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I. 

Axially elongated two-dimensional tokamak configurations have been 

studied exhaustively, with a view to maximizing the plasma beta value [1-7). 

In this process, ideal-MHD-stable configurations with appreciable beta-values 

have been demonstrated, but the sharply peaked plasma-current distributions 

that- emerge in this type of optimization procea9 are conducive to finite-

resistivity tearing modes. A systematic finite-resistivity, finite-beta 

analysis has not as yet been carried out for two-dimensional tokamaks [8], but 

the range of stable beta values attainable with "realistic" current profiles 

seems unlikely to exceed 0.1, TYie most premising results are obtained with 

finite hut moderate vertical elongations. 

The stability properties of an infinitely elongated one-dimensiona! 

tokamak might be expected to differ considerably from those oF a two-

limensional tokamak with a large but finite degree of vertical elongation. 

T!-e present paper shows that the high-beta stability properties may in fart. UP 

much more favorable. The results are directly applicable to some tokanak-1ike 

cast-p'ilsed configurations that have approximately one-d tmensional central 

-eainns, such as a highly elongated belt pinch or a reversed-field theta pinch 

with added toroidal field. 

In view of the strong attraction of the stable high-beta solutions of the 

one-dimensional tokamak, one is also led to envisage the possibility of an 

experimental tokamak embodiment where a highly extended raid-section is held in 

equilibrium (i.e., under tension) by two appropriately shaped two-dimensional 

end sdctions. The equilibrium and stability conditions of these end sections 

would be expected to call for non-Maxwellian features — a kind of "tandem 

tokamak." Hie present paper addressee only the long central region, where the 
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profiles depend on r and not on z. 

In Sec. II we describe how the equilibrium is calculated and discuss some 

of its properties. Section III co-tains the stability analysis in which the 

significant parameters of the equilibrium are optimized for stability against 

both ideal MUD and resistive tearing modes. Section IV contains the 

conclusion and we Include a brief qualitative discussion of the consequences 

of taking the required two-dimensional end sections into account. 

TI. Equi 1 ihrium 

TIB 'nndel is depleted in Fiq> '. In the cyl inir ical polar coordinate 

syste-n (r, t. z) the central plasma region is contained within an .innilu* 

iefmed hy r̂  < r < rj and is separated by a vacuum region from conducting 

shells situated at r ~ a, h, Note that in our model the maqnet;? a^is now 

becomes a null trace at r - r Q, across which the poloiial field, B , changes 

direction. This configuration would he essentially that if a heir pinch, or a 

harl core reversed field pinch if the roles of the polnMal in i t'rii.ial field 

were interchanaed. The results of this paper ran thus he if snm^ significance 

to these devices. 

Although the equilibrium equations for the one-dimensional -as*; can he 

reduced to quadratures, we instead solve the usual Grad-Shafranov equation for 

the poloidal flux, V - 2mli(rl, with the pressure, p, and the toroidal field 

function, g, specified to he functions of 4. only as is generally done for 

tokamak equilibria. If 

B = 7* x St), + gCil.) V» , (11 
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then we have 

d 1 d r j „ - ^ fg £ • r

2 |E) - -1± , r d 7 7 5 ? y s - ^ l ^ + t ^ ' - r 1 - (2) 
b 

dr r dr ' 2 ' " dy dy' 4,. 
*b 

where (k = <J,(r ) = i|,(r ) and y = 4/4, . 

For the plasma profiles we choose, for 0 i y < 1, 

y i - yf 2 

P ( y ) = P Q jj . ( 3 ) 
' P _ , 

a n d 

X I I - y)Z 

e_9 - 1 
9 ( y ) <= g o - g , . <4) 

e g - 1 

so that the peak pressure and the diamagnetic ccntributlon ..if the toroidal 

field is specified by p and g-j. Note that we can prescrihe peaked, rounded, 

or flattened profiles in the physical coordinate, r, by choosinq 

respectively, \ >> 0, \ » -0 .5 , or \ << 0. Since the first three derivatives 

of ip/iy with respect to r vanishes at rQ for \ = - Vjj then, when g. = n we 

have j^/r 3 - dp/dy, and the corresponding profiles for jVr are respectively 

peaked (or rounded), f lat , and hollow. Tnis i s i l lustrated in Fig. 2, where 

we plot the pressure and current profiles for \ - 1.0, 0, -0 .5 , and -1.0. 

The extreme case when \ + - <= gives a square pressure profile with a 

corresponding skin current. In addition, we prescribe rQ, r j , gQ,and B (r 2 ) 

so that the aspect ratio, R n r 0 /(j .- 2 - rQ) = r Q /d , axial toroidal beta, g = 

2 2 2pQ r /g (based upon the vacuum toroidal f ie ld at r Q ) , and poloidal 

beta, p E 2p /B 2 (r >. K p r o p 2 
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We solve Bj. (2) for y(r) in the region <r Q < r < r 2) numerically by 

initializing with 

y(r o) - o 

dy(r o) 
* 0 

and iterating on g^ and <k so that 

y(r 2! = 1 

and 

dytr ) - r J I r l — I — i - E — i - . (5) 
dr *b 

Equation (2) is then integrated backward for y(r) and r^ in the reqion 

(r < r 0) until y(ri) = 1.0. Hila specifies t,, and the equilibrium quantities 

there are calculated from Sjs. (1)-(4). Thus, some toroidal features, such as 

the idea of flux surfaces, and toroidal shift, are preserved in our model. 

The solution in the vacuum region is readily obtained, i.e.. 

B J r „ > •> i 
y(r) V ^ fr " rpl + y f r p ] ' (6' 

where r is the value of r at either plasma boundary, this equation shows the 

tendency for flux surfaces to be spaced farther apart on the inner side of the 

magnetic axis, the final magnetic field profiles are stored as cubic spline 

functions to allow for interpolation and differentiation. 



Instead of parametrizing the plasma by the safety factor, we find it 

convenient to use the pitch of the magnetic field defined by 

rB 
u(r) 5 - -jE , (7) 

and a rational surface is present when m =• k|i, m and k being respectively the 

toroidal and poloidal wave numbers. 

Since rB and B are both constant in regions exterior to the plasma, hut 

B - r - rQ inside the plasma, u has at least one relative minimum in the 

plasma on the inner side of the null trace. As shown in Pig. 2, this means 

that, in the region [a, r ] where r is defined by u(r } » u(a), rational 
U u *|i 

surfaces exist in pairs for the same values of m and k. This Is relevant to 

the stability analysis which is described in the next section. 

III. Stability 

The stability properties of our model are analyzed for both ideal and 

resistive MHD modes. The underlying assumptions which enable us to treat our 

system in one dimension permit us to apply the fundamental results previous _y 

obtained from studies of the simpler slab, or cylindrical, systems. Thus, for 

ideal MHD modes we apply the results of Newcomb [9], Suydam [10] etc.; 

analysis of the reaiative MHD modes is based upon the ideas found in Furth et 

al., [11), and Glasser et al., [12]. Newcomb's equations are relevant to both 

types of modes since sufficient conditions for stability againat registive 

modes can be obtained fron the behavior of the plasma in the idfal regions. 

The relevant equations are the energy integral and the associated Euler-



7 

Lagrange equa t ion [9] 

M<F.) = f | r d r [ F f | § ) 2 + G ^ 1 

, , 2 2 2,2 ' p 

2 ir 2 d r * dr p 

(8) 

PE,' - C =• 0 

C' - G£ - 0 (9) 

r<krB - «fl I 2 

k r + m 

2 k 2 r 2 dp 1 ,, „ . ,2 k 2 r 2 + m 2 - 1 . + - IkrB - mB 1 ——— , 2 2 2 d t r p « , 2 2 ^ 2 k r + m k r- + ra 

2 k 2 r ,, 2 2 2 2 2> , , , , 
!k r B - m B 1 , (11) 

£ " " ^ ! z f r V j - | ^ B 2 . 

2 

Equation (8) i s , of cour se , the marginal (u = 0) one dimensional ve r s ion 

of t he more genera l energy i n t e g r a l of Berns te in e t a l * , [13]- Tho $ and z 

components of the plasma displacement which i s assumed to have t h e 

form £ ( r ) e , have been e l imina ted a l g e b r a i c a l l y in the min imiza t ion 

of W(£) , so t h a t £ here i s the r a d i a l component of t h e Ftourier c o e f f i c i e n t of 



of the displacement. 

As shown by Neweomb [9] , we can also write the energy integral in the 

form 

b 

we.) i f r d r _ _ J rf k r B . „s ) 2L + ( k r B l l B ) I i 2 

p %S7 < r t V ' ^ | fkrB - mB 1 - 2 B — (rB I ] ^ r J (13) 

showing e x p l i c i t l y , Rosenb lu th ' s s u f f i c i e n t c o n d i t i o n for s t a b i l i t y a g a i n s t 

a l l idea l MHD modes: W(F) > 0 i f rB i s a d e c r e a s i n g funct ion of r throughout 

the plasma. For the purposes of t h i s paper we take rB = c o n s t a n t , i . e . , cr, -
<t> ' 

0, thereby rendering our model ideally stable irrespective of the values of 

the other equilibrium parameters such as aspect ratio, wall position, profile 

shapes, etc. Note, however, that our condition B - 1/r implies that the 
9 

toroidal field is the vacuum field throughout so the plasma is contained 
entirely by the poloidal field, i.e., the poloidal beta, p ^ 1, while the P 2 ? — 1 total plasma beta p - fl '1 + B /B ) can, in principle, be arbitrarily P * p 
close to unity and still be stable against all ideal MHD modes. 

We investigate the resistive MHD properties of our system in the usual 

way: retistive effects are important only in the region where Eq. (9) is 

singular, i.e., at the rational surfaces where m = kjj, but a sufficient 

condition for stability can be obtained by examining the discontinuity in the 

Euler-Lagrange solution across the singularity. The solution of Eq. (9) in 

the ideal region on the right, left of a singularity at r = r , can h = 

written, 
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( 14) 

where £ (r), £ (r) are the solutions which, in Neweomb's definition, are 
x. s 

large, small at r - r . Thus, Ap ana B R are t\e contributions from the 

solution at the right of the singularity. If h^ and B L are similarly defined, 

a sufficient condition for stability against resistive modes is that [12] 

B B 
A' ? T + lt * ° ' ,15) 

We note here that this condition encompasses the cases where p' tr) can be 

either finite or zero, it being also a necessary condition for the latter. 

Inversion of the set of Eq. (14) gives 

A\ /£, ^ \ /£ ( r> 
B V L ^" C s / R.L ^' r )' R.L 

(16) 

Here F , F , C , C are obtained analytically as a power series about the ! s i s 
singular surface, rg. The details of this expansion and an estimate of the 

accuracy of the method are shown in the Appendix. We use an accurate 

extrapolative differential equation solver [14] to integrate Eq. (9) towards 

r s with the boundary conditions FAa) = F.<b) = 0, c(a) = Hb> = 1-0. In the 

process, the A, 8 as calculated by Eq. (16) approach their constant values as 

r •* r . The point up to which we integrate is, of course, determined by the 

number of terms in the indicial expansion and the required accuracy for A, 

B. Oi the other hand, numerical considerations dictate that we keep a 
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respectable distance away from the s ingular i ty . 

For each set of equilibrium parameters we choose Che toroidal "node number 

m and the ra t ional surface r g , determine the poioidal wave vector through 

k = m/ u ( r ) , (175 

and then compute A' as described above. For these modes, we present thf 

results graphically by showing plots of A d, versus r s for various values nt 

wall position, profile shapes, plasma heta and aspect ratio. Th<> 

quantity A'd is dimensionless when the pressure Is zero. Because of Hie 

existence of the double tearing region as discussed in the last section, we do 

not present results for A'd in [a, r ). There, the solution of to. (1) must 
u 

be properly matched across the bounding resistive layers, to realizp this, up 

would require knowing the threshold value of A'd or details of thr> 

perturbation inside the layers. 

The effect of a conducting wall on the m = 1 and 2 modes is shown in 

Fig. 3a for a flat current profile (\ = -0.5), aspect ratio K - S, r - 10.0, 

r 2 = 12.0, and p = 16* [p0 = 0.08, K-ir^'. = -0.4, g Q •-•- 10.0]. It is seen 

that A' can be made negative for all values of r > r Q, I.e., over the entire 

region of anfavorable curvature, if the wall ia positioned within 0.2d of the 

plasma boundary. The value of A'd is positive and becomes large ii the region 

where the pitch, fx, has a minimum. This may seem dangerous, but it should be 

noted that the curvature ia favorable for stability in this region, and it is 

expected that the threshold A , i.e., A . will also be large and positive 

there. In Fig. 3b we plot similar curves for a larger value of p, i.e., p = 

0.5, B (r2) •* -1-0 <• •} that p = 1.0. In both figures, the m = 1 mode (solid 

line) is more unstable than the m = 2 mode (dashed line) [15). Note 
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that a' i s f a i r l y in««n»i t ive to the value of p . 

The e f f e c t of the p r o f i l e shape Is shown in Fig. 4a foi peaked (K p 

1 .0 ) , rounded (i • 0 ) , f l 4 t f\ - - 0 . 5 ) , a n d hollow U p „ -• o) current 

p r o f i l e s . The wall pos i t i on i s kept at 0.2d and o i s 16% [p „ O.08, ILfrj) 

= - 0 . 4 1 ; the other equil ibrium paranttera are tha same as t i o v e . tt Is seen 

that the Flat p r o f i l e i s tha most stable) t h i s current sh«jie i* characterised 

by having i t s gradient , the driving force of the r e s i s t i v e kinH, near the 

plasma boundary and hence near to the strong s t a b i l i z i n g e f f e c t of the 

conducting s h e l l . For the hollow p r o f i l e ease the current gradient becomes 

vevy s teep and the wall must be brought in c lo ser than that rhown in order to 

provide the same degree of s t a b i l i s a t i o n . Figure 4b shows the r e s u l t s 

for a - 1.0 as in Fig. 3, showing again the r e l j t l v e l n s e n s i t i v i t y >f . i j to v 
the plasma beta . 

In Fia. •: we show the e f f e c t of varying the plasma ^ t a for the f l a t 

p r o f i l e ( \ =» - 0 . 5 ) , the wall again at 0.2d and an aspect r a t i o of 6. Curves 
P 

o f yd f ° r ? v ° f D " 1 6 , 1 " 0 ' S n d 1 0 ° " ° [ p o " 50 .0 , Bp(r ? ) - -10 .0] .--e shown. 

These correspond to 0 of 9 . 3* , 32.6%, and 64,5% respec t ive ly where 

p* = 2 P \ [ B ^ ( r o > • Bp(r 2 >l , 

p* * r /p 2 dv / /dv ] V 2 . (18) 

Note that t h i s dramatic increase of p has very l i t t l e e f f e c t on the value 

of fi'd, 3 feature which i s qui te encouraging for our model. It should be 

pointed out that s ince B ^ = g ^ = 1 > w c h e ^^^ t o t a j . plasma 

beta 8 = 2p / [ B 2 { r ) + B 2 ( r )] i s 0. 14 for - «= .16 , 0.5 for a = 1.0, and 
r o $ o p 2 p v Pv 

0.99 for the case 0 = 100. That the average je ta , o . i s l e s s than unity i s 
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due to the profile shape, with more flattened pressure profiles resulting in 

larger values of 6*. 

We show in Fig* f> the effect of varying the aspect ratio for \ « -0.S 
P 

and 8 » 1.0. It i s c l e a r l y seen t h a t 11 i n c r e a s e s with t he a spec t r a t i o , v " 

Ttaro id ic i ty i s t hus a s t a b i l i z i n g in f luence h e r e . For very l a r g e a s p e c t r a t i - i 

t h e s l a b - l i m i t i s approached and we c&n take advantage of the added s i m p l i c i t y 

to ca r ry out an a n a l y t i c a l comparison with the numerical r e s u l t s in Miis 

l i m i t . Thus, in Erjs. 19) , (101 , and (11) we l e t m-'r . * 

k * k z . <y • * z * * ' . r • r o + x, r Q • <=, 6 /? r * o/Bx, B p - B,- B . u « " J 

d > U £ * <^X ^ _2 
ax rix -x ' 

and the s i n g u l a , p o i n t s occur where F . K . ^ _ ^ v a n i s h e s . B jua t io r MPj 

cou ld be de- ived d i r e c t l y from the p r i m i t i v e s e t of the KHD equat ion with tlie 

same r e s u l t . Note t h a t tha p r e s s u r e does not en t e r e x p l i c i t l y in t h i s 

l i m i t . It i s -onvenient to ( r i t e Lin. a equa t ion in terms of the ra-Ual 

component of the pe r tu rbed magnetic f i e l d , Q » iF£ so t h a t 

21 - L" - k 2 - o , <2o> 
B F 

and 

A' " B [ Q « " ° L ^ 
' ? 1 ) 

aquation (20) can >-d readily solved in the approximation where k2 ., n. Since 

the term involving * 2 * n •?• < 1 9> i s stabilizing, this limit represents the 
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most pessimistic case. Ttie solution is 

Qlx) - C, F(x) f — + C2 Fix) , (22) 
a F (s) 

where C, and C 2 are constants. tf we take B to be constant/ then the y 

component of the current is proportional to F*{>>), and the boundaries of the 

plasma are defined such that F'(r-|) - r'(tj) " 0. Together with the bou dary 

conditions that Q(a) - 0(b) « 0, we find 

r r 

<• . F'(r I P ' 2 „ F ' < V - F' ( S ) , 1 ds 
S 1 r, F 2 U ) F f r , F ( r 2 ! J 

•."'.r , \ b - ^ + 
b - r„ r - a 

(2 3) 

when? P ienotes the principal value of the integral. TTie term involving the 

sê oi-!'1 pair of square brackets is positive definite ami represents tl ? 

stahilizina effect of the conducting wall. 

In the slab limit the Grad-Shafranov equation becomes 

2 
o dp y + -r T ^ = 0 • (24) 

tf we take the case where p = p (1 - y) , i.e., \ = 0, this becomes a linear 
P 

inhomoqeneous e^ ition 

.. 2r 2 p 
y ^ - 2 11 - y) » 0 , 125) 

*b 

with solution 
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y = 1 - c o e 
r , 2 r 2 p \ V 2 (ifP r - r \ 

o 

s o t h a t , w i t h d " | r 1 - r I - n / 2 [<lT/2r~p ( d ^ / 2 r ^ p V2 , we f i n d 

( 2 6 ) 

B ( r ) 

B s i n -z ( oz 2 

r - r 
it / o ) , 

( oz 

I r - r I < 1 
o 

t ( r - r > > d 
; J 7 i 

j / r ) = -- S ' / f ) 

nB r -
O Z Tt — c o s -

Jo 2 d 
I r - r I < d 

o 
I r - r I > d 

.;V 2 
- h e r e B o z ^ C 2pQJ- ' 

S u b s t i t u t i o n i n t o Bq, ( 2 3 ) y i e l d s a i t e r some a l g e b r a i c n a n i p a U t i r w 

,V<5 -
2 1 + s i n 2 U f r - r l / 2 d l 

T *< • s o 

2 i c o s ^ ' r - r l / 2 d l 
s o 

w h e r e we ha-."? a s s u m e ! t h e w a l l i i s t a n c e i s e q u a l on t u r n e r s i ' l c ••( • 'IH p ! -jsm.i 

= b - r •> - *•, and u s e d t h e c o n d i t i o n t h a t 

F( r I = -K ti <-. i n f-s i o i 2 - 1 - k B = 0 
y y 

defines the position of the singular surface. Equation (29) shows that unless 

the wall touches the plasma, A' is alweya positive and becomes larqe JS the 

singular surface moves towards the plasms edge. Ttiis is due to the fact that 

the resistive kink is driven by the current gradient rather than the curreT 

itself, and the presence of a finite B allows the singular surface to be 

located in the region of large gradient. We compared this result with our 
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numerical method. In Table 1 we show the r e s u l t s of A' as given by Bq. (29) 

and a lso by a numerical case where we s e t ths aspect r a t i o R « 1000.0, & » 

0 . 1 . p » 0.08, B ir„) - - 0 . 4 and r - 1000.0. Th« toro ida l mode nimber m i s 
rO Z J. O 

1.0 so that it - 10 << 1. We note that the agreeaent Is quite satisfactory. 

m - 0 Modes 

If m • 0, the s ingular surface occurs where 8 " 0, i . e . , on the nul l 

*race. The s t a b i l i t y study of t h i s mode should indicate whether or not the 

plasma will tend to break up into axisymmetrle f i laments . we thus carry out 

the numerlt-al A' ana lys i s with the s ingular surface f ixed at r = r for 

various value of k. 

Sett ing m • o in Bjs. ( 9 ) , ( 10 ) , (11) tnd (12) , the Euler-Lagrange 

equation can be written 

•ra;- - [£M + *Vi - - ^ fr2Bji- - | i £ ) • ] g r - o on 
v. r B * p J 

P 

where we have used the radial component of the magnetic field, Q. = ikB £, 
-r p-= 

as the dependent variable and -'<& = - B „ ' 
2 2 Note that, since we are assuming that r B is constant the driving term 

in B}. (31) is independent of the magnitude of the pressure, so that the 

results below is independent of the plasma beta but of course depends on the 

shape of the profiles, aspect ratio and wall position. 

We first do the case for the rounded current profile (\ • 0.0) with an 
P 

aspect ratio of 5 (r Q » 10.0, r 2
 = 12.0) and with several positions, 6, for 

the conducting shell. The numerical result is shown in Fig. 7a where we 

plot A'd versus k for various values of 6. fe expected, a closely placed 
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conducting wall Is stabilizing- Also, a' decreases with increasing k which 

indicates that, like the ideal modes, the moat unstable cage for in - o occurs 

when k * o. This ia consistent with the tehavior of A' near r in Figs. 3-6 

since k tends toward lar7« values there. Tor the profile chosen, the wall 

must be located at the plasma edge tc stabilize the modes with small k. 

The results For the flat current model (\ » -0.5) are shown in Plq. 
P 

7b. There we see that the effect of moving the destabilizing current 

gradients away crom the singular layer and out towards the wall substantially 

enhances the stability of the plasma. Here the wall can be one plasma radius 

away to achieve stability for all k. 

We also infer from these results that, because of the greater stability 

at large k, the plasma will resist the tendency to break up into small 

axisymmetrlc filaments in the vicinity of the null trace. 

fln analytical comparison tin also be carried out for tht m = o case. 

We have already assumed that rB -• constant. Now we construct an extremely 

flat current profile whers 

. = | V ' r1 < r < r2 | 
I 0 , otherwise J 

This choice of J is closely related to the flat current profile case, \ 
* P 

-0.5 which is used previously since we have pointed out in the equilibrium 

section that f latness in the current rea l ly refers to the shape of the 

quantity j / r rather than j i t s e l f j t h i s can be seen by examining Hj. {2) 

near the null t race , and i s also a feature of equi l ibr ia of the Solov'ev type 
[16]. 

( 3 2 ) 
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We have then for r j < r < r 

yr) - - — fr - O (33) 

p(r) - p (34) 

with 

8P, 
f 2 2 1 2 

r. - r 1 2 o 
(35) 

where we have used the equilibrium relation (12) and required that ptr,) = 

0. The requirement that p(r^) = 0 gives 

2 - 2 2 
r. = 2r - r, 
1 o 2 

(36) 

Equation (3a) is also the condition t h a t B p ( r , ) = - B ( r 2 ) = ( 2 p 0 ) / 2 . lfce 

q u a n t i t i e s j , B , and p are sketched in F ig . B. 

Equation (31) thus reduces to the modif i ;d Bessel equa t ion , * i t h s o l u t i o n 

Q r ( r> = CI (kr) + DK^kr) ( 3 7 ) 

with boundary condition C^fa) = Qr(b) = 0, and, because of the discontinuity 

in j at r, and r2> the jump conditions which must be satisfied are 

Q lr ) 
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Qr Ir > 

f fi 1 = \ Q 1 = o (38) 

where [Q] r H Q(r+) - 2(r_). 

The constants C and D here have different values in the regions which are 

separated by the current discontinuities at r 1 and Tp. The expression For A1 

becomes, after some algebraic manipulation 

A' 
r r a r P * 

r o \ a r h • P r K , ] i V l ^ , 1 | r 

( 3 9 1 

where 

p 

r ] . 

* * " - v a + - r 1 ^ 1 ! - V t ) 

r j 

* - ' -irW1,- VJ 

P k , 

and 



I^ka) 
Va = K (ka) 
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I^kb) 
v * 
b K^kb) 

In deriving Bq. (39) we have made use of the Wronsklan relat on 

To compare this analytical result with the numerical results we show the 

calculated values of i' in Fig, (9). The results are qualitatively predicted 

by examining Eg. (31) and FJ g. 8, The strong stabilizing forces of the plasma 

associated with finite values of k compete against the destabilizing kicks of 

the ;urrent gradients at r 1 and r 2. Cbmparison with the flat current profile 

case of Fig. (7) shows very close agreement/ the analytical model being the 

more stable case. This Is reasonable since the destabilising current gradient 

is further out at the edge of the plrsnta while remaining close to the 

stabilizing influence of the conducting wall, which in this aae can be two 

plasma radii away for stabilization to all k. 

IV. Conclusions 

we have idealized a highly elongated tokamak configuration as a stra ght 

one-dimensional mid-section, held in equilibrium by appropriate two-

dimensiennl end sections. In the limit of an Infinitely long mid-section, we 

find stability against all ideal MHD modes if the toroidal field remains a 
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vacuum field, the plasma being confined solely by the poloidal field, 

i.e., (5 ~ 1 and rB, = constant. The total plasma beta can, in principle, be p 4 
arbitrarily close to unity for B >> B , regardless of the other equilibrium 

P * 
parameters. Finite-resistivity t«s'ing modes 1 Unit the arbitrariness of these 

equilibrium parameters. The A' tearing analysis shows that small aspect 

ratio, a moderately close conducting shell, and a rather flat n irrent profile 

are stabilizing influences. Moreover, it is found that the curves for A' are 

roughly independent of the plasma bfta. Itie axisymmetric (m = o) resistive 

modes centered at the null trace appear to be less harmful than those (m * o) 

for which ĥe tearing layer is allowed, by the presence of a finite toroidal 

field, to move into the region of larger current gradient. A nominal stable 

case is one j'n which the aspect ratio is 5, the wall at JO* of the minor 

radius, and the peak plasma beta is 99%. A tighter aspect ratio, a more 

careful fine-tuning of the current profile, and consideration of the actual 

stability threshold of A' should relax the restriction on the proximity of the 

conducting shell. 

The stability of the double tearing region presents a special problem, 

which is not yet fully resolved. This region occurs on the small-major-radius 

side of the plasma, where the pressure-curvature effects are most favorable 

for stability, so that the threshold value of A' should be large and positive. 

A proper resolution of this question would require some treatment of the 

interior of the resistive layers, in order to continue the Euler-Lagrange 

solutions properly into the ideal HHD regions. This is a topic of current 

research. 

In a more realistic tokamak configuration, the inner and outer magnetic 

flux surfaces would be connected through the two-dimensional ends, and a two-

dimensional analysis is required to study the system rigorously. It should be 
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pointed out, however, that the tokamak geometry possesses favorable average 

magnetic curvature, so that stability against low-beta flute-like modes should 

be at least as good as in the present analysis. Higher-g modes that are 

localized poloidally, i.e., ballooning modes, are susceptible to local driving 

forces on the large-major-radius side and in the end sections, Note, however, 

that in our long, thin approximation we achieved stability to all ideal modesi 

connecting the modes from the outer to the more stable Inner section can only 

enhance the stability for modes localized in the outer straight section. TVie 

stability properties of modes localized in the end sections will depend upon 

hhe detailed end configuration; special tailoring of the plasma profile in 

these sections, with reliance on local shear effects [17] and non-Maxwellian 

features may be necessary for suppressing the destabilizing forces there. A 

.-Jetailed consideration of the end-section modes, whi?h may limit the 

achievable values of R, will be deferred to a later paper. 
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Table 

r Q = 1 0 0 0 . 0 , r 2 = 1 0 0 1 . 0 , b = 1 0 0 1 . 1 , p Q = 0 . 0 8 , g Q = 1 0 0 0 . 0 , B p ( r 2 ) ' - 0 . 4 

r s - r o A d 

Numer ica l B n a l y f i c a l 

- 0.8 10.3 9.84 

- 0.6 
I 

2.40 2.36 

! - 0 . 4 1.02 1.01 

! - 0 . 2 0.60 0.598 

- 0 . 1 
J 

0.519 0.518 

1 
0.0 0.493 n.493 

: C. I 0.S16 0.518 

0 . 2 0.594 0. 598 

0 . 4 1.00 1.01 

0 . 6 2.32 2.36 

0 . 8 9.52 9.S4 
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We present here the details of the power series expansion of the coupled 

differential equations 

C - G£ - 0 , (A1) 

F ? ' - ( > D , CA2) 

about the point r = r B. m , functlans G(r), F(r) are given in B36. (10) and 
(It) . 

Let x = r - r g a n d e x p a n d 

Ftr) = E F x m , (A3) 
n. = 0 m 

G(r) = Z G xm , CM) m m = o 

5<r) = Z £, x n + ° , («> 

:(r) E c x n + ° (16) 

The unknowns he re a r e ^ , ^ a n d 0 # wh i l e Gm , F m a r e ob t a ined by Taylor 

expanding Gtr) and F(r) about r g . W e s o i v e h e r e f o r £ a n d c a s 9 U I n i n g 

a r b i t r a r y F , Gm a n d ' l a t e r in t h i s s e c t i o n , p r e s e n t t h e f i r s t few terras of 
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the latter for our specific case. 

Substitution of Bj . (A3)-(») into (AD and <A2) gives the recursion 

relation for determining tha coefficients F and C = 
n n 

E [fa + c](n • c - 1) F - G ,]? - 0 n - m n - m - 2 m m = o 

C , - t (r., + a) T 5 - 0 (A7) n - 1 n - tn m m = o 

for each n. For our case we have F m = o for m < 2 and % = 0 for m < 0, and 

r is thus a regular singular point of our differential equation. Note that 

we are avoiding the point where ̂ . ^ ^ = „ since F 2 w o u l d 7 a n i s h a n d t h i s 

would lead to an essential singularity in the solution, and the assumptions of 

Eqs. ( A5) and I A6) would be invalid. 

The lowest order nontrivial equation occurs for n ^ 2 and it determines 

the indicial behavior 

alo + DF - G = 0 , (AS) 
2 o 

go that 

'H,s = _ 1^-,+ (-DI) 1 ^ , <«> 

where D̂  _ _ 1̂ j _ (30/F2 and the subscript a , a indicates that appropriate root 

of o which gives the large ( i ) or small (s) solution respect ively. we 

recognize here that Suydam's c r i te r ion i s contained in Eq. (f&). 

For the case where GQ ^ 0 j n i g n e r values o! n In B]. (*7) gives 
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I, ota + 2)F, - G I a [• 3 1 
G o 

. ato + 3) F 4 - G + [(a + l)(a • 3)F - 0,1 (F/t) 
'2 _ ___ 
r, (a + 2) to + 3)F, - G^ 
o 2 0 

— - C F 2 o + 1 

r - M s - ° F

3 i 

^- = o F + (a + 1)F3 — + (o *• 2)F2 — , etc. (A10) 

With the appropriate substitution of a - a. in these -oefficients we 

construct the first few terras of the series expansion for the independent 

large, small solutions, E,. and ^ , of Bq. (14). in the event that F~ and G 

is such that a - a is an integer, the relations in Eq. (A7) ig inapplicable 

since the coefficients E a r e no"t determined. The situation where G = 0 is a 

special case of this occurrence and is treated below. 

If G Q *= 0 also, the indicial equation is 
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CT(0 * 1) =• 0 , (AIT 

and the solutions given by the roots of this equation are linearly 

dependent. For the root o =• o we find For the small solution, P. 

* - Cbnst. "0 

• 1 _ " 1 

'. 2F, 

n 7 7 

11 = 1 -
2 "l 

'3 , 
_ - G + _ 1 . etc 
o 2 

The other linearly independent solution, £ , can he constructed 

fro") P in the usual manner: 
'3 

,(r) = r, (r) f 
S F<r')Cg(r'J 
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1 r l S 1 , ^ 2 . 

^o 2 w o o 

+ c , I n | x | f l + T ^ X • —• X + . . l l <A13> 

where 

2 o 

2 E o 2 o 

The rorrespondi.. • expansion for the large component, " , is 

^ ' - 2 -* - I 3 , ? • r r * 
n o L o r 2 o J 

1 o 

2 ^x In |x| 
' r F f ^ 

n 2 p "o J | 

The subscript s on the * 's in 05s. (A12)-(A14) have been dropped since the 

meaning there is unambiguous. we note that since G is proportional t^ p', 

the cases 1 here the plasma is pressureless or when the singular point lies 

where p' = 0 (as in our m = 0 case) , must be analyzed by using the series 

expansion given by these equations. 

For our case the first few terms on the Taylor expansion of Ftr) and Gfr) 

about r 0 are calculated as follows. We let 



2fl 

F : kB B 
P r » 

F "- krf i + I 7 1 B 
P « 

H = r • 

, , 2 ' 2 , " ' 
1 fk r * m ) 

? 2 ^2 2 2 2 - . -
- 2k > \p' + rF (1 - X) + 2k r X F F 

Hem-e a r r - r we h a v e 

F = F . = 0 , o 1 

F" -v 2 
F 2 = - = H F " , 

^ . H ^ + f ) 
F 4 = £ 2 T - = H ^ + " 

" - , 2 
) + ~ — + H' F ' F" 

2 2 
G = 2k r \ p " 
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G 1 = G' = 2 k 2 r [ r t p " + r\ F' F + p ' ( r \ ' + ?\}] , 

G = | G" = k 2 r [ r X p ' " + 2p"(rX- + 2\) + p' (r \" + 4 \ ' ) 

+ rX.2 F" F + 2rA 2 F ' F ' + 6K 2 F ' F + 4rXV F' F ] 

2 k 2 p ' \ + r F ' 2 fl - Xl . < A 1 S ) 

It is relevant to determine the accuracy to wh'ch the coefficients, A and 

B, are calculated in Eq. (16) by using the truncated ser ies generated here. 

Let 

F - f° + f , ( A161 

where F° is any truncated quantity and ? the ren.ainder. Bquatnn (16) gives 

K t, " C T, 
A° . _ J 5 , 

W° 

B = i , ( A17) 

where 

* = - $ % - ' $ < • 

Using Eq. (A16) for F and C in Bq - (14) and eubstitut ing these in E]. 

(A17) gives the error in A and B: 
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A = A - A = A - i - 2 £—2. + B - 2 — 2 § 2 , (A19) 
o o w w 

f r° - ? r° ? r° - ? £° 
B . B - B° • B S * 3 ' * A ' * ' * * . f A 2 0 > 

W° 

The tendency Cor the contribution of the small solution to be masked by 

the large one is p.ianifested in the last term of Eg. (A20), which is generally 

the largest of these error terms. Retaining only thiB term, and assuming that 

the series qiven by Bq. (A10) has n tgrms, we find for the situation when G 0 * 

0: 

R - P X "* 

where 

-2f-D ifc + n 

Usually, r < -Dj •= V4 , so that n • 2 gives reasonably accurate results. 

However, near the point where T2 vanishes, Dj gets large and negative aid 

consequently n must be large enough to have \ > 0. Alternatively, if n is 

fixed, acceptable results can be obtained only if the singular surface is some 

minimum distance from the point where F̂  vanishes. 

If G = 0, we have 

- 1 l l ~ 

2 so that, to realize errors of xinlxl, x, or x inlxl we must have respectively 

n *= 3, 4, or 5 in Eq. (A13) and n - 2, 3, or 4 in Bq. (A14). 
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A neceasary check of the accuracy of the calculations ia to compare the 

Wronskian relation. H° aa calculated by Bq. (A1B) with the known value, W -

1.0. 



32 

REFERENCES 

[1] TODD, A. M. M., MANICXAM, J . , OKABAlfASHI, M., CHWICE, M. S . , GRIMM, R, 

O , GREENE, J . M., JOHNSON, J . L. , N u c l . F u s i o n _19_ ( 1 9 7 9 ) 74T. 

[ r i BECKER, G. , LACKNER, K. , i n Plasma P h y s i c s and C o n t r o l l e d N u c l e a r F u s i o n 

Research 1976 ( P r o c . 6 t h Oonf. B e r c h t e s g a d e n , 1976) V o l . I I , IAEA Vienna 

( 1 9 7 7 ) 4 0 1 . 

[3] CHANCE, M. S . , GREEN' , J . M., GRIMM, R. C. , JOHNSON, J . L. , N u c l . F u s i o n 

17 ( 1 9 7 7 ) 6 5 . 

[4] GROSSMAN, W., TATARONIS, J. A . , WEITZMER, H. , P h y s . , F l u i d s ^ 0 ( 1 9 7 7 ) 

2 3 9 . 

15) BERGER, D . , BERNARD, L. C . , GRUBER, R. , TROyON, F . , i n Plasma P h y s i c s and 

C o n t r o l l e d N u c l e a r F u s i o n Research 1976 ( P r o c . 6 t h I n t . Conf. 

B e r c h t e s g a d e n , 1976) Vo l I I , IAEA Vienna ( 1 9 7 7 ) 4 1 1 . 

[6] DOBROTT, D. R. , MILLER, R. L. , P h y s . F l u i d s 2_0_ ( 1 9 7 7 ) 1 3 6 1 . 

[7J WESSON, J. A . , Nuc l . F u s i o n _N3 ( 1 9 7 8 ) 8 7 . 

[81 GRIMM, R. C , DEWAR, R. L. , MANICKAH, J . , CHANCE, M. S. , B u l l . Am. P h y s . 

S e c . 8 ( 1 9 8 0 ) . 

[9 ] NEWCOMB, W. A . , Ann. P h y s . _1£ ( 1 9 6 0 ) 2 3 2 . 

[10j SUYDAM, B. R., 2nd I n t . Obnf. P e a c e f u l Vara At. Energy ( i T o c . Oonf. 

Geneva , 1 9 5 8 ) , 3 1 , UN New York ( 1 9 5 8 ) 157 . 

[11) FURTH, H. P . , KILLEEN, J . , ROSENBLUTH, M. N . , P h y s . F l u i d s 6_ ( 1 9 6 3 ; 4 5 9 . 

[ 12 ] GLASSER, A. H. , GREENE, J . M., JOHNSON, J . L. , P h y s . F l u i d s J8_, ( 1 9 7 5 ) 

8 7 5 , P h y s . F l u i d B 19 , ( 1 9 7 6 ) 5 6 7 . 

[13J BERNSTEIN, I . B . , FRIEMAN, E. A . , KRUSKAL, A. D. , KULSRUD, R. K. , P r o c . 

Roy. S o c , S e r . A 2 4 4 , (1958) 1 7 . 

[14) BORIS, J . , WINSOR, N . , P r i n c e t o n Plasma P h y s i c s Lab. 652 ( 1 9 7 0 ; , 



33 

[15] FORTH, H. P . , RUTHERFORD, P. H. , SSL8ERG, H . r P h y s . F l u i d * J6_ ( 1 9 7 3 ) 

1054 . 

[ 16 ] SOLOV'EV, L. S . , Zh. Efcsp. Iteor. F i l 53 ( 1 9 6 7 ) , 6 2 6 ; Sov . ftiys. JETP 26 

(1968) 4 0 0 . 

[17] GREENE, J . M., CHANCE, M. S . , N u c l . F u s i o n 21 (1981) 4 5 3 . 



34 

Figure Qiptions 

Fig. 1. A sketch of the central one-dimensional region showing the plasma and 

conducting shell (a), the poloidal magnetic field B reverses across 

the null trace (dotted line), and the plasma is contained within the 

dashed vertical lines. the required terminations at the two-

dimensional ends are not shown. Figure Kb), shows, in arbitrary 

units, the profiles of the pressure, p, pitch, u and the toroidal and 

poloidal magnetic fields. 

Fig. 2. Tee pressure and current profile shapes for the peaked f\ = 1.0), 
P 

rounded (\ = 0.0), flat (X » -0.5), and hollow (\ = -1.0) P P P 

models. These shapes are the ones used for the results shown in Fig. 

4b. 

Fig. 3. The effect of the position of the conducting shell on A'd for p 

0.16 (a) and 0 = 0.5 (b) , with aspect ratio R = 5. The plasma is 

enclosed within the dashed vertical lines and the walls are depicted 

by the hashed vertical lines. 

Fig. 4. The effect on A'd due to changes in the profile shape, the shapes, 

which correspond to the values of X shoivn in the figure, are shown 
P 

in Fig. 2. 8 = 0.16 (a) and 0.5 (b). The wall position is fixed at v 
0.2d, and the aspect ratio. Ft, is 5. 
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Pig. 5. The effect of varying p is shown for the flat current case (\ -

-0.S) and the wall held at 0.2d, with R - 5. The peak p value is 

shown by each curve, and the corresponding g and fj* are given in the 

text. 

Fig. 6. Here, the aspect ratio R is varied, with the wall kept at 0.2d 

and s = 0.5, For the upper curve, R - 5 (r0 » 10, r 2 - 12), the 

10, r, - 11) and for the lower curve, R -

10, i 2 - 10.1). 

Fig. 7. A'd as a function of k for the m = 0 modes. The numerical values 

shown on the separate curves denote the respective positions of the 

conducting shell. The results for the rounded (a) and flat (b) 

profiles are shown. The aspect ratio is 5. 

Fig. 8. A sketch of the pressure, current and poloidal field profiles for the 

''extremely" flat current model. 

Fig. 9. Plots of A'd as in Fig. 7, but for the analytical model of the 

"extremely" flat current profile shown in Fig. 8. 

Table 1. A comparison of the numerical result with the analytical calculation 

for a very large aspect ratio case (slab limit). The table 

shows A'd as a function of the distance, x s - x Q, of the singular 

layer from the null trace at x . 
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