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IDA-PBC with Adaptive Friction Compensation for Underactuated 

Mechanical Systems 

In this work the control of underactuated mechanical systems with dry friction on 

actuated and unactuated joints is investigated. A new interconnection-and-

damping-assignment passivity-based-control (IDA-PBC) design is presented, 

which includes the adaptive estimation of the friction forces and the introduction 

of a nonlinear dissipative term in the closed-loop system dynamics. As a result, 

the traditional IDA-PBC is complemented with an additional matching condition 

and the control law is augmented with a new term that accounts for the Coulomb 

friction forces on all joints. Two adaptive control paradigms are considered for 

comparison purposes and stability conditions are discussed. The control design is 

detailed for two demonstrative examples: the disk-on-disk system; the Acrobot 

system. The effectiveness of the proposed design is demonstrated with numerical 

simulations. 

Keywords: underactuated mechanical systems; IDA-PBC; Euler-Lagrange; 

adaptive control; dry friction 

1. Introduction 

Control via energy shaping has been successfully applied to underactuated mechanical 

systems employing two main formulations: Controlled Lagrangians (CL) as in (Bloch, 

Dong Eui Chang, Leonard, & Marsden, 2001; Bloch, Leonard, & Marsden, 2000); 

interconnection-and-damping-assignment passivity-based-control (IDA-PBC) as in 

(Ortega, Spong, Gomez-Estern, & Blankenstein, 2002) and references therein. While in 

its traditional formulation IDA-PBC consists of two separate terms, namely the energy-

shaping and the damping-injection control, and neglects dissipative forces, recent 

research has suggested that relaxing these structural constraints might allow covering a 

wider range of applications (Crasta, Ortega, & Pillai, 2015; A. Donaire, Ortega, & 

Romero, 2016). While control via energy shaping is inherently robust to disturbances, 

the practical importance of friction in underactuated mechanical systems has motivated 



a considerable stream of research. The effect of viscous friction was studied within the 

CL approach by (Chang, 2010; Woolsey et al., 2004), while continuous and linear 

friction forces were considered in IDA-PBC by (Delgado & Kotyczka, 2014; Gómez-

Estern & Van der Schaft, 2004). Furthermore, the compensation of nonlinear and 

discontinuous friction forces on actuated joints was investigated in (Ryalat & Laila, 

2016; Sandoval, Kelly, & Santibáñez, 2011; Zhang & Liu, 2016). Beyond energy-

shaping control, a technical solution for dry friction compensation on both actuated and 

unactuated joints based on sliding-mode-control was proposed in (Martinez, Alvarez, & 

Orlov, 2008) considering the case of small displacements and under specific 

assumptions on the magnitude of the friction forces. Recently, more sophisticated IDA-

PBC designs with enhanced robustness characteristics were proposed in (Haddad, 

Chemori, & Belghith, 2017) and in (Alejandro Donaire, Romero, Ortega, & Siciliano, 

2017; Ryalat, Laila, & Torbati, 2015)  but are only applicable if the disturbances are 

restricted to the actuated joints. In summary, control via energy shaping of 

underactuated mechanical systems with dry friction on both actuated and unactuated 

joints remains an open problem with important practical implications. 

This work presents a new control design that builds upon the IDA-PBC 

formulation and extends it in two main ways for the purpose of friction compensation 

on all joints: the adaptive estimation of the friction forces; the introduction of a new 

nonlinear dissipative term in the closed-loop system dynamics. Differently from prior 

research, the purpose of the dissipative term introduced here is to produce a new 

matching condition, which can be expressed as a partial-differential-equation (PDE) for 

separable port-controlled Hamiltonian (PCH) systems or as an algebraic equation for 

non-separable PCH systems. Differently from previous works, no assumption is made 

on the magnitude of the friction forces and no prior knowledge of the friction 



coefficients is required. Instead, two alternative methods are employed and compared 

for the purpose of adaptive friction compensation: the Immersion and Invariance (I&I) 

formulation (Astolfi & Ortega, 2003); the time-delay-control (TDC) method (Youcef-

Toumi & Ito, 1988). The effectiveness of the proposed approach is demonstrated with 

numerical simulations on two illustrative examples. 

The rest of the paper is organised as follows: in Section 2 the IDA-PBC design 

and the corresponding matching conditions are briefly reviewed for completeness; 

Section 3 presents the new IDA-PBC designs and discusses stability conditions; Section 

4 illustrates the simulation results for the disk-on-disk system and Section 5 for the 

Acrobot system. Section 6 contains concluding remarks. 

2. Problem Formulation 

An underactuated mechanical system with position 𝑞 ∈ ℝ𝑛 and momenta 𝑝 = 𝑀�̇�, 

subject to friction forces 𝑄𝑓(�̇�) ∈ ℝ𝑛 and control input 𝑢 ∈ ℝ𝑚 can be represented in 

PCH form as: 

  [
�̇�
�̇�

] = [
0 𝐼𝑛

−𝐼𝑛 0
] [

∂𝑞𝐻

∂𝑝𝐻
] + [

0
𝐺

] 𝑢 − [
0

𝑄𝑓
] (1) 

The input matrix is 𝐺(𝑞) ∈ ℝ𝑛×𝑚, with rank(𝐺) = 𝑚 < 𝑛, the open-loop Hamiltonian 

is 𝐻 =
1

2
𝑝𝑇𝑀−1𝑝 + 𝑉, where 𝑀(𝑞) = 𝑀𝑇 > 0 is the inertia matrix and 𝑉(𝑞) is the 

potential energy. Finally, 𝜕𝑞(·) denotes the partial derivative in 𝑞, and 𝐼𝑛 indicates the 

𝑛 × 𝑛 identity matrix. IDA-PBC aims to achieve the following closed-loop system 

dynamics, where 𝐻𝑑 =
1

2
𝑝𝑇𝑀𝑑

−1𝑝 + 𝑉𝑑 is the closed-loop Hamiltonian, with inertia 

matrix 𝑀𝑑 = 𝑀𝑑
𝑇 > 0, potential energy 𝑉𝑑, and desired equilibrium 𝑞∗ = argmin(𝑉𝑑): 

  [
�̇�
�̇�

] = [
0 𝑀−1𝑀𝑑

−𝑀𝑑𝑀−1 𝐽2 − 𝐺𝐾𝑣𝐺𝑇] [
∂𝑞𝐻𝑑

∂𝑝𝐻𝑑
] (2) 



The term 𝐽2 = −𝐽2
𝑇 is a free-parameter matrix typically defined as a linear function of 

the momenta, while 𝐾𝑣 = 𝐾𝑣
𝑇 > 0 is a constant gain matrix. The IDA-PBC control for 

the disturbance-free system (1) is defined as (Ortega et al., 2002): 

  

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖

𝑢𝑒𝑠 = (𝐺𝑇𝐺)−1𝐺𝑇(∂𝑞𝐻 − 𝑀𝑑𝑀−1 ∂𝑞𝐻𝑑 + 𝐽2𝑀𝑑
−1𝑝)

𝑢𝑑𝑖 = −𝐾𝑣𝐺𝑇𝜕𝑝𝐻𝑑

 (3) 

The energy-shaping control 𝑢𝑒𝑠 assigns the desired closed-loop equilibrium, while the 

damping-injection control 𝑢𝑑𝑖 achieves asymptotic stability if the output 𝑦 = 𝐺𝑇 ∂𝑝𝐻𝑑 

is detectable and if 𝑄𝑓 = 0 in (1). The matrix 𝑀𝑑 and the potential energy 𝑉𝑑 are 

defined by the following matching conditions, termed kinetic-energy PDE and 

potential-energy PDE: 

  
𝐺⊥ (𝜕𝑞 (

1

2
𝑝𝑇𝑀−1𝑝) − 𝑀𝑑𝑀−1𝜕𝑞 (

1

2
𝑝𝑇𝑀𝑑

−1𝑝) + 𝐽2𝑀𝑑
−1𝑝) = 0

𝐺⊥ (𝜕𝑞𝑉 − 𝑀𝑑𝑀−1(𝜕𝑞𝑉𝑑)) = 0
 (4) 

The term 𝐺⊥ is a full-rank left-annihilator of 𝐺 defined so that 𝐺⊥𝐺 = 0.  

System (1) can also be expressed in Euler-Lagrange form as follows, where the 

open-loop Lagrangian is 𝐿(𝑞, �̇�) =
1

2
�̇�𝑇𝑀�̇�  − 𝑉: 

  
𝑑

𝑑𝑡
𝜕�̇� 𝐿(𝑞, �̇�) − 𝜕𝑞𝐿(𝑞, �̇�) = 𝐺(𝑞)𝑢 − 𝑄𝑓(�̇�) (5) 

Defining the closed-loop Lagrangian 𝐿𝑐(𝑞, �̇�) =
1

2
�̇�𝑇𝑀𝑐�̇� − 𝑉𝑐 and the desired 

equilibrium𝑞∗ = argmin(𝑉𝑐), the closed-loop dynamics (2) can be expressed as: 

  
𝑑

𝑑𝑡
𝜕�̇� 𝐿𝑐(𝑞, �̇�) − 𝜕𝑞𝐿𝑐(𝑞, �̇�) = 0 (6) 

The Euler-Lagrange matching conditions corresponding to (4) are: 



𝐺⊥ (𝜕𝑞 (
1

2
�̇�𝑇𝑀�̇�) − 𝜕𝑞(𝑀�̇�)�̇� − 𝑀𝑀𝑐

−1 (𝜕𝑞 (
1

2
�̇�𝑇𝑀𝑐�̇�) − 𝜕𝑞(𝑀𝑐�̇�)�̇�)) = 0

𝐺⊥ (𝜕𝑞𝑉 − 𝑀𝑀𝑐
−1(𝜕𝑞𝑉𝑐)) = 0

 (7)  

Finally, (4) and (7) are equivalent if the following conditions hold: 𝑉𝑐 = 𝑉𝑑; 𝑀𝑐 =

𝑀𝑀𝑑
−1𝑀; 𝐽2 = 𝑀𝑑𝑀−1 (𝜕𝑞(𝑀𝑀𝑑

−1𝑝)𝑇 − 𝜕𝑞(𝑀𝑀𝑑
−1𝑝)) 𝑀−1𝑀𝑑 (Blankenstein, Ortega, 

& Van Der Schaft, 2002). 

3. Main Result 

In this section two IDA-PBC designs for underactuated mechanical systems with 

Coulomb friction on all joints are outlined. The first design is intended for separable 

PCH systems (i.e. with constant inertia matrix) with  𝑛 = 2 and presents an explicit 

solution of the relevant PDE. The second design employs a more general approach and 

is applicable to non-separable PCH systems (i.e. with non-constant inertia matrix) but 

does not provide an explicit solution of the matching conditions. In both cases, stability 

conditions are discussed drawing a parallel to the standard IDA-PBC.  Finally, the 

friction forces are estimated adaptively and the adaptation laws are combined with the 

new IDA-PBC designs. 

The following assumptions are introduced to define the control problem for system (1): 

Assumption 1: Coulomb friction forces are acting on all joints, 𝑄𝑓 = diag[sign(�̇�)]𝐹𝑐, 

where  𝐹𝑐 ∈ ℝ+
𝑛  is a vector of positive, constant coefficients assumed exactly known 

through an appropriate adaptation law to be defined, while the elements of the diagonal 

matrix diag[sign(·)] ∈ ℝ𝑛×𝑛 correspond to the standard sign function: 

   sign(𝑥) = {
−1 𝑥 < 0
0 𝑥 = 0
1 𝑥 > 1

 (8) 



Assumption 2: (1) is a separable PCH system with 𝑛 = 2 and underactuation degree 

one, the input matrix is 𝐺 = [
1
0

], and the inertia matrix is: 

𝑀 = [
𝑚11 𝑚12

𝑚12 𝑚22
] , det(𝑀) = ∆> 0; 𝑀𝑑 = [

𝑘1 𝑘2

𝑘2 𝑘3
] , det(𝑀𝑑) = ∆𝑑 > 0 (9) 

3.1 IDA-PBC design for separable systems 

We consider system (1) under Assumptions 1-2, which is representative of several 

canonical examples of underactuated mechanical systems (e.g. disk-on-disk, inertia-

wheel-pendulum). The underlying idea of the proposed approach consists in including a 

dissipative term 𝜕�̇�𝐷𝑐 in the closed-loop dynamics as follows: 

   [
�̇�
�̇�

] = [
0 𝑀−1𝑀𝑑

−𝑀𝑑𝑀−1 𝐽2

] [
∂𝑞𝐻𝑑

∂𝑝𝐻𝑑
] − [

0
𝑀𝑑𝑀−1] 𝜕�̇�𝐷𝑐 (10) 

Equating (1) and (10), the resulting matching conditions can be expressed as: 

𝐺⊥ (𝜕𝑞 (
1

2
𝑝𝑇𝑀−1𝑝) − 𝑀𝑑𝑀−1𝜕𝑞 (

1

2
𝑝𝑇𝑀𝑑

−1𝑝) + 𝐽2𝑀𝑑
−1𝑝) = 0

𝐺⊥ (𝜕𝑞𝑉 − 𝑀𝑑𝑀−1(𝜕𝑞𝑉𝑑)) = 0

𝐺⊥ (diag[sign(�̇�)]𝐹𝑐  − 𝑀𝑑𝑀−1(𝜕�̇�𝐷𝑐)) = 0

 (11) 

The dissipative term 𝜕�̇�𝐷𝑐 is included in a third PDE that expresses the damping-

injection in the presence of friction and is solvable analytically if Assumptions 1-2 are 

satisfied. Substituting 𝑀, 𝑀𝑑 from (9), the damping-injection PDE in (11) becomes: 

 𝜕�̇�1
𝐷𝑐(𝑚22𝑘2 − 𝑚12𝑘3) + 𝜕�̇�2

𝐷𝑐(𝑚11𝑘3 − 𝑚12𝑘2) = ∆𝐹𝑐2sign(𝑞2̇) (12) 

Solving (12) in 𝑞2̇ we obtain: 

  𝐷𝑐 = ∆𝐹𝑐2|𝑞2̇| (𝑚11𝑘3 − 𝑚12𝑘2)⁄ +
𝑘𝑣

2
(�̇�1 + 𝛾�̇�2)2 (13) 



where 𝑘𝑣 > 0 is a parameter analogous to 𝐾𝑣 in (3) and 𝛾 is a constant term defined as 

𝛾 = − (𝑚22𝑘2 − 𝑚12𝑘3) (𝑚11𝑘3 − 𝑚12𝑘2)⁄ . Introducing the friction-compensation 

term 𝑢∗ = (𝐺𝑇𝐺)−1𝐺𝑇 (diag[sign(�̇�)]𝐹𝑐  − 𝑀𝑑𝑀−1(𝜕�̇�𝐷𝑐)), the new IDA-PBC control 

law for separable systems is: 

𝑢 = 𝑢𝑒𝑠 + 𝑢∗

𝑢∗ = 𝐹𝑐1sign(𝑞1̇) − 𝐹𝑐2sign(𝑞2̇)
(𝑚11𝑘2−𝑚12𝑘1)

(𝑚11𝑘3−𝑚12𝑘2)
− 𝑘𝑣(�̇�1 + 𝛾�̇�2)

∆𝑑

(𝑚11𝑘3−𝑚12𝑘2)

 (14) 

where 𝑢𝑒𝑠 is defined as in (3). Notably, 𝑢∗ replaces 𝑢𝑑𝑖 in (14) and accounts for the 

friction forces on all joints (𝑄𝑓 ∈ ℝ𝑛). Nevertheless, 𝑢𝑑𝑖 is included in 𝑢∗ for a 

particular choice of 𝑘𝑣, as demonstrated in the following Lemma. 

Lemma 1 

Consider system (1) under Assumption 1, 2 and control input (14) resulting in the 

closed-loop dynamics (10). Then the friction-compensation term 𝑢∗ contains the 

conventional damping-injection 𝑢𝑑𝑖 (3) if 𝑘𝑣 = 𝐾𝑣 (
𝑚11𝑘3−𝑚12𝑘2

∆𝑑
)

2

. 

Proof 

Computing 𝑢𝑑𝑖 for the system at hand, and recalling that 𝑝 = 𝑀�̇� we obtain: 

  𝑢𝑑𝑖 = −𝐾𝑣(�̇�1 + 𝛾�̇�2)
(𝑚11𝑘3−𝑚12𝑘2)

∆𝑑
 (15) 

Finally, if 𝑘𝑣 = 𝐾𝑣 (
𝑚11𝑘3−𝑚12𝑘2

∆𝑑
)

2

 the last term in 𝑢∗ corresponds to (15) ■ 

Remark 1: Since the dissipative term 𝜕�̇�𝐷𝑐 is not included in the kinetic-energy PDE, it 

is not required to be quadratic in 𝑝. This is an important difference from previous works 

(Crasta et al., 2015; A. Donaire et al., 2016) where an additional term quadratic in 𝑝 is 

introduced in the closed-loop dynamics (2) as an alternative to the free matrix 𝐽2 and 

consequently appears in the kinetic-energy PDE. 



Remark 2: If no Coulomb friction is present on the unactuated joint (e.g. 𝐹𝑐2 = 0), then 

𝐷𝑐 =
𝑘𝑣

2
(�̇�1 + 𝛾�̇�2)2 in (13) and can be interpreted as Rayleigh dissipation function. In 

this case, the Euler-Lagrange equivalent of (10) is: 

  
𝑑

𝑑𝑡
𝜕�̇� 𝐿𝑐(𝑞, �̇�) − 𝜕𝑞𝐿𝑐(𝑞, �̇�) + 𝜕�̇�𝐷𝑐(�̇�) = 0 (16) 

where 𝜕�̇�𝐷𝑐 = 𝑅(�̇�)�̇� with 𝑅(�̇�) ≥ 0 (Teo, Donaire, & Perez, 2013). If 𝐹𝑐2 ≠ 0, then 

𝜕�̇�𝐷𝑐 has a nonlinear and discontinuous structure therefore the dissipation condition 

�̇�𝑇𝜕�̇�𝐷𝑐(�̇�) ≥ 0 is generally not satisfied and 𝐷𝑐 is not a Rayleigh dissipation function. 

Sufficient conditions on the friction coefficient 𝐹𝑐2for a stable equilibrium in 𝑞 =

𝑞∗, 𝑝 = 0 are discussed in the following proposition, which employs a similar approach 

to Proposition 3.1 in (Haddad et al., 2017). 

Proposition 1 

Consider system (1) under Assumptions 1-2 and control input (14) with 𝑘𝑣 defined as in 

Lemma 1 resulting in the closed-loop dynamics (10). Then 𝐻�̇� ≤ 0 and 𝑞∗ is a stable 

equilibrium point if |
∆𝐹𝑐2|𝑞2̇|

𝑚11𝑘3−𝑚12𝑘2
| < 𝐾𝑣|∂𝑝𝐻𝑑

𝑇𝐺|
2
. 

Proof 

The closed-loop Hamiltonian 𝐻𝑑 =
1

2
𝑝𝑇𝑀𝑑

−1𝑝 + 𝑉𝑑 is taken as Lyapunov function 

candidate. Computing its time-derivative and substituting �̇�, �̇� from (10) gives: 

 𝐻�̇� = 𝜕𝑞𝐻𝑑
𝑇(𝑀−1𝑀𝑑𝜕𝑝𝐻𝑑) + 𝜕𝑝𝐻𝑑

𝑇(−𝑀𝑑𝑀−1𝜕𝑞𝐻𝑑 − 𝑀𝑑𝑀−1𝜕�̇�𝐷𝑐) (17) 

Simplifying common terms and substituting 𝑀, 𝑀𝑑 from (9) and 𝐷𝑐 from (13) gives: 

 𝐻�̇� = −𝑘𝑣(�̇�1 + 𝛾�̇�2)2 − ∆𝐹𝑐2|𝑞2̇| (𝑚11𝑘3 − 𝑚12𝑘2)⁄  (18) 



Substituting 𝑘𝑣 = 𝐾𝑣 (
𝑚11𝑘3−𝑚12𝑘2

∆𝑑
)

2

 it follows from Lemma 1 that the quadratic term 

in (18) corresponds to: 𝐾𝑣|∂𝑝𝐻𝑑
𝑇𝐺|

2
. In particular, the numerator of the second term in 

(18) is positive by hypothesis, while the sign of the denominator depends on the 

elements of 𝑀, 𝑀𝑑 . In general we have: 

 𝐻�̇� ≤ −𝐾𝑣|∂𝑝𝐻𝑑
𝑇𝐺|

2
+ ∆𝐹𝑐2|𝑞2̇| |𝑚11𝑘3 − 𝑚12𝑘2|⁄  (19) 

Finally, |
∆𝐹𝑐2|𝑞2̇|

𝑚11𝑘3−𝑚12𝑘2
| < 𝐾𝑣|∂𝑝𝐻𝑑

𝑇𝐺|
2
 implies 𝐻�̇� ≤ 0 which concludes the proof ■ 

Remark 3: If friction is neglected on both joints as in the standard IDA-PBC (3), the 

Lyapunov derivative (17) becomes after simplifying common terms: 

  𝐻�̇� = 𝜕𝑝𝐻𝑑
𝑇(−𝐺𝐾𝑣𝐺𝑇𝜕𝑞𝐻𝑑 − diag[sign(�̇�)]𝐹𝑐) (20) 

Computing the products in (20) under Assumption 1, 2 we obtain: 

 

𝐻�̇� ≤
1

∆𝑑
|(𝑚11𝑘3 − 𝑚12𝑘2)𝐹𝑐1|𝑞1̇| + (𝑚12𝑘3 − 𝑚22𝑘2)𝐹𝑐1𝑞1̇sign(𝑞2̇)|

+
1

∆𝑑
|(𝑚11𝑘1 − 𝑚11𝑘2)𝐹𝑐2𝑞1̇sign(𝑞2̇) + (𝑚22𝑘1 − 𝑚12𝑘2)𝐹𝑐2|𝑞2̇||

−𝐾𝑣|∂𝑝𝐻𝑑
𝑇𝐺|

2

 (21) 

Compared with (19), the Lyapunov derivative (21) contains additional terms that 

depend on the velocities 𝑞1̇, 𝑞2̇ and on their cross product. In practice, the friction forces 

can degrade the performance of the closed-loop system (see Section 4-5). If only the 

Coulomb friction on the actuated joint is compensated employing the alternative control 

𝑢∗′ = 𝐹𝑐1sign(�̇�1) − 𝑘𝑣(�̇�1 + 𝛾�̇�2)
∆𝑑

(𝑚11𝑘3−𝑚12𝑘2)
 we can simplify (21) as: 

 
𝐻�̇� ≤ −𝐾𝑣|∂𝑝𝐻𝑑

𝑇𝐺|
2

+
1

∆𝑑
|(𝑚11𝑘1 − 𝑚11𝑘2)𝐹𝑐2𝑞1̇sign(𝑞2̇) + (𝑚22𝑘1 − 𝑚12𝑘2)𝐹𝑐2|𝑞2̇||

 (22) 



Comparing (22) with (21) and (19) confirms that, although friction compensation on the 

actuated joint is clearly beneficial, the new IDA-PBC design (14) includes and goes 

beyond that strategy. While (19),(22) are unaffected by 𝐹𝑐1, asymptotic stability cannot 

in general be concluded in the presence of Coulomb friction on the unactuated joints, 

which is in agreement with (Gómez-Estern & Van der Schaft, 2004). 

3.2 IDA-PBC design for non-separable systems 

In this section we consider system (1) under Assumption 1, while Assumption 2 is 

removed, and a generalisation of the result in Section 3.1 is presented. To this end we 

observe that 𝐷𝑐 in (13) consists of a part quadratic in �̇� and of a nonlinear part 

proportional to the friction forces that we indicate with ℱ. Similarly, 𝑢∗ (14) can be 

separated into a damping-injection term and a friction-compensation term. We therefore 

propose to rewrite the closed-loop dynamics (10) as follows: 

 [
�̇�
�̇�

] = [
0 𝑀−1𝑀𝑑

−𝑀𝑑𝑀−1 𝐽2 − 𝐺𝐾𝑣𝐺𝑇] [
∂𝑞𝐻𝑑

∂𝑝𝐻𝑑
] − [

0
𝑀𝑑𝑀−1] ℱ (23) 

The damping-injection PDE (12) becomes in this case: 

 𝐺⊥(diag[sign(�̇�)]𝐹𝑐  − 𝑀𝑑𝑀−1ℱ) = 0 (24) 

Notably, (24) is an algebraic equation and can be solved analytically even if 𝐺, 𝑀𝑑 , 𝑀 

are not constant. The new control law becomes then: 

 
𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = (𝐺𝑇𝐺)−1𝐺𝑇(diag[sign(�̇�)]𝐹𝑐 − 𝑀𝑑𝑀−1ℱ)
 (25) 

Differently from (14), the conventional damping-injection term is included in (25) 

alongside the new friction-compensation term 𝑢∗. Stability conditions are discussed in 

the following proposition. 



Proposition 2 

Consider system (1) under Assumption 1 and control input (25) resulting in the closed-

loop dynamics (23). Then 𝐻�̇� ≤ 0 and 𝑞∗ is a stable equilibrium point if 

|𝜕𝑝𝐻𝑑
𝑇𝑀𝑑𝑀−1ℱ| < 𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑

𝑇𝐺|
2
, with 𝜆𝑚𝑖𝑛{𝐾𝑣} the minimum eigenvalue of 𝐾𝑣. 

Proof 

Taking the closed-loop Hamiltonian 𝐻𝑑 as Lyapunov function candidate, computing its 

time-derivative, substituting �̇�, �̇� from (23) and simplifying common terms we obtain: 

 𝐻�̇� = −𝜕𝑝𝐻𝑑
𝑇𝐺𝐾𝑣𝐺𝑇𝜕𝑝𝐻𝑑 − 𝜕𝑝𝐻𝑑

𝑇𝑀𝑑𝑀−1ℱ (26) 

Without making any assumption on the sign of ℱ, we can write:  

 𝐻�̇� ≤ −𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑
𝑇𝐺|

2
+ |𝜕𝑝𝐻𝑑

𝑇𝑀𝑑𝑀−1ℱ| (27) 

In particular, |𝜕𝑝𝐻𝑑
𝑇𝑀𝑑𝑀−1ℱ| < 𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑

𝑇𝐺|
2
 implies 𝐻�̇� ≤ 0 which concludes 

the proof ■ 

Remark 4: If system (1) satisfies Assumption 2 then (24) becomes: 

 ℱ1(𝑚22𝑘2 − 𝑚12𝑘3) + ℱ2(𝑚11𝑘3 − 𝑚12𝑘2) = ∆𝐹2sign(𝑞2̇) (28) 

Solving (28) in ℱ2with ℱ1 = 0 we obtain: 

 ℱ2 = ∆𝐹2sign(𝑞2̇) (𝑚11𝑘3 − 𝑚12𝑘2)⁄  (29) 

Substituting (29) in (25) confirms that the latter corresponds to (14) for an appropriate 

value of 𝑘𝑣 (see Lemma 1). Notably, compared to the standard IDA-PBC, (25) only 

requires solving the additional algebraic equation (24), which is particularly beneficial 

considering the ongoing research efforts that aim to obviate the solution of PDE in IDA-

PBC (Alejandro Donaire et al., 2016; Nunna, Sassano, & Astolfi, 2015).  



3.3 Adaptive IDA-PBC with I&I 

In this section the constant Coulomb friction coefficients 𝐹𝑐 ∈ ℝ+
𝑛  are estimated 

adaptively with the I&I formulation (Astolfi, Karagiannis, & Ortega, 2007; Astolfi & 

Ortega, 2003) and integrated within the proposed IDA-PBC designs (14),(25). To this 

end, the vector of estimation errors is defined as follows: 

  𝑧 = �̃�𝑐 − 𝐹𝑐 = �̂�𝑐  + 𝛽(�̇�) − 𝐹𝑐 (30) 

where 𝑧, 𝛽, 𝐹𝑐 ∈ ℝ𝑛. The adaptation law is chosen as follows, with the tuning parameter 

𝛼 > 0: 

�̂�𝑐
̇ = 𝛼 diag[sign(�̇�)]𝑀−1 (−𝜕𝑞𝐻 + 𝐺𝑢 − diag[sign(�̇�)] (�̂�𝑐  + 𝛽(�̇�)) − �̇��̇�)

𝛽 = −𝛼 diag[sign(�̇�)]�̇�
  (31) 

Proposition 3 

Consider system (1) under Assumption 1 and adaptation law (31). The estimation errors 

𝑧 are bounded and the terms diag[sign(�̇�)]𝑧 converge to zero asymptotically for 𝛼 > 0. 

Proof 

A Lyapunov function candidate is chosen as 𝑊 =
1

2
𝑧𝑇𝑧. Computing the time-derivative 

of (30) and substituting �̇� = 𝑀�̈� + �̇��̇� from (1), we obtain: 

  �̇� = �̂�𝑐
̇ + 𝜕�̇�(𝛽)𝑀−1

(−𝜕𝑞𝐻 + 𝐺𝑢 − diag[sign(�̇�)](�̃�𝑐 − 𝑧) − �̇��̇�) (32) 

Computing the time-derivative of 𝑊 and substituting (31),(32) gives: 

 
�̇� = 𝑧𝑇𝜕�̇�(𝛽)𝑀−1 diag[sign(�̇�)]𝑧 =

= −𝛼(𝑧𝑇diag[sign(�̇�)]𝑀−1diag[sign(�̇�)]𝑧) ≤ 0
       (33) 

Consequently 𝑧 is bounded and diag[sign(�̇�)]𝑧 converges to zero asymptotically ■ 



Combining the IDA-PBC design (25) and the adaptation law (31), the complete 

I&I-IDA-PBC for non-separable systems becomes: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = (𝐺𝑇𝐺)−1𝐺𝑇 (diag[sign(�̇�)] (�̂�𝑐 + 𝛽(�̇�)) − 𝑀𝑑𝑀−1ℱ)

�̂�𝑐
̇ = 𝛼 diag[sign(�̇�)]𝑀−1 (−𝜕𝑞𝐻 + 𝐺𝑢 − diag[sign(�̇�)] (�̂�𝑐 + 𝛽(�̇�)) − �̇��̇�)

𝛽(�̇�) = −𝛼 diag[sign(�̇�)]�̇�

 (34) 

In particular, ℱ is computed from (24) with the estimates �̃�𝑐 replacing the actual friction 

coefficients, while 𝛼 > 0 is the only additional parameter to the standard IDA-PBC 

design. Similarly, combining the IDA-PBC design (14) and the adaptation law (31), 

gives the I&I-IDA-PBC for separable systems (see Section 4). 

Proposition 4 

Consider system (1) under Assumption 1 and control input (34) resulting in the closed-

loop dynamics (23). Then 𝐻�̇� ≤ 0 and 𝑞∗ is a locally stable equilibrium point if: 

|𝜕𝑝𝐻𝑑
𝑇𝑀𝑑𝑀−1ℱ| < 𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑

𝑇𝐺|
2
; 𝛼 > 0; the output 𝑦 = 𝐺𝑇 ∂𝑝𝐻𝑑 is detectable. 

Proof 

Computing ℱ from (24) with the estimates �̃�𝑐 and substituting in (26) gives: 

 𝐻�̇� = −𝜕𝑝𝐻𝑑
𝑇𝐺𝐾𝑣𝐺𝑇𝜕𝑝𝐻𝑑 − 𝜕𝑝𝐻𝑑

𝑇(𝑀𝑑𝑀−1ℱ + diag[sign(�̇�)]𝑧) (35) 

Local stability of the equilibrium 𝑞∗ is concluded employing the following argument 

(Khalil, 1996): 𝑞∗ is a stable equilibrium if |𝜕𝑝𝐻𝑑
𝑇𝑀𝑑𝑀−1ℱ| < 𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑

𝑇𝐺|
2
 in 

case diag[sign(�̇�)]𝑧 = 0, while asymptotic stability is concluded if the output 𝑦 =

𝐺𝑇 ∂𝑝𝐻𝑑 is detectable (see Proposition 2); diag[sign(�̇�)]𝑧 is bounded and converges to 

zero asymptotically (see Proposition 3) ■ 

Corollary 1 



Consider system (1) under Assumptions 1-2 and control input (14) with 𝑘𝑣 defined as in 

Lemma 1 and �̃�𝑐1, �̃�𝑐2 estimated according to (31) resulting in the closed-loop dynamics 

(10). Then 𝐻�̇� ≤ 0 and 𝑞∗ is a locally stable equilibrium point if: |
∆𝐹𝑐2|𝑞2̇|

𝑚11𝑘3−𝑚12𝑘2
| <

𝐾𝑣|∂𝑝𝐻𝑑
𝑇𝐺|

2
; 𝛼 > 0; the output 𝑦 = 𝐺𝑇 ∂𝑝𝐻𝑑 is detectable. 

The proof is a particular case of Proposition 4 and a direct consequence of Proposition 

1 and Proposition 3 hence it is omitted for brevity ■ 

Remark 5: While the I&I-IDA-PBC (34) is specifically intended for Coulomb friction, 

different friction models can be considered with appropriate changes to the adaptation 

law (31). For illustrative purposes we consider the simultaneous presence of Coulomb 

Friction and stiction resulting in: 𝑄𝑓 = diag[sign(�̇�)]𝐹𝑐 + diag[𝛿(�̇�)]𝐹𝑠, where 𝐹𝑠 ∈ ℝ𝑛 

is the vector of stiction coefficients and the diagonal matrix diag[𝛿(�̇�)] ∈ ℝ𝑛×𝑛 has 

elements 𝛿(�̇�) = {
0 �̇� ≠ 0
1 �̇� = 0

. Since stiction forces are null if �̇� ≠ 0, the adaptation law 

(31) remains unchanged. The second part of the adaptation law for �̇� = 0 is: �̂�𝑠
̇ =

𝛼𝑀−1(−𝜕𝑞𝐻 + 𝐺𝑢 − �̂�𝑠 − �̇��̇�). Finally, the estimated friction forces become in this 

case: �̂�𝑓 = diag[sign(�̇�)](�̂�𝑐  − 𝛼 diag[sign(�̇�)]�̇�) +  diag[𝛿(�̇�)]�̂�𝑠. 

3.4 Adaptive IDA-PBC with TDC 

For comparison purposes, in this section the friction forces 𝑄𝑓 are estimated with the 

TDC method (Youcef-Toumi & Ito, 1988) which is particularly relevant in view of the 

implementation on digital microcontrollers. TDC employs previous values of control 

input and system states to estimate a lumped disturbance resulting from external forces 

and modelling errors. The main advantages of TDC are robustness and simple 

implementation. As a drawback, asymptotic convergence of the estimation errors to 

zero cannot be concluded. Denoting with 𝜏 > 0 an arbitrary small delay, which in a 



digital implementation might correspond to the sampling interval, and with 𝜉 ∈ ℝ+
𝑛  an 

array of arbitrarily small positive constants, TDC assumes a bounded variation of the 

lumped disturbance 𝑄𝑓 so that at every instant 𝑡 > 𝜏, |𝑄𝑓(𝑡) − 𝑄𝑓(𝑡 − 𝜏)| < 𝜉. 

Consequently, 𝑄𝑓 is estimated from the open-loop dynamics (1) at the previous instant: 

  �̃�𝑓 ≅ 𝑄𝑓(𝑡 − 𝜏) = − ∂𝑞𝐻(𝑡 − 𝜏) + 𝐺𝑢(𝑡 − 𝜏) − �̇�(𝑡 − 𝜏) (36) 

Typically, the time-derivative of the momenta �̇� are not directly measurable but can be 

computed as: �̇�(𝑡 − 𝜏) =
𝑝(𝑡)−𝑝(𝑡−𝜏)

𝜏
. This introduces a further error in the estimate (36), 

which is however accounted for within 𝜉 in this work. Differently from (31), TDC does 

not rely on the structure of 𝑄𝑓 and is therefore applicable to generic disturbances. The 

delay 𝜏 is the tuning parameter in TDC (36) and is limited in practice by the maximum 

sampling frequency available. As a general rule, a smaller delay 𝜏 is required for a plant 

with faster dynamics (Youcef-Toumi & Ito, 1988).  

Combining the IDA-PBC design (25) and the TDC estimation (36), the TDC-

IDA-PBC for non-separable systems becomes: 

𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = (𝐺𝑇𝐺)−1𝐺𝑇(− ∂𝑞𝐻(𝑡 − 𝜏) + 𝐺𝑢(𝑡 − 𝜏) − �̇�(𝑡 − 𝜏) − 𝑀𝑑𝑀−1ℱ)
 (37) 

In particular, ℱ is computed from (24) with the estimates �̃�𝑓 replacing the friction 

forces. Similarly, combining the IDA-PBC design (14) and the adaptation law (36), 

gives the TDC-IDA-PBC for separable systems (see Section 4). 

Proposition 5 

Consider system (1) under Assumption 1 and control input (37) resulting in the closed-

loop dynamics (23). Define the arbitrarily small delay 𝜏  and the constants 𝜉 ∈ ℝ+
𝑛  so 



that | 𝑄𝑓 − �̃�𝑓| < 𝜉 at any instant. Then 𝐻�̇� ≤ 0 and 𝑞∗ is a stable equilibrium point if 

|𝜕𝑝𝐻𝑑
𝑇(𝑀𝑑𝑀−1ℱ + 𝜉)| < 𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑

𝑇𝐺|
2
. 

Proof 

Since by hypothesis | 𝑄𝑓 − �̃�𝑓| < 𝜉, substituting 𝑄𝑓 = �̃�𝑓 + 𝜉 in (1) and equating to 

(23) gives: 

 �̇� = −𝑀𝑑𝑀−1𝜕𝑝𝐻𝑑 − 𝐺𝐾𝑣𝐺𝑇𝜕𝑝𝐻𝑑 − 𝑀𝑑𝑀−1ℱ − 𝜉 (38) 

Substituting (38) in the Lyapunov derivative (26) gives: 

  𝐻�̇� = −𝜕𝑝𝐻𝑑
𝑇𝐺𝐾𝑣𝐺𝑇𝜕𝑝𝐻𝑑 − 𝜕𝑝𝐻𝑑

𝑇(𝑀𝑑𝑀−1ℱ + 𝜉) (39) 

Finally, if |𝜕𝑝𝐻𝑑
𝑇(𝑀𝑑𝑀−1ℱ + 𝜉)| < 𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑

𝑇𝐺|
2
 we have:  

 𝐻�̇� ≤ −𝜆𝑚𝑖𝑛{𝐾𝑣}|∂𝑝𝐻𝑑
𝑇𝐺|

2
+ |𝜕𝑝𝐻𝑑

𝑇(𝑀𝑑𝑀−1ℱ + 𝜉)| ≤ 0 (40) 

which concludes the proof ■ 

Corollary 2 

Consider system (1) under Assumptions 1-2 and control input (14) with 𝑘𝑣 defined as in 

Lemma 1 and �̃�𝑐1, �̃�𝑐2 estimated according to (36) so that | �̃�𝑐1 − 𝐹𝑐1| < 𝜉1,| �̃�𝑐2 −

𝐹𝑐2| < 𝜉2, where 𝜉1, 𝜉2 ∈ ℝ+ are arbitrarily small constants. Then 𝑞∗ is a stable 

equilibrium point if |
∆𝐹𝑐2|𝑞2̇|

𝑚11𝑘3−𝑚12𝑘2
| + |𝜕𝑝𝐻𝑑

𝑇𝜉| < 𝐾𝑣|∂𝑝𝐻𝑑
𝑇𝐺|

2
. 

The proof is a particular case of Proposition 5 and is omitted for brevity ■ 

Remark 6: Differently from the I&I adaptation (31), the TDC estimate (36) introduces 

an error in the Lyapunov derivative (39) which further restricts the stability sufficient-

condition (40). Conversely, owing to the robustness of TDC, Assumption 1 can be 

relaxed for control (37) and other forces in addition to Coulomb friction can be 



accounted for. While TDC is particularly suitable for discrete-time systems, it was 

originally formulated for the continuous-time domain and is employed in this fashion 

within the TDC-IDA-PBC. Although the extension of (37) to discrete-time systems is 

possible employing a discrete-time version of IDA-PBC as in (Laila & Astolfi, 2006; 

Sümer & Yalçin, 2011), this aspect is beyond the scope of the present work. 

4. Disk-on-disk System 

4.1 Control design 

The disk-on-disk system consists of one unactuated disks (disk-2) that rolls without 

slipping on an actuated disk (disk-1). The equations of motion are (Alejandro Donaire et 

al., 2017): 

 [
𝑚11 𝑚12

𝑚12 𝑚22
] [

𝑞1̈

𝑞2̈
] + [

0
−𝛾2sin(𝑞2)

] = [
1
0

] 𝑢 − [
𝐹𝑐1sign(�̇�1)
𝐹𝑐2sign(�̇�2)

] (41) 

The inertia matrix 𝑀 is constant with elements: 𝑚11 = 𝑟1
2(𝑚1 + 𝑚2);   𝑚12 =

−𝑚2𝑟1(𝑟1 + 𝑟2); 𝑚22 = 2𝑚2(𝑟1 + 𝑟2)2. The parameters 𝑚1, 𝑚2, 𝑟1, 𝑟2 are the mass and 

radius of the actuated and unactuated disks respectively and 𝑔 is the gravity constant. 

The angles 𝑞1 of the actuated disk and 𝑞2 of the unactuated disk are measured from the 

vertical, with 𝑞1, 𝑞2 ∈ (−𝜋/2; 𝜋/2).The open-loop potential energy is 𝑉 = 𝛾2cos(𝑞2), 

with 𝛾2 = 𝑚2𝑔(𝑟1 + 𝑟2). The control aim is to stabilise the disks in the upright position 

(i.e. 𝑞1, 𝑞2 = 0). Since system (41) satisfies Assumptions 1-2 the IDA-PBC design for 

separable systems (14) is employed in conjunction with the adaptation laws (31) and 

(36) according to Corollary 1,2. 

The inertia matrix 𝑀, 𝑀𝑑 are defined as (9) and the matching conditions (11) become:  



[0 1] ([
0

−𝛾2𝑠𝑖𝑛(𝑞2)
] − [

𝑘1 𝑘2

𝑘2 𝑘3
] [

𝑚22 −𝑚12

−𝑚12 𝑚11
] [

𝜕𝑞1
𝑉𝑑

𝜕𝑞2
𝑉𝑑

]
1

∆ 
) = 0

[0 1] ([
�̃�𝑐1sign(�̇�1)

�̃�𝑐2sign(�̇�2)
] − [

𝑘1 𝑘2

𝑘2 𝑘3
] [

𝑚22 −𝑚12

−𝑚12 𝑚11
] [

𝜕�̇�1
𝐷𝑐

𝜕�̇�2
𝐷𝑐

]
1

∆
) = 0

 (42) 

The closed-loop potential-energy is: 

 𝑉𝑑 = 𝛾2cos(𝑞2)
∆

(𝑚11𝑘3−𝑚12𝑘2) 
+

𝑘𝑝

2
(𝑞1 + 𝛾𝑞2)2  (43) 

𝑉𝑑 has a minimum in 𝑞1, 𝑞2 = 0 if (𝑚11𝑘3−𝑚12𝑘2) < 0, 𝑘𝑝 > 0, where 𝛾 is defined as 

𝛾 = −
(𝑚22𝑘2−𝑚12𝑘3)

(𝑚11𝑘3−𝑚12𝑘2)
  . The dissipative term 𝐷𝑐 is defined as in (13) with 𝐹𝑐1, 𝐹𝑐2 

replaced by their estimates �̃�𝑐1, �̃�𝑐2 therefore control (14) becomes: 

𝑢 = 𝑢𝑒𝑠 + 𝑢∗

𝑢𝑒𝑠 = 𝛾2sin(𝑞2)
(𝑚11𝑘2−𝑚12𝑘1)

(𝑚11𝑘3−𝑚12𝑘2)
− 𝑘𝑝

∆𝑑

(𝑚11𝑘3−𝑚12𝑘2)
(𝑞1 + 𝛾𝑞2)

𝑢∗ = �̃�𝑐1sign(�̇�1) −
(𝑚11𝑘2−𝑚12𝑘1)

(𝑚11𝑘3−𝑚12𝑘2) 
�̃�𝑐2sign(�̇�2) − 𝑘𝑣

∆𝑑

(𝑚11𝑘3−𝑚12𝑘2)
(�̇�1 + 𝛾�̇�2)

  (44) 

The terms 𝑘𝑝, 𝑘𝑣 > 0 are tuning parameters and 𝑢𝑒𝑠 corresponds to (Alejandro Donaire 

et al., 2017). The coefficients of the energy-shaping control 𝑢𝑒𝑠 and of the friction-

compensation 𝑢∗ show a clear symmetry, which results from the similar structure of 

potential-energy PDE and damping-injection PDE (42). Expressing the I&I adaptation 

law (31) for system (41) gives: 

 

�̃�𝑐1 = (�̂�𝑐1 − 𝛼∆|�̇�1|)

�̃�𝑐2 = (�̂�𝑐2 − 𝛼∆|�̇�2|)

�̇̂�𝑐1 = 𝛼 sign(�̇�1) ((𝑢 − �̃�𝑐1sign(�̇�1)) 𝑚22 − (𝛾2sin(𝑞2) − �̃�𝑐2sign(�̇�2)) 𝑚12)

�̇̂�𝑐2 = 𝛼 sign(�̇�2) ((𝛾2sin(𝑞2) − �̃�𝑐2sign(�̇�2)) 𝑚11 − (𝑢 − �̃�𝑐1sign(�̇�1)) 𝑚12)

  (45) 

Conversely, the TDC estimation (36) becomes in this case: 

 
�̃�𝑐1sign(�̇�1) = 𝑢(𝑡 − 𝜏) − (𝑚11�̈�1(𝑡 − 𝜏) + 𝑚12�̈�2(𝑡 − 𝜏))

�̃�𝑐2sign(�̇�2) = 𝛾2sin(𝑞2)(𝑡 − 𝜏) − (𝑚12�̈�1(𝑡 − 𝜏) + 𝑚22�̈�2(𝑡 − 𝜏))
  (46) 



4.2 Simulations 

Simulations were conducted with initial conditions 𝑞1 = 0; 𝑞2 = 0.175; 𝑝1 = 𝑝2 = 0 

employing the following parameters as in (Alejandro Donaire et al., 2017): 𝑚1 =

0.235; 𝑚2 = 0.0216; 𝑟1 = 0.15; 𝑟2 = 0.075; 𝑔 = 9.81; 𝑘1 = 0.4; 𝑘2 = −0.03; 

𝑘3 = 0.003. The tuning parameters of (44) are: 𝑘𝑝 = 0.00005;  𝑘𝑣 = 0.00018;  𝛼 =

1000;  𝜏 = 0.0001. The Coulomb friction coefficients are chosen as 𝐹𝑐1 = 0.01; 𝐹𝑐2 =

0.0001 considering that disk-1 is larger and heavier compared to disk-2. Notably, the 

technical solution presented in (Martinez et al., 2008) would not be applicable in this 

case since it assumes higher friction on the unactuated joint than on the actuated joint. 

Figure 1 depicts 𝑞1, 𝑞2 with the standard IDA-PBC (i.e. �̃�𝑐1 = �̃�𝑐2 = 0) and in 

case friction compensation is only performed on the actuated joint (i.e. �̃�𝑐2 = 0). 

Neglecting Coulomb friction altogether results in large errors on 𝑞1 and slow 

oscillations on 𝑞2. Friction compensation on the actuated disk clearly reduces the 

position errors on disk-1 although it is not sufficient to reach the desired equilibrium. It 

is worth highlighting how in this case a relatively small Coulomb friction on the 

unactuated joint (𝐹𝑐2 ≪ 𝐹𝑐1) has large adverse effects on the system performance. 

Figure 2 depicts 𝑞1, 𝑞2with the I&I-IDA-PBC (44)-(45) and the corresponding 

disturbance estimates. Although small oscillations are still present on 𝑞1, 𝑞2, the error on 

𝑞1 is greatly reduced, while the I&I estimates (45) converges to the correct values of 

𝐹𝑐1, 𝐹𝑐2. Finally, Figure 3 refers to the TDC-IDA-PBC (44)-(46): with the chosen 

parameters the system response is the same as with the I&I adaptation law (45), 

however the estimated Coulomb friction coefficients appear less smooth compared to 

the I&I adaptation. This is a known shortcoming of the TDC approach, which 

differently from I&I does not ensure the convergence of the estimation errors to zero. 

Nevertheless, since the delay 𝜏 is small compared to the system dynamics, the latter acts 



as a low-pass filter and the large spikes in the TDC estimates are not transmitted to the 

disk positions. 

5. Acrobot System 

5.1 Control design 

The Acrobot system consists of an articulated pendulum with a single actuator at the 

elbow joint (𝑞2) and an unactuated shoulder joint (𝑞1). The equations of motion given in 

matrix form are: 

 �̇� = − ∂𝑞 (
1

2
𝑝𝑇𝑀−1𝑝 + 𝑉) + 𝐺𝑢 − [

𝐹𝑐1sign(�̇�1)
𝐹𝑐2sign(�̇�2)

] (47) 

where the potential energy is 𝑉 = 𝑔(𝑐4 cos(𝑞1) + 𝑐5cos (𝑞1 + 𝑞2)), the input matrix is 

𝐺𝑇 = [0 1] and the left-hand annihilator is 𝐺⊥ = [1 0]. The open-loop inertia 

matrix is: 𝑀 = [
𝑐1 + 𝑐2 + 2𝑐3cos (𝑞2) 𝑐2 + 𝑐3cos (𝑞2)

𝑐2 + 𝑐3cos (𝑞2) 𝑐2
], with determinant ∆> 0. The 

terms 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 are constant system parameters, while 𝑔 is the gravity constant. 

The control aim consists in stabilizing the upright position (𝑞1 = 𝑞2 = 0). In this case, 

the IDA-PBC design for non-separable systems (25) is employed in conjunction with 

the adaptation laws (31) and (36) according to Proposition 4,5. The damping-injection 

matching condition (24) with 𝐹𝑐1, 𝐹𝑐2 replaced by their estimates �̃�𝑐1, �̃�𝑐2 is:  

 ℱ1 + ℱ2
((𝑐1+𝑐2+2𝑐3cos (𝑞2))𝑘2−(𝑐2+𝑐3cos (𝑞2))𝑘1)

(𝑐2𝑘1−(𝑐2+𝑐3cos (𝑞2))𝑘2)
= �̃�𝑐1

sign(�̇�1)∆

(𝑐2𝑘1−(𝑐2+𝑐3cos (𝑞2))𝑘2)
  (48) 

Solving (48) with ℱ2 = 0 gives: 

   ℱ1 = �̃�𝑐1
sign(�̇�1)∆

(𝑐2𝑘1−(𝑐2+𝑐3cos (𝑞2))𝑘2)
 (49) 

The IDA-PBC (D. Mahindrakar, Astolfi, Ortega, & Viola, 2006) is employed as 



baseline (see Appendix) and is complemented with the friction-compensation 𝑢∗ (25): 

 
𝑢 = 𝑢𝑒𝑠 + 𝑢𝑑𝑖 + 𝑢∗

𝑢∗ = �̃�𝑐2sign(�̇�2) −
(𝑐2𝑘2−𝑘3𝑐2−𝑘3𝑐3 cos(𝑞2))

(𝑐2𝑘1−𝑘2𝑐2−𝑘2𝑐3 cos(𝑞2)) 
�̃�𝑐1sign(�̇�1)

  (50) 

The I&I adaptation law (31) becomes in this case: 

�̃�𝑐1 = (�̂�𝑐1 − 𝛼|�̇�1|)

�̃�𝑐2 = (�̂�𝑐2 − 𝛼|�̇�2|)

[
�̇̂�𝑐1

�̇̂�𝑐2

] = 𝛼 [
sign(�̇�1)    0   

    0   sign(�̇�2)
] [𝐺𝑢− ∂𝑞 (

1

2
𝑝𝑇𝑀−1𝑝 + 𝑉) − [

�̃�𝑐1sign(�̇�1)

�̃�𝑐2sign(�̇�2)
] − �̇�𝑀−1𝑝]

(51) 

where �̇� = [
−2𝑐3sin (𝑞2)�̇�2 −𝑐3sin (𝑞2)�̇�2

−𝑐3sin (𝑞2)�̇�2 0
]. The TDC estimation (36) is defined as 

follows, where the delay is indicated with the subscript for brevity: 

 [
�̃�𝑐1sign(�̇�1)

�̃�𝑐2sign(�̇�2)
] = − ∂𝑞 (

1

2
𝑝𝑡−𝜏

𝑇 ( 𝑀𝑡−𝜏
−1 ) 𝑝𝑡−𝜏 + 𝑉𝑡−𝜏) + 𝐺𝑢𝑡−𝜏 − �̇�𝑡−𝜏 (52) 

5.2 Simulations 

Simulations were conducted with initial position 𝑞1 = 𝜋; 𝑞2 = 0 employing the 

following parameters: 𝑐1 = 2.3333; 𝑐2 = 5.3333; 𝑐3 = 2; 𝑐4 = 3; 𝑐5 = 2; 𝑔 =

9.81; 𝑘1 = 0.3386; 𝑘2 = 1; 𝑘3 = 5.9073. The parameters of the IDA-PBC controller 

(50) are: 𝜇 = −0.6019;  𝑘0 = −350; 𝑘𝑢 = 10; 𝐾𝑣 = 30;  𝛼 = 2;  𝜏 = 0.0001. 

Considering that both joints are similar, the Coulomb friction coefficients in (47) are set 

equal: 𝐹𝑐1 = 0.2; 𝐹𝑐2 = 0.2. 

Figure 4 depicts 𝑞1, 𝑞2 for the baseline IDA-PBC without friction compensation, 

and in case friction compensation is only performed on the actuated joint (i.e.�̃�𝑐1 = 0). 

In the former case the final position is 𝑞1 = 0.198; 𝑞2 = −0.489, while in the latter 

case it is 𝑞1 = 0.176; 𝑞2 = −0.431 confirming the limitations of friction compensation 

on the actuated joint alone. Figure 5 depicts the joint positions for the I&I-IDA-PBC 



(50)-(51) and the corresponding disturbance estimates. In this case, 𝑞1, 𝑞2 converge to a 

narrow band around zero, settling at 𝑞1 = 0.018; 𝑞2 = −0.036. Additionally, the I&I 

estimates (51) converge to the actual values of 𝐹𝑐1, 𝐹𝑐2. Figure 6 shows the joint 

position with TDC-IDA-PBC (50)-(52) and the corresponding estimates of the friction 

coefficients, which are comparable to I&I-IDA-PBC (50)-(51). 

6. Conclusions 

This paper presented a new friction compensation strategy for underactuated 

mechanical systems with Coulomb friction on actuated and unactuated joints. Two 

IDA-PBC designs were proposed considering the case of separable PCH systems and 

non-separable PCH systems, while sufficient-conditions for stability were discussed. 

Additionally, two adaptive paradigms were employed for comparison purposes. 

Simulations on two illustrative examples highlighted the effectiveness of the proposed 

approach, which goes beyond the traditional friction compensation on actuated joints. 

Future work will attempt to relax Assumption 1 considering different types of 

disturbances, while the results will be applied to systems with higher degree of 

underactuation and validated with experiments. 
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8. Figures 

 

Figure 1. Disk-on-disk system: (a) position with standard IDA-PBC (�̃�𝑐1 = �̃�𝑐2 = 0); 

(b) position with IDA-PBC and friction compensation on 𝑞1 only (i.e. �̃�𝑐2 = 0). 

 

 

Figure 2. Disk-on-disk system: (a) position with I&I-IDA-PBC (44)-(45); (b) estimates 

of the Coulomb friction coefficients �̃�𝑐1, �̃�𝑐2  with I&I (45). 
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Figure 3. Disk-on-disk system: (a) position with TDC-IDA-PBC (44)-(46); (b) 

estimates of the Coulomb friction coefficients �̃�𝑐1, �̃�𝑐2 with TDC (46). 

 

 

Figure 4. Acrobot system: (a) joint position with baseline IDA-PBC (�̃�𝑐1 = �̃�𝑐1 = 0); 

(b) joint position with IDA-PBC and friction compensation on 𝑞2 only (i.e. �̃�𝑐1 = 0 in 

(50)). 
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Figure 5. Acrobot system: (a) joint position with I&I-IDA-PBC (50)-(51); (b) estimates 

of the Coulomb friction coefficients �̃�𝑐1, �̃�𝑐2  with I&I (51). 

 

 

Figure 6. Acrobot system: (a) joint position with TDC-IDA-PBC (50)-(52); (b) 

estimates of the Coulomb friction coefficients �̃�𝑐1, �̃�𝑐2 with TDC (52). 
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Appendix 

Baseline IDA-PBC for the Acrobot system (D. Mahindrakar et al., 2006). The closed-

loop inertia matrix is 𝑀𝑑 = [
𝑘1 𝑘2

𝑘2 𝑘3
], where 𝑘1 > 0, ∆𝑑= 𝑘1𝑘3 − 𝑘2

2 > 0 and 𝜕𝑞𝑉𝑑 is 

defined as follows, with the tuning parameters 𝑘0, 𝑘𝑢, 𝜇: 

𝜕𝑞1
𝑉𝑑 = −𝑘0 sin(𝑞1 − 𝜇𝑞2) − 𝑏1 sin(𝑞1) − 𝑏2 sin(𝑞1 + 𝑞2) +

−𝑏3 sin(𝑞1 + 2𝑞2) − 𝑏4 sin(𝑞1 − 𝑞2) + 𝑘𝑢(𝑞1 − 𝜇𝑞2)

𝜕𝑞2
𝑉𝑑 = 𝑘0𝜇 sin(𝑞1 − 𝜇𝑞2) − 𝑏2 sin(𝑞1 + 𝑞2) − 2𝑏3 sin(𝑞1 + 2𝑞2) +

+𝑏4 sin(𝑞1 − 𝑞2) − 𝑘𝑢(𝑞1 − 𝜇𝑞2)

  (A1) 

The coefficients 𝑏1, 𝑏2, 𝑏3, 𝑏4 are respectively: 

 
𝑏1 =

𝑔

2𝑘2
(𝑐3𝑐4 ± 2𝑐4√𝑐1𝑐2); 𝑏2 =

𝑔𝜇

2𝑘2(𝜇+1)
(𝑐3𝑐4 ± 2𝑐5√𝑐1𝑐2)

𝑏3 =
𝑔𝜇𝑐3𝑐5

2𝑘2(𝜇+2)
;   𝑏4 =

𝑔𝜇𝑐3𝑐4

2𝑘2(𝜇−1)

  (A2) 

The energy-shaping control 𝑢𝑒𝑠 and damping-injection control 𝑢𝑑𝑖 are: 

 
𝑢𝑒𝑠 =

1

2
𝜕𝑞2

(𝑝𝑇𝑀−1𝑝) + 𝜕𝑞2
𝑉 − [𝑘2 𝑘3]𝑀−1𝜕𝑞𝑉𝑑

𝑢𝑑𝑖 =
𝐾𝑣

∆𝑑
(𝑘2𝑝1 − 𝑘1𝑝2)

  (A3) 


