
′
1 = h1, h

′
b = hb, h

′
2 = h2, and

S
x1+h′

1y1

1 T
x2+h′

1y2

1 = g
r1(x1+h1y1)
1 g

r1(x2+h1y2)
2

= (gx1
1 gx2

2 )r1(gy1

1 gy2

2 )r1h1 = Xr1Y h1r1 = V1,

U1/S
z
1 = g

pw∗
C,Ah−1

a

2 (gz1)
r1/(gr11 )z = g

pw∗
C,Ah′

a
−1

2 ,

S
x1+h′

2y1

2 T
x2+h′

2y2

2 = g
r2(x1+h2y1)
1 g

r2(x2+h2y2)
2

= (gx1
1 gx2

2 )r2(gy1

1 gy2

2 )r2h2 = Xr2Y h2r2 = V2,

U2/S
z
2 = g

pw∗
C,Bh−1

b

2 (gz1)
r2/(gr21 )z = g

pw∗
C,Bh′

b
−1

2 ,
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(U1/S
z
1)

h′
a(U2/S

z
2 )

h′
b = g

pw∗
C,A

2 g
pw∗

C,B

2 = g
pwC
2 .

If the three checks succeed, the client C computes two session keys, i.e.,
skC,A = W rc

a , skC,B = W rc
b , and lets acciC = TRUE. Since Wc = grc1 ,Wa =

gra1 ,Wb = grb1 , we have skC,A = W rc
a = grarc1 = W ra

c = skA,C and skC,B =
W rc

b = grbrc1 = W rb
c = skB,C . In addition, because ra, rb are chosen randomly,

the probability of skC,A = skC,B is negligible. Therefore, our protocol has the
correctness property.

Explicit Authentication. By running the two-party PAKE protocol P based
on wa (derived by pwC,A) and wb (derived by pwC,B), the two servers A and B
can verify if the client C provides a password pwC such that pwC = pwC,A +

pwC,B(mod n). In addition, by checking that (U1/S
z
1)

h′
a (U2/S

z
2 )

h′
b = g

pwC
2 (in-

volving pwC), the client C can verify if the two servers provide two shares of
the password, pw∗

C,A and pw∗
C,B, such that pwC = pw∗

C,A + pw∗
C,B(mod q). This

shows that when accjA = TRUE, the server A knows that its intended client C
and server B are authentic, and when acciC = TRUE, the client C knows that
its intended servers A and B are authentic. Our protocol achieves the implicit
authentication by only two communications between the client and the servers.
Using standard techniques, however, it is easy to add explicit authentication to
any protocol achieving implicit authentication.

Efficiency. The efficiency of our protocol depends on performance of the under-
lying two-party PAKE protocol and IBE scheme. Suppose that our compiler uses
the KOY PAKE protocol [23] and the Waters IBE scheme [29] as cryptographic
building blocks, the performance comparison of the Katz et al. two-server PAKE
protocol [24] (secure against active adversary) and our protocol can be shown in
Table 1.

In Table 1, Exp., Sign. and Pairing for computation (comp.) represent the
computation complexities of a modular exponentiation, a signature generation
and a pairing, respectively. Exp. and Sign. in communication (comm.) denote

Table 1. Performance Comparison of Katz et al. Protocol and Our Protocol

Katz et al. Protocol [24] Our Protocol

Public Keys Client: None Client: None
Sever A: Public Key pkA Server A: A
Sever B: Public Key pkB Server B: B

Private Keys Client: pwC Client: pwC

Sever A: pwC,A, Private Key skA Server A: pwC,A, pw
∗
C,A, dA

Sever B: pwC,B , Private Key skB Server B: pwC,B , pw∗
C,B , dB

Computation Client: 21(Exp.)+1(Sign) Client: 23(Exp.)
Complexity Server: about 6(KOY) Server: about 1(KOY)+

2(Pairing)+9(Exp.)

Communication Client/Server: 27(Exp.)+1(Sign) Client/Server: 24(Exp.)
Complexity Server/Server: about 2(KOY) Server/Server: about 1(KOY)
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the size of the modulus and the size of the signature. KOY stands for the compu-
tation or communication complexity of the KOY protocol. From Table 1, we can
see that the client has almost the same computation and communication com-
plexities in both protocols, but the server in our protocol has about 1/3 of the
computation complexity, 1/2 of the communication complexity of the Katz et al.
two-server PAKE protocol if the computation of a pairing approximates to the
computation of 4 exponentiations. Furthermore, our protocol achieves implicit
authentication with only two communications between the client and the servers,
whereas the Katz et al. two-server PAKE protocol needs three communications
between the client and the servers to achieve implicit authentication.

The purpose of the users personal device is to keep public parameters. To
efficiently compute 23 modular exponentiations, the client may load the public
parameters from the personal device into a computing device.

4 Proof of Security

Based on the security model defined in Section 2, we have the following theorem:

Theorem 1. Assuming that (1) the identity-based encryption (IBE) scheme is
secure against the chosen-ciphertext attack; (2) the Cramer-Shoup public key
encryption scheme is secure against the chosen-ciphertext attack; (3) the deci-
sional Diffie-Hellman problem is hard; (4) the protocol P is a secure two-party
PAKE protocol with explicit authentication; (5) H1, H2 are collision-resistant
hash functions, then the protocol P ′ illustrated in Figure 1 is a secure two-server
PAKE protocol according to Definition 1.

Proof. Given an adversary A attacking the protocol, we imagine a simulator S
that runs the protocol for A.

First of all, the simulator S initializes the system by generating params =
paramsP,E

⋃{E,G, n,G, q, g1, g2, H1, H2} and the secretmaster-keyE . Next, Client,
Server, and Client ServerTriple sets are determined. Passwords for clients are cho-
sen at random and split, and then stored at corresponding servers. Private keys
for servers are computed using master-keyE .

The public information is provided to the adversary. Considering (C,A,B) ∈
ClinetServerTriple, we assume that the adversary A chooses the server B to cor-
rupt and the simulator S gives the adversary A the information held by the
corrupted server B, including the private key of the server B, i.e., dB , and one

share of the password of the client C, GpwB,C and g
pw∗

B,C

2 . After computing the
appropriate answer to any oracle query, the simulator S provides the adversary
A with the internal state of the corrupted server B involved in the query.

We view the adversary’s queries to its Send oracles as queries to four different
oracles as follows:

– Send(C, i, A,B) represents a request for instance Ci of client C to initiate
the protocol. The output of this query is msg1 = 〈C,Wc, X, Y, Z,Ea〉 and
msg2 = 〈C,Wc, X, Y, Z,Eb〉.
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– Send(A, j,msg1) represents sending messagemsg1 to instance Aj of the server
A. The output of this query is either msgA = 〈A,S1, T1, U1, V1,Wa〉 or ⊥.

– Send(C, i,msgA|msgB) represents sending the message msgA|msgB to in-
stance Ci of the client C. The output of this query is either acciC = TRUE
or ⊥.

– SendP (A, j,B,M) represents sending messageM to instance Aj of the server
A, supposedly by the serverB, in the two-party PAKE protocol P . The input
and output of this query depends on the protocol P .

When A queries the Test oracle, the simulator S chooses a random bit b. When
the adversary completes its execution and output a bit b′, the simulator can tell
whether the adversary succeeds by checking if (1) a single Test query was made
regarding some fresh session key skiU,U ′ , and (2) b′ = b. Success of the adversary is

denoted by event Succ. For any experiment P , we denote AdvPA = 2 ·Pr[Succ]−1,
where Pr[·] denotes the probability of an event when the simulator interacts with
the adversary in accordance with experiment P .

We will use some terminology throughout the proof. A given message is
called oracle-generated if it was output by the simulator in response to some
oracle query. The message is said to be adversarially-generated otherwise. An
adversarially-generated message must not be the same as any oracle-
generated message.

We refer to the real execution of the experiment, as described above, as P0.
We introduce a sequence of transformations to the experiment P0 and bound the
effect of each transformation on the adversary’s advantage. We then bound the
adversary’s advantage in the final experiment. This immediately yields a bound
on the adversary’s advantage in the original experiment.

Experiment P1: In this experiment, the simulator interacts with the adversary
as P0 except that the adversary does not succeed, and the experiment is aborted,
if any of the following occurs:

1. At any point during the experiment, an oracle-generated message (e.g.,msg1,
msg2, msgA, or msgB) is repeated.

2. At any point during the experiment, a collision occurs in the hash function
H1 orH2 (regardless of whether this is due to a direct action of the adversary,
or whether this occurs during the course of the simulator’s response to an
oracle query).

It is immediate that events 1 occurs with only negligible probability, event
2 occurs with negligible probability assuming H1, H2 as collision-resistant hash
functions. Put everything together, we are able to see that

Claim1. IfH1 andH2 are collision-resistanthash functions, |AdvP0

A (k)−AdvP1

A (k)|
is negligible.

Experiment P2: In this experiment, the simulator interacts with the adversary
A as in experiment P1 except that the adversary’s queries to Execute oracles are
handled differently: in any Execute(C, i, A, j, B, k), where the adversary A has
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not queried corrupt(A), but may have queried corrupt(B), the plaintext Gpw1h
−1

in the ID-based encryption Ea is replaced with a random element in E.

The difference between the current experiment and the previous one is bounded
by the probability that an adversary breaks the semantic security of the identity-
based encryption (IBE) scheme. More precisely, we have

Claim 2. If the identity-based encryption (IBE) scheme is semantically secure,
|AdvP1

A (k)− AdvP2

A (k)| is negligible.
Experiment P3: In this experiment, the simulator interacts with the adversary
A as in experiment P2 except that: for any Execute(C, i, A, j, B, k) oracle, where
the adversaryA has not queried corrupt(A), but may have queried corrupt(B), the

plaintext g
pw∗

C,Ah−1
a

2 in the Cramer-Shoup encryption (S1, T1, U1, V1) is replaced
by a random element in the group G.

The difference between the current experiment and the previous one is bounded
by the probability that an adversary breaks the semantic security of the Cramer-
Shoup encryption scheme. More precisely, we have

Claim3. If theCramer-Shoup encryption scheme is semantically secure, |AdvP2

A (k)

−AdvP3

A (k)| is negligible.
Experiment P4: In this experiment, the simulator interacts with the adversary
A as in experiment P3 except that: for any Execute(C, i, A, j, B, k) oracle, where
the adversary A has not queried corrupt(A), but may have queried corrupt(B),
the session keys skC,A and skA,C are replaced with a same random element in
the group G.

The difference between the current experiment and the previous one is bounded
by the probability to solve the decisional Diffie-Hellman (DDH) problem over
(G, g, q). More precisely, we have

Claim 4. If the decisional Diffie-Hellman (DDH) problem is hard over (G, q, g),
|AdvP3

A (k)− AdvP4

A (k)| is negligible.
If |AdvP3

A (k)−AdvP4

A (k)| is non-negligible, we show that the simulator can use
A as a subroutine to solve the DDH problem with non-negligible probability in
a similar way as follows.

Given a DDH problem (gα, gβ , Z), where α, β are randomly chosen from Z
∗
q

and Z is either gαβ or a random element z from G, the simulator replaces Wc

with gα, and Wa with gβ, and the session keys skC,A, skA,C with Z. When
Z = gαβ , the experiment is the same as the experiment P3. When Z is a random
element z in G, the experiment is the same as the experiment P4. If the adversary
can distinguish the experiments P3 and P4 with non-negligible probability, the
simulator can solve the DDH problem with non-negligible probability. Assuming
that the DDH problem is hard, Claim 4 is true.

In experiment P4, the adversary’s probability of correctly guessing the bit b
used by the Test oracle is exactly 1/2 when the Test query is made to a fresh client
instance Ci or a fresh server instance Aj invoked by an Execute(C, i, A, j, B, k)
oracle, even if the adversary queried corrupt(B) (i.e., the adversary corrupted the
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server B). This is so because the session keys skC,A and skA,C for such instances
in P4 are chosen at random from G, and hence there is no way to distinguish
whether the Test oracle outputs a random session key or the “actual” session
key (which is just a random element, anyway). Therefore, all passive adversaries
cannot win the game, even if they can query Corrupt(B) oracles.

The rest of the proof concentrates on the instances invoked by Send oracles.

Experiment P5: In this experiment, we modify the simulator’s responses to
Send(A, j,msg1) and Send(C, i,msgA|msgB) queries.

Before describing this change we introduce some terminology. For a query
Send(A, j,msg1), where msg1 is adversarially - generated, if accjA = TRUE, then
msg1 is said to be valid. Otherwise, msg1 is said to be invalid. Similarly, for
a query Send(C, i,msgA|msgB), where msgA|msgB is adversarially-generated, if
acciC = TRUE, then msgA|msgB is said to be valid. Otherwise, it is said to be in-
valid. Informally, valid messages use correct passwords while invalid messages do
not. Given this terminology, we continue with our description of experiment P5.
When the adversary makes oracle query Send(A, j,msg1), the simulator exam-
ines msg1. If it is adversarially-generated and valid, the simulator halts and accjA
is assigned the special value ∇. In any other case, (i.e., msg1 is oracle-generated,
or adversarially-generated but invalid), the query is answered exactly as in ex-
periment P4. When the adversary makes oracle query Send(C, i,msgA|msgB),
the simulator examines msgA|msgB . If the message is adversarially-generated
and valid, the simulator halts and acciC is assigned the special value ∇. In any
other case, (i.e., msgA|msgB is oracle-generated, or adversarially-generated but
invalid), the query is answered exactly as in experiment P4.

Now, we change the definition of the adversary’s success in P5. At first, we de-
fine that a server instance Aj is fresh if the adversary has not queried Corrupt(A)
and a client instance Ci is fresh if the adversary has not queried Corrupt(C). If
the adversary ever queries Send(A, j,msg1) oracle to a fresh server instance Aj

with accjA = ∇ or Send(C, i,msgA|msgB) oracle to a fresh client instance Ci

with acciC = ∇, the simulator halts and the adversary succeeds. Otherwise the
adversary’s success is determined as in experiment P4.

The distribution on the adversary’s view in experiments P4 and P5 are identi-
cal up to the point when the adversary queries Send(A, j,msg1) oracle to a fresh
server instance with accjA = ∇ or Send(C, i,msgA|msgB) oracle to a fresh client
instance with acciC = ∇. If such a query is never made, the distributions on the
view are identical. Therefore, we have

Claim 5. AdvP4

A (k) ≤ AdvP5

A (k).

Experiment P6: In this experiment, the simulator interacts with the adversary
A as in experiment P5 except that the adversary’s queries to Send(C, i, A,B) and
Send(A, j,msg1) oracles are handled differently: in any Send(C, i, A,B), where
the adversary A has not queried corrupt(A), but may have queried corrupt(B),

the plaintext Gpw1h
−1

in Ea is replaced with a random element in the group E;
in any Send(A, j,msg1), where the adversary A has not queried corrupt(A), but

may have queried corrupt(B), the plaintext g
pw∗

C,Ah−1
a

2 in the Cramer - Shoup
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encryption (S1, T1, U1, V1) (if any) is replaced with a random element in the
group G.

As we prove Claims 2 and 3, we can prove

Claim 6. If both the IBE scheme and the Cramer-Shoup scheme are semantically
secure, |AdvP5

A (k)− AdvP6

A (k)| is negligible.
In experiment P6, msg1 and msgA from Execute and Send oracles become

independent of the password pwC used by the client C in the view of the adver-
sary A, even if A may require Corrupt(B). In addition, although the adversary

who has corrupted the server B is able to obtain Gpw2 , GpwC,B and g
pw∗

C,B

2 , they
are independent of the password pwC in the view of the adversary because the
references msg1 and msgA are independent of the password in the view of the
adversary. In view of this, any off-line dictionary attack cannot succeed.

The adversaryA succeeds only if one of the following occurs: (1) the adversary
queries Send(A, j,msg1) oracle to a fresh server instance Aj for adversarially-
generated and valid msg1, that is, accjA = ∇ (let Succ1 denote this event); (2)
the adversary queries Send(C, i,msgA|msgB) oracle to a fresh client instance Ci

for adversarially-generated and valid msgA|msgB, that is, acciC = ∇ (let Succ2

denote this event); (3) neither Succ1 nor Succ2 happens, the adversary wins the
game by a Test query to a fresh instance Ci or a server instance Aj .

To evaluate Pr[Succ1] and Pr[Succ2], we assume that the adversary A has
corrupted the server B and consider four cases as follows.

Case 1. The adversary A modifies msg1 = 〈C,Wc, X, Y, Z, Ea〉 from the client

by changing Wc, X, Y, Z and then the plaintext Gpw1h
−1

in Ea. Changing the
plaintext in a ciphertext works with a public key cryptosystem with homomor-
phic property, such as the ElGamal scheme [14]. It does not work with the
IBE scheme which is secure against the chosen-ciphertext attack. The best the
adversary can do is choosing W ′

c, X
′, Y ′, Z ′ such that H1(C,W

′
c, X

′, Y ′, Z ′) =
H1(C,Wc, X, Y, Z). But H1 is a collision-resistant hash function. Therefore, the
probability of Succ1 in this case is negligible.

Case 2. The adversary A forges msg′1 = 〈C,W ′
c, X

′, Y ′, Z ′ E′
a〉 by choosing

his own W ′
c, X

′, Y ′, Z ′, E′
a. In this case, the best the adversary can do is to

choose r′c, x
′
1, x

′
2, y

′
1, y

′
2 and computes W ′

c = g
r′c
1 , X ′ = g

x′
1

1 g
x′
2

2 , Y ′ = g
y′
1

1 g
y′
2

2 , Z ′ =
gz

′
1 , h∗ = H1(C,W

′
c, X

′, Y ′, Z ′) and performs identity-based encryption E′
a =

IBE(G−pwC,Bh∗−1

, A), and sends msg′1 to the server A. Note that the adversary
A has corrupted B and know GpwC,B . After receiving msg′1, the server A derives
ωa = G−pwC,B−pwC,A = G−pwC and then runs two-party PAKE protocol P with
the server B (controlled by the adversary) on the basis of ωa. Without knowing
ωa, the probability of Succ1 depends on the protocol P . If P is a secure two-
party PAKE protocol with explicit authentication, Pr[Succ1] ≤ QP (k)/N + ε(k)
for some negligible function ε(·), where QP (k) denotes the number of on-line
attacks in the protocol P .

Case 3. The adversary A modifies msgA = 〈A,S1, T1, U1, V1,Wa〉 from the

server A. In msgA, (S1, T1, U1, V1) is a Cramer-Shoup encryption of g
pw∗

C,Ah−1
a

2 ,
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where ha = H2(A, Wa, C,Wc). If the adversary A changes the plaintext in
(S1, T1, U1, V1), the message becomes invalid because the Cramer-Shoup encryp-
tion scheme is secure against the chosen ciphertext attack. The best the the
adversary can do is choosing his own W ′

a such that H2(A,W
′
a, C,Wc) = H2(A,

Wa, C,Wc). But H2 is a collision-resistant hash function. Therefore, the proba-
bility of Succ2 in this case is negligible.

Case 4. The adversary A forges msg′A = 〈A,S′
1, T

′
1, U

′
1, V

′
1 ,W

′
a〉 by choosing

a password pw′
C from the dictionary D and r′a, r′1 ∈ Z

∗
q and computing W ′

a =

g
r′a
1 , S′

1 = g
r′1
1 , T ′

1 = g
r′1
2 , h∗

a = H2(A,W
′
a, C,Wc), U1 = g

(pw′
C−pw∗

C,B)h∗
a
−1

2 Zr′1 , h∗
1

= H2(S
′
1, T

′
1, U

′
1), V1 = X ′r′1Y ′h∗

1r
′
1 . Then A sends msg′A|msgB to the client,

suppose that msgB is constructed as defined by the protocol. In this case, the
event Succ2 occurs if and only if pw′

C = pwC . Therefore, Pr[Succ2] ≤ QC(k)/N ,
where QC(k) denotes the number of on-line attacks to the client instance Ci.

The above discussion shows that

Claim 7. If (1) P is a secure two-party PAKE protocol with explicit authenti-
cation; (2) the IBE scheme and the Cramer-Shoup scheme are secure against the
chosen-ciphertext attack; (4) H1 and H2 are collision-resistant hash functions,
then Pr[Succ1 ∨ Succ2] ≤ Q(k)/N + ε(k), where Q(k) denotes the number of
on-line attacks and ε(k) is a negligible function.

Remark. If a public key encryption scheme is secure against the chosen-
ciphertext attack (CCA), it is secure against the chosen-plaintext attack (CPA)
(i.e., it is semantically secure).

In experiment P6, the adversary’s probability of success when neither Succ1

nor Succ2 occurs is 1/2. The preceding discussion implies that

PrP6

A [Succ] ≤ Q(k)/N + ε(k) + 1/2 · (1 −Q(k)/N − ε(k))

and thus the adversary’s advantage in experiment P6

AdvP6

A (k) = 2PrP6

A [Succ]− 1

≤ 2Q(k)/N + 2ε(k) + 1−Q(k)/N − ε(k)− 1

= Q(k)/N + ε(k)

for some negligible function ε(·). The sequence of claims proved above show that

AdvP0

A (k) ≤ AdvP6

A (k) + ε(k) ≤ Q(k)/N + ε(k)

for some negligible function ε(·). This completes the proof of the theorem.

5 Conclusion

In this paper, we present an efficient compiler to transform any two-party PAKE
protocol to a two-server PAKE protocol from identity-based encryption. In ad-
dition, we have provided a rigorous proof of security for our compiler with-
out random oracle. Our compiler is in particular suitable for the applications
of password-based authentication where an identity-based system has already
established.
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