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Abstract

™o vMHI eguilibrium ani stability of a vertically elangated tokamak
Leuaarar . 0 are  analyzed an the one-dimensional  Yaimit corresponiing b

cEamite el sngaTtion. Stabilirty agaiser all adeal MHE modes -an be
tar hata-valies arbitrvarily <logas  to anity. In the CANATeSrESLIRY LSty
stability analysis, axisymmetric [(m = M) tearing mades, cerrared an the nall
frace cf R paloaidal fileld, tan nhe stabilized by 3 loasely ‘- - anircrin:
shell. The presence nf vthe tornlial fileld component, nowever, ot g ces tha
peas dlaty f nonsymmetric tearing modes fm # 1), centered away ‘rom rthe agl!
trace. These modes can be stabilized only by a more tjagbhrlv=firej;ag shell,

plus reliance on finite-pressure effects nn the small-masnr-rad:is side nf the
plasma profile. Under these conditions, atable configurations with peak beta

values approaching unity are readily found.
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Axially elongated two-dimensional tokamak configurations have been
studied exhaustively, with & view to maximizing the plasma beta value (1-7).
In this process, ideal-MHD-gtable confiqurations with appreciable beta-values
have been demonstrated, but the sharply peaked plasma~current distributions
that emerge in this type of optimization process are conducive to finite-
resistivity tearing modes. A systematic finite-resistivity, finite-beta
analysis has not as yet been carried out for two~dimensiocnal tokamaks 8], but
the range of utable beta values attainable with “realistic" current profiles
seems unlikely to exceed 0.9, The most promising results are obtained with
firnite but moderate vertical elongations.

The stability properties of an infinitely elongated one-dimensinnal
tokamak might be expected to differ considerably from those nf a twn-
iimensinnal tokamak with a large but finite degree of vertical elangation.
Tre present paper shows that the high-beta stability properties may in fact be
muck more faverable. The reeults are directly applicable to gome takamak-like
fast-pulsed configurations that have approximately one-dimensi-onal central
-~eginns, such as a highly elongated belt pinch ar a reversed-field theta pinch
with added toroidal field.

In view of the strong attraction of the stable high-beta solutimns of the
one-dimensional tokamak, one is also led to envisage the possibility of an
experimental tokamak embodiment where a highly extended mid-section is held in
equilibrium {i.e., under tension) by two appropriately shaped two-dimensional
end sections. The equilibrium and stabllity conditions of these end sectinons
would be expected to call for non-Maxwellian features -- a kind of “tandem

tokamak.” The present paper addresaes only the long central region, where the
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profiles depend on r and not on z.

In Sec. II we describe how the equilibrium is calculated and discuss some
of its properties. Section IIT ccrtains the stability analysis in which the
significant parameters of the equilibrium are optimized for stability against
both 1deal MHD and resistive tearing modes. Section IV contalns the
conclusion and we include a brief qualitative discusaion of the consequences

»f taking the reguired two-dimensional end sections into account.

I1. Bquilibrium

The °mndel is deplicted in Fig. 1. In the cylindrical polar conrdinate
systen {(r, $, 2z} the central plasma reginn is8 contained within an annalus
iefined by ry < r < r, and is separated by a vacuum region from conducting
shells <si1runated at r = a, h. Note that in our modal the magneti: axis now
hecomes a agll trace at r = £, acrnss which the poloijal fielq, Bp, changes
directinn. This configuration would he essenttially that  f a nelt pinch, or a
hard core reversed field pinch if the rnles of the polniial and! tryryidal field
were interchanged. The results of this paper ran thus be f some significance
to these devices.

Although the equilibrium equations for the one-dimensinnal =~ase ran he
reduced tn quadratures, we instead solve the usual Grad-shafranov equation for
the poloidal flux, ¥ = 2md(r), with the preesure, p, and the tmroidal field
function, g, specified to be functions of ¢ only as is generally done for

tokamak equilibria. If

B = Td % 9+ geIvh (n



then we have
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where = dr,) = d;(rz) and y = Wlbb-

For the plasma profiles we choose, for 0 <y ¢ 1,
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and
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gfy)‘fq-qT———- (4)

so that the peak pressure and the diamagnetic centribution of the toraoldal
field is specified by p, and g;. Note that we can prescrihe peaked, rounded,

or flattened prafiles in the physical coordinate, r, by choosing

respectively, % >> 0, % = -0.5, or % << O. Since the first three derivatives
of 3Ip/1y with respect to r vanishes at r, for \p = - 1/2 then, when gy = 0 we
have j"‘/r x = dp/dy, and the corresponding profiles for j‘»/r are respectively
peaked (or rcunded), flat, and hollow. This is illustrated in Fig. 2, where
we plot the pressure and current profiles for Kp = 1.9, 0, -0.5, angd -1.0.
The extreme case when }‘p + - @ gives a square pressure profile with a

correspanding skin current. In addition, we prescribe r,, r,, g,:and Bp(tZ)

R = rolfr2 - ro) = ro/d, axial toroidal beta, ﬂv =

so that the aspect ratio,

2pg I’z/gi (based upon the vacuum toroidal fleld at ro), and poloidal

_ 2
beta, Bp = 2p°/Bp(r2).



We solve B3. (2) for y(r) in the region (r, < ¥ < r,} nmumerically by

initializing with

y(ru) =0 .

dy(ro)

ar = 0 '

and iterating on g4 and 4y, 80 that
yiry) = LI

and

5y1r2) ~r23 lrz)

T T b,

Equation (2) 1is then integrated backward for y(r) and ry in the reqion
(r ¢ rg) until y(rq) = 1.0, This spscifies ry, and the equilibrium quantities
there are calculated from Bys. (1)-(4). Thus, some toroidal features, such as
the idea of flux surfaces, and toroidal shift, are preserved in our model.

The solution in the vacuum region 1s readily obtained, 1i.e.,

Bpirp) 2 3
ylr) = - 5 (r - rp] + y(rp] . (61

i where s is the value of r at either plasma boundary. This equation shows the
|

tendency for flux surfaces to be spaced farther apart on the inner side of the
. magnetic axis. The final magnetic fileld profiles are stored as cubic apline

functions to allow for intarpolation and differentiation.



Instead of parametrizing the plasma by the safety factor, we fipd it

convenient to use the pitch of the magnetic field defined by

r8

:—.—p
wir) = B . {7)

[
and a rational surface is present when m = ku, m and k being respectively the
toroidal and poloidal wave numbers.
Since ra¢ and Bp are both constant in regions exterior to the plasma, bhut
Bp ~roT oIy inside the plasma, p has at least one relative minimum in the
plasma on the inner side of the null trace. &S shown in Fig. 2, this meang
that, in the region Ia, ru] where ru ig defined by p(r“) = pla), rational

surfaces exist in pairs for the same values of m and k. This is relevant teo

the stability amalysis which 1s described in the next section.

IIT. Stability

The stability properties of our model are analyzed for both ideal and
resistive MHD modes. The underlying assumptions which enable us ta treat our
system in one dimension permit us to apply the fundamental results previous .y
obtained from studies of the simpler slab, or c¢ylindrical, systems. Thus, for
ideal MHD modes we apply the results of Newcomb (9], Suydam [10]) etc.;
analysis of the resistive MHD modes 1s based upon the ideas found in Furth et
al., (11], and Glasser et al., [12]. Newcomb's equationg are relevant to both
types of modes since sufficient conditions for stability againat resistive
modes can be obtained from the behavior of the plasma in the ideal regions.

The relevant egquations are the energy intagral and tha associated Euler-



i
|

Lagrange equation (9]

b
dE 2 2
we) =3 [ car (v (-ﬁ-) + 6 £ (8)

rt-GE=0 (9)

where
r(k:Bp-mB)z
F = . {10)
k2r2 2
2 2 2 2
+ -
5—22:r2gp- v+ 1 iuen -ms]zkfz"‘21
xr°+ * ¥ P ¢ k“rt + m
+ Z;krzszzrzaz-mzaz\ , (i
fe“r® + m“) P
with
Gp . _1d 22y | o4 g2 1
2 Ar rZ dr {r Bo‘ dr Bp (12)

Equation (8) is, of course, the marginal (m2= 0) one dimensional version

of the mnre general energy integral of Bernstein et al., [13]. The ¢ and z

components of the plasma displacement which is assumed to thave the
ilkz - mg)

form Elrle , have been eliminated algebralcally in the minimization

of W(f}, so that ¢ here is the radial component of the Fourier coefficient of



of the displacement.

As shown by Newcomb (9], we can also write the energy integral In the

form

2

+ [(krap - mB®]2 - 23, g—r (er” 55} (13)
showing explicitly, Rosenbluth's sufficient condition for stability against
all ideal MHD modes: W(F) > 0 if rBo is a decreasing function of r throughout
the plasma. For the purposes of thig paper we take erb = constant, it.e., T, -
0, thereby rendering our model ideally stable irrespective of the values nf
the other equilibrium parameters such as aspect ratic, wall position, profile
shapes, eta. Note, however, that our condition ij« 1/r implies that the
toroidal field is the vacuum field throughout so the plasma is contained
entirely by the poloidal field, 1,e., the poloidal beta, ap ~ 1, while the
total plasma heta AR ~ ﬁp'1 + Bz/rs;)"1 can, in principle, be arbitrarily
close to unity and still be stable against all ideal MHD modes.

We investigate the resistive MHD properties of our system in the usual
way: resistive effects are important only in the region where Eg. (9) is
singqular, i.e., at the ratlonal surfaces wherem = ky, but a sufficient
condition for stability can be obtained by examining the discontinuity in the
Euler-Lagranges solution across the singularity. The solution of Eq. (9) in

s

the ideal reginn on the right, left of a singularity at r = ter can Lo

written,
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i S B : (14)

glr) CE. cs / R,L B R,L

where 51(:). Es(r) are the solutions which, in Newcomb's definition, are
large, small at r = L Thus, B angd By are the contributions from the
solution at the right of the singularity. If Ay and By are gimilarly defined,

a sufficient conditlon for stability against resistive modes is that [12]

o]

<0 . (15)

Al

1

>
= =

We note here that this condition encompasses the cases where p'(r) can be
either finite or zero, it being also a necessary condition for the latter.

Inversion of the set of By. (14) gives

9 ¥ E(r)
= s . (16}

2 s , gir) R,L

Here ¥ , Es, Cl' Cs are obtained analytically as a power series about the
sinqular surface, L The details of this expansion and an estimate of the
accuracy of the method are shown in the Appendix. We use an accurate
extrapolative differential equatlion solver [14] to integrate Bg. (9) towards
r, with the boundary conditions F{a) = E{b) = 0, f(a) = (b} = 1.0. In the
process, the A, B as calculated by Eq. (16) approach their constant values as
r o> oro. The point up to which we integrate is, of course, determined by the

number of terms in the indicial expansion and the required accuracy for A,

B. On the other hand, numerical considerations dictate that we keep a



respectable distance away from the ainqularity.
For each set of equilibriun parameters we choose the toroidal mode number

m and the rational surface r,, determine the poioidal wave vector through

ko= m/ptr_) (17)

and then compute A' as deacribed above. For these modes, we present the
results graphically by showing plots of A|d, versus rg for various values ot
wall positien, profile shapes, plasma heta and aspect ratin. The
quantity A'd i8 Aimensionless when the pressure s zeron. Because af rhe
exlstence of the double tearing region as discussed in the last section, we do
not pre.sent results for A'd in la, ru}. There, the solutlion of B3, (9} mpst
be properly mat~hed acrass the bounding resistive layers. T realize this, we
would require knowing the threshold value of A'd or details of the
perterbation inside the layers.

The effect of a cnnducting wall on the m = 1 and 2 meodes is shown in
Fig. 3a for a flat current profila (xp = =0.5), aspect ratio R = 5, r,oc I,
r, = 12.0, and RV = 16% (p, = 0.08, Br(rz_'- = -0.4, g, = 10.0]. It is seen
that A' can be made negative for all valuea of r » o, l.e., nver the entire
region of unfavorable curvature, if the wall is positioned within 0.2d of the
plasma boundary. The value of A'd 1s positive and becomes lavge ir the region
where the pitch, j, has a minimum. This may seem dangerous, but it should be
noted that the curvature 1s favorable for stability in this region, and it is
expected that the threshold A', if.ed, Ac' will also be large and positive
there. In Fig. 3b we plot similar curves for a larger value of A, i.e., Po =
0.5, Bplrz) = =~1,0 > that Bv = 1.0. In both fijures, the m = 1 mode {(golid

line) is more unstable than the m = 2 mode {(dashed Lline) [15]. Note
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that A' is fairly insensitive to the value of Bv.

The effect of the profile shapa iz shown in Fig. 4a fou ‘peaked (Ap
1.0), wounded \ m g), flak (3w -.5),ana Mellow Ay - -3 01 current
profiles. The wall position 1s kept at 0.2d and B, is B8 [p = 6,28, B (ry)
= -D.4); the othsr equilibrium parameters are the same as adcve. It is seen
that the flat profile is the moat stadle; this current shape is characterized
by having its gradient, the driving force of tha resimtive kink, near the
plasma bhoundary and hence ne®ar to the strong stablilizing effect of the
conducting shell. For the hollow profile case the current gradient beccmes
very steep and the wal) must be brought in closer than that ~hown in araer to
pravide the same degree of stabilization. Figure 4b shows the resul:s
for Bv = 1,0 as in Fig. 3, showing again the relative insensitivity »f pr1g to
the plasma beta.

Tn Fig. © we show the effect of varying the plasma reta for the flat
prafile (kp = =0.5), the wall again at 0.2d and an aspect ratio of %. Curves
of A'd for av of 0.16, 1.0, and 100.0 [pD

= 50.0, Bp(rz) - ~10,0] -e shown.

These correspond to B' of 9.3%, 32.6%, and 64.5% respectively where

L 3 - 2
g = 2p /[B

(r)+32(r)] .
b o p 2

p < [fplav/fav] V2 . (183

Note that this dramatic increase of § has very little effect on the value
of A'd- a feature which 1is quite encouraging for our model. It should be

pointed out that gince E@ = go/ro =

Tew, che peaked total plasma

- 2 2 . = =
beta B = 2po/[a¢(r°) + Bp(rz)] 1a 0.14 for Bv »16, 0.5 for Bv 1.0, and

0.99 for the case Bv = 100. That the average 'eta, B*. is less than unity is
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due to the profile shape, with more flattened pressure profiles resulting in
larger vaiues of f#*.

We show in Fig. h the effact of varying the aspect ratioc for kp = =0.%
and Bv = 1.0, It 1s clearly seen that p' increases with the aspecr ratio.
Toroidicity is thus a stabilizing influence here. For veary large aspect ratin
the slab-limit is approached and we can take advantage of the added stmplic~ity
to carry nut an analytical comparison Wwith the numerical results in rthis

limit, Thus, in KA. (9}, (10), ani [RRD] we let mr , k

Yl
k » Kk nz'k-"akz.r-r 4+ %, r_ s« a/ar + &/3x, B_ ~ B,s B, » B and
z! Yy 2 0 o ! 4 P 2 ) v
find
ar
d S (19
&= Foae S F R0 ’

and the slinqular polnts occur where p - szz - kyay vanlsnes. Bquatior (19)
could be de-ived directly from the primitire set of the MHD equation with the
same resultc. Note that the pressure does not enter explicirtly in this

limic. It 1s -—onvenient to wite Cils e~uwatlon in terms of the ralial

component of the perturbed magnetic fleld, Q = iF!’,x so that
" k220 , (20)

and

1 1 -
8! =g (9 - 9i)e_ S

Bquation {25) can ke readily solved in the approximation where k2 , 0. since

the term involving %2 in Bg. (19) is stabilizing, this limit represents the
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most pessimistic case. The golution is

xX
Qtx) = ¢, Fix)
a F (s)

ds

+ CZ Fix} [22)

where C; and C, are constants. If we ctake BY to be constant, then the y
componant nf the current is proportlonal to F'{a}, and the boundaries of the
plasma are defined such that F'(r1) = F'(r2) = g, Together with the bou Adary

econditi.ns that Qfa) = Q(b) = 0, we find

r F'{r )} = F'(s)
- PNr J!P "2 s 52 + F,‘ - F(T ,]
oy, Fus) ™ T2l
b - r r, - a
. r'z(r”) ( —5—~—3 + ; — ] . 23
CFUr £ (r1)

where P denotes the principal value of the integral. The term jinvolving the
sezor” pair of square brackets is poaitive definite and represents e
stabilizing effect »f the conducting wall,

In the slab limit the Grad-Shafranov equation becomes

d

4P .4 . (24)
dy

If we take the case where p = pit - y)2. i.e., \p = 0, this becomes a linear

inhomogenecus e, 1ticn
(v -y =0 , {25}

with solution
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r e, Yy
y = 1 - cos (_T (r-ro\ . (261

. 2,..2 4
so that, with d = v, - r | = w/2 (¢b/2ropo\’2. we find

. L o
| Boz SJ.nzf 3 Y, lr-rolr."!l
B (r) = Y
z l: B {r-r_) » dl
oz ’ : o
i nB r - -
i -22 cos T lr -~ v | <4
\ S = '
300 = Bl = 24 2 d ° e
¥ \ 0 , lr - rnl > d}
i
\,
i
H
v
where Boz ~ (2p°l'

]
Substitutio! into Bg. (23) ylelds aiter some algebraic mantpulatian
]

2.1+ sinzfn(r -r Ys2d]

L} i s o -

Ald = = 3 127

cos rr[(r -r \,/2:‘]]
s O

A
»n

where we have assume] the wall distance is equal an either side f ryq. plasma

iem., a ~ ry=b -y = L, and used the conditinn that

r -r

Flr } = -x o ¢in f%‘ %‘-ky By =0 , 110
defines the positionr of the singular surface. EBEguation (29) shows that unles:
the wall touches the plasma, A' is alweyn ponitive and becomes large is the
sinqular gurface moves towards the plasmas edge. This (g due .o the fact that
the resi{stive kink is driven by the current gradient rather =har the curren*

itself, and the presence of a finite B, allows the singular surface to be

located in the region of large gradient. We compared this result wirh our
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numerical method. In Table 1 we show the results of A' as given by Bg. (29)
and a:is0 by a numerical case where we set ths aspect ratio R =« 1000.0, § =
0.1, Py = a.08, Bz(rz) = -0.4 and r, = 1000.0. The toroidal mode number m is

1.8 so that ky = 10'3 << 1. We note that the agrseament 18 quite sacisfactory.
m = 0 Modes

If m = 0, the singular surface occurs where B.p = 0, i.8., on the null

“race. The stability atudy of this mode should indicate whether or not the
plasma will tend to break up into axisymmetric filaments. We thus carry out

the numerical A' analysis with the singular gurface fixed at r = T, for

various value of k.
Setting m = o in Bgs. (%), (16), (11) end (12), the Euler-Lagrange

equation can be written

3

.f 2
'er'_ , -

3
2.2 1 2.2 b4
1+ x%r \—-—2—'2'(1: BO]' -B—rr—g)':l Q =0 (31)
L er

‘o

where, we have used the radial component of the magnetic field, Q-r = ikBpg,
as the dependent variable and jm s - B;,'
Note that, since we are assuming that rznz is constant the driving term
in Bg. (31) is independent of the magnitude of the pressure, s¢ that the
results below 1is independent of the plaama beta but of course depends on the
shape of the profiles, aspect ratio and wall position.

we first do the case for the rounded current profile np = 0.0) with an

aspect ratio of 5 (rg = 10.0, r, = 12.0) and with several positions, §, for

o

the conducting shell. The numerical result is shown in Fig. 7a where we

plot A'd versus k for various values of &§. 2As expected, a closely placed



conducting wall 1is stabilizing. Also, p' decreases with ircreasing k which
indicates that, like the ideal modes, the most unstable casge for w = o occurs
when k » o. This is consistent with the Lehavior of A' near r, in Figs. 3-6
since k tends towurd larTe values there. For the profile chosen, the wall
must be located at the plasma adge tc gtabilize the modes with amall k.

The results For the flat current model (kp = =-0.5) are shown in Fig.
b, There we see that the effect of moving the destabilizing current
gradients awav “rom the singular layer and out towards the wall substantially
enhances the stability of the plagma. Here the wall can be one plasma radius
away to achieve stability for all k.

We also infer from these results that, because of the greater stability
at large k, the plasma will resist the tendency te break up into small
axisymmetric filaments in the vicinity of the null ivace.

An analytical comparison cin also be carried out for the m = o case.

We have already assumed that rB‘tj = constant. Now we conatruct an extremely

flat current profile wher2

'ljo’ ’ r1‘r‘r2| , (32)

Q ’ otherwise l

This choice of j¢ 18 closely related to the flat current profile case, )‘p =
=0.5 which is used previously aince we have pointed out in the eguilibrium
section that flatness in the current really refers to the shape of the
quantity jo/r rather than jtb itself; this can be seen by examining EBEg. {2)

near the null trace, and ias alsc a feature of eguilibria of the Solov'ev type

[16].



We have then for rq < r < Ty

j
[~ 2 2
= - — - 3
B, (r) > (x ro) (33)
(2 - rz]z
plr) = P, 1 = 53 {34)
fel - x
[+]
with
8p
2 Q
3 = (35)
° 2 - #2122
o

where we have used the equilibrium relation {(12) and required that piry) =

0. The requirement that p(r,} = 0 gives

2 _ 2 _ 2
r, = 2:0 r2 . {36)
1
Equation (35) 1is also the condition that B (r) = = B (ry] = 12p,)72 . The

quantities j@, BP' and p are sketched in Fig. B.

Fguation (31) thus reduces toc the modifi:d Bessel equation, «ith solution
Qr(r) = CI1(kr) + DK1(kr) (37)

with boundary condition Qr(a) = Q.{b} = 0, and, because of the discontinuity

in jm at ry and ry, the jump conditions which must be satisfied are

0 (r.))

r 2

[0 '] = —=jlr)
T or, Bz(rzl ¢

2



Qr[ri)
[ Qr ]r1 TR I J®(r1) '
1
(e i =flo 1 =0, (38)
I‘I"' !‘!‘2

where [Q], = Q(r,) - Q(r_).
The constants € and D here have different values in the regions which are
separated by the current discontinuities at r, and T The expression for A'

becomes, after some algebraic manipulation

Q! a,R_ ~ a B |
A'E.[a-r-] =-l—(12i Kr)g‘_l‘_ )(7' (IN
r ro ro ar 1 Br 1 1a2 9 ﬁg 1 ro
where
rj¢
T, = 1 -8—1(1(11 —vak1]
P T
.
rja '
= - 11 -
Bp, Va+ B I1‘-I1 vaxtj‘
P T,
rj
-1 -_¢ -
o ! B K1rI1 kal) :
e 2
Iy
gr=-vb+ﬁ——r1(11-vbk,‘)
p T,

and
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11(ka)
Va 7 K (xm)
T, (kb)
b T X, TkB)

In deriving By. (39) we have made use of the Wronskian relat on

I K, = I!K, = - o=— .

To compare this analytical result with the numerical results we show the
calculated values of A' in Fig., (9). The results are qualitatively predicted
by examining Eg. (31) and Fig. B. The strong stabilizing forces of the plasma
associated with finite values of k compete against the destabilizing kicks of
the :urrent gradienta at r, and ry. Omparison with the flat current profile
cace of Figs (7) shows very close agreement, the analytical model being the
more stable case. This is reasonable since the destabilizing current gradient
is further out at the edge of the plesma while remaining close to the
stabilizing influence of the conducting wall, which in this ase can be two

plasma radii away for stabi.lzation to all k.

IV. {Oonclusions

We have idealized a highly elongated tokamak confiquration as a stra ght
one-dimensional mid-gection, held in equilibrium by appropriate two-
dimensicnal end sections. In the limit of an infinitely long mid-section, we

find stability against all ideal MHD modes i{f the toroidal field remains a
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vacuum field, the plasma being confined golely by the poloidal field,
i.e., Bp ~ 1 and rBdl = constant. The total plasma beta can, in principle, bhe
arbitrarily close to unity for Bp >> 8¢, regardleas of the other equilibrium
parameters. Finlte-resistivity tearing modeg limit the arbitrariness of these
equiilbrium parameters. The A' tearing analysis shows that small aspect
ratlo, a moderately close conducting ghell, and a rather flat ~urrent prefile
are stabilizing influences. Moreover, it is found that the curves for A' are
roughly independent of the plasma beta. The axisymmetric {m = o) resistive
modes centered at the null trace appear to be less harmful than theose (m # o)
for which :the tearing layer is allowed, by the presence of a finilte toroidal
field, to move into the region of larger current gradient. A nominal stable
case is one in which the aspect ratio is 5, the wall at 20% of the minor
radius, and the peak plasma beta 1s 99%. A tlg-ter agpect ratio, a more
careful fine-tuning of the current profile, and consideration of the actual
gtability threshold of A' should relax the restriction on the proximity of the
conducting shell.

The stability of the double tearing regleon presents a special problenm,
which is not yet fully resolved. This region occurs on the small-major-radius
side of the plasma, where the pressure~curvature effects are most favorable
for stability, so that the threshold value of A' should be large and positive.
A proper resolution of this question would require gome treatment of the
interior of the registive lay.vs, in order to continue the Eiler-Lagrange
solutions properly into the ideal MHD regions. This is a toplc of current
regearch.

In a more realistic tokamak configuration, the inner and outer magnetic
flux surfaces would be connected through the two-dimensional ends, and a two-

dimensional analysis is required to study the system rigorously. It should be

e vt +
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pointed out, however, that the tokamak geometry possesses favorable average
magnetic curvature, go that stability against low-beta flute-like modes should
be at least as good as in the present analysia. Higher-f modes that are
localized poloidally, 1.e., ballooning modes, are susceptible to local driving
forces on the large-major-radivg side and in the end sectiens. Note, howevar,
that in our long, thin approximation we achieved stability to all 1ideal modes;
connecting the modes from the ocuter to the more stable inner section can only
enhance the stability for modes localized in the outer atraight section. The
stability praoperties of modes localized in the end sections will depend upan
the detailed end confiquration; special tailoring of the plasma profile in
these sections, with reliance on local shear effects [17] and non-Maxwellian
features may be necessary for suppressing the destabillzing forces there. A
detailed consideration of the end-section modes, which may limit the

achievable values of R, will be deferred to a later paper.
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Table

r, = 1000.0, ry = 1001.0, b = 1001.1, Py = 0.08, g, = 1000.0, Bp(rz) =

-0.4

s = ¥o
Numerical Analytical
- 0.8 10.3 9.84
- 0.6 2,40 2.36
|
! ~ 0.4 1.02 .01
|
| - 0.2 0.60 0.598
: - 0.1 06.519 0.518
JT_
’ c.c 0.493 0.493
ra 0.516 0.51R8
a.2 0.594 0. 598
0.4 1.00 1.01
0.6 2,32 2.36
0.8 9.52 9.84
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Appendix

We present here the details of the power series expanaion of the coupled

differential equations

£t -GE=0 (A1)

about the point r = r.. e functlons G(r), F(r) are given in Bys. (10) ani

(11).

Let x = r - rs and expand

Flr) = m;fo P (A3)
G(r)=m§°Gm =, (ad)
g(r)=n:£°gnx“*° . (35)
:(r)=n:£°cnx“+° . (%)

The unknowns here are g , r , and g, While G, g are obtained by Taylor
expanding G(r) and F(r) about L We solve here for £ and [ assuming

arbitrary Fp, Gm and, later in this section, present the firat few terms of
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the latter for our specific case.

Substitution of By: (AI)-(A) into (A1) and (A2) gives the recursion

relation for determining tha ccefficients En and Cn:

o =]
—
—
=
+
a
—
3
+
<
1
-
—
m
2
)
Q
—
L gy
]
o

-m n-m-2""m

4 - E {ri + a) Fn g =10 {AT)

for each n. For our case we have Fh =0 for m < 2 and Gp = 0 for m < 0, and
re is thus a regular singular point of our differential equation. HNote that
we are avoiding the point where u'(rg) =0 since r-‘z would vanish and this
would lead tn an essential singularity in the solution, and the assumptions of
Bqa. (AS5) and [A) would be invalid.

The lowest order nontrivial equation occurs for n = 2 and it determines

the indicial behavior

glg+ 1}3F -G =10 , (A8)
2 =]
90 that
1
Gpe = - Vamt (D 2, (a9)

where D, _ _1,. Go/F2 and the subscript & , s indicates that appropriate root

of g which gives the 1large ({)} or samall (s) sgolution respectively. we
recognize here that Suydam's c¢riterfion is contained in Bj. (AS).

For the case where G 4 p, higher values of n in Bg. (A7) gives
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. = (onst. .

ala + 2)F3 -G

™M

1

G *
[~}

'

[

[
Nia

olo + 3) Fy =G, + [(g+ N){o+ 3)F,y - G,I(F‘/Eo)

el
]

o

(o + 2)(o + 3)!-‘2 - G°

C':mlo'_1

C
2 2
E_E/Z[G1—UF3.I '
Q
T LI i R (R10)
£ =0 a a 35 [+] ZE ¢ QLC.
[+ =] o
with the appropriate substitution of ¢ = Oo. 8 in these roefficients we
’

construct the first few terms of the series expansion for the independent
large, small solutionsg, a[ and Es' of By. (14). In the event that Fy and G,
is such that Og = 9y is an integer, the relations in Bg. (A?) is inapplicable
since the coefficlents Em are rot determined. The situation where G, = 0 is a
special case of this cccurrence and is treated balow.

If G, = 0 also, the indicial equation is
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gla+ 1) =0 ,

and the

dependent.

.'|| .
-

4"I )
J [ ¥
|

The

from f _in
3

F lr) = £ (r) [
¢ s :

solutions given by the roots af this eguation

For the root o = o we find for the amall salution,

dhnst. .
C;'l
= -
2
L1}
! ~ ! f -~ T
IFl 0% a5 !
2
" =- N
" .
1 -
55,
2
L etc
3 2 2 F ‘

ather linearly independent solution, E‘, can

the usual mannér:

r dr'

F(r'iE:(r'J

r
‘s

he

[

are linearly

SAY

constructed
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4 13
1 1 2
= - —+— " e, + =) x+ ...
If"oPZ Ev:: 2 E’e
F. F
+ c, 1n [x] f1+—x+——2- 2+.. 1N (A13)
1 £ 3
o 0
where
S BT
E v f
! FZ “o
2
)
_ F4 ) 2 FJ Ei 2
Cl ?"i’zt—"z?_h_-_c\ .
2 4 "o 2 "o
Q
The ~nrrespondi. ' expansion for the large component, .':9. 18
- = © £
¢ c
2
T r [4 F r
v 1 l’ 2 1. 1] 2
== 11 -2 —x -3 ===+t == ]x
r r
nl o] L l'r) e? r2 rc
[}
2 SRS "2 |
-~ ~x In |xl —*'———+2—‘-x+...( . (A4}
1 E F, * k. l
] 2 o o] J

The subscript s on the En's in Bgs. (A12)-(A14) have been dropped since the
meanisg there 15 unambiguous. wWe note that since G, is proportiocnal tu p',
the cases vhere the plasma is pressureless or when the singular point lies
where p' = 0 (&8 in our m = 0 case), must be analyzed by using the serles
expansion given by theae equatlions.

For our case the firgt few terms on the Taylor expansion of Fir) and G(r)

about r, are calculated as follows. We let

s



then

and

Hence

Y

o)

0

28R

T rg we have

F1=0 v

;-"—=H§'2,

%:_Hf-z(i_': LA

SENE 1 AR Y
®rhe |



G, =G = 2k2r[r}\.p" + r?\z F'F o« p' (rk' + ?7\)] .
G, = -21- G" = kzr[rxp"' + 2p"(ra’t + 2)) + p'{rA" + 4x')
2 ~ = 2 A =, 2 ~, = v a3, =
+ e B P+ 2N P 0P F 4 B OF
2, 5,2
+ 2k“p'A+r ' (1 =) . {A15)
It is relevant to determine the accuracy to which the coefficlents, A and
B, are calculated in Bg. (16) by using the truncated seriess generated here.
Let

F o= 2+ ¢ {A16)

where f? is any truncated quantity and ¢ the renainder. Equatinn (16) glves

o} 0
- r
o flgmTr,
& = S '
W
Q
TR, ~ kL
o ? )
B =———O—--—-—i ’ A7)
w
where
(s} (o] o o o
L '« ~ Lo F .
£, L ¢ ©s (a18)

Using Bg. (A16) for ¥ and I in By. (14) and substituting these in Hg.

(A17) gives the error in A and B:



2, -2 ¢ A S
A =a- A0 - 17s 2 "3 +p S8 5 '8 , (A19)
w° W
2 0-2 ¢ R, 2 -2 &
3 =8-8"-pS %t 8 R AR (220
wO wo

The tendency for the contribution af the small solution to be masked by
the large one is wanifested in the lagt term of Ba. (A20), which is generally
the largest of these error terms. Retaining only this term, and assuming that

the series given by BEg. (A10) hag n terms,we find for the situation when G, #

where
1
1= 20,41+ 01 = ~-2(-DI\/2 +n .

tUsually, ¢ < Dy = UQ , so that n = 2 gives reasonably accurate resultsS.
However, near the point where ¥, vanishes, D; gets large and negative aid
consequently n must be large enough to have A > 0. Alternatively, {f n is
fixed, acceptable results can be obtained only if the singular surface is some
minimum distance from the point where Fy vanishes.

If Gy = 0, we have

4

w!
]
&=
xl»
*
i}

2
so that, to realize errors of xfn|x|, x, or x gnlx| we must have respectively

n=3,4, or 5 in Bg. (A13) and n = 2, 3, or 4 in BEg. (A14).
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A necegsary check of the accuracy of the calcula:.ione is to compare the
Wronskian relation, W° as calculated by By. (A18) with the known value, W =

1.0.
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Figure Captions

A sketch of the central one-dimensional region showing the plasma and
conducting shel)l (a). The poloidal magnetic field Bp reverses across
the null trace (dotted line), and the plasma is contained within the
dashed vertical lines. The reguired terminations at the two-
dimensional ends are not shown. Figure 1(b}. shows, in arbitrary
units, the profiles of the pressure, p, pitch, p and the toroidal and

poloidal magnetic flelds.

The pressure and current profile shapes for the peaked (AP = 1.0),
rounded (% = 0.0), flat (A _= =0.5), and  thollow (A = ~1.0}
P b4 b
models. These shapes are the ones used for the regults shown in Fig.

4b.

The effect of the position of the conducting shell on A'd for R =
3.1 (a) and Bv = 0.5 (b), with aspect ratio R = 5. The plasma is

enclosed within the dashed veistical lines and the walls are depicted

by the hasted vertical lines.

Te effect on A'd due to changes in the profile shape. The shapes,
which correspond to the values of lp ghown in the figure, are shown

in Fig. 2. Bv = 0.1 (a) and 0.5 (b). The wall position Lis fixed at

0.24, and the aspect ratio, R, is 5.



Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Table 1.

as

The effect of varying g 18 sghown for the flat current case (kp =
-0.5) and the wall held at (.24, with R = 5. The peak B value is
shown by each curve, and the corresponding Bv and B* are given in the

text.

Here, the aspect ratio R is varied, with the wall kept at 0.24
and B = 0.5, For the upper curve, R = § (r° = 10, T = 12), the
center curve R = 10 (ro = 10, r5 = 11) and for the lower curve, R =

100 {ry = 10, ry = 10.17).

A'd as a function of k for the m = 0 modes. The numerical values
shown on the geparate curves denote the respective positions of the
conducting shell. The results for the rounded (a) and flat (b)

profiles are shown. The aspect ratio is 5.

A sketch of the pressure, current and poloidal field profiles for the

"extremely" flat current model.

Plots of A'd as in Fig. 7, but for the apalytical model of the

“"extremely™ flat current profile shown in Fig. 8.

A comparison of the numerical result with the analytical calculation
for a very large aspect ratic case (slab 1limit). The table

shows A'd as a function of the distance, xg — Xgr Of the singular

layer from the null trace at L
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