
Michigan Law Review Michigan Law Review

Volume 88 Issue 4

1990

Idea, Process, or Protected Expression?: Determining the Scope of Idea, Process, or Protected Expression?: Determining the Scope of

Copyright Protection of the Structure of Computer Programs Copyright Protection of the Structure of Computer Programs

Steven R. Englund
University of Michigan Law School

Follow this and additional works at: https://repository.law.umich.edu/mlr

 Part of the Computer Law Commons, and the Intellectual Property Law Commons

Recommended Citation Recommended Citation

Steven R. Englund, Idea, Process, or Protected Expression?: Determining the Scope of Copyright

Protection of the Structure of Computer Programs, 88 MICH. L. REV. 866 (1990).

Available at: https://repository.law.umich.edu/mlr/vol88/iss4/5

This Note is brought to you for free and open access by the Michigan Law Review at University of Michigan Law
School Scholarship Repository. It has been accepted for inclusion in Michigan Law Review by an authorized editor
of University of Michigan Law School Scholarship Repository. For more information, please contact
mlaw.repository@umich.edu.

https://repository.law.umich.edu/mlr
https://repository.law.umich.edu/mlr/vol88
https://repository.law.umich.edu/mlr/vol88/iss4
https://repository.law.umich.edu/mlr?utm_source=repository.law.umich.edu%2Fmlr%2Fvol88%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=repository.law.umich.edu%2Fmlr%2Fvol88%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=repository.law.umich.edu%2Fmlr%2Fvol88%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.law.umich.edu/mlr/vol88/iss4/5?utm_source=repository.law.umich.edu%2Fmlr%2Fvol88%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mlaw.repository@umich.edu

NOTE

Idea, Process, or Protected Expression?: Determining the

Scope of Copyright Protection of the Structure of Computer

Programs

Computer programs are literary works entitled to copyright pro
tection under federal law. 1 However, they also embody ideas and
processes, 2 neither of which may be protected by copyright.3 The bars
to copyright protection of ideas and processes are codified in the
Copyright Act of 1976 ("1976 Act").4 They derive from separate lines
of cases - the former from cases involving the alleged copying of the
plots and themes of various literary works5 and the latter from cases
defining the boundary between copyright law and patent law.6

Courts considering the alleged copying of the structure, rather
than literal copying of the text, of a computer program have usually
concerned themselves with whether protected expression or an unpro
tected idea was copied. Courts have seldom suggested that it might be
an unprotected process that was copied.7 However, this Note con
cludes that the legislative history of the 1976 Act indicates that that
legislation's drafters envisioned a far more prominent role for the pro
cess-expression dichotomy than it has played to date. The process in
quiry is at least as important as the idea inquiry in striking the proper
balance between promoting progress in the computer art, by granting
incentives to create, and impairing progress, by limiting access to utili
tarian innovations. 8 This Note develops and describes complementary
techniques for distinguishing both unprotected idea and unprotected

1. H.R. REP. No. 1476, 94th Cong., 2d Sess. 54 [hereinafter HOUSE REPORT] ("The term
'literary works' ••. includes ... computer programs •... "), reprinted in 1976 U.S. CODE CONG.

& ADMIN. NEWS 5659, 5666.

2. A process is a method (in contrast to a machine) for achieving a particular result. See
Cochrane v. Deener, 94 U.S. 780, 788 (1877) ("A process is a mode of treatment of certain
materials to produce a given result. It is an act or a series of acts, performed upon the subject
matter to be transformed and reduced to a different state or thing."); see also Tilghman v. Proc·
tor, 102 U.S. 707, 728 (1881) ("A machine is a thing. A process is an act, or a mode of acting.
The one is visible to the eye, •.. [t]he other is a conception of the mind, seen only by its effects
when being executed or performed. Either may be the means of producing a useful result.").
This is the definition of process used in patent law. The term's definition in copyright law is not
as clear, although use of the patent definition is appropriate. See infra note 55.

3. See infra notes 42-56 and accompanying text.

4. 17 u.s.c. § 102(b) (1988).

5. See infra notes 43-46 and accompanying text.

6. See infra notes 52-55 and accompanying text.

7. See infra section II.A.

8. See infra sections 11.B & 11.C.

866

February 1990] Note - Copyright Protection 867

process from protected expression within the context of computer pro
gram structure. 9

Part I of this Note briefly introduces fundamental aspects of the
computer art10 and relevant ·concepts of copyright law to provide a
working background for the analysis that follows. Courts have some
times appeared not to be fully aw?fe of important elements of the com
puter art and the nature of progress in. that art; this lack of awareness
has sometimes operated to the detriment of the goals of copyright law.
Part II discusses the threshold question whether copyright protection
of a computer program should ever extend beyond the literal instruc
tions of that program to its structure. To determine the proper scope
of protection, this Part examines the relevant case law, legislative his
tory, and policy considerations and concludes that established copy
right doctrines support some protection for the structures of computer
programs. Part III proposes an approach for determining when the
copyright in a computer program has been infringed by the copying of
its structure and describes the use of this approach. within a conven
tional copyright infringement analysis. This approach differs from ex
isting attempts to address the issue in two ways. First, it gives full
effect to both the idea-expression and process-expression dichotomies.
Second, it adheres more closely to traditional copyright doctrine than
existing approaches. This Note's approach seeks properly to balance
the goal of promoting progress in the computer art by providing an
incentive to create new programs with the fear of impairing progress
in that art by allowing monopolization of ideas or processes.

I. THE TECHNOLOGICAL AND LEGAL LANDSCAPE

A. An Introduction to Computer Technology

The notions of the "modularity" and "structure" of computer pro
grams are central to the analysis in the rest of this Note. This section

9. These techniques are based upon established copyright law doctrines. A number of com
mentators have suggested that the problems inherent in including computer programs in the
copyright regime could be solved by adopting various models of sui generis protection for com
puter programs. E.g., Stem, The Bundle of Rights Suited to New Technology, 47 U. Prrr. L.
REV. 1229 (1986) (sui generis protection for nonliteral aspects of computer programs); Samuel
son, Creating a New Kind of Intellectual Property: Applying the Lessons of the Chip Law in
Computer Programs, 70 MINN. L. REv. 471 (1985). But see Raskind, The Uncertain Case for

Special Legislation Protecting Computer Software, 47 U. Prrr. L. REV. 1131 (1986) (arguing no
sui generis protection needed). Because established doctrine and existing legislation can ade
quately serve the goals motivating protection of computer programs, there is no need for sui

generis protection.

10. This Note uses the phrase "computer art," which is common patent law usage, to refer to
the body of knowledge about the design and programming of computer systems. In contrast,
"computer science" is an academic discipline primarily concerned with the theory and practice
of solving problems with computers. See E. HOROWITZ & s. SAHNI, FUNDAMENTALS OF DATA
STRUCTURES IN PASCAL 1, 4 (1984).

868 Michigan Law Review [Vol. 88:866

briefly introduces the computer art and, building upon that founda·
tion, defines modularity and structure.

A "computer program" is defined in the 1976 Act as "a set of
statements or instructions to be used directly or indirectly in a com
puter in order to bring about a certain result." 11 Although computers
are only capable of directly executing "computer instructions,"12

which may be expressed as combinations of the binary digits zero and
one, 13 most programs are written in some "programming language"14

11. 17 U.S.C. § 101 (1988). This is the only term of the computer art defined in the copy·
right statute. With the exception of the term "module," see infra note 26 and accompanying
text, this Note uses technical terms as defined in AMERICAN NATIONAL STANDARDS COMMIT·
TEE, AMERICAN NATIONAL DICTIONARY FOR INFORMATION PROCESSING SYSTEMS (1984)
[hereinafter ANSC DICTIONARY]. A variety of synonymous terms and different definitions of
these same terms are in common use in the technical community. The ANSC Dictionary defines
a computer program as a "sequence of instructions suitable for processing by a computer." Id. at
82 (emphasis omitted). Although, by its use of the word "sequence,'' this definition incorporates
a notion of ordering that is only implied in the statutory definition, the two definitions have
substantially the same meaning.

The word "software" is sometimes used synonymously with "program." See, e.g., Plains
Cotton Co-op. Assn. v. Goodpasture Computer Serv., Inc., 807 F.2d 1256 (5th Cir.), cert denied,
484 U.S. 821 (1987); Stern, Another Look at Copyright Protection of Software: Did the 1980 Act
Do Anything for Object Code?, 3 CoMPUTER L.J. 1 (1981); Note, Defining the Scope of Copyright
Protection for Computer Software, 38 STAN. L. REv. 497, 500 (1986) (adopting the definition of
software given below but using the terms interchangeably). However, this Note treats the former
as a more inclusive term. Software includes "[p]rograms, procedures, rules, and any associated
documentation." ANSC DICTIONARY, supra, at 367 (emphasis omitted). This distinction ls con·
sistent with statutory usage. The 1976 Act uses "program" throughout, and the Report of the
National Commission on New Technological Uses of Copyrighted Works ("CONTU") uses
"software" only once, in a heading on the first page. See NATIONAL COMMN. ON NEW TECH·
NOLOGICAL USES OF COPYRIGHTED WORKS, LIBRARY OF CONGRESS, FINAL REPORT 1 (1979)
[hereinafter CONTU REPORT]. Since software may include instruction manuals, the issue dis·
cussed in this Note is truly the copyright protection of programs, not software.

12. An instruction is "executed" when a computer performs that instruction. A program is
executed when it is "run" on a computer. See ANSC DICTIONARY, supra note 11, at 146-47.
The actual execution of a program is an electronic process that involves no "understanding" by
the computer; a computer simply manipulates electric current according to physical Jaws.
Clapes, Lynch & Steinberg, Silicon Epics and Binary Bards: Determining the Proper Scope of
Copyright Protection/or Computer Programs, 34 UCLA L. REV. 1493, 1512·13 (1987) [hereinaf·
ter Silicon Epics]. For a description of this process, see M. MANO, CoMPUTER SYSTEM ARCH!·
TECTURE 137-61 (2d ed. 1982). A somewhat less technical explanation is found in J.
WEIZENBAUM, COMPUTER POWER AND HUMAN REASON 75-85 (1976). A complementary, but
somewhat different, view is that:

Computational processes are abstract beings that inhabit computers. As they evolve,
processes manipulate other abstract things called data. The evolution of a process is di·
rected by a pattern of rules called a program. People create programs to direct processes. In
effect, we conjure the spirits of the computer with our spells.

H. ABELSON & G. SUSSMAN, STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS 1
(1985).

13. See ANSC DICTIONARY, supra note 11, at 80; see also J. LEE, THE ANATOMY OF A
CoMPILER 18 (2d ed. 1974). Computer instructions tell a computer to perform such simple
operations as comparing or adding two binary numbers or jumping to a different place in the
program. Programs written in a "computer language" consist of computer instructions. ANSC
DICTIONARY, supra note 11, at 81. For an example of a program written in a computer Ian·
guage, see Comment, The Incompatibility of Copyright and Computer Software: An Ecqnomic
Evaluation and a Proposal for a Marketplace Solution, 66 N.C. L. REV. 977, 1020 (1988), which
reprints the first 168 instructions of a relatively short program of approximately 13,000 computer
instructions.

February 1990] Note - Copyright Protection 869

that is more convenient to use. Such programs may only be indirectly
executed by a computer. ts

'to understand how a computer program comes to have structure
and why it is important that the processes implemented by programs
and the ideas embodied in programs not be protected by copyright
law, it is necessary to have some appreciation of computer program
ming. "Computer programming" refers to "[t]he designing, writing,
and testing of programs."t6 Almost all programs are written with
some concern for the efficient use of resources such as memory space
and computer, programmer, and user time. t7 Since it will seldom, if
ever, be possible to write a program minimizing the use of all of these
resources, programmers must choose some balance of these criteria
appropriate to the nature of the particular program. ts There are as
many ways to approach the task of writing a program to achieve cer
tain efficiency objectives as there are programmers. It is, however,
possible to make some generalizations about the techniques that most
programmers use.

14. Programming languages include all languages in which programs may be written. See
ANSC DICTIONARY, supra note 11, at 308. Examples of programming languages include "high
level languages" such as BASIC and FORTRAN, see id. at 175, as well as "assembly languages."
See id. at 21, 81. This Note often simply refers to programming languages as "languages."

15. These programs written in languages that computers are not capable of directly executing
may be called "source programs." See ANSC DICTIONARY, supra note 11, at 369. They must be
translated into "object programs," which consist of computer instructions, in order to be exe
cuted by a computer. See ANSC DICTIONARY, supra note 11, at 271. Source programs written
in a high-level language may be translated into equivalent object programs by a type of program
called a "compiler." See ANSC DICTIONARY, supra note 11, at 76-77. Those written in an
assembly language may be translated into object programs by a program called an "assembler."
See ANSC DICTIONARY, supra note 11, at 20-21. Both compilation and assembly are described
well inc. GEAR, CoMPUTER ORGANIZATION AND PROGRAMMING 11 (3d ed. 1980). Object
programs may be translated into equivalent assembly language programs by a process known as
"disassembly." See generally D. KNUTH, THE DESIGN OF A TYPICAL COMPUTER AND ITS As
SEMBLY LANGUAGE (1970); E. SOWELL, PROGRAMMING IN AssEMBLY LANGUAGE 1-3 (1984).

16. ANSC DICTIONARY, supra note 11, at 307; accord G. SCHNEIDER, s. WEINGART & D.
PERLMAN, AN INTRODUCTION TO PROGRAMMING AND PROBLEM SOLVING WITH PASCAL 1
(2d ed. 1982) [hereinafter PROGRAMMING WITH PASCAL] (Programming is "the entire series of
steps involved in solving a problem on a computer."); J. HUGHES & J. MICHTOM, A STRUC
TURED APPROACH TO PROGRAMMING 3 (1977). For a more philosophical view, see J. WE
IZENBAUM, supra note 12, at 108 ("Programming is ... a test of understanding" and "[t]o write
a program is to legislate the laws for a world one first has to create in imagination."). A typical
commercial program may require one to three years to develop. R. FARLEY, SOFTWARE ENGI
NEERING CoNCEPTS 9 (1985).

17. See R. PRESSMAN, SOFTWARE ENGINEERING 148, 284-86 (1982); c. GEAR, supra note
15, at 12-14.

18. For example, it is very important that a library program for calculating square roots
designed to be used only by other programs be very fast, since this program may be run many
thousand times in the course of a day. Minimizing this program's use of computer time may be
worth the cost of a few extra days of programmer time or the cost of using a little more computer
memory. In designing a word processing program for a personal computer with a large memory,
making the program quick and easy for the end user to learn and use may be the most important
consideration. Specialists in computer-human interaction have identified many techniques for
achieving that goal. See Menell, An Analysis of the Scope of Copyright Protection for Application
Programs, 41 STAN. L. REv. 1045, 1053-55 (1989).

870 Michigan Law Review [Vol. 88:866

A programmer begins the process of writing a program by pre
cisely defining the program's "function."I9 A program's function is

, what the program actually does, in contrast to its "implementation,"
which is the method, including the instructions, that allow a program
to accomplish that function.20 After the function of a program has
been precisely defined, a programmer decomposes that function into
simpler constituent problems or "subtasks."2 I Subtasks themselves
may be decomposed similarly. This process of decomposition requires
skill and judginent on the part of the programmer;22 decisions made at
this stage of the programming process can profoundly affect the qual
ity of the resulting program by determining whether a program will be
more or less efficient in its use of computer and human resources.23

The resulting decomposition is determined both by the nature of the
problem and by the approach of the programmer. Different program
mers faced with the same problem would ordinarily be expected to

19. P. GILBERT, SOFTWARE DESIGN AND DEVELOPMENT 9-11 (1983); PROGRAMMING
WITH PASCAL, supra note 16, at 2, 6-9.

20. J. STANKOVIC, STRUCTURED SYSTEMS AND THEIR PERFORMANCE IMPROVEMENT
THROUGH VERTICAL MIGRATION 7 (1982). The function of a word processing program is to
process words according to the rules set forth in its user's manual; the implementation of that
program might employ 100,000 assembly language instructions. The function of a program
might also be more mundane, such as calculating the square root of a number. Obviously, the
program as ultimately written must implement correctly the function it is designed to serve.
References to the function of a program in this Note will assume correct implementation, or if
the function of the program as implemented differs from the function of the program as specified,
it will indicate that divergence.

21. PROGRAMMING WITH PASCAL, supra note 16, at 2-3; Wirth, Program Development by
Stepwise Refinement, 14 CoMM. A.C.M. 221, 226-27 (1971); Yohe, An Overview of Programming
Practices, 6 CoMPUTING SURV. 228-29 (1974). For example, a computerized payroll system
might be decomposed into the smaller tasks of reading and verifying the correctness of input
data, calculating withholding, printing paychecks and reports, and maintaining year-to-date
information. PROGRAMMING WITH PASCAL, supra note 16, at 2-3. Criteria for the division of a
problem into component parts and two sample decompositions of a simple problem are contained
in Parnas, On the Criteria to Be Used in Decomposing Systems into Modules, 15 COMM. A.C.M.
1053, 1055 (1972). Parnas' piece, a classic in the computer literature, defines "hierarchical struc
ture" and "decomposition" somewhat more formally than this Note. Any differences in the
definitions are, however, not important in applying copyright law.

Decomposing the function has several purposes: it minimizes the risk of small errors causing
large problems; it makes the detection and correction of programming errors easier; and it per
mits the easy replacement of one part of the program or use of a part in a different program. H.
ABELSON & G. SUSSMAN, supra note 12, at 2.

22. See Silicon Epics, supra note 12, at 1535-36. See generally Parnas, supra note 21. While
there have been attempts to develop guidelines for good programming, see, e.g., B. KERNIGHAN
& P. PLAUGER, ELEMENTS OF PROGRAMMING STYLE 159-61 (2d ed. 1978), these guidelines
have made programming a mechanical process to only a slightly greater extent than guides to
writing style, see, e.g., w. STRUNK & E.B. WHITE, ELEMENTS OF STYLE (1959), have made
writing a mechanical process. See Dijkstra, On the Cruelty of Really Teaching Computer Science,
32 COMM. A.C.M. 1398, 1400 1989 (describing software engineering as "The Doomed Disci
pline"). But see Menell, supra note 18, at 1056 (many design decisions dictated by guidelines of
programming practice).

23. See McCabe & Butler, Design Complexity Measurement and Testing, 32 COMM. A.C.M.
1415, 1415 (1989); supra notes 17-18 and accompanying text.

February 1990] Note - Copyright Protection 871

produce somewhat different decompositions.24

Once the function of a program has been decomposed into sub
tasks, a programmer can determine how best to implement the func
tions of the subtasks and then write instructions in some programming
language to do so.25 This Note refers to the portion of a program
implementing a subtask in a particular computer language as a "mod
ule." A module is thus nothing more than a relatively short sequence
of instructions iii some programming language that, when executed,
performs some well-defined function that is one of the subtasks defined
in the. course of decomposing the ultimate function of the program. 26

The functions of the modules in a program together with each mod
ule's relationships to other modules constitute the. "structure" of the
program.27

24. In many cases, different decompositions may be equally efficient or efficiency objectives
may not be well enough defined to choose between two decompositions based upon the degree to
which they meet those objectives.

25. PROGRAMMING WITH PASCAL, supra note 16, at 3-4. The implementation of relatively
simple subtasks may consist entirely of instructions; more complicated subtasks may be imple
mented by either individual instructions or simpler subtasks. See infra note 26.

The programming process continues on to debugging (removing the inevitable errors from
the program), testing, documenting, and performing ongoing maintenance. PROGRAMMING
WITH PASCAL, supra note 16, at 3-5; R. FARLEY, supra note 16, at 267-328. Programming is not
a linear process, proceeding neatly from one stage to the next. It is often necessary to return to
an "earlier" stage of the design ptocess, and frequently, a number of these steps are performed
simultaneously. PROGRAMMING WITH PASCAL, supra note 16, at 5-6.

26. See J. STANKOVIC, supra note 20, at 7. A module may incorporate references to (or
"call") modules that implement other tasks. This is a "client" relationship: the called module
provides a service to its client, the calling module. See Parnas, supra note 21, at 1057.

This Note uses the term module in this context, for want of a better generic term, in spite of
its narrower definition in ANSC DICTIONARY, supra note 11, at 246 (module defined as "[a]
program unit that is discrete and identifiable with respect to compiling, combining with other
units, and loading, e.g., the input to, or output from, an assembler, compiler, linkage editor, or
executive routine." (emphasis omitted)). This usage is fairly common in practice. See, e.g., J.
STANKOVIC, supra note 20, at 7; Parnas, supra note 21. For the purpose of this Note, program
parts variously referred to as functions, modules, procedures, routines, subprograms, and subrou
tines are all "modules." Discrete groups of consecutive instructions in a computer language may
also constitute modules. ·

27. This definition is equivalent to that used in leading cases addressing structural infringe
ment. See, e.g., Plains Cotton Co-op. Assn. v. Goodpasture Computer Serv., Inc., 807 F.2d 1256,
1260 (5th Cir.) ("organizational structure ... outlined .•. in the design specifications"), cert
denied, 484 U.S. 821 (1987); Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1230
(3d Cir. 1986) (an outline of the solution comprising a series of modules), cert. denied, 479 U.S.
1031 (1987); SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F. Supp. 816-25 (M.D. Tenn.
1985) (describing the programming process much as it is described in the text). See generally
infra section II.A. This notion of structure is described at some length in Silicon Epics, supra
note 12, at 1524-27. ·

This definition introduces the notion of a hierarchy of modules. It is this hierarchy, and not
that implied in t.liis Note's earlier discussion of the programming process, which may be some
what different, that is important. See Parnas, supra note 21, at 1057-58. A program's structure
may be represented in a form similar to a business organizational chart with client modules
positioned superior to those modules they ~11 and the functions of all the modules indicated in
the chart's boxes. See McCabe & Butler, supra note 23, at 1417-18; Stevens, Myers & Constan
tine, Structured Design, 13 IBM SYS. J. 115 (1974); Bauer, Software Engineering, in ADVANCED
CoURSE ON SOFrWARE .ENGINEERING 522, 532-34 (F. Bauer ed. Lecture Notes in Economics
and Mathematical Systems No. 81, 1973). A module is said to be at a higher level ofa program's

872 Michigan Law Review [Vol. 88:866

The logic and instructions for implementing a subtask may often
come from the work of others. The computer industry has long been
characterized by the free sharing of programs and program parts
among programmers.28 Not only does the borrowing of implementa
tion details eliminate the need to "reinvent the wheel" with each new
program, but borrowing and improving upon more general ideas is an
important way in which the computer art progresses.29 This is impor
tant because, in order to ensure that its decisions in copyright cases
involving computer programs promote progress in the computer art, a
court should have some understanding of the role of copyright law in
promoting progress in that art.

The following section describes the legal principles applicable to
copyright cases involving computer programs. The section first briefly

structure than another if it appears closer to the top of such a diagram. See Pamas, supra note
21, at 1057. A good description of structure and structure diagrams is found in S. CAMPBELL,
MICROCOMPUTER SOFTWARE DESIGN 46-67 (1984).

When comparing the structures of programs, courts have sometimes relied upon flowcharts,
which are graphic representations of the definition or solution of a problem in which symbols are
used to represent operations, data, equipment, and the flow of control through the program.
ANSC DICTIONARY, supra note 11, at 158-59; see e.g., CONTU REPORT, supra note 11, at 21
n.109 (comparing the representations of programs); see also Pearl Sys. v. Competition Elecs.,
Inc., 8 U.S.P.Q.2d (BNA) 1520, 1522-23 (S.D. Fla. 1988). Because flowcharts convey informa
tion that is different from structure (including information about specific operations, data, com·
puter equipment, and the flow of control through the program), structure diagrams are much
better tools for comparing the structures of programs than are flowcharts.

Not all program structures have simple hierarchical relations between modules. For exam
ple, a module may have more than one client or be its own client. Programs written in certain
programming languages, such as Lisp, may have flexible structures. H. ABELSON & G. SUSS
MAN, supra note 12, at xiii. These complications make consideration of the structure of particu
lar programs more challenging. See infra note 164. Even if the relationships between the
modules in a program are not complicated, the size of the program and the number of modules
and client relationships in it may make it difficult to comprehend the structure of the program.
The Whelan court used the terms structure, sequence, and organization interchangeably to refer
to what this Note calls structure. 797 F.2d at 1224 n.1. As a matter of English usage, the terms
have different meanings. The Whelan court created unnecessary confusion by equating them.
Programs consist of a sequence of instructions. See supra note 11. Instructions are executed one
after another until the end of a module is reached or until some instruction to the contrary. This
Note uses sequence to refer to the order in which individual instructions appear in the text of a
program or module. This Note defines organization as the order in which modules appear within
the text of a program. Organization could also reasonably be defined in the way this Note defines
structure. If two programs differ only in organization, the division of the function of the pro·
grams into subtasks and the sequences of instructions within comparable modules will be the
same.

28. Markoff, A Battle to Make Software Free, N.Y. Times, Jan. 11, 1989, at DI, col. 3; see R.
STALLMAN, GNU EMACS MANUAL 221 (4th ed. 1986) (author is writing and giving away the
software for a complete computer system because "I consider that the golden rule requires that if
I like a program I must share it with other people who like it"); see also H. ABELSON & G.
SUSSMAN, supra note 11, at xii (program libraries); PROGRAMMING WITH PASCAL, supra note
16, at 292-95 (same). The aggressive assertion of intellectual property rights is threatening to end
this tradition. Kolata, Mathematicians Are Troubled by Claims on Their Recipes, N.Y. Times,
Mar 12, 1989, at E26, col. 1. Many books containing implementations of common functions are
available for programmers' use. See, e.g., AssOCIATION FOR COMPUTING MACHINERY, COL
LECTED ALGORITHMS FROM A.C.M. (1980) (a four-volume set, regularly updated).

29. Menell, supra note 18, at 1057; Note, Copyright Infringement of Computer Programs: A
Modification of the Substantial Similarity Test, 68 MINN. L REV. 1264, 1292 (1984).

February 1990] Note - Copyright Protection 873

describes the history of the protection of computer programs under
copyright law. The section then introduces the idea-expression and
process-expression dichotomies.

B. An Introduction to Copyright Law

After many years of work on the general revision of the copyright
law,3° Congress enacted the 1976 Act,31 which granted the owners of
copyrights in computer programs whatever rights they enjoyed under
statutory and common law on the day before the Act became effec
tive. 32 In 1980, Congress amended the computer program provisions
of the 1976 Act to reflect the recommendations of the National Com
mission on New Technological Uses of Copyrighted -Works
("CONTU").33 Under the amended 1976 Act, the owners of copy
rights in computer programs receive exclusive rights that are substan
tially similar to those received by the other owners of copyrights in

30. In 19SS, the Copyright Office began a study of copyright revision that led to the introduc
tion of a draft bill in 1964. That bill is reproduced at 3 COPYRIGHT OFFICE, LIBRARY OF CoN
GRESS, COPYRIGHT LAW REVISION 1-36 (1964). Technological changes and various
amendments to the draft bill delayed the enactment of revision legislation until 1976. HousE
REPORT, supra note 1, at 47-SO. ·

31. Pub. L. No. 94-SS3, 90 Stat. 2S41 (codified as amended at 17 U.S.C. §§ 101-810 (1988)).
Unless otherwise specified, all references to statutory sections are to sections of the 1976 Act as

codified.

32. Copyright Act of 1976, Pub. L. No. 94-SS3, § 117, 90 Stat. 2S41, 2S6S (repealed 1980).
The Copyright office has allowed the authors of computer programs to register their works since
1964. CONTD REPORT, supra note 11, at lS (citing Copyright Office Circular 3 lD (Jan. 196S)).
While a decision by the Copyright Office to accept a particular application for registration was
prima facie evidence of the identity of the copyright claimant and the circumstances of publica
tion and registration under the Copyright Act of 1909, ch. 320, § SS, 3S Stat. 107S, 1086 (re
pealed 1976), the Copyright Office acknowledged two reasons for doubting that computer
programs actually received any protection under the 1909 Act. CONTU REPORT, supra note 11,
at lS. Programs might not have been within the scope of the term "writings of an author."
Copyright Act of 1909, ch. 320, § 4, 3S Stat. 107S, 1076 (repealed 1976). Machine-readable
copies of computer programs might not have been "copies" under the 1909 Act. See White
Smith Music Pub. Co. v. Apollo Co., 209 U.S. 1, 17 (1908) (A copy is "a written or printed
record of [the protected work] in intelligible notation."). The Copyright Office decision to accept
applications for the registration of the copyrights in computer programs is described in detail in
Cary, Copyright Registration and Computer Programs, 11 BULL. OF THE COPYRIGHT SOCY. OF
THE U.S.A. 362 (1964). The substance of copyright and copyright registration under the 1976
Act are described in infra note 34.

33. In 1974, Congress created CONTU, a commission comprised of copyright experts, to
study the copyright problems arising from the development and widespread use of photocopiers
and computers. Act of Dec. 31, 1974, Pub. L. No. 93-S73, § 201, 88 Stat. 1873; CONTD RE
PORT, supra note 11, at 1, 3-4. On July 31, 1978, CONTD released its final report. In that
report, CONTD recommended adoption of a definition of the term computer program and a
provision to replace the stopgap protection of§ 117 of the original 1976 Act. CONTU REPORT,
supra note 11, at 12-14. Congress enacted CONTU's proposals, Copyright Act of 1980, Pub. L.
No. 96-S17, § 10, 94 Stat. 301S, 3028, with only minor modifications. Compare CONTU RE
PORT, supra note 11, at 12 with 17 U.S.C. § 101 (1988) (definition of computer program adopted
without change) and 17 U.S.C. § 117 (1988) ("rightful possessor'' changed to "owner'' and cer
tain typographic changes made in adoption of other provisions). For a more detailed description
of the new § 117, see infra note 3S.

874 Michigan Law Review [Vol. 88:866

literary works. 34 These include the rights to reproduce the work, pre
pare derivative works based upon the work, and distribute copies of
the work. 35 The term of a copyright is for the life of the author (or the
longest-lived of joint authors) and fifty additional years.36 Anony
mous works, pseudonymous works, and works for hire are protected
for a term of seventy-five years. 37

The copyright in a work is infringed when someone violates any of
the exclusive rights granted to the owner of the copyright in the
work. 38 The owner of a copyright may enforce these exclusive rights

34. Copyright subsists in "works of authorship fixed in any tangible medium of expression,"
17 U.S.C. § 102(a) (1988), without any examination or registration. A copyright notice need not
be affixed to works first published on or after March 1, 1989, although the use of a notice sub·
stantially limits the possibility of the assertion of an "innocent infringer" defense in a subsequent
infringement action. 17 U.S.C. § 401 (1988); see Berne Convention Implementation Act of 1988,
Pub. L. No. 100-568, § 7(a)(4), 102 Stat. 2853, 2857.

One must at least attempt registration of a work originating inside the United States before
commencing an infringement action involving that work. 17 U.S.C. § 411 (1988). Registration
is also a prerequisite to certain remedies for infringement. 17 U.S.C. § 412 (1988). Registering
the copyright in a computer program simply requires submitting to the Copyright Office of the
Library of Congress a completed Form TX, 37 C.F.R. § 202.3(b)(2) (1989), which is a single
page; the $10 registration fee, 37 C.F.R. § 202.3(c)(2) (1989); and, in most cases, a copy of the
first and last 25 pages of either the source or object version of the program. 37 C.F.R.
§ 202.20(c)(2)(vii)(A)(B) (1989).

35. 17 U.S.C. § 106(1)-(3) (1988). The owners of copyrights in literary and certain other
types of works also receive the exclusive right to perform and display their works publicly. 17
U.S.C. § 106(4)-(5) (1988). All owners' exclusive rights are limited by §§ 107-109 (fair use, li
brary reproduction, and first sale doctrine). The subject-matter limitation of§ 102(b), see supra
note 4 and accompanying text, applies to all works, but raises more troubling questions for com
puter programs than for other literary works. See infra Part II.

Section 117 provides that the owner of a copy of a computer program may copy or adapt that
program in order t<;> use it or for archival purposes. See generally R. NIMMER, THE LA w OP
CoMPUTER TECHNOLOGY 1J 1.11[1] (1985). Exact copies must be transferred with the original
or destroyed. Adaptations may be transferred only with the consent of the copyright owner. 17
U.S.C. § 117 (1982). This section is of great theoretical importance since a program is copied
into a computer's memory whenever it is executed. See Vault Corp. v. Quaid Software, Ltd., 847
F.2d 255, 261 (5th Cir. 1988) Qoading a program into a computer's memory is copying privileged
under§ 117). See generally Recent Developments, Vault Corp. v. Quaid Software Ltd.: Limits
to Copyright Protection/or Computer Programs, 64 TUL. L. REv. 270 (1989). However, it does
not offer a defense to one making or selling large numbers of copies of a program, which is the
sort of behavior likely to provoke an infringement action. It is thus largely irrelevant to the
discussion in the rest of this Note.

36. 17 U.S.C. § 302(a)-(b) (1988).

37. 17 U.S.C. § 302(c) (1988).

38. 17 U.S.C. § 501(a) (1988). All of these exclusive rights are limited to the work itself. It
is not copyright infringement to create a substantially similar work independently. Independent
creation of a computer program might be achieved through the use of a "clean room" approach,
whereby one team of programmers with access to the original program creates a design specifica
tion and a second team without access to or knowledge of the original program (i.e., in a "clean
room") creates a new program from the specification. Other than the design specification, there
must be no communication about the program between the teams. The inclusion of too much
detail in the specification or failure to deprive the second team of access to or knowledge of the
first program would be fatal to such an effort. Davidson, Common Law, Uncommon Software, 41
U. Prrr. L. REv. 1037, 1096 n.151 (1986); Davis, IBM PC Software and Hardware Compatibil·
ity, COMPUTER LAW., July 1984, at 11, 16-17. For an example of the use of a clean room to
create evidence ofidea-expression merger, see NEC Corp. v. Intel Corp., 10 U.S.P.Q.2d (BNA)
1177, 1188-89 (N.D. Cal. Feb. 6, 1989).

February 1990] Note - Copyright Protection 875

by bringing an infringement action in federal court. 39 The plaintiff in
such an action must show ownership of the copyright in the work in
question40 and that the defendant copied protected aspects of the
work.41 ,

Section 102(b) of the 197 6 Act provides that copyright protection
does not "extend to any idea, procedure, process, system, [or] method
of operation "42 This statutory provision codifies several judi
cially-developed doctrines. The first is that copyright protects the ex
pression of ideas rather than the ideas themselves.43 This doctrine is
commonly called the "idea-expression dichotomy."44 The jurispru
dence of the idea-expression dichotomy has been refined largely in
cases involving novels and plays; its application to such literary works
has in many cases allowed the protection of specific plot devices and
well-developed characters.45 The general plot and themes of such

39. 17 U.S.C. § 501(b) (1988).

40. A plaintiff owns the copyright in a work if: the author met the copyright law's low
standard of originality; copyright may subsist in the work; the author's citizenship status entitles
him to claim a copyright; the statutory formalities have been fulfilled; and the plaintiff is the
author of the work or has otherwise been constituted the valid copyright claimant. 3 M. NIM
MER, NIMMER ON CoPYRlGHT § 13.0l[A] (1988). Since a registration certificate is prirna facie
evidence of the validity of the copyright, 17 U.S.C. § 410(c) (1988), a plaintiff need ordinarily
provide only the certificate and evidence of his chain of title from the registrant to establish a
prima facie case of ownership. M. NIMMER, supra, § 13.0l[A].

41. Sid & Marty Krofft' Television Prods. v. McDonald's Corp., 562 F.2d' 1157, 1162 (9th
Cir. 1977); Reyher v. Children's Television Workshop, 533 F.2d 87, 90 (2d Cir.), cert. denied,
429 U.S. 980 (1976); Universal Athletic Sales Co. v. Salkeld, 511 F.2d 904, 907 (3d Cir. 1975);
Scott v. WKJG, Inc., 376 F.2d 467, 469 (7th Cir., 1967); 3 M. NIMMER, supra note 40,
§ 13.0l[B]. Proof of copying is discussed in detail in section III.C.

42. 17 U.S.C. § 102(b) (1988). Section 102(a) provides that "[c]opyright protection subsists
••• in original works of authorship •... " 17 U.S.C. § 102(a) (1988). Section 102(b) should thus
be read as concerning only the scope of protection of works of authorship in which copyright
subsists under § 102(a). The idea-expression and process-expression dichotomies and the merger
doctrine limit the range of works that might be found to infringe a work but do not deny that
work its copyright. 1 M. NIMMER, supra note 40, §§ 2.03[D], 2.18[C][l]; see, also, 3 id.
§ 13.03[A][l].

Most courts have considered the idea-expression dichotomy in the context of infringement.
See, e.g., Atari, Inc. v. North Am. Phillips Consumer Elecs. Corp., 672 F.2d 607, 615 (7th Cir.),
cert. denied, 459 U.S. 880 (1982); Sid & Marty Krofft Television Prods. v. McDonald's Corp.,
562 F.2d 1157, 1163 (9th Cir. 1977). Several courts, however, have misleadingly spoken as if the
idea-expression dichotomy or the merger doctrine iµight work to deny the subsistence of copy
right in a work. See, e.g., Morrisey v. Procter & Gamble Co., 379 F.2d 675, 678-79 (1st Cir.
1967) ("[T]he subject matter would be appropriated by permitting the copyrighting of its expres
sion."); Freedman v. Grolier Enters., 179 U.S.P.Q. (BNA) 476, 478 (S.D.N.Y. 1973) ("[T]o per
mit the copyrighting of the expression would be to grant the copyright owner a monopoly of the
idea.").

43. Whelan Assocs. v. Jaslow Dental Lab., Inc., 797 F.2d 1222, 1234 (3d Cir. 1986), cert.
denied, 479 U.S. 1031 (1987); 3 M. NIMMER, supra note 40, § 13.03[A][l].

44. This phrase is usually used to refer collectively to what this Note calls the idea-expres
sion and process-expression dichotomies, two concepts that this Note,~reats separately. See, e.g.,
HOUSE REPORT, supra note 1, at 57, reprinted in 1976 U.S. CODE CONG. & ADMIN. NEWS 5659,
5670 (After the enactment of§ 102(b), "the basic dichotomy between expression and idea re
mains unchanged."). This Note distinguishes the two doctrines because they are in fact different
and both are applicable to computer programs for different reasons and in different ways.

45. See, e.g., Twentieth Century-Fox Film Corp. v. MCA, Inc., 715 F.2d 1327, 1329 (9th

876 Michigan Law Review [Vol. 88:866

works are not protected. 46

In Nichols v. Universal Pictures Corp., 41 Judge Hand proposed an
approach, often called the levels of abstraction test, for distinguishing
idea from expression. He wrote:

Upon any work, and especially upon a play, a great number of patterns
of increasing generality will fit equally well, as more and more of the
incident is left out. The last may perhaps be no more than the most
general statement of what the play is all about, and at times might con
sist only of its title; but there is a point in this series of abstractions
where they are no longer protected, since otherwise the playwright could
prevent the use of his "ideas," to which, apart from their expressions, his
property is never extended. 48

Unfortunately, as Judge Hand observed, "[n]obody has ever been able
to fix that boundary, and nobody ever can."49 Professor Chaffee made
an effort to do so with his "pattern" test. He wrote that "the protec
tion covers the 'pattern' of the work . . . the sequence of events and
the development of the interplay of the characters."50 However im
precise, these are the principal analytical tools for distinguishing ideas
from expression.5 1

A second judicially developed doctrine codified in section 102(b) is
the process-expression dichotomy, which denies copyright protection
to the processes embodied in utilitarian works. 52 This doctrine has its

Cir. 1983) (plot similarities raise question of fact as to whether Battlestar: Galactica copied Star
Wars expression); Sid & Marty Krofft Television Prods. v. McDonald's Corp., 562 F.2d 1157,
1167 (9th Cir. 1977) (similarity of "total concept and feel" between McDonaldland and H.R.
Pufnstuf characters sufficient to find infringement); Sheldon v. Metro-Goldwyn Pictures Corp.,
81 F.2d 49, 54-56 (2d Cir.) (similarity of plot and characters of two plays sufficient to find
infringement), cen denied, 298 U.S. 669 (1936).

46. See, e.g., Burroughs v. Metro-Goldwyn-Mayer, Inc., 683 F.2d 610, 627-28 (2d Cir. 1982)
(Tarzan movie did not copy expression of book except as authorized by license); Deller v. Samuel
Goldwyn, Inc., 150 F.2d 612, 612 (2d Cir. 1945) (per curiam) (general theme, plot, and ideas
may be freely copied), cert. denied, 327 U.S. 790 (1946); Shipman v. R.K.O. Radio Pictures, Inc.,
100 F.2d 533, 536-38 (2d Cir. 1938) ("sequence of events" protected by copyright, but no sub
stantial similarity thereof in this case); Miller Brewing Co. v. Carling O'Keefe Breweries of Can
ada, Ltd., 452 F. Supp. 429, 439 (W.D.N.Y. 1978) (copyright protects specific thematic concepts,
events, and characterization, not general themes and plot); Midas Productions, Inc. v. Baer, 437
F. Supp. 1388, 1390 (C.D. Cal. 1977) (general themes and plot not protected; no infringement
where plot differences outweigh eight specific similarities).

47. 45 F.2d 119 (2d Cir. 1930), cen. denied, 282 U.S. 902 (1931).

48. 45 F.2d at 121.

49. 45 F.2d at 121. Judge Hand, author of the opinions in a number of leading copyright
cases, wrote, "Obviously, no principle can be stated as to when an imitator has gone beyond the
'idea,' and borrowed its 'expression.' Decisions must therefore inevitably be ad hoc." Peter Pan
Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960); cf. Knowles & Palmieri,
Dissecting Krofft: An Expression of New Ideas in Copyright?, 8 SAN. FERN. V. L. REV. 109, 126
(1980) (no meaningful distinction between idea and expression).

50. Chaffee, Reflections on the Law of Copyright, 45 COLUM. L. REV. 503, 513-14 (1945).

51. See Silicon Epics, supra note 12, at 1550-52.

52. 1 M. NIMMER, supra note 40, § 2.18[0]; Liebman, Katsch & Leitch, Back to Basics: A
Critique of the Emerging Judicial Analysis of the Outer Limits of Computer Program "Expres
sion," CoMPUTER LAW., Dec. 1985, at 1,5 [hereinafter Back to Basics].

February 1990] Note - Copyright Protection 877

origins in the venerable case of Baker v. Selden. 53 In that case, the
Court addressed whether an accounting system was protected by the
copyright in a book containing an essay describing that system and
blank forms for practicing it. 54 The Court distinguished a work
describing an "art" (which we would call a method or process) from
the art itself and had little difficulty finding the accounting system
unprotected. 55

A third doctrine, closely related to both the idea-expression and
process-expression dichotomies, is the merger doctrine. This doctrine
denies copyright protection to expression that is inseparable from the
ideas or processes underlying the expression. 56

Cases decided under the 1976 Act have established that copyright
protection extends to any type of computer program57 regardless of
the language in which it is written58 or the medium in which it is em-

53. 101 u.s 99 (1880). •

54. 101 U.S. at 101 ("[T]he question is, whether the exclusive property in a system of book
keeping can be claimed, under the law of copyright, by means of a book in which that system is
explained?").

55. 101 U.S. at 104. The Court's subsidary holding that the blank forms contained in Sel
den's book were not protected, 101 U.S. 104-07, although better remembered, is probably less
important.

This doctrine has been applied to various processes in numerous other cases. E.g., Brief
English Systems, Inc. v. Owen, 48 F.2d 555, 556 (2d Cir.) (process for condensing words in
system of shorthand not protected by copyright in book describing it), cert. denied, 283 U.S. 858
(1931); Burk v. Johnson, 146 F. 209, 213 (8th Cir. 1906) (mutual burial association's business
methods not protected by copyright in articles of association and bylaws); Midway Mfg. Co. v.
Bandai-America, Inc., 546 F. Supp. 125, 148 (D.N.J. 1982) (rules of game, which are abstract
rules and play ideas, not protected by copyright); Seltzer v. Sunbrock, 22 F. Supp. 621, 630 (S.D.
Cal. 1938) (system for conducting roller derby not protected by book describing the system).

The term process has not been clearly defined in copyright law, but the patent law definition,
see supra note 2, is consistent with the term's use in copyright law. The accounting system at
issue in Baker satisfied the usual patent definition of the term "process," even though it probably
would not be patentable. At certain places in its Report, CONTU seemed to equate patent law
processes with copyright law processes. CONTU REPORT, supra note 11, at 20, 22; see also infra
text accompanying note 104. At one point the Report cites Parker v. Flook, 437 U.S. 584 (1978),
a patent case, for the proposition that "it is important that the distinction between programs and
processes be made clear." CONTU REPORT, supra note 11, at 18 & n. 96. In other places,
CONTU seems to define process more narrowly. See infra notes 107-08 and accompanying text.

56. Morrissey v. Procter & Gamble Co., 379 F.2d 675, 678-79 (1st Cir. 1967) (protection
does not extend to expression of simple and straightforward sweepstakes rule); see Herbert Ro
senthal Jewelry Corp. v. Kalpakian, 446 F.2d 738, 742 (9th Cir. 1971) (impossible to distinguish
idea and expression of jeweled bee pin). This doctrine received a subtle twist in Apple Computer,
Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253 (3d Cir. 1983) (Apple's operating system
protected since possible to write other programs with same function), cert. dismissed, 464 U.S.
1033 (1984). The doctrine traditionally has been applied to deny protection to expression when
an idea is incapable of alternate means of expression, not to find that a particular work is
protected.

57. Several early cases concerned the question whether copyright protects operating systems,
which are programs that control the execution of other programs. ANSC DICTIONARY, supra
note 11, at 275. Appellate courts ultimately concluded that both operating systems and "applica
tions programs" intended for end users may be protected by copyright. Apple Computer, Inc. v.
Formula Intl., Inc., 725 F.2d 521, 525 (9th Cir. 1984); Apple Computer, Inc. v. Franklin Com
puter Corp., 714 F.2d 1240, 1252 {3d Cir. 1983), cert. dismissed, 464 U.S. 1033 (1984).

58. This question has arisen in cases involving object programs and programs written in

878 Michigan Law Review [Vol. 88:866

bodied. 59 In most of the early actions alleging infringement of the
copyright in a computer program, the literal text of the program had
been copied verbatim. 60 Recently, authors successfully have claimed
copyright protection for such nonliteral aspects of programs as their
structures. 61 The extent of the protection afforded to program struc-

"microcode," a type of computer language used to instruct a computer to perform such elemen·
tary functions as adding two numbers. Courts have found both protected. Franklin, 114 F.2d at
1246-49 (object programs protected); NEC Corp. v. Intel Corp., 10 U.S.P.Q. 2d (BNA) 1177,
1178-80 (N.D. C-1. Feb. 6, 1989) (microcode programs protected); GCA Corp. v. Chance, 217
U.S.P.Q. (BNA) 718, 720 (N.D. Cal. 1982) (copyright in source program protects object pro·
gram as well).

Some commentators argue that the utilitarian nature of these programs precludes copyright
protection. Samuelson, CONTU Revisited: The Case Against Copyright Protection for Computer
Programs in Machine-Readable Form, 1984 DUKE L.J. 663, 741 ("In machine-readable form, the
utility of computer programs cannot be separated from their non-utilitarian aspects, and for this
reason .•• they ought to be deemed uncopyrightable."). Some commentators would also with·
hold copyright protection because programs written in these languages are not readily susceptible
to direct human perception. E.g., Samuelson, supra, at 705 ("If copyright is permitted to extend
to machine-readable programs and there is no requirement that the source code be published, one
of the traditional norms of copyright Jaw [disclosure] would be subverted.''); Stern, Another Look
at Copyright Protection of Software: Did the 1980 Act Do Anything for Object Code?, 3 COM·
PUTER L.J. 1, 11 (1981) ("[T]he statutory definition of copy would seem to be conditioned on
human intelligibility.").

59. While programs printed on paper or stored magnetically on a disk or tape are clearly
protected, protection of programs embodied in read-only memory ("ROM") chips was initially
problematic. A ROM is a semiconductor chip that "contains" a program or data that cannot be
altered after the chip is produced. Most courts have had little difficulty in extending copyright
protection to programs embodied in computer memory chips. See, e.g., Franklin, 114 F.2d at
1249; Tandy Corp. v. Personal Micro Computers, Inc., 524 F. Supp. 171, 174-75 (N.D. Cal.
1981). But see Data Cash Sys. v. JS&A Group, 480 F. Supp. 1063, 1067-69 (N.D. Ill. 1979),
ajfd. on other grounds, 628 F.2d 1038 (7th Cir. 1980).

Those who would deny protection to programs embodied in ROMs argue that ROMs are as
much a physical part of the computer to which they are attached as an engine is of an automo·
bile. Since machines are not copies of their blueprints, some argue that a work cannot be "per·
ceived, reproduced, or otherwise communicated" from a device simply because information can
be extracted from it like the design of an engine from the engine itself. See CONTU REPORT,
supra note 11, at 32-33 (dissent of Commissioner Hersey); R. NIMMER, THE LAW OF COM•
PUTER TECHNOLOGY 1J l.03[5][b] (1985); Samuelson, supra note 58, at 741-49; Stern, supra note
58, at 11-12.

60. See, e.g., Franklin, 114 F.2d at 1245 (programs copied nearly in their entirety); Williams
Elecs., Inc. v. Artie Intl., Inc., 685 F.2d 870, 872 (3d Cir. 1982) (disputed programs "virtually
identical"); see also Radcliffe, Recent Developments in Copyright Law Related to Computer
Software, 4 COMPUTER L. REP. 189, 193 (1985) (In most early cases, 85-100% of the text of
defendant's program duplicated the plaintiff's program.). When the Jaw was untested, verbatim
copying made sense; efforts to make significant changes in a program while copying it may be
both expensive in terms of programmer time and·counterproductive, because changes tend to
render the programs incompatible and present the opportunity to introduce an error into the
program.

61. See infra section II.A. Struct~re is not entirely "nonliteral." While it is less literal than
the individual instructions, it organizes the text of the program like chapters, sections, and
paragraphs organize the text of a book. It is thus readily discernable from the text. See generally
3 M. NIMMER, supra note 40, § 13.03[A][l].

Authors also successfully have claimed copyright protection for the audiovisual screen dis
plays produced by their programs. Cases involving the copying of a screen display through mis
appropriation of the program that produces that display can be analyzed as any other case of
program copying. More difficult problems are presented when a similar screen display is pro
duced by a wholly different program. The screen display of a video game may be an audiovisual

February 1990] Note - Copyright Protection 879

ture and the desirability of such protection are addressed in the follow
ing Part.

II. PROTECTING COMPUTER PROGRAM STRUCTURE THROUGH

COPYRIGHT LAW

Although a number of courts have concluded that, at least under
some circumstances, copyright protects the structures of computer
programs, there is considerable disagreement among commentators
over whether this is a desirable or correct result. This Part considers
whether copyright should protect the structure of computer programs.
The first section of this Part reviews the case law on the question. All
courts considering the question have found that under certain circum
stances program structure may constitute protected expression. The
second section of this Part examines the legislative history of the copy
right statute and concludes that this result is consistent with that his
tory. The final section of this Part considers protection for program
structure in light of the purposes of copyright law and concludes that
protection of program structure is consistent with those purposes as
long as it is limited by the idea-expression and process-expression di
chotomies and the merger doctrine.

A. Courts Considering the Alleged Copying of the Structures of
Computer Programs

Several courts have been asked to decide whether the copyright in
a computer program protects the structure of that program. Although
not all of the courts found that the structure of the program immedi
ately before them was protected, all conceded that in at least some
instances the structure of computer programs might be within the
scope of copyright protection.

In Whelan Associates v. Jaslow Dental Laboratory, 62 the Third Cir
cuit held that copyright affords substantial protection to the structures

work separate from the computer program that produces the display (a literary work). E.g.,
Midway Mfg. Co. v. Artie Intl., 704 F.2d 1009, 1012 (7th Cir.), cert. denied, 464 U.S. 823 (1983);
Williams Elecs.,,lnc. v. Artie Intl., Inc., 685 F.2d 870, 873-74 (3d Cir. 1982). The same is true of
screen displays with more text than a video game display. Broderbund Software, Inc. v. Unison
World, Inc., 648 F. Supp. 1127, 1131-34 (N.D. Cal. 1986). An exclusively textual screen display
may be protected as "a 'compilation' of parameter/command terms." Digital Communications
Assocs. v. Softklone Distrib. Corp., 659 F. Supp. 449, 463 (N.D. Ga. 1987); accord Manufactur
ers Technologies v. CAMS, Inc., 706 F. Supp. 984 (D. Conn. 1989). Other cases in which even
greater protection is claimed are pending. E.g., Lotus Dev. Corp. v. Paperback Software Intl.,
No. 87-0076-K (D. Mass. filed Jan. 12, 1987) (claiming copying of "look and feel"). See gener
ally Lewis, All's Not Quiet on the Legal Front, N.Y Times, Mar. 26, 1989, at F8, col. 1.

Determining the appropriate extent of copyright protection of screen displays is beyond the
scope of this Note. For a recent treatment of this problem, see Menell, supra note 18, at 1088-
102. See also Samuelson, Why the Look and Feel of Software User Interfaces Should Not Be

Protected by Copyright Low, 32 COMM. A.C.M. 563 (1989); Note, Copyright Protection for Com

puter Screen Displays, 72 MINN. L. REv. 1123 (1988).

62. 797 F.2d 1222 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987).

880 Michigan Law Review [Vol. 88:866

of computer programs. The plaintiff Whelan and the defendant Jas
low had arranged for Whelan to write a program for managing the
~usiness operations of Jaslow's dental laboratory. Whelan was to own
the copyright in the program and Jaslow was to use it and act as Whe
lan's sales representative. Approximately two years after Whelan de
livered her program to Jaslow, Jaslow began selling a program with a
similar function written in a different language. 63 At trial, both par
ties' experts agreed that there were structural similarities between the
two programs. 64 The trial court found that while there was little or no
similarity between the literal instructions of the programs, because
they were written in different languages and generally employed differ
ent logic within low-level modules, the structures of the programs
were substantially similar.65 The trial court also noted a similarity
between the programs' respective file structures and screen displays. 66

The trial court found Whelan's program protected and her copyright
infringed. 67

On appeal, Jaslow argued that the structure of Whelan's program
was part of the idea of the program, not its expression. 68 The court
did not choose to apply Judge Hand's levels of abstraction approach69

63. 797 F.2d at 1226-27.

64. 797 F.2d at 1228. The court's summary of Whelan's expert's testimony suggests that
most of the similarity was at the highest levels of the programs' structures. He testified that five
modules, apparently called directly from the main program, had virtually identical functions in
both programs. Ironically, it is Jaslow's expert's statement that there were "overall structural
similarities" that suggests greater similarity between the programs and similarity at lower levels
of the structures. If one program is found to infringe upon the copyright in another when the
only similarity between them is structural similarity at a high level, the original program is af·
forded a very high degree of protection.

65. 797 F.2d at 1228-29.

66. Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 609 F. Supp. 1307, 1322 (E.D. Pa.
1985), affd., 797 F.2d 1222 (3d Cir. 1986), cert. denied, 479 U.S. 1031 (1987);see also 797 F.2d at
1228 (describing plaintiff's expert's testimony). On appeal, the Third Circuit cited the screen
displays as evidence of similarity of program structure. 797 F.2d at 1243-45. While similarity of
screen displays may be symptomatic of structural similarity, and is probably thus relevant evi·
dence of structural similarity under the low standard of FED. R. Evrn. 401, see 797 F.2d at 1244,
structurally similar programs may have different screen displays and programs with similar
screen displays may have different structures. Comparing the structures of two programs is the
only way of positively determining whether or not they are structurally similar. Comparing
screen displays at best provides weak circumstantial evidence of structural similarity; if the pro·
grams' structures have been compared and structural similarity is the only issue, comparing the
programs' screen displays adds nothing. Permitting a finder of fact not skilled in the computer
art to observe two programs' readily-understandable screen displays may discourage the finder of
fact from a detailed examination of the cryptic texts of the programs. It is thus not clear that a
fact-finder should be permitted to look at anything but the text of the programs, and possibly
structure diagrams prepared therefrom, when only copying of structure is alleged. See FED. R.
Evrn. 403 (exclusion of relevant evidence on the grounds of prejudice or confusion). Contra 797
F.2d at 1245 ("Screen outputs are not so enticing that a trier of fact could not evaluate them
rationally and with a cool head.").

67. 609 F. Supp. at 1322.

68. 797 F.2d at 1235.

69. For a brief description of Judge Hand's approach see supra notes 47 -49 and accompany·
ing text.

February 1990] Note - Copyright Protection 881

or any other analytical tool designed for use on a case-by-case basis in
striking the proper balance between idea and expression. 70 Instead,
the court attempted to formulate a more general rule. Reading Baker
v. Selden 71 as "focus[ing] on the end sought to be achieved by Selden's
book," the court concluded that "the purpose or function of a utilita
rian work would be the work's idea, and everything that is not neces
sary to that purpose or function would be part of the expression of the
idea."72 Applying its newly-formulated rule to the facts, the court
found that the program's purpose "was to aid in the business opera
tions of a dental laboratory"73 and that the structure of the program
was not necessary to that purpose. Therefore, the court found the
structure of Whelan's program to be protected expression. 74

Perhaps the single virtue of the Whelan rule is that it is easy to
apply. 75 The widespread application of the rule is likely to have unde
sirable consequences. Given the court's broad conception of the pur
pose of a program as what a user might do with it rather than what the
program itself actually does, almost any particular structure could be
seen as not necessary to that purpose. The court failed adequately to
consider the possibility that broad protection might allow Whelan to
make it impossible for others to program a computer efficiently to per
form the same function or employ the same process. Although the
court purported to consider the need to "create the most efficient and
productive balance between protection (incentive) and dissemination

70. See Ladd & Joseph, Expanding Computer Software Protection by Limiting the Idea, 2 J.L.
& TECH. 5, 9-10 (1987) ("[T]he Third Circuit eschewed case-by-case analysis in favor of a broad
rule The court justified its rule by discussing only one side of the [policy] balance.").

71. 101 U.S. 99 (1880); see supra notes 53-55 and accompanying text.

72. 797 F.2d at 1236 (emphasis omitted). Such a rule is not unprecedented. See Apple Com
puter, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253 (3d Cir. 1983) ("If other programs
can be written or created which perform the same function ... then the program is an expression
of the idea and hence copyrightable."), cert. dismissed, 464 U.S. 1033 (1984); see also supra note
56 (describing the Franklin approach as a variation on the merger doctrine).

73. 797 F.2d at 1238. Providing little or no guidance on how to identify a program's pur
pose, the court identified a very broad purpose for Whelan's program:

We do not mean to imply that the idea or purpose behind every utilitarian or functional
work will be precisely what it accomplishes, and that structure and organization will there
fore always be part of the expression of such works. The idea or purpose behind a utilitarian
work may be to accomplish a certain function in a certain way . • . . There is no suggestion
in the record, however, that the purpose of [Whelan's] program was anything so refined; it
was simply to run a dental laboratory in an efficient way.

797 F.2d at 1238 n.34 (emphasis in original). The court uses purpose and function very broadly
as synonyms to refer more to the value of the program or what a user might do with it than what
the program actually does. Because the Whelan rule protects all aspects of a program not neces
sary to the court's broad conception of"purpose," the court appears willing to protect aspects of
programs that are necessary to their "functions," as that term is defined in this Note. See supra
note 20 and accompanying text. To the extent this is true, the Whelan rule provides significantly
more protection than the pair of tests developed in Part III of this Note, in spite of the rule's
superficial similarity to the test for distinguishing idea from expression developed in section
III.A.

74. 797 F.2d at 1238.

75. See Ladd & Joseph, supra note 70, at 11.

882 Michigan Law Review [Vol. 88:866

of information, to promote learning, culture and development,''76 the
court's rule may thus actually impair progress in the computer art.

The Fifth Circuit has also addressed the question of the protection
of the structure of computer programs. The defendant in Plains Cot
ton Cooperative Association v. Goodpasture Computer Service 11 hired
former employees of the plaintiff who, possessing design specifications
for the plaintiff's program, created a program with a structure similar
to that of the plaintiff's program.78 The programs were written in dif
ferent languages and both the trial and appellate courts noted a genu
ine dispute over whether the defendant could have copied the
plaintiff's program directly.79 Because this case was an appeal from
the denial of a preliminary injunction, the Fifth Circuit was obligated
to affirm the district court unless it found an abuse of discretion, 80 and
was reluctant to formulate a new rule on the basis of a partially devel
oped record. 8 1

The court briefly addressed the question whether the structure of
the plaintiff's program constituted protected expression. Erroneously
relying upon Synercom Technology, Inc. v. University Computing
Co., 82 the court declined to find clear error, and effectively found the

76. 797 F.2d at 1235.

77. 807 F.2d 1256 (5th Cir.), cert. denied, 484 U.S. 821 (1987).

78. 807 F.2d at 1258-59.

79. 807 F.2d at 1260-61.

80. 807 F.2d at 1259.

81. 807 F.2d at 1262.

82. 462 F. Supp. 1003 (N.D. Tex. 1978). Synercom concerned the alleged infringement of
the "input formats" for a program performing structural analysis. This program accepted sev
eral kinds of input data that would ordinarily be punched on cards and fed into a computer. The
input formats were simply specifications of the order in which various kinds of input data were to
be punched onto the cards and provided to the program. From the perspective of the program
mer, it did not much matter what set of formats was used, but once a set of formats was selected
and a program employing those formats written, it was necessary for all users of the program to
arrange their input data according to the chosen formats. Judge Higginbotham analogized the
formats to the "figure-H" pattern of a manual transmission gear shift. Once the "figure-H"
pattern is selected and a transmission embodying it built and incorporated into a car, moving the
shift lever to the upper left arm of the "H,'' and nowhere else, puts the car into first gear. Illus
trations and descriptions of the "figure-H" pattern may be protected by copyright, but not the
pattern itself. 462 F. Supp. at 1013.

An input format may best be thought of as a language, or perhaps more precisely, a system of
grammar. One communicates with a program by providing it with data in its own language,
here, the input format. Thought of in this way, Synercom was an easy case, for there can be no
more protection for input formats than for the English language itself.

The Whelan court mistakenly thought that its decision was at odds with Synercom, 791 F.2d
at 1239-40, because it confused programs with data and program structure with data arrange
ment. Copyright protects programs, and perhaps to some extent, program structure. In con
trast, copyright might protect an ordered collection of data as a "compilation,'' see 17 U.S.C.
§§ 101, 103 (1988), but it rather clearly does not protect a set of abstract rules for arranging data.

The Plains Cotton court mistakenly relied upon Synercom stating that input formats were "a
level of computer software design more specific than functional design and more general than
line-by-line program design " 807 F.2d at 1262. The design of the input format is separate
from and largely irrelevant to the overall design of the program. Like the Whelan court, the
Plains Cotton court failed to distinguish data from programs. The fact that input formats are not

February 1990] Note - Copyright Protection 883

structure of the plailltiff's program unprotected, since the record sup
ported inferences that the programs were for analysis of the cotton
market, the programmers were intimately familiar with that market,
and many of the similarities between the programs were dictated by
the nature of the market. 83 This holding demonstrates that the court
was concerned that protecting the structure of the plaintiff's program
would prevent others from writing programs for arialysis of the cotton
market. The court left open the possibility that the' structures of
programs might be protected by copyright under the proper
circumstances.

In Johnson Controls, Inc. v. Phoenix Control Systems, 84 the Ninth
Circuit recently confronted this same question in the context of an
appeal from the grant of a preliminary injunction. 85 The court upheld
as not clearly erroneous the district court's determination that the al
legedly copied structure of the plaintiff's program, ,likely constituted
protected expression. 86 The court thus acknowledged that one may
infringe the copyright in a computer program without copying the lit
eral text of the program. 87 Because its review was limited to a deter
mination of whether the district court's finding was clearly erroneous,
the court did not discuss the proper means for distinguishing unpro
tected ideas and processes from protected expression iii any detail.

In 1985, the year of the district ·court decision in Whelan, three
other district courts decided cases involving the alleged copying of
structure and at least a few literal instructions. Although these courts
did not discuss structural protection to the same extent as the Whelan
and Plains Cotton courts, all did address. the question. Two of these
courts found the structure of the plaintiff's program protected and in
fringed;88 the third found it unprotected but implied that the struc-..

protected by copyright says little or nothing about whether the structures of programs are pro
tected by copyright.

83. 807 F.2d at 1262.

84. 886 F.2d 1173 (9th Cir. 1989).

85. 886 F.2d at 1174.

86. 886 F.2d at 1175-76.

87. 886 F.2d at 1175. The court noted that "[a] computer program is made up of several
different components, including the source and object code, the structure, sequence and/or or
ganization of the program, and the user interface, and the function, or purpose, of the program."
886 F.2d at 1175 (footnotes omitted). While this statement is plainly at'odds with the statutory
definition of a computer program, see supra note 11 and accompanying text, the court correctly
identified the fundamental difficulty that copyright law has with computer programs: they are
not simply texts, as the statutory definition suggests, but utilitarian works that have a structure
and function and instruct a computer to produce a user interface.

88. SAS Inst., Inc., v. S & H Computer Sys., Inc., 605 F. Supp. 816 (M.D. Tenn 1985),
involved copying of both the structure and numerous small portions of the literal text of the
plaintiff's program. 605 F. Supp. at 822. The court rejected the defendant's argument that it
had copied only ideas and found that the copied structure was protected expression. See 605 F.
Supp. at 830.

In E.F. Johnson Co. v. Uniden Corp. of Am., 623 F. Supp. 1485 (D. Minn. 1985), a second
district court was presented with two programs for controlling radios written in different Ian-

. '

884 Michigan Law Review [Vol. 88:866

tures of some programs might be protected. 89

In 1988, another district court faced this question and issued a
confusing opinion that might promise even greater protection to pro
gram structure than Whelan. In Pearl Systems v. Competition Elec
tronics, Inc., 9o the plaintiff sought a declaratory judgment that the
program controlling the plaintiff's pistol shot timer did not infringe
the defendant's copyright in the program controlling its shot timer.
Although it is not entirely clear from the court's description of the
testimony offered at trial, the programs seem to have been similar only
in their use of two modules with similar functions and possibly with
similar high-level structures.91 The court stated that the structures of
the two pairs of modules were "nearly identical;"92 however, it is not

guages that had similar structures and a few literal similarities. The defendant admitted disas·
sembling the plaintiff's object program, transforming it into flowcharts, and using those
flowcharts as a guide in developing its own program. Although there seems to have been exten·
sive borrowing of the low-level structure of the plaintiff's program, the approach used by the
defendant is not dramatically different from the "clean room" technique for independent creation
of a similar program. See supra note 38. If flowcharts conveying only unprotected ideas and
processes were prepared from the plaintiff's program by people other than those who actually
wrote the defendant's program, and there was no other contact between the groups, a finding of
infringement would have been improper.

Several errors and idiosyncrasies appeared in both programs. 623 F. Supp. at 1494-96.
Courts regard the existence of common errors in similar works as very strong evidence of copy·
ing. Cooling Sys. & Flexibles, Inc. v. Stuart Radiator, Inc., 777 F.2d 485, 492 (9th Cir. 1985);
Eckes v. Card Prices Update, 736 F.2d 859, 863-64 (2d Cir. 1984).

While line-by-line comparison of the two programs was "meaningless" because they were
written in different assembly languages, the court had no difficulty concluding that the programs
were substantially similar and that the defendant had copied the plaintiff's program. 623 F.
Supp. at 1497.

The court directly confronted the question whether that which was copied was protected by
copyright. Because the defendant could have built a radio compatible with the plaintiff's without
copying the plaintiff's program to the extent it did, the court found that the defendant had
misappropriated the plaintiff's protected expression, including the structure of its program. 623
F. Supp. at 1501..()3.

89. In Q·Co Indus., Inc. v. Hoffman, 625 F. Supp. 608 (S.D.N.Y. 1985), the defendants,
former employees of the plaintiff, produced a teleprompter program with a function similar to
one on which they worked while employed by the plaintiff but running on a different type of
computer. 625 F. Supp. at 611-13. Experts testified that there was overall structural similarity
between the two programs and that all four of the modules at the highest level of the structure of
the defendant's program were structurally similar to four of the twelve modules at the highest
level of the structure of the plaintiff's program. There were also a few textual similarities be·
tween the programs; however, the two programs were written in different languages and, at least
at lower levels of the programs' structures, "employ[ed] wholly distinct algorithms." 625 F.
Supp. at 614. The court used reasoning very similar to that of the Plains Cotton court, conclud·
ing that any teleprompter program would have the same modules and thus, only the idea of
plaintiff's program, rather than its expression, was copied. 625 F. Supp. at 616. The court found
the structure of the plaintiff's program unprotected. The plaintiff ultimately prevailed, but on a
state trade secret claim. 625 F. Supp. at 618.

90. 8 U.S.P.Q.2d (BNA) 1520 (S.D. Fla. 1988).

91. See 8 U.S.P.Q.2d (BNA) at 1522-23. The court refers repeatedly to the "system level
designs" of the two programs. As the court defines that phrase, it refers to what this Note calls
the definition of the function of the program and the initial decomposition of the function into a
set of subtasks. Compare 8 U.S.P.Q.2d (BNA) at 1522 n.3 with supra notes 19-21 and accompa·
nying text.

92. 8 U.S.P.Q.2d (BNA) at 1525.

February 1990] Note - Copyright Protection 885

clear that this court used the term structure as narrowly as have other
courts.93 Although the programs seem to have been similar only in
the most general sense, the court found that the plaintiff had copied
the defendant's protected expression.94

This case expands upon the Whelan rule, since in Whelan, there
was apparently some similarity at all levels of the programs' struc
tures. Here, the court found the copyright in a program infringed by a
program that had two modules with functions similar to modules in
the first program, may have been structurally similar at the highest
level of two modules, and had a similar, simple user interface. The
case seems to stand for the proposition that the idea of a program is
protected by copyright.

All of these courts have concluded that the structure of a program
may be protected by copyright under the proper circumstances. All of
these cases identify the idea-expression dichotomy as the primary hur
dle to finding that copyright protects the structure of computer pro
grams. Most apply some form of the merger doctrine. All of the cases
finding protection failed to explicitly consider the possibility that the
protection they afford might extend to an efficient process that under
traditional doctrines is not protected by copyright. Extending copy
right protection to processes was clearly not the intention of either
Congress or CONTU, which envisioned a narrower scope of protec
tion than the courts have provided. This Note turns next to the inten
tions of Congress and CONTU.

B. Legislative Materials and Copyright Protection of Computer
Program Structure

The House Report accompanying the 1976 Act and the CONTU
Report are the principal texts which evidence the intentions of the au
thors of the 1976 Act and its 1980 amendments. This section first
considers the intention of Congress_ as expressed in the House Report.
The House Report is fairly comprehensive, but only its discussion of
section 102 addresses the problem of determining the scope of copy
right protection of computer programs, and this discussion is in very

93. See supra note 27 and accompanying text. The Pearl Systems court apparently under
stood structure to include function and function's manifestation in the fact that corresponding
modules were executed when similarly labeled buttons on the respective shot timers were pushed.
See 8 U.S.P.Q.2d (BNA) at 1522-25. The court noted that "[a]ny differences in the [modules] ...
are inconsequential, as the Pearl Systems device captures the 'total concept and feel' of the Com
petition Electronics [modules]." 8 U.S.P.Q.2d (BNA) at 1524 (citations omitted).

94. Purportedly applying the Whelan rule to these facts, the court wrote:
The par time entry subroutine was designed to provide a method for the user to set a par
time. That is the idea. The shot review subroutine was designed to allow the user to review
the shots he·or she has fired and to learn of the time that elapsed between each shot. That is
also an idea. The subroutines themselves are expressions of those ideas.

8 U.S.P.Q.2d (BNA) at 1524.

886 Michigan Law Review [Vol. 88:866

general terms.95 Because CONTU carefully considered computer pro
gram protection and Congress adopted its recommendations almost
without change, several courts have considered the CONTU Report a
reflection of legislative intent - even with respect to the 1976 Act.96

Unfortunately, neither the 1976 House Report nor the CONTU Re
port shed much light on whether those bodies thought program struc
ture should be protected; they do, however, suggest that both bodies
favored relatively narrow protection for programs generally. This sec
tion concludes that_ the best interpretation of the legislative history is
that neither Congress nor CONTU would find program structure un
protected as a matter oflaw, but would apply established doctrines on
a case-by-case basis to determine whether structure is protected.

The portion 0£ the House Report describing the categories of
works of authorship listed in section 102(a) provides that computer
programs are included in the literary works category "to the extent
that they incorporate- authorship in the programmer's expression of
original ideas, as distinguished from the ideas themselves. "97 This
statement is peculiar in its requirement of "expression of original
ideas" rather than the "original expression of ideas." Section 102(a)
itself only requires "original works of authorship,"98 not original
ideas,99 and it seems highly unlikely that Congress intended to make
wholly different principles applicable to computer programs. More
over~ the idea-expression dichotomy is codified in section 102(b)
rather than section 102(a). For these reasons, the only sensible inter
pretation of this statement is that Congress was adamant that the idea
expression dichotomy be applied to computer programs.

The description of section 102(b)100 in both the House Report and
the much shorter Senate Report directly addresses computer
programs:

Some concern has been expressed lest copyright in computer pro-

95. Only a single paragraph of the House Report accompanying the 1980 Act pertains di
rectly to computer programs, and it merely announces the near-verbatim adoption of CONTU's
recommendations. See H.R. REP. No. 96-1307, 96th Cong., 2d Sess. 23, reprinted in 1980 U.S.
CODE CONG. & ADMIN. NEWS 6460, 6482. '

96. See, e.g., Apple Computer, Inc. v. Formula Intl., 594 F. Supp. 617, 621 (C.D. Cal. 1984)
(CONTU Report most valuable rationale for both 1976 and 1980 Acts); Micro-Spare, Inc. v.
Amtype Corp., 592 F. Supp. 33, 35 n.7 (D. Mass. 1984) (CONTU Report comprises the "entire
legislative history" of§ 117); Midway Mfg. Co. v. Strohon, 564 F. Supp. 741, 750 n.6 (N.D. Ill.
1983) (same); cf Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1241 (3d
Cir. 1986) (CONTU Report "of marginal relevance, at best," when neither § 101 definition of
computer program nor§ 117 at issue), cert. denied, 479 U.S. 1031 (1987).

97. HOUSE REPORT, supra note 1, at 54, reprinted in 1976 U.S. CODE CONG. & ADMIN.
NEWS 5659, 5667.

98. 17 U.S.C. § 102(a) (1988).

99. Nobody could seriously argue that the subsistence of copyright in West Side Story should
be denied because the underlying idea is at least as old as Romeo and Juliet, if not timeless.

100. Section 102(b) provides that copyright protection does not "extend to any idea, proce
dure, process, system, [or] method of operation " 17 U.S.C. § 102(b) (1988).

February 1990] Note - Copyright Protection 887

grams should extend protection to the methodology or processes
adopted by the programmer, rather than merely to the "writing" expres
sing his ideas. Section 102(b) is intended, among other things, to make
clear that the expression adopted by the programmer is the copyright
able element in a computer program, and that the actual processes or
methods embodied in the program are not within the scope of the copy
right law.101

This paragraph states nothing more than that the process-expres
sion dichotomy applies to computer programs. The presence of the
paragraph in the Report reflects Congress' concern about this issue,
but the paragraph is of little help in determining whether program
structure in general is an idea, a process, or protected expression .. Jt is
of even less help in determining the extent to which the structure of a
particular program is merged With an idea or a process. To gain
greater insight on these questions, this section turns next to the
CONTU Report. .

The CONTU Report's discussion of the scope of copyright protec
tion of computer programs is based upon its interpretation of existing
doctrines. This discussion is independent of CONTU's recommenda
tions, 102 and so is, in some sense, mere dicta. The Report, however, is
deserving of greater attention than other commentary because
CONTU based its recommendations, especially its recommendation
that Congress repeal old section 117, which provided unique terms for
copyright protection of computer programs, upon its understanding of
these general principles of copyright law. CONTU's recommenda
tions can only be understood against the backdrop of its discussion ·Of
these principles.

Much of CONTU's discussion is devoted to the process-expression
dichotomy. CONTU summarizes Baker as "stand[ing] for the propo
sition that using the system does not infringe the copyright in the de
scription," and notes that this is also the rule of section 102(b).103

Applying this rule to computer programs gives the result that "one is
always free to make a machine perform any conceivable process (in
the absence of a patent), but one is not free to take another's pro
gram."104 CONTU's emphasis upon Baker and its expectation that
limiting doctrines105 would significantly narrow the scope of I>rotec-

101. HOUSE REPORT, supra note 1, at 57, reprinted in 1976 U.S. CODE CoNG. & ADMIN.

NEWS 5659, 5670; s. REP. No. 473, 94th Cong., 1st Sess. 54 (1976).

102. CONTU REPORT, supra note 11, at 18.

103. Id. at 19.

104. Id. at 20.

105. CONTU specifically refers to the "fruits of intellectual labor" doctrine, see generally
Trade-Mark Cases, 100 U.S. 82, 94 (1879), which would deny protection to simple and obvious
programs, and the merger doctrine. CONTU REPORT, supra note 11, at 20; see supra note 56
and accompanying text.

888 Michigan Law Review [Vol. 88:866

tion evidences a genuine concern that both ideas and processes not be
protected by copyright.

CONTU devoted significant energy to developing a notion of what
a process is. CONTU apparently conceived of processes rather nar
rowly, relying on the generous application of the merger doctrine to
guard against the assertion of exclusive rights in processes. CONTU
conceded that it is difficult "to draw the line between the copyright
able element of style and expression in a computer program and the
process which underlies it."106 In addressing this problem, the Report
discusses several stages at which a program might be copied: when
represented as text on paper, when recorded on a disk, when loaded in
a memory, and when being executed.107 At all of these stages but the
last, CONTU finds literal infringement of protected expression a possi
bility. This discussion concludes that "[t]he movement of electrons
through the wires and components of a computer is precisely that pro
cess over which copyright has no control."10s

In determining CONTU's view on the protection of structure, it is
unclear how much significance one should attach to its discussion of
these opportunities for literal copying. One view is that CONTU did
not contemplate that the copying of anything other than literal in
structions could ever constitute copyright infringement and therefore
regarded structure as a process or possibly an idea as a matter of law.
Some commentators derive support for this view from the testimony of
Arthur Miller (a member of CONTU's Software Subcommittee) and
Arthur Levine (the Executive Director of CONTU) as expert wit
nesses in Evergreen Consulting v. NCR Comten, Inc., 109 a case of al
leged structural infringement that was settled before a decision was
rendered. 110 These statements must, of course, be considered in light
of the adversarial setting in which they were made. These commenta
tors also find support in CONTU's rejection of proposals that would
have explicitly made computer programs derivative works of
flowcharts and permitted protection of the ideas expressed in works
when those ideas were selected from among a number of alternative
ideas. 111 However, the rejection of these proposals is also consistent
with the view that structure may constitute protected expression with-

106. CONTU REPORT, supra note 11, at 22.

107. Id.

108. Id.

109. No. 82-5946-KN (C.D. Cal. filed 1982).

110. Back to Basics, supra note 52, at 8 (quoting Letter from Arthur R. Miller to Salem M.
Katsch, at 7 (Oct. 29, 1985) ("the statutory protection extends only to the statements and in·
structions that make the machine perform.") and an unspecified declaration by Arthur J. Levine
("CONTU did not want to extend copyright protection for computer programs to things such as
algorithms, logic, structure or flow of the program ")).

111. Id. at 7.

February 1990] Note - Copyright Protection 889

out the adoption of such dramatic departures from traditional
doctrines.

An alternative interpretation is that CONTU never expressed a
view on whether program structure should be protected by copyright,
but assumed that it might be under the proper circumstances. If so,
structure should be protected as part of the expression of the program
except to the extent that protection of structure would impair access to
ideas or processes. This is necessarily a case-by.::case determination.

Support for this alternate view is found in the CONTU majority's
express rejection of Vice-Chairman Nµnm.er's suggestion that pro
grams should be protected only when their use leads to copyrightable
output. 112 The majority noted that "[a]lthough the distinction tries to
achieve the separation of idea from form of expression, that objective
is better realized through the courts exercising their judgement in par
ticular cases."113 Although this expresses no view on the protection of
structure per se, it does indicate CONTU's preference for resolving
idea-expression and process-expression questions through the applica
tion of established limiting doctrines on a case-by-case basis.

In addition, Vice-Chairman Nimmer's testimony as an expert wit
ness opposing the testimony of Levine and Miller in Evergreen Con
sulting supports the position that CONTU assumed that structure
may be protected under the proper circumstances. In Evergreen Con
sulting, Nimmer testified that he believed CONTU understood that
the repeal of old section 117 would give the authors of computer pro
grams the same rights as the authors of other literary works. 114 Nim
mer understood CONTU to have supported the application to
computer programs of doctrines applicable to plays and other literary
works.115 Nimmer argued that:

CONTU had no views, and made no recommendations which would ne
gate the availability of copyright protection for the detailed design, struc
ture and flow of a program under the copyright principles that make
copyright protection available, in appropriate circumstances, for the
structure and flow of a novel, a play or a motion picture.116

112. CONTU REPORT, supra note 11, at 27 (concurring opinion of Commissioner Nimmer).

113. CONTU REPORT, supra note 11, at 21.

114. Declaration of Melville B. Nimmer, U 7, Evergreen Consulting, Inc. v. NCR Comten,
Inc., No. 82-5946-KN (C.D. Cal. filed 1982), reprinted in Silicon Epics, supra note 12, at 1586.
Vice-Chairman Nimmer reasoned that since two commissioners dissented when CONTU failed
to recommend adoption of language in § 117 that would deny protection to computer programs
on the same terms as other works, CONTU must have granted protection on the same terms as
other works. Id. U 8. He also cited numerous scattered passages of the Report in support of his
position. The Miller Jetter, see supra note 110, is based upon Commissioner Miller's declaration
in opposition to Professor Nimmer in the same action. Vice-Chairman Nimmer responded to a
number of Commissioner Miller's arguments. E.g., Declaration of Melville B. Nimmer, supra,

uu 20-21, 26.

115. Declaration of Melville B. Nimmer, supra note 114, UU 12, 17, 25, reprinted in Silicon
Epics, supra note 12, at 1587-89, 1591.

116. Id. U 28.

890 Michigan Law Review [Vol. 88:866

There is not universal agreement that CONTU's thoughts on the
problem of structure are deserving of more attention than those of any
other commentators, 117 and it is not entirely clear what weight one
should attach to the expert testimony of Commissioner Miller, Execu
tive Director Levine, and Vice-Chairman Nimmer in a particular case.
However, because of the prominence of the members of CONTU, the
depth of its study, and the role of its Report in shaping the develop
ment of this area of the law, this Note suggests that one ought to at
tempt to determine and give serious consideration to CONTU's views.
The CONTU Report itself is helpful in determining whether CONTU
believed structure should be protected, but doesn't definitively answer
the question. Commissioner Miller argued that CONTU believed that
structure should never be protected because it is an idea or process,
while Vice-Chairman Nimmer declared that CONTU believed that
structure might be protected under the proper circumstances. Because
of the Report's extended discussion of traditional doctrines that are
always applied on a case-by-case basis and CONTU's rejection of pro
posed alternative limits on protection in favor of such doctrines, the
view expressed in Vice-Chairman Nimmer's declaration is probably
the better one. Undoubtedly both Congress and CONTU intended the
idea-expression and the· process-expression dichotomies and the
merger doctrine to apply to computer programs, with the effect of de
nying protection even to literal instructions when necessary to pre
serve access to ideas and processes. They would probably determine
whether structure is protected on a case-by-case basis, consistent with
the established principles of copyright law applicable to utilitarian and
literary works. Part III develops analytical tools for making this case
by-case determination. However, before doing so, the next section
steps back from the structural infringement cases and the legislative
history to consider the normative question whether copyright ought to
protect program structure.

C. Should Program Structure Be Protected by Copyright?

After reviewing the case law, there can be no doubt that computer
program structure is protected by copyright. If that protection is nar
rowly construed, the result is not antithetical to the intentions of Con
gress, the views of CONTU, or the fundamental purposes of copyright
law. This section first explores the purposes of copyright law and the
doctrines that limit the scope of copyright protection, including the
difficulty of applying limiting doctrines developed in the context of
literary works to computer programs. This section next considers the
traditional role of patent law in protecting utilitarian works and ex
plores the consequences of giving copyright protection to such works.

117. See Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1241 (3d Cir.
1986), cert. denied, 479 U.S. 1031 (1987).

February 1990] Note - Copyright Protection 891

Finally, this section concludes that some copyright" protection for
structure is desirable, provided that it is narrowly tailored to avoid
impairing the progress of the computer art.

Copyright protection exists to "promote the Progress of Science
and useful Arts by securing for limited Times to Authors and Inven
tors the exclusive Right to their respective Writings and Discover
ies."118 Copyright promotes progress by acting as an incentive to
authors to create new works and ultimately placing those works in the
hands of the public.119 Copyright has always been characterized by
the tension between the need to create a sufficient incentive to create
new works and fears of hindering progress by providing too much pro
tection.120 This tension underlies the selection of a term of protection,
although it is impossible to prove that any particular term strikes ex
actly the right balance between providing an incentive to create and
public access.121

Doctrines limiting the scope of copyright protection allow courts
to strike the proper balance between incentive and impairment in par
ticular cases.122 The idea-expression dichotomy is the legacy of nu
merous courts concluding that progress in literature is not well served
by allowing the author of a book or play to prevent others from copy-

118. U.S. CoNST., art. I, § 8, cl. 8; cf. A. Bogsch, Inscription on the Cupola of the World
Intellectual Property Organization Headquarters Building ("Human genius is the source of all
works of art and inveption * These works are the guarantee of a life worthy of men * It is the
duty of the states to ensure with diligence the protection of the arts and inventions"), reprinted in
WORLD INTELLECTUAL PROPERTY ORGANIZATION, GENERAL INFORMATION at i (1988).

119. Sony Corp. of Am. v. Universal City Studios, 464 U.S. 417, 429 (1984) ("The monopoly
privileges that Congress may authorize are • . . intended to motivate the creative activity of
authors and inventors by the provision of a special reward, and to allow the public access t6 the
products of their genius after the limited period of exclusive control has expired.").

In Mazer v. Stein, 347 U.S. 201 (1954), the Supreme Court noted that

The economic philosophy behind the clause empowering Congress to grant patents and
copyrights is the conviction that encouragement of individual effort by personal gain is the
best way to advance public welfare through the talents of authors and inventors in 'Science
and useful Arts.' Sacrificial days devoted to such creative activities deserve rewards com
mensurate with the services rendered.

347 U.S. at 219; see also 1 M. NIMMER, supra note 40, § 1.03[A].

120. 1 M. NIMMER, supra note 40, § 1.05[D]. In Sayre v. Moore, 1 East 361, 102 Eng. Rep.
139 (K.B. 1785), Lord Mansfield noted that:

[W]e must take care to guard against two extremes equally prejudicial; the one, that men of
ability, who have employed their time for the service of the community, may not be deprived
of their just merits, and the reward of their ingenuity and labour; the other, that the world
may not be deprived of improvements, nor the progress of the arts be retarded.

1 East at 361, 102 Eng. Rep. at 140.

121. Cohen, Duration, 24 UCLA L. REv. 1180, 1230-31 (1977) (There is no single correct
copyright term; it lies somewhere on a continuum between that which most would agree is too
short and too long.); see also White, Why a Seventeen Year Patent?, 38 J. PAT. OFF. SocY. 839,
842 (1956) (difficult to justify a patent term on economic grounds).

·122. See Herbert Rosenthal Jewelry Corp. v. Kalpakian, 446 F.2d 738;742 (9th Cir. 1971);
Goldstein, Infringement of Copyright in Computer Programs, 47 U. PITT. L. REv. 1119, 1126
(1986) ("[l]n the copyright lexicon, 'idea' is no more than a metaphor for elements generiillY.
belonging in the public domain.''.)· '· ·

892 Michigan Law Review [Vol. 88:866

ing the theme and general plot of the original work.123 Similarly, the
process-expression dichotomy is the legacy of courts holding that
while protecting the description of a process appropriately encourages
the inventors of processes to share their processes, protecting
processes themselves would impair the progress of the useful arts. 124

Both the idea-expression and process-expression dichotomies limit
the scope of copyright protection of the structure of computer pro
grams.125 Courts deciding cases concerning computer programs have
to a greater or lesser extent relied upon cases developing both doc
trines. The idea-expression dichotomy is applicable because computer
programs are literary works. It should be applied to computer pro
grams as it is applied to other literary works.126 This is supported by
the legal classification of computer programs as literary works, 127 and
it is to some extent consistent with the way programmers think of
programs. 128

123. See supra notes 45-46 and accompanying text.

124. See supra notes 53-55 and accompanying text.

125. The Third Circuit explicitly applied the two separate doctrines to computer programs in
Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert. dis
missed, 464 U.S. 1033 (1984). Compare 714 F.2d at 1250 (" 'Process', 'System' or 'Method of
Operation' ") with 714 F.2d at 1252 ("Idea/Expression Dichotomy"). CONTU emphasized the
process-expression dichotomy but recognized the application of both doctrines. See CONTU
REPORT, supra note 11, at 20 (discussing the merger doctrine), 25 ("The line which must be
drawn is between the expression and the idea, between the writing and the process which is
described.").

126. See supra notes 114-16 and accompanying text. Applying cases involving novels and
plays to computer programs by analogy is not an easy task, since computer programs have no
clear counterparts to the plot, theme, or characters of other literary works.

To the extent one can draw analogies to novels and plays, one should analogize a program's
function to theme. The Whelan court defined "purpose" very broadly. See supra note 73. This
Note suggests that at the very least, the function of a computer program, see supra note 20 and
accompanying text, is in every case an idea. This is probably consistent with Whelan. The court
implied that even programs with similar functions could not be copies of each other absent a
showing of at least structural similarity. See 797 F.2d at 1238-39. Denying protection to func
tion is a natural result of the axiom that one is always free to program a computer to perform any
function that is not patented, CONTU REPORT, supra note 11, at 20; supra text accompanying
note 104, at least as long as one does not copy a protected screen display. See supra note 61.
Except in the screen display context, one program should never be held to infringe the copyright
in another simply by virtue of the fact that it has the same function. If it were, the author of the
original program could prevent others from writing better, more efficient programs doing the
same thing.

The Whelan court correctly identified the "purpose" of a program as an idea, but mistakenly
identified purpose and that which is essential to purpose as the only unprotected aspects of the
work. See 797 F.2d at 1236; supra note 72. It is not clear why programs should be held to
embody only one idea as a matter of law. While few, if any, programmers have such grand
aspirations, nobody would argue that the works of Plato or Shakespeare each express one and
only one idea.

127. See supra note 1 and accompanying text. However, unlike most other literary works,
they have the attribute this Note has called "function." See CONTU REPORT, supra note 11, at
20-21 ("Programs are a relatively new type of writing [P]rograms are used in conjunction
with machines •... ").

128. See Nagler, 31 COMM. A.C.M. 1034 (1988) (letter to the editor) ("The closest field [to
programming] in my opinion is writing. Software is written ...• Once written, it can be dupli
cated easily. Some authors write for broad audiences and others write for highly specific •••

February 1990] Note - Copyright Protection 8~3

The difficulty with relying upon analogies to literary works is that
programs are primarily utilitarian in nature.129 Although they have
some value simply as unambiguous descriptions of solutions to
problems, programs usually are written and are important because
they can be used to operate computers to achieve some result. 13° For
this reason, the process-expression dichotomy is the principal limit
upon the copyright protection of computer programs. A computer
program clearly is not a process as such: a program is a set of instruc
tions131 and a process is a series of acts.132 But a program is just as
clearly a complete and absolutely unambiguous description of a pro
cess. While descriptions of processes are allowed protection under
Baker v. Selden 133 and section 102(b), 134 that protection cannot extend
so far as to allow a copyright owner to control the process he
described.135

Patent law, not copyright law, provides the traditional mode of
protection for utilitarian works such as processes.136 Processes imple
mented by computer programs are patentable.137 The Patent and

applications. And, everyone thinks they can write "). Students of programming "must read
and write computer programs-many of them." H. ABELSON & G. SUSSMAN, supra note 12, at
xi. Commentators have called for "literate programming" and urged programmers to read well
written programs. See, e.g., Bentley, Literate Programming, 29 COMM. A.C.M. 364 (1986).

129. Back to Basics, supra note 52, at 4; Menell, supra note 18, at 1046.

130. See supra note 11 and accompanying text.

131. 17 U.S.C. § 101 (1988); see supra note 11 and accompanying text.

132. See supra note 2. At least one court has recognized this distinction. See Apple Com
puter, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1251 (3d Cir. 1983), cert dismissed, 464
U.S. 1033 (1984).

133. 101 U.S. 99 (1880).

134. See supra notes 42, 52, and accompanying text.

135. See supra notes 103-04 and accompanying text.

136. Goldstein, supra note 122 at 1122-23; Samuelson, supra note 58, at 732-36.

137. See Lundberg, Sumner & Michel, Twelve Myths About Patent Protection for Software,
BULL. L. Ser. & TECH., Nov./Dec. 1988, at 2 [hereinafter Twelve Myths]; Smith, Yoches &
Anzalone, Computer Program Patents, COMPUTER LAW., Apr. 1988, at 1, 2, 7. To receive a
patent, an inventor must invent or discover a "new and useful process, machine, manufacture, or
composition of matter, or any new and useful improvement thereof." 35 U.S.C. § 101 (1988)
(emphasis added); see also 1 D. CHrsuM, PATENTS§ 1.01 (1989). Computer programs are not
themselves patentable since computer programs do not satisfy any of the subject matter catego
ries of 35 U.S.C. § 101 (1988).

To be patentable, a process must meet the tests of novelty (le., that particular invention has
never before been invented), 35 U.S.C. § 102 (1988); 1 D. CHISUM, supra, § 3.01, and nonobvi
ousness (le., the invention would not have been obvious to a person of ordinary skill in the art of
the invention in light of all prior developments in that art). 35 U.S.C. § 103 (1988); 2 D.
CHISUM, supra, § 5.01.

Laws of nature, including mathematical formulae and "algorithms," are not patentable.
However, inventions employing formulae and algorithms are patentable if there is more to the
invention than just a formula or algorithm. See Diamond v. Diehr, 450 U.S. 175 (1981) (manu
facturing process employing well-known equation and a programmed computer is patentable);
Gottschalk v. Benson, 409 U.S. 63 (1972) (method of converting binary coded decimal numbers
to binary numbers is not patentable); In re Pardo, 684 F.2d 912, 915-16 (C.C.P.A. 1982) (method
of executing programs in a computer is patentable); In re Abele, 684 F.2d 902, 905-06 (C.C.P.A.
1982) (invention not patentable if nothing more than an algorithm is claimed; otherwise allowing

894 Michigan Law Review [Vol. 88:866

Trademark Office ("PTO") has issued a large number of patents
claiming processes implemented by computer programs. 138 The
owner of a patent has the right to exclude all others from making,
using, or selling the patented invention in the United States139 for a
term of seventeen years. 140 The PTO must examine a patent applica
tion before it'will issue a patent.141 The creator of a patentable inven
tion thus receives greater protection for a shorter period of time and
with greater difficulty than the creator of a work protected by
copyright.142

Although both copyright and patent law are designed to provide a
significant incentive to create and disseminate new works, the different

the claim would grant a monopoly over the algorithm); In re Taner, 681 F.2d 787, 790 (C.C.P.A.
1982) (method of seismic prospecting involving the "summing" of certain electrical signals is
patentable); see also PATENT AND TRADEMARK OFFICE, U.S. DEPT. OF COMMERCE, MANUAL
OF PATENT EXAMINING PROCEDURE§ 2106 (5th ed. rev. 1989) (describing patent examining
procedures for inventions involving computer programs). But see Parker v. Flook, 437 U.S. 584
(1978) (use of formula to update alarm limits in manufacturing process unpatentable since
formula part of prior art and remainder of invention obvious in light thereof). See generally I D.
CHISUM, supra, § 1.03[6]; Chisum, The Patentability of Algorithms, 47 U. Prrr. L. REV. 959
(1986); Gemignani, Should Algorithms Be Patentable?, 22 JURIMETRICS J. 326 (1982).

138. See Twelve Myths, supra note 137, at 2; Bulkeley, Will Software Patents Cramp Creativ·
ity?, Wall St. J., Mar 4, 1989, at Bl, col. 3. Examples of patents claiming processes implemented
by computer programs include: U.S. Patent No. 4,374,408 (Feb. 15, 1983) (system and method
for translating programs in the RPG programming language to COBOL); U.S. Patent No.
4,355,371 (Oct. 19, 1982) (method for automatic spelling error correction); U.S. Patent No.
4,309,756 (Jan. 5, 1982) (method for compiling a program). Chisum, supra note 137, at 1021-22
lists a number of patents involving computer programming techniques.

While otherwise patentable processes implemented by computer programs are patentable,
most programs are probably not patentable. 1 D. BENDER, COMPUTER LAW§ 3A.02, at 3A-6.1
(1988) (over 90% of programs not patentable); Davidson, Protecting Computer Software: A
Comprehensive Analysis, 23 JURIMETRICS J. 339, 357 (1983) (perhaps less than 1 % of programs
patentable).

139. 35 u.s.c. § 271 (1988).

140. 35 u.s.c. § 154 (1988).

141. 35 U.S.C. § 131 (1988); 3 D. CHISUM, supra note 137, § 11.03.

142. To receive a patent, an inventor must demonstrate that his invention is useful, novel,
and nonobvious. See.supra note 137. A patent application is subject to numerous statutory
requirements. See 35 U.S.C. §§ 111-115 (1988); 3 D. CHISUM, supra note 137, § 11.02. Perhaps
the most important requirement is that the application must disclose the best known mode of
making and using the invention in terms that enable one of average skill in the relevant art to
make and use it. 35 U.S.C. § 112 (1988); see also 2 D. CHISUM, supra note 137, ch. 7. Since the
PTO cannot issue a patent until an examination reveals that the inventor is entitled to a patent, it
generally takes from two to three years from the time of filing to obtain a computer program
patent. See Twelve Myths, supra note 137, at 3 (two years); Stern, supra note 9, at 1247 n.92
(three years). Including patent application, issuance, and attorney's fees, the cost of obtaining a
patent for a computer program might in some cases reach $10,000. Twelve Myths, supra note
137, at 4; see also Stern, supra note 9, at 1247 n.92 (usually over $5000). Patents are also subject
to the payment of maintenance fees. 35 U.S.C. § 41(b) (1988); 3 D. CHISUM, supra note 137,
§ l 1.02[l][d].

Copyright, on the other hand, subsists in works from the moment they are fixed tangibly.
Compliance with the 1976 Act's relatively few statutory formalities is easy and inexpensive. See
supra note 34. Since the independent creation and the exploitation of a substantially similar
work do not constitute copyright infringement, see supra note 38, a copyright grants much nar
rower protection than a patent. Patent, copyright, and trade secret law are compared in general
terms in tabular form in CONTU REPORT, supra note 11, at 19.

February 1990] Note - Copyright Protection 895

conditions of protection reflect a belief that the exclusive right to pre
vent others from using a useful process is a powerful right that should
be granted only for relatively short periods and under carefully cir
cumscribed conditions. This belief motivates the process-expression
dichotomy, which defines the boundary between copyright and patent
law by permitting copyright protection of descriptions of processes
while denying protection to the processes themselves (which are,
under the proper circumstances, patentable). Failure adequately to
consider process-expression merger when faced with a case of alleged
structural infringement risks withholding useful processes from the
public domairi without the safeguards of the patent system.

Progress in all fields requires building upon the works of others.143

Progress in the computer art is no exception. Ideas for program func- ,
tions, structures, and low-level implementations may all come from
the work of others and then be improved upon or combined with origi
nal material.144 The computer art advances because programmers im
prove upon the functions of existing programs and the processes they
embody and then write new programs, possibly employing preexisting
implementation details from the public domain.

Both patent and copyright law limit a programmer's ability to
build upon the work of others. Some limitation is clearly necessary to
provide an incentive to create new works. If any or all aspects of a
new program could be copied with impunity, there would be much less
incentive to create new programs and most programs would be distrib
uted only in secrecy. This would ·deprive the public of the benefit of
most innovations and slow the progress of the art. Granting extensive
protection might allow knowledge of innovations, but would withhold
them from the public domain for long periods and thus also slow the
progress of the art.

Protecting processes would be a most injurious extension of copy
right protection for several reasons. First, processes are utilitarian.
Since they are often capable of use in various contexts, the effects of
protecting processes would be especially harsh. Second, protected
processes would not be examined to determine whether they were wor
thy of the societal cost of protection. Third, the seventy-five year
copyright term is a very long time to deprive the public of a new and
useful process. Finally, protected processes could not intentionally be

143. In Emerson v. Davis, 8 F. Cas. 615 (C.C.D. Mass. 1845) (No. 41,436), Justice Story
noted that:

In truth, in literature, in science and in art, there are, and can be, few, if any, things, which,
in an abstract sense, are strictly new and original throughout. Every book in literature,
science and art, borrows, and must necessarily borrow, and use much which was well known
and used before.

8 F. Cas. at 619.

144. See supra notes 28-29 and accompanying text.

896 Michigan Law Review [Vol. 88:866

created independently .14s

To deny all protection of structure would theoretically reduce the
incentives to create new, innovative structures. This reduction would,
however, be small, because the desire for efficient implementations of
program functions is a powerful incentive to create new structures.

A more important reason for protecting structure is that this pro
tection is necessary to give meaning to the protection of literal instruc
tions. If structure were not protected at all, a translation or a program
copied and extensively but trivially modified would not clearly infringe
the copyright in the original program. This was an important factor in
early decisions to extend copyright protection to the plots of plays. 146

However, protecting structure in its entirety runs the risk of protecting
the underlying ideas and processes. Structure should be protected, but
only to the extent that protection does not limit access to ideas or
processes.

On balance, it appears that structure should not be excluded from
the realm of copyright protection as a matter of law. The courts ,have
not done so. Although the intentions of Congress and CONTD are
not entirely clear, it does appear that they would consider protection
of structure on a case-by-case basis by applying traditional doctrines.
Some protection of structure, under limited circumstances, is neces
sary to best promote progress in the computer art. Part III develops
variations on traditional copyright doctrines tailored to the specific
situation of computer programs. These approaches attempt to strike
the proper balance between granting incentives to create and impair
ing progress in the computer art. This achieves the fundamental pur
pose of copyright law, promoting the progress of science and the
useful arts.

III. DETERMINING WHEN THE COPYRIGHT IN A COMPUTER

PROGRAM HAS BEEN INFRINGED BY THE COPYING OF

ITS STRUCTURE

Part II of this Note concluded that the structure of a computer
program may, under the proper circumstances, constitute protected
expression and should therefore receive copyright protection. This
Part develops approaches to determine if, and to what extent, the
structure of any particular program should receive protection. These
approaches are nothing revolutionary; indeed, they are simply the
levels of abstraction test and the merger doctrine recast in the terms of

145. It would be impossible to use a clean room technique intentionally to create a protected
process independently. Protecting the process leaves little unprotected material to distill out of
the program for use as a guide to writing a new program in a clean room.

146. See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930) (copy
right protection "cannot be limited literally to the text, else a plagiarist would escape by immate
rial variations"), cert denied, 282 U.S. 902 (1931).

February 1990] Note - Copyright Protection 897

the computer art. In contrast, some commentators considering the
protection of computer program structure have relied almost exclu
sively upon the policy underpinnings of the idea-expression and p~o
cess-expression dichotomies to arrive at approaches for distinguishing
idea and process from expression that are only loosely tied to tradi
tional doctrines. Others have misapplied traditional doctrines. This
Part roots its approaches to applying the idea-expression and process
expression dichotomies firmly in traditional doctrines and then places
the analysis applicable to these dichotomies in the context of a conven
tional infringement action inquiry into substantial similarity.

A. Distinguishing Idea from Expression in the Context

of Program Structure

Although Learned Hand wrote that the distinction between idea
and expression must "inevitably be ad hoc, " 147 courts and commenta
tors have proposed several helpful approaches to this problem. Judge
Hand did so when he proposed his levels of abstraction test. 148 Profes
sor Chaffee did so with his pattern test. 149 The Whelan court did so
when it developed its own test. 150 Those who believe program struc
ture should never be protected must base their belief upon some means
of distinguishing idea from expression.

Part II observed that doctrines appli~able to other literary works
should guide the search for the dividing line between idea and expres
sion in the case of computer programs. That observation necessarily
implicates the levels of abstraction approach. 151 Judge Hand built his
abstractions upon the whole work, and so it is with the whole of the
program that one must begin. Just as the plot of a play provides a
framework for building abstractions upon the play, the structure of a
computer program provides a framework for building abstractions
upon the program. At the lowest level of abstraction, a computer pro
gram may be thought of in its entirety as a set of individual instruc
tions organized into a hierarchy of modules. At a higher level of
abstraction, the instructions in the lowest-level modules may be re
placed conceptually by the functions of those modules. At progres
sively higher levels of abstraction, the functions of higher-level
modules conceptually replace the implementations of those modules in
terms of lower-level modules and instructions, until finally, one is left
with nothing but the ultimate function of the program.152 This pro-

147. Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487, 489 (2d Cir. 1960); see
supra note 49 and accompanying text.

148. See supra notes 47-49 and accompanying text.

149. See supra note 50 and accompanying text.

150. See supra note 72 and accompanying text.

151. Silicon Epics, supra note 12, at 1568-69.

152. The Whelan court's "purpose" is a sort of metafunction of the program - it extends

898 Michigan Law Review [Vol. 88:866

cess of building abstractions is in some sense the opposite of the pro
cess that the programmer probably used in designing the program.153

At any intermediate level of abstraction, the program may be con
ceived of as a collection of module functions and literal instructions
organized into higher-level modules that together implement the ulti
mate function of the program. At higher levels of abstraction, the
module functions are relatively more general, the structure is relatively
more simple, and the instructions that provide the "glue" to hold the
modules together are, in general, fewer in number. A program has
structure at every level of abstraction at which it is viewed. At low
levels of abstraction, a program's structure may be quite complex; at
the highest level it is· trivial. Under this approach, text and structure
are treated as an integrated whole. Analytically, then, literal copying

beyond the program itself to the end it serves for the user - so it may be thought of as a level of
abstraction that is more general still. '

Two commentators have suggested an example of the application of levels of abstraction
analysis to the structure of computer programs rather than the programs themselves:

[A]n "abstraction" analysis might define structure at one level of abstraction by a detailed
flowchart that reflects the operation of each subroutine of the program as well as the rela·
tionships among subroutines. At a somewhat higher level of abstraction, structure might be
depicted by a flowchart of the logical links among subroutines. At an even higher level, still
possibly considered to depict structure, the program could be described by a simple list of
the subroutines in the order they appear (e.g., "billing routine followed by accounts payable
routine").

Ladd & Joseph, supra note 70, at 10. The example begins much as the approach suggested in the
text by identifying the implementation of the program at its lowest level as the lowest level of
abstraction. The authors next move to a representation of the whole structure of the program
and finally to organization wholly independent of structure or function. These levels correspond
roughly to what this Note has called sequence, structure, and organization, respectively. See
supra note 27 and accompanying text. This approach is easy to apply and a step in the right
direction, but it treats the structure of the program as something independent of the program and
builds its abstractions upon the structure of the program rather than the program itself. This
considers insufficiently the possibility that lower levels of structure might contain more protected
expression than higher levels. It is unclear what questions one must ask to determine where in
Ladd and Joseph's hierarchy of levels the division between idea and expression falls. It is also
unclear what it means to say, for example, that structure is protected as such but organization is
not and whether that could possibly be a correct result.

153. See supra notes 19-25 and accompanying text. Several commentators have briefly de·
scribed a similar approach with greater emphasis upon the relationship between the levels of
abstraction and the programmer's approach to writing the program. Reback & Siegel, Toward a

Comprehensive Test/or Software Copyright Infringement, COMPUTER LAW., Dec. 1984, at 1, 4·
10; see also Reback & Hayes, The Plains Truth: Program Structure, Input Formats and Other

Factual Works, CoMPUTER LAW., Mar. 1987, at 1, 4-7. One difference between the approach
described by these commentators and that described here is that they seemingly equate levels of
abstraction with levels of a program's structure. See Reback & Hayes, supra, at 6; Reback &
Siegel, supra, at 4. This Note would instead view a program from a very large number of levels

of abstraction. At each level, the program has a structure. This Note forms these abstractions by
conceptually substituting the functions of modules for their implementations at different levels of
a program's structure and in different parts of a program. While Reback, Hayes, and Siegel
would identify a single level of a program's structure as a "level of abstraction,'' this Note sug
gests that one abstract view of a program might consist of a particular level of that program's
structure, the literal instructions and the functions of all of the modules at that level of the
program's structure, and all of the higher levels of the program's structure.

February 1990] Note - Copyright Protection 899

is simply copying parts of the Jower levels, and if the copying is exten
sive, all leve1s of a program's structure. · ·

Developing a set of abstract views of a program is relatively easy;
the task of determinillg th,e point in this set of abstractions at which
the additional detail in the next-lowest. level constitutes expression
rather tha11 idea is much more difficult. Professor Chaffee's pattern
test154 is an attempt at a general solution to this problem in the context
of novels and plays. By its own terms, it is not well suited to computer
programs. Whether there is any expression in the structure of a pro
gram viewed at a particular level of abstraction can only be. apswered
after a more fundamental inquiry into the details of the program.

Beginning with the highest level of abstraction, the function of a
program is in every case an idea. 155 At any lower level of ~bstraction,
one ·must consider the details present in ihe structure of the program
at that level of abstraction but missing from the structure· of the pro
gram at the next highest level of abstraction to deterniine whether they
too are idea. These details consist of a set of module functions and
client relationships. 156 At each level, these details should· be consid
ered part of the idea of the program if they are not sufficiently original
to be protected or the use of these structural details is necessary157

efficiently to implement the program as it exists at the higher le:vel of
abstraction. 158 Eventually, one will reach the level of individual in
structions. Even sequences of literal instructions cannot constitute
protected expression when they are not original or they are necessary
to the efficient implementation of the program's function. 159

154. See supra text accommpanying note 50.

155. See supra note 126.

156. See supra note 27 and accompanying text.

157. Although a program could always theoretically be implemented with a trivial structure,
this could prove quite difficult and would be contrary to general programming practices. See
supra note 21 and accompanying text. No aspect of any program's structure should be found
protected on the grounds that the underlying function could conceivably be implemented in a
way contrary to generally accepted programming practices.

158. See 3M. NIMMER, supra note 40, § 13.03(A][l]; Reback & Siegel, supra note 153, at 4-
5. This inquiry is in some sense the same inquiry made in Whelan Assocs. v. Jaslow Dental
Laboratory, Inc., 797 F.2d 1222, 1238 (3d Cir. 1986) ("[T]he structure of the program was not
essential to that task .•. . "),cert denied, 479 U.S. 1031 (1987), and Apple Computer, Inc. v.
Franklin Computer Corp., 714 F.2d 1240, 1253 (3d Cir. 1983), cert dismissed, 464 U.S. 1033
(1984), except here it is conducted level by level and incorporates an efficiency qualification. The
approach to distinguishing idea from expression suggested here differs from the Whelan rule in
its definition of function. See supra notes 20, 73, and accompanying text. Moreover, the Whelan

rule lacks an explicit means of distinguishing process from expression such as that proposed in
section IIl.B. This Note's approach is also in some respects similar to that described in David
son, supra note 38, at 1082-85. Davidson does not explicitly build levels of abstraction but rather
conceives of a program as a collection of nested "black boxes," which correspond to modules,
and then determines a level of protection for each black box.

159. CONTU REPORT, supra note 11, at 20. No single instruction can ever be very original;
neither can any individual word of a novel or play. The question is whether there is sufficient
originality in some meaningful sequence of instructions. See Declaration of Melville B. Nimmer,
supra note 114, UU 14-15. For example, a well-known and often used sequence of instructions for

900 Michigan Law Review [Vol. 88:866

Although this inquiry is by design essentially the same as that ap
plicable to any literary work, it is necessary to make one concession to
the utilitarian nature of computer programs. Computational effi
ciency, which might be defined differently depending upon one's objec
tives, plays a role in this inquiry because the use of some structures
over others may be indicated by concern for the efficient use of com
puter or human resources. 160 If ideas and, in particular, functions are
not to be protected by copyright, surely it is no response to a claim
that the use of a particular set of modules is necessary to implement a
function to argue that the accused program might have been written in
a way that requires larger amounts of memory space or processor or
programmer time, or makes the program more difficult to learn or use.

While it is absolutely essential that necessary or conventional im
plementations of a function not be protected, there will probably be
relatively few cases where a particular implementation of a function is
necessary. With the possible broad exception of operating system pro
grams, where the design of the computer may actually dictate some
significant aspects of the implementation of the program,161 there are
usually many ways to implement any function. 162 For example, even
if all teleprompter programs would have the same four modules at the
highest level, 163 the likelihood that any of these modules could be im
plemented efficiently with only one structure is probably very small.
Claims of necessity should thus be viewed with some skepticism.

This method of distinguishing idea from expression in the context
of computer program structure, regrettably, may not be very easy to
apply. Distinguishing idea from expression is never easy, and the
computer program context makes this inquiry especially difficult for

sorting the items in a list is no more deserving of copyright protection than a dozen lines of
Hamlet contained in an otherwise original play.

160. One commentator recently suggested that copyright should not protect aspects of a
structure motivated by such functional concerns as efficiency of execution. Menell, supra note
18, at 1085. This concern for not protecting aspects of structures resulting from design decisions
made in the interest of computational efficiency stands behind the use of efficiency as a qualifica·
tion in the approaches proposed in this Note. This Note stops just short of the position advo
cated by Professor Menell. Both this Note and Menell would require a defendant to explain why
the plaintiff's structural design decisions best met the defendant's efficiency objectives. Id. at
1086. Menell, however, would require the plaintiff to prove that the plaintiff himself made ineffi·
cient design decisions. Id. at 1086-87. This Note would not require such proof and would not
find idea-expression merger (or process-expression merger) in the cases where other structures
could be used to implement the function (or process) in accordance with the defendant's effi·
ciency objectives.

161. See Franklin, 714 F.2d at 1253. I

162. CONTU questioned a Vice-President of the Association for Computing Machinery
about this point. He stated that there are in practice dozens or even hundreds of ways to imple·
ment most functions. CONTU REPORT, supra note 11, at 20 n.106; see supra note 24 and ac
companying text.

163. This was a finding in Q-Co Indus., Inc. v. Hoffman, 625 F. Supp. 608, 616 (S.D.N.Y.
1985); see supra note 89. This suggests that the implementation of the function of a teleprompter
program with these modules is both unoriginal and necessary.

February 1990] Note - Copyright Protection 901

finders of fact. Even though this approach effectively requires examin
ing successive levels of modules as they might be represented in a
structure diagram, 164 this is not quite as simple as sliding a ruler down
a page. The determinations to be made require a firm grasp of the
program in question and some understanding of the computer art. 165

Some modules of a program may be more original or less necessary to
the implementation of other, higher-level modules than others. Thus,
possibly not even the literal instructions implementing one high-level
module of a program would constitute protected expression while all
of the structure of a second high-level module might.

In the ordinary case, part of the structure of a program will be
considered idea and part will be considered protected expression.
While the possibility that only certain aspects of the plot of a play may
constitute protected expression is not at all controversial, courts have
unanimously treated the protection of a program's structure as an all
or-nothing proposition. There is no legal basis for such an approach,
although the facts of a particular case might support a decision that all
or none of the structure of a program is protected. While determining
which aspects of the structure of a program are protected is much
more difficult than simply saying that all or none of a program's struc
ture is protected, courts must be prepared to make this inquiry in or
der best to effectuate the fundamental purposes of copyright law.

Because this approach for distinguishing idea from expression is
simply a special case of an approach applicable to all literary works, it
is a relatively weak means for ensuring that the public has access to all
of the aspects of a computer program to which the public should have
access. Computer programs are utilitarian works, and this approach
does nothing to ensure public access to processes. It ensures public
access to functions, but only high levels of programs' structures will
often be necessary to the efficient implementation of functions. The
next section develops a different and stronger, yet complementary, ap
proach based upon the process-expression dichotomy.

B. Distinguishing Process from Expression in the Context of
Computer Program Structure

Because computer programs are utilitarian works, the process
expression dichotomy is an important limit on the scope of their pro
tection. The process-expression dichotomy was the primary focus of
CONTU's discussion of the scope of copyright protection of computer

164. This is true at least when it is possible to represent a program's structure in the form of
a simple diagram patterned after an organizational chart. There are a number of reasons why the
structure of a program might not be amenable to such simple representation or analysis. See
supra note 27. In those cases, some modification of the basic levels of abstraction approach that
remains true to the ultimate purpose of the approach should be employed.

165. Without expert testimony to guide the finder of fact, the approach is impossible to use.
See infra notes 186-96.

9.02 Michigan Law Review [Vol. 88:866

programs. In spite of this, courts have generally not explicitly recog
nized the process-expression dichotomy as a limit on the protection of
computer programs independent of the idea-expression dichotomy.
Since few other works protected by copyright pose process-expression
merger problems, there is no well established test for distinguishing
protected descriptions of processes from descriptions that are merged
with their processes. Baker v. Seld~n 166 is of little or no help, for
Selden argued that the process described was protected and the Court
simply concluded that it was not. 167 The task here is analogous to
determining whether the division of Selden's essay into sections and
paragraphs was protected by copyright or merged with his unpro
tected accounting method.16s

To make this determination in a refined way, it is necessary to
examine each of the levels of modules in a program. Because this ex
crimination involves no abstract views of the program, it is not,
strictly speaking, a levels-of-abstraction approach. It could, however,
be applied conveniently in tandem with an idea-expression inquiry us
ing a levels-of-abstraction approach.

Because the ultimate function of a program is an idea, the starting
place of this examination is the set of modules at the next highest level
of a program's structure. The process embodied in a program is the
sequence of acts it instructs a computer to perform.169 To ensure that
copyright protection of a program's structure does not extend to its
process, one must individually consider this highest-level set of mod
ules and all other sets that consist of modules sharing a common client
module. For each set of modules, one should ask whether the use of
this particular set of modules is necessary efficiently to implement that
part of the program's process that is implemented in the common cli
ent module. If the answer is affirmative, the common client's use of
the lower-level module into modules is merged with the process of the

166. 101 U.S. 99 (1880).

167. See supra text accompanying notes 53-55.

168. A useful question to keep in mind while considering whether a description of a process
is protected by copyright is whether that description should be allowed into a clean room, see
supra note 38, in which another description of the process is being written • .If copyright protec
tion of computer programs is to have any meaning at all, a whole program, complete with literal
instructions, should probably never be allowed into the clean room in which a competing pro
gram is being written. On the other hand, a statement of the function of the program would
always be allowed into the clean room.

169. CONTU understood the unprotected process described in a computer program to be the
sending of electrical impulses through the computer. CONTU REPORT, supra note 11, at 22.
This understanding is, in some respects, troubling because a particular set of electrical signals can
be sent through a computer by one and only one program in that computer's computer language.
See supra notes 12-13 and accompanying text. The courts have nonetheless had little difficulty in
finding programs written in computer languages protected by copyright. See supra note 58.
Since electrical signals in computers produce certain results, CONTU's understanding of the
nature of an unprotected process can safely be thought of as rendering a series of acts of a slightly
more general nature, such as adding together two specified numbers or even calculating the value
of some complex formula, a process outside the scope of copyright protection.

February 1990] Note - Copyright Protection 903

program and is unprotected. While the idea-expression inquiry in sec
tion III.A. wiJl tend to find idea-expression merger at high levels of a
program's structure, this approach will tend to find process-expression
merger at intermediate and low levels of a program's structure.

One could easily be overzealous in finding process-expression
merger when making this inquiry. If the same process could be imple-
mented efficiently by combining and redividing the functions of a set
of modules in a number of substantially different ways, then the selec
tion of a particular set of modules should be protected. This is espe
cially true at low levels of a program's structure where there may be a
significant amount of choice in allocating acts among modules.

This inquiry guards against the monopolization of a process by the
enforcement of a copyright in a program describing that process.170 In
the abstract, it is unclear how much of a typical program's structure
this inquiry would remove from the realm of expression. Because
many low-level structural design decisions motivated by a concern for
computational efficiency will probably be found merged with process,
however, it is probably much greater than that removed by the mere
application of the levels of abstraction approach for distinguishing
idea from expression. Elements of structure identified as either idea or
process are not protected by copyright. The two approaches together
lead to a narrower scope of protection than has been found by most
courts and proposed by many commentators. A relatively narrow
scope of protection is, however, necessary to prevent monopolization
of the ideas and processes embodied in computer programs. Monopo
lization impairs progress in the computer art by severely limiting the
opportunities for programmers to make incremental improvements
upon the ideas and processes described by others. ·

C. The Place of Idea-Expression and Process-Expression Inquiries
in a Conventional Infringement Analysis

Distinguishing among idea, process, and protected expression is a
necessary and important part of deciding cases involving the alleged
infringement of the structure of computer programs. This section dis
cusses the application of the approaches developed above in such
cases. A typical case of this genre probably involves two fairly large
commercial programs written in different languages. 171 The alleged
copy will have some higher-level modules with functions that are simi-

170. Returning briefly to the hypothetical clean room, see supra note 168, any aspect of a
program's structure that is, or is merged with, an idea or process should be allowed into the clean
room.

171. See Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222, 1226 (3d Cir.
1986) (EDL and BASIC), cert. denied, 479 U.S. 1031 (1987); Q·Co Indus., Inc. v. Hoffman, 625
F. Supp. 608, 614 (S.D.N.Y. 1985) (Pascal and BASIC).

904 Michigan Law Review [Vol. 88:866

lar to those of modules in the original program,172 and perhaps a few
short sequences of instructions that are approximately direct transla
tions of corresponding instructions in the original.173 The programs
may also have similar screen displays, 174 employ similar data struc
tures, 175 or otherwise resemble one another. The alleged copy may
have been written by former employees of the plaintiff, 176 while the
defendant possessed a copy of the plaintiff's program under a li
cense, 177 or while the plaintiff's program was available commer
cially.178 The court must determine whether the defendant's program
infringes the plaintiff's copyright.

Recall that the plaintiff must prove ownership of the copyright in
the program and copying by the defendant. 179 Since it is seldom possi-

172. See Q-Co, 625 F. Supp. at 614 (4 similar high-level modules); E.F. Johnson Co. v.
Uniden Corp. of Am., 623 F. Supp. 1485, 1496-97 (D. Minn. 1985) (38 similar modules).

173. See Q-Co, 625 F. Supp. at 614 (a few textual similarities); E.F. Johnson, 623 F. Supp. at
1495-96 (describing errors and idiosyncracies common to both programs); SAS Inst., Inc. v. S &
H Computer Sys., Inc., 605 F. Supp. 816, 822 (M.D. Tenn. 1985) (44 instances of direct copying
of literal text).

Section 106(2) of the 1976 Act grants a copyright owner the exclusive right "to prepare
derivative works based upon the copyrighted work." 17 U.S.C. § 106(2) (1988). This includes
the right to translate the work from one language to another. See 2 M. NIMMER, supra note 40,
§ 8.09[B][l]. The same idea-expression and process-expression problems applicable to computer
programs generally are applicable to those works with logic so similar that the possibility of
direct translation might be raised in litigation. However, one court, in dicta, has opined:

[I]t is as clear an infringement to translate a computer program from, for example, FOR
TRAN to ALGOL, as it is to translate a novel or play from English to French. In each case
the substance of the expression (if one may speak in such contradictory terms) is the same
between original and copy, with only the external manifestation of the expression changing.
Likewise, it would probably be a violation to take a detailed description of a particular
problem solution, such as a flowchart or step-by-step set of prose instructions, written in
human language, and program such a description in computer language.

Synercom Technology, Inc. v. University Computing Co., 462 F. Supp. 1003, 1013 n.5 (N.D.
Tex. 1978). A case perhaps addressing the point raised in the last sentence of the quoted passage
is Williams v. Arndt, 626 F. Supp. 571 (D. Mass. 1985). There, the court held that the copyright
in a book describing "a detailed, step-by-step procedure or process" for commodity trading was
infringed by a computer program based upon that book. 626 F. Supp. at 578. Although one may
sympathize with the plaintiff, it is difficult to ignore the similarities between this case and Baker.
a point that the court ignores. The Synercom dicta is not necessarily incorrect; instead, it should
be limited to descriptions so detailed that producing a computer program from the description is
a mechanical task. One must also be careful that literal instructions merged with the idea or
process components of the program are not protected.

174. See Whelan Assocs. v. Jaslow Dental Laboratory, Inc., 609 F. Supp. 1307, 1322 (E.D.
Pa. 1985), affd., 797 F.2d 1222 (3d Cir. 1986), cert denied, 479 U.S. 1031 (1987).

175. See Whelan, 797 F.2d at 1228; E.F. Johnson, 623 F. Supp. at 1490, 1494.

176. See Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1174 (9th Cir.
1989); Plains Cotton Co-op. Assn. v. Goodpasture Computer Serv., Inc., 807 F.2d 1256, 1258-59
(5th Cir.), cert. denied, 484 U.S. 821 (1987); Q-Co, 625 F. Supp. at 611-13.

177. See Whelan, 797 F.2d at 1226-27; SAS Inst., Inc. v. S & H Computer Sys., Inc., 605 F.
Supp. 816, 821 (M.D. Tenn. 1985).

178. See Pearl Sys. v. Competition Elecs., Inc., 8 U.S.P.Q.2d (BNA) 1520, 1521 (S.D. Fla.
1988) (program embodied in memory chip in shot timer advertised in magazines); E.F. Johnson
Co. v. Uniden Corp. of Am., 623 F. Supp. 1485, 1488-89 (D. Minn. 1985) (program in memory
chip in radio sold by 150 authorized dealers).

179. See supra notes 40-41 and accompanying text.

February 1990] Note - Copyright Protection 905

ble to offer direct proof of copying, 180 the law permits an inference of
copying from substantial similarity between the works and the defend
ant's access to the plaintiff's work.181 Once a plaintiff has established
a prima facie case of access and substantial similarity, the defendant
bears the burden of proof on defense of independent creation.182 If
access cannot be proved directly, the plaintiff still may succeed if the
similarities are "so striking as to preclude the possibility that plaintiff
and defendant independently arrived at the same result."183 To date,
it has not been difficult to prove access in copyright cases involving
computer program structure.184 The determination of substantial sim
ilarity, however, is often very difficult.18s

Under the rule of Amstein v. Porter, 186 substantial similarity
should be considered in two parts: (1) whether defendant copied from
plaintiff; and (2) if so, whether the works were so similar that the
copying constituted an unlawful appropriation. The first question may
be decided with the aid of expert testimony analyzing the works in
question and pointing out specific similarities.187 The question is
whether there was copying at all. The trier of fact need not worry

180. To prove copying directly requires a witness to the act of copying. If the copying was
subconscious, see generally Harold Lloyd Corp. v. Witwer, 65 F.2d 1, 16 (9th Cir. 1933), there
could be no witnesses, since there was no act outwardly recognizable as copying. 3 M. NIMMER,
supra note 40, § 13.0l[B]; see also Warner Bros., Inc. v. American Broadcasting Cos., 654 F.2d
204, 207 (2d Cir. 1981).

181. Warner Bros., 654 F.2d at 207; Ferguson v. National Broadcasting Co., 584 F.2d 111,
113 (5th Cir. 1978); Sid & Marty Krofft Television Prods. v. McDonalds Corp., 562 F.2d 1157,
1162 (9th Cir. 1977); Reyher v. Children's Television Workshop, 533 F.2d 87, 90 (2d Cir.), cert.
denied, 429 U.S. 980 (1976); 3M. NIMMER, supra note 40, § 13.0l[B].

182. 3M. NIMMER, supra note 40, § 12.11[D].

183. Arnstein v. Porter, 154 F.2d 464, 468 (2d. Cir. 1946), cert. denied, 330 U.S. 851 (1947);
accord Baxter v. MCA, Inc., 812 F.2d 421, 423 (9th Cir. 1987); 3M. NIMMER, supra note 40,
§ 13.02[B]. Similarity should never be found "striking" unless there is a substantial amount of
literal copying.

184. See, e.g., Plains Cotton Co-op. Assn. v. Goodpasture Computer Serv., 807 F.2d 1256,
1258-59 (Sth Cir.) (same programmers wrote both programs and had access to designs of first
when writing second), cert. denied, 484 U.S. 82 (1987); Whelan Assocs. v. Jaslow Dental Lab.,
Inc., 797 F.2d 1222, 1232 (3d Cir. 1986) (defendant used plaintiff's program and was sales repre
sentative for plaintiff), cert. denied, 479 U.S. 1031 (1987); SAS Inst., Inc. v. S & H Computer
Sys., Inc., 605 F. Supp. 816, 821 (M.D. Tenn. 1985) (defendant had license for much of plaintiff's
source code).

185. Warner Bros., 654 F.2d at 208 (quoting 3 M. NIMMER, supra note 40, § 13.03[A]).

186. 154 F.2d 464 (2d Cir. 1946), cert. denied, 330 U.S. 851 (1947). In Sid & Marty Krofft
Television Prods. v. McDonald's Corp., 562 F.2d 1157 (9th Cir. 1977), the Ninth Circuit an
nounced a somewhat different rule permitting greater use of expert testimony, Note, supra note
10, at 510 n.76, and expanding the role of the trier of fact, 3 M. NIMMER, supra note 40,
§ 13.03[E]. Professor Nimmer suggests that the Krofft rule is based on an erroneous reading of
Amstein, has not been followed in some subsequent Ninth Circuit cases, and should not be fol
lowed in the future. Id. This Note is primarily concerned with the pred9minant Amstein rule.

187. Amstein, 154 F.2d at 468 (dissection and expert testimony allowed on question of copy
ing); see also Walker v. Time Life Films, Inc., 784 F.2d 44, 51 (2d Cir.), cert. denied, 476 U.S.
1159 (1986) (allowing consideration of affidavit of expert analyzing "plot, themes, structure,
characters, and pace of both works"); Scott v. WKJG, Inc., 376 F.2d 467, 469 (7th Cir.) (expert
testimony on similarities between plays admissible), cert. denied, 389 U.S. 832 (1967); Midway

906 Michigan Law Review [Vol. 88:866

about deciding whether protected expression was copied.188 Only if
there was copying is it necessary to reach the second question, whether
there was an unlawful appropriation. Here, the trier of fact must de
termine whether the similarity between the works includes substantial
protected aspects of the plaintiff's work. 189

The answer to the second question should be based upon the spon
taneous impression of an ordinary observer. 190 Although the Arnstein
court noted that "'dissection' and expert testimony are irrelevant"191

to this second question, Arnstein did not involve application of the
idea-expression and process-expression dichotomies. 192 Some courts
have indicated that the trier of fact is to compare only the protected
portions of a plaintiff's work with the defendant's work, 193 and others
have explicitly found that the Arnstein test allows the trier of fact to
dissect the works to determine what is protected.194 In cases involving
idea-expression and process-expression questions, the trier of fact
should answer the second of the Arnstein questions by determining
which aspects of the plaintiff's work are protected and then deciding
whether there was unlawful appropriation of protected expression. 195

The approaches developed in the first two sections of this Part are
employed to determine which parts of the structure of the plaintiff's
program ·are merged w,ith an idea or a process and are thus unpro
tected. These approaches involve dissecting a plaintiff's program in
the classic copyright sense, a detailed examination to determine which
parts are protected and which are not. A layperson could not employ

Mfg. Co. v. Bandai-America, Inc., 546 F. Supp. 125, 138 (D.N.J. 1982) (same); 3 M. NIMMER,
supra note 40, § 13.03[E].

188. 3 M. NIMMER, supra note 40, § 13.03[E], at 13-62.11 to 13-62.12.

189. Id. at 13-62.12 to 13-62.13.

190. Amstein, 154 F.2d at 468. For a discussion of who the ordinary observer of a computer
program ought to be, see Silicon Epics, supra note 12, at 1571-73.

191. Amstein, 154 F.2d at 468.

192. Amstein involved the alleged infringement by Cole Porter of the copyrights in several of
the plaintiff's songs. 154 F.2d at 467. The court may not have carefully considered the applica
tion of its rule to cases involving difficult idea-expression or even process-expression questions.

193. See Millworth Converting Corp. v. Slifka, 276 F.2d 443, 445 (2d Cir. 1960) (enumer
ated elements of plaintiff's expression not copied, but rather general ideas); Morse v. Fields, 127
F. Supp. 63, 66 (S.D.N.Y. 1954) (separate idea from expression, but only when substantiality of
similarity in question); cf. Aliotti v. R. Dakin & Co., 831 F.2d 898, 901 (9th Cir. 1987) (the
whole works should be compared, but substantial similarity should not be found when all simi
larities result from the use of unprotected ideas).

194. Atari, Inc. v. North Am. Philips Consumer Elecs. Corp., 672 F.2d 607, 614-15 (7th
Cir.) (allowing dissection), cert. denied, 459 U.S. 880 (1982); Davis v. United Artists, Inc., 547 F.
Supp. 722, 724 & n.8 (S.D.N.Y. 1982) (allowing dissection but no expert testimony); see Atari
Inc. v. Amusement World, Inc., 547 F. Supp. 222, 224-25, 229-30 (D. Md. 1981) (trial court
engages in dissection); Ideal Toy Corp. v. Kenner Prods., 443 F. Supp. 291, 303 (S.D.N.Y. 1977)
(permitting "a certain summary of the similarities and differences which exist").

195. The Ninth Circuit has suggested that under Krofft, the order of these steps should be
reversed. It would first determine what aspects of the work are similar and then determine what
is protected. It would find no substantial similarity when all of the similarities "arise from the
use of common ideas." Aliotti, 831 F.2d at 901.

February 1990] Note - Copyright Protection 907

these approaches without relying to some degree upon expert testi
mony. A number of courts have admitted testimony on whether the
defendant's copying constituted unlawful appropriation in the com
puter context.196 With such an accommodation, this Note's ap
proaches may be integrated readily into a conventional substantial
similarity analysis.

Substantial similarity is a question of'fact, and it is difficult to give
abstract guidance on how similar a defendant's work must be to the
expression contained in the plaintiff's work before the works may be
considered substantially similar. A few observations, however, might
be helpful. If there is a significant amount of expression in the struc
ture of a particular computer program, one probably need not copy all
of that expression to infringe the copyright in the program. In one
case, nonliteral similarity with respect to only about twenty percent of
a motion picture was held to be sufficient to support a finding of in
fringement.197 Similarity of a relatively small proportion of the literal
instructions in a program can likewise support a finding of infringe
ment.198 When similarity of structure coincides with literal similarity,
works with somewhat less of either type of similarity may still be sub
stantially similar.199 When a plaintiff's work contains little protected
material, only a work very similar to it, perhaps nearly a verbatim
copy, may be found substantially similar. 200 The cases discussed· in

196. Plains Cotton Co-op. Assn. v. Goodpasture Computer Serv., Inc., 807 F.2d 1256, 1259
(5th Cir.), cert. denied, 484 U.S. 821 (1987); Whelan Assocs. v. Jaslow Dental Lab., Inc., 797
F.2d 1222, 1232 (3d. Cir. 1986), cert. denied, 479 U.S. 1031 (1987); Q-Co Indus., Inc. v. Hoff
man, 625 F. Supp. 608, 6!0, 613 (S.D.N.Y. 1985); E.F. Johnson Co. v. Uniden Corp. of Am., 623
F. Supp. 1485, 1:493 (D. Minn. 1985); cf. Broderbund Software, Inc. v. Unison World, Inc., 648
F. Supp. 1127, 1136-37 (N.D. Cal. 1986) (following Krofft in case involving computer screen
display). •

Consideration of this testimony should not be undertaken lightly. After delving deeply into
the mysteries of microcode, a computer language used to instruct a computer how to perform
such elementary functions as adding two numbers, Judge William Gray observed:

. As I have pondered upon the testimony of the experts and studied the exhibits, I have
developed a sympathetic understanding of what Judge Learned Hand meant when he,ob
served in a relevant situation that "the more the court is led into the intricacies of dramatic
craftsmanship, the less likely it is· to stand upon the firmer, if more naive, ground of its'
considered impressions upon its own perusal."

NEC Corp. v. Intel Corp., 10 U.S.P.Q. 2d (BNA) 1177, 1184 (N.D. Cal. Feb. 6, 1989) (quoting
Nicholas v. Universal Pictures Corp., 45 F.2d 119, 123 (2d Cir. 1930)). Judge Gray went to
great lengths to familiarize himself with the relevant technology before hearing this case. Wirbel,
The Education of Judge Gray, ELECTRONIC ENGINEERll;IG TI~ES, Mar. 13, 1989, at 49.

197. Universal Pictures Co. v. Harold Lloyd Corp., 162 F.2d 354 (9th Cir. 1947).

198. In re Certain Personal Computers and Components ~ereof, 1983-1984 Copyright L.
Dec. (CCH) ~ 25,651 (Intl. Trade Commn. 1984) (similarity to 18 percent of lines in original
program constitutes substantial similarity).

199. SAS Inst., Inc. v. S & H Computer Sys., 6Q5 F. Supp. 816 (M.D. Tenn. 1985) involved
44 specific instances of literal copying, which seem to have constituted a fairly small fraction of
the total lines in the program, 605 F. Supp. at 822, along with fairly comprehensive structural
similarity. 605 F. Supp. at 825-26.

200. Worth v. Selchow & Righter Co., 827 F.2d 569, 573 (9th Cir. 1987), cert. denied, 108
S.Ct. 1271 (1988); see Frybarger v. Intl. Bus. Machs. Corp., 812 F.2d 525, 530 (9th Cir. 1987)
(necessary expression of an idea protected only against verbatim copying).

908 Michigan Law Review [Vol. 88:866

section II.A provide some additional illustration of the kinds of facts
that have supported findings of copyright infringement.

Unfortunately, the cases discussed in section II.A recite the facts
in insufficient detail to decisively determine whether the results would
change if this Note's techniques were applied. However, even if courts
have reached correct results in past structural infringement cases, they
have also announced broad rules that are more or less insensitive to
the fundamental goals of copyright law. Because computer programs
are utilitarian works that are also literary works, an infringement anal
ysis involving computer programs in almost every case will implicate
both the idea-expression and process-expression dichotomies. The ap
proaches developed in this Part are rooted in these two doctrines, and
when applied in tandem, isolate the part of a program's structure that
is protected expression from that which is unprotected idea or process.
Only by conscientiously refusing to extend copyright protection to
ideas and processes can courts ensure progress in the computer art.

CONCLUSION

Just less than ten years ago, Congress amended the copyright stat
ute explicitly to recognize computer programs as protected works.
Since then, courts have held both literal and nonliteral aspects of com
puter programs protected in many forms. Computer programs, as lit
erary works that are primarily utilitarian, present special problems for
copyright law. Because of their utilitarian nature, they are protected
with greater doctrinal purity by patent law. Congress, however, has
provided copyright protection for computer programs, and courts
have been asked to determine whether this protection extends to the
structure of programs. After examining the legislative history of the
Copyright Act and the cases decided under the Act, this Note con
cludes that structure must be protected, subject to the limitations im
posed by the idea-expression and process-expression dichotomies and
the merger doctrine.

Courts facing the structure question have by and large recognized
the problem of idea-expression merger in the context of program
structure. However, while citing Baker, they have tended to treat the
protection of structure as an all-or-nothing proposition and to give
little attention to preventing the monopolization of the processes de
scribed by computer programs. They have also tended to focus their
inquiry at only the highest levels of a program's structure, which
would normally be expected to exhibit the least originality and be
most closely tied to the function of the program. This Note proposed
a pair of approaches that distinguish ideas and processes from pro
tected expression and that probe the whole structure of a program.

February 1990] Note - Copyright Protection 909

This Note also illustrated the use of these approaches in a typical case
of alleged structural infringement.

The approaches developed in this Note promote progress in the
computer art by allowing public use of ideas and processes embodied
in the structure of computer programs. As the computer art advances,
courts will be asked to confront increasingly complex questions of
copyright law as it relates to computer programs. It is impossible to
guess at the full range of these questions. To continue promoting the
progress of the computer art in the years ahead, courts must strike a
proper balance between granting incentives to create new programs
and hindering progress by granting excessive protection.

- Steven R. Englund

	Idea, Process, or Protected Expression?: Determining the Scope of Copyright Protection of the Structure of Computer Programs
	Recommended Citation

	Idea, Process, or Protected Expression: Determining the Scope of Copyright Protection of the Structure of Computer Programs

