

PLASMA PHYSICS LABORATORY

PRINCETON PRINCETON, NEW JERSEY

Ideal and Resigtive MRD Stabllity of One-Dimensional
 Tokamak Equilibria

M. S. Whance, H. P. Furth, A. H. Glasser," and H. Seltera

Princeton Plasma Physles Laboratory
Priaceton liniversity
Princeton, Not nas.44

Nhstract


```
proffles depend on I and not on z.
In sec. II we describe how the equilibrium is calculated and discuss some of its properties. Section III comtains the stability analysis in which the significant parameters of the equilibrim are optimized for stability againgt both ideal MHD and cesistive tearing modes. Section IV contains the conclusion and we include a brief qualitative discusainn of the consequences .) faking the required two-dimensional end sections into account.
```


II. Equilihsium

$$
\begin{equation*}
\underline{B}=\nabla \phi \times \nabla \psi+g(\psi) \nabla \phi, \tag{1}
\end{equation*}
$$

chen we have

$$
\begin{equation*}
r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} y=-\frac{1}{\psi_{b}^{2}}\left(g \frac{d g}{d y}+r^{2} \frac{d p}{d y}\right)=\frac{r j_{\phi}}{\phi_{b}} \tag{2}
\end{equation*}
$$

where $\psi_{b}=\psi\left(r_{1}\right)=\psi\left(r_{2}\right)$ and $y \equiv \Psi / \psi_{b}$.

$$
\begin{align*}
& \text { For the plasma profiles we choose, for } 0 \leqslant y<1 \text {, } \\
& p(y)=P_{0} \frac{e^{\lambda_{p}(1-y)^{2}}-1}{e^{\lambda_{p}}-1} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
g(y)=g_{0}-g_{1} \frac{e^{\lambda^{\prime}(1-y)^{2}}-1}{e^{\lambda_{g}}-1} \tag{4}
\end{equation*}
$$

so that the peak pressure and the diamagnetic contribution if the corodial sield is sperified by p_{0} and g_{j}. Note that we can prescrihe peaked, rounder, or flatened profiles in the physical coordinate, r, by choosinq respectively, $\lambda \gg 0, \lambda=-0.5$, of $\lambda \ll 0$. since the first three derivatives of ipity with respect to I vanishes at r_{0} for $\lambda_{p}=-\frac{1}{2}$ then, when $q_{1}=0$ we have $j_{d} f x=d p / d y$, and the corresponding proflles for j_{ϕ} / r are respectively peaked (or rcunded), flat, and hollow. This is illustrated in Fig. 2, where we plot the pressure and current profiles for $\lambda_{p}=1.0,0,-0.5$, and -1.0 . The extreme case when $\lambda_{p} \rightarrow-\infty$ gives a square pressure profile with a corresponding skin current. In addition, we prescribe r_{0}, r_{2}, g_{0} and $B_{p}\left(x_{2}\right)$ so that the aspect ratio, $R \equiv r_{0} /\left(r_{2}-r_{0}\right) \equiv r_{0} / d$, axtal toroidal beta, $\theta_{v} \equiv$ $2 p_{0} r_{0}^{2} / g_{0}^{2}$ (based upon the vacuum toroidal fleld at r_{0}), and poloidal beta, $\beta_{p} \equiv 2 p_{o} / B_{p}^{2}\left(r_{2}\right)$.

He solve Dq. (2) Eor $y(x)$ in the region ($x_{0} \leqslant x<x_{2}$) numerically by initializing with

$$
\begin{aligned}
& y\left(x_{0}\right)=0 \\
& \frac{d y\left(r_{0}\right)}{d r}=0
\end{aligned}
$$

and iterating on g_{q} and ψ_{6} so that

$$
y\left(r_{2}\right)=1
$$

aกส

$$
\begin{equation*}
\frac{\Delta y\left(r_{2}\right)}{d r}=\frac{-r_{2}{ }^{B} p_{p}\left(r_{2}\right)}{\psi_{b}} \tag{5}
\end{equation*}
$$

Equation (2) is then integrated backward for $y(r)$ and r_{1} in the region ($r \leqslant r_{0}$) until $y\left(r_{\dagger}\right)=1,0$. This specifies r_{q}, and the equilibrium quantities there are calculated from Eqs. (1)-(4). Thus, some toroidal features, such as the idea of flux surfaces, and toroidal shift, are preserved in our model.

The solution in the vaculum region is readily obtained, i.e.,

$$
\begin{equation*}
y(r)=-\frac{B_{p}\left\{r_{p}\right\}}{2}\left(r^{2}-r_{p}^{2}\right)+y\left(r_{p}\right) \tag{6}
\end{equation*}
$$

where I_{p} is the value of r at either plasme boundary. This equation shows the tendency for flux surfaces to be spaced farther apart on the inner side of the magnetic axis. The final magnetic field profiles are stored as cubic spline functions to allow for interpalation ard differentfation*

Instead of parametrizing the plama by the safety factor, we find it. convenient to use the pitch of the magnetic field defined by

$$
\begin{equation*}
\mu(r) \equiv-\frac{r_{p}}{B_{\phi}}, \tag{7}
\end{equation*}
$$

and a rational surface is present when $m=k \mu, m$ and k being respectively the toroital and polosdal wave numbers.

Since ${ }^{r}{ }_{\phi}$ and g_{p} are both constant in regions exterior to the plasma, hut $B_{p} \sim r-r_{0}$ inside the plasma, μ has at least one relative minimum in the plasma on the inner side of the null trace. As shown in Fig. 2, this means that, in the region $\left[a, \sum_{\mu}\right.$] where r_{μ} is defined by $\mu\left(r_{\mu}\right)=\mu(a)$, rational surfaces exist in pairs for the same values of m and k. This is relevant to the stability analysis which is described in the next section.

III. Stability

Abstract

The stability properties of our model are analyzed for both ideal and resistive MHD modes. The underlying assumptions which enable us to treat our system in one dimension permit us to apply the fundamenta? results previous. y obtained from studies of the stmpler slab, ot cylindrical, systems. Thus, for ideal MHD modes we apply the reaults of Newcomb [9], Suydam [10] etc.; analysis of the reaiative MHD modes $1 s$ based upon the ideas found in Furth et al., [11], and Glasser et al., [12]. Newcomb' equations are relevant to both types of modes since aufficient conditions for stability againgt resistive modes can be obtained from the behavior of the plasma in the idfal regions. The relevant equations are the energy integral and the asoociated Euler-

Lagrange equation (9]

$$
\begin{align*}
& W(F)=\frac{\pi}{2} \int_{a}^{b} r d r\left\lceil F\left(\frac{d \xi}{d r}\right)^{2}+G E^{2}\right\rceil \tag{8}\\
& F E^{\prime}-\zeta=0 \\
& C^{\prime}-G E=0 \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
F= & \frac{r\left\langle k r B_{p}-m B_{\phi}\right)^{2}}{k^{2} r^{2}+m^{2}}, \tag{10}\\
G= & \frac{2 k^{2} r^{2}}{k^{2} r^{2}+m^{2}} \frac{d p}{d r}+\frac{1}{r}\left(k r B_{p}-m B_{\phi}\right)^{2} \frac{k^{2} r^{2}+m^{2}-1}{k^{2} r^{2}+m^{2}} \\
& +\frac{2 k^{2} r}{\left(k^{2} r^{2}+m^{2}\right)^{2}}\left(k^{2} r^{2} B_{p}^{2}-m^{2} B_{\phi}^{2},\right. \tag{11}
\end{align*}
$$

with

$$
\begin{equation*}
2 \frac{d p}{d r}=-\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} B_{\phi}^{2}\right)-\frac{d}{d r} B_{p}^{2} \tag{12}
\end{equation*}
$$

Equation (8) is, of course, the marginal ($\omega^{2}=0$) one dimensional version of the more general energy integral of Bernstein et al., \{13\}. The q and z components of the plasma displacement which is assumed to have the form $\xi(r) e^{i(k z-m \phi)}$, have been eliminated algebralcally in the minimization of $W(\xi)$, so that ξ here is the radial component of the fourier coefficient of
of the displacement.
As shown by Newcomb [9], we can also write the energy incegral in the form

$$
\begin{align*}
& W\left(F_{n}\right)=\frac{\pi}{2} \int_{a}^{b} r d r\left\{\frac{1}{k^{2} r^{2}+m^{2}}\left\lceil\left(k r B_{p}-m B_{\phi}\right) \frac{d F_{i}}{d r}+\left(k r B_{p}+m B_{\phi}\right) \frac{F_{s}}{r}\right\rceil^{2}\right. \\
& \left.+\left\lceil\left(\operatorname{krB}_{p}-\mathrm{mB}_{\phi}\right)^{2}-2 \mathrm{~B}_{\phi} \frac{\mathrm{d}}{\mathrm{dr}}\left(\mathrm{rB}_{\phi}\right)\right\rceil \frac{\xi^{2}}{r^{2}}\right\} \tag{13}
\end{align*}
$$

showing explicitly, Rosenbluth's sufficient condition for stability against
 the plasma. For the purposes of this paper we take $r B_{0}=$ constant, i.e., $G_{1}=$ 0 , thereby rendering our model ideally stable irrespective of the values of the other equilibrium parameters such as aspect ratio, wall position, profile shapes, etr. Note, however, that our condition B_{ϕ} - $1 / r$ implies that the toroidal field is the vacuum fleld throughout so the plasma is contained entirely by the poloidal fteld, le., the poloidal beta, $R_{p}, 1$, while the total plasma beta $\left.p-A_{p}^{\prime} 1+B_{0}^{2} / B_{p}^{2}\right)^{-1}$ can, in principle, be arbitrarily close to unity and still be stable againgt all ideal mHD modes.

We investigate the resistive MHD properties of our system in the usual way: resis:ive effects are important only in the region where Eq. (9) is singular, i.e., at the rational surfaces where $m=k \mu$, but a sufficient condition for stability can be obtained by examining the discontinuity in the Euler-Lagrange solution across the singularity. The solution of Eq. (9) in
 written,

$$
\binom{\xi(r)}{\zeta(r)}_{R, I}=\left(\begin{array}{ll}
\xi_{\ell} & \xi_{B} \tag{14}\\
\zeta_{\ell} & \zeta_{B}
\end{array}\right)_{R, L} \quad\binom{A}{B}_{R, L}
$$

where $\xi_{\ell}(x), \xi_{s}(r)$ are the solutions which, in Newcomb's definition, are large, small at $x=r_{s}$. Thus, A_{R} and B_{R} are the contributions from the solution at the right of the singularity. If A_{L} and B_{L} are similarly defined, a sufficient condition for stability against resistive modes is that [12]

$$
\begin{equation*}
\Delta^{\prime}=\frac{B_{R}}{A_{R}}+\frac{B_{L}}{A_{L}}<0 \tag{15}
\end{equation*}
$$

We note here that this condition encompasses the cases where $p^{\prime}(x)$ can be either finite or zero, it being also a necessary condition for the latter. Inversion of the set of Bq. (14) gives

$$
\binom{A}{B}_{R, L}=\left(\begin{array}{ll}
\xi_{\ell} & \Gamma_{s} \tag{16}\\
\zeta_{\ell} & \zeta_{s}
\end{array}\right)_{R, L}^{-1} \quad\binom{E(r)}{\zeta(r)}_{R, L}
$$

Here $F_{\ell}, F_{s}, C_{p}, C_{s}$ are obtained analytically as a power series about the singular surface, r_{s}. The detalls of this expansion and an estimate of the accuracy of the method are shown in the Appendix. we use an accurate extrapolative differential equation solver [14] to integrate Eq. (9) towards r_{s} with the boundary conditions $\varepsilon(a)=F_{(}(b)=0, C(a)=C(b)=1.0$. In the process, the A, B as calculated by Eq. (16) approach their constant values as $r-r_{s}$. The point up to which we integrate is, of course, determined by the number of terms in the indicial expansion and the required accuracy for A, B. On the other hand, numerical considerations dictate that we keep a
respectable distance away from the sinquiarity.
For each set of equilibrium parameters we choose the toroidal mode mumber m and the rational surface r_{g}, determine the poioidal wave vector through

$$
\begin{equation*}
k=m / \mu\left(r_{s}\right) \tag{17}
\end{equation*}
$$

and then compute Δ^{\prime} as described above. For these modes, we present thr results graphically by showing plots of Δ ' d, versus r_{s} for various values nt wall position, profile shapes, plasma heta and aspect ratin. Ther quantity $\Lambda^{\prime} d$ is dimensionless when the pressure ls zero. Because isf the existence of the fouble tearing region as discussed in the last section, we do not present results for $A^{\prime} A$ in $\left\{a, r_{\mu}\right.$). There, the solution nt G, (9) must be properly matinei across the bounding resigtive layers. Th realize this, we would require knowing the thresholi value of nijor details of thr perturbation inside the layers.

The tifect of a conducting wall on the m $=1$ and 2 modes is shown in Fig. Ja for a flat current profile $\left(\lambda_{p}=-0.5\right)$, aspect ratio $R=5, r_{1},=10.0$,
 that A^{\prime} can be made negative for all valuea of $r ; r_{0}, i$ e. , over the ritite region of unfavorable curvature, if the wall is positioned within $0.2 d$ of the plasma boundary. The value of $\Delta^{\prime} d$ is positive and becomes latge in the region where the pitch, μ, has a minimum. Thls may seern dangerous, but it shoula be noted that the curvature is favorable for stability in this region, and it is expected that the threshold $\Delta^{\prime}, 1 . e ., \Delta_{c}, w 111$ also be large and positive there. In fig. 3 b we plot similar curves for a larger value of f. $1 . e ., p_{0}=$ 0.5, $B_{p}\left(r_{2}\right)=-1.0: \rho$ that $\beta_{V}=1.0$. In both figures, the m = mode (solid Iine) is more unstable than the $m=2$ mode (dashed line) [15]. Note
that A^{\prime} is fairly incensitive to the value of β_{v}.
The effect of tre profile ghape is ahown in fig. an for peaked (Ap a i. 0), rounded $\left\{\lambda_{p}=0\right\}$, fiat $\left\{\lambda_{p}=-0.5\right)$, and hollow $\left(\lambda_{p}=-i\right.$ o) curcent profiles. The wall position 1 g kept at 0.2 d and B_{V} is 16 o (p_{0} a $\mathrm{f}_{\mathrm{a}} \mathrm{JB}, \mathrm{H}_{\mathrm{f}}\left(\mathrm{r}_{2}\right)$ $=-0.41$; the other equilibrium parameters arethe ame as above it ig geen that the flat profile is the most stablel this current shape ia chazacterized by having its gradient, the driving force of the resistive kink, near the plasma boundary and hence near to the strong atabllizing effect of the sondurtiny shell. For the no:low profile case the curcent gradifnt beccmes Veiy steep and the wall muse be brought in cjoser than that mown in outar to provide the same degree of stabilization, figure ab shows che resul:
 the plasma beta.

In fig. 5 we show the effect of varying the plagma reta for the flat profile $\left(\lambda_{p}=-0.5\right)$, the wall again at 0.2 and an apect ito of 5 . Curves of $A^{\prime} d$ for A_{v} of $0.16,1.0$, and $\left.100.0 l p_{0}=50.0, B_{p}\left(r_{2}\right)-10.0\right]$ i-e shown. These correspond to β of $9.34,32.60$ and 64.5 respectively where

$$
\begin{align*}
& \beta^{*}=2 p^{*} /\left[B_{\phi}^{2}\left(r_{0}\right)+B_{p}^{2}\left(r_{2}\right)\right] \\
& p^{*}=\left[\int p^{2} d v / \int d v\right]^{1 / 2} \tag{18}
\end{align*}
$$

Note that this dramatic increase of β has very litcle effect on the value of Δ ' ${ }^{\prime}$, foature which is quire encouraging for our model. It should be pointed out that gince $\theta_{0}=G_{o f} r_{0}=1 . u^{\prime}$ ehe peaked total plasma beta $\beta \equiv 2 p_{o} /\left[B_{\phi}^{2}\left(r_{0}\right)+B_{p}^{2}\left(r_{2}\right)\right]$ is 0.14 for $\beta_{v}=.16,0.5$ for $\beta_{V} \quad=1.0_{r}$ and 0.99 for the case $\beta_{v}=100$. That the average reta, β^{*}, is less than unity is
due to the profile shape, with more flattened pressure profiles resulting in larger values of β^{*}.

We show in fig. f the effect of varying the aspect ratio for $\lambda \quad=-0.5$ and $\beta_{v}=1.0$. It is clearly seen that β^{\prime} increases with the aspect ratin. Throidicity is thus a stabllizing influence here. For very large aspect ratin the slab-idmit is approachad and we can take advantage of the added simplantty to carry nut an analytical comparison with the numerical results in ris limit. Thus. in Eqa. (9), (10), ans (11) we let mir,ky,
 find

$$
\begin{equation*}
\frac{d}{d x} F^{2} \frac{d \varepsilon_{x}}{d x}-x^{2} f^{2} r_{x}=0 \tag{14}
\end{equation*}
$$

 could be de-ived directly from the ptimitile get of the min equation with tho same resule, Note that the pressure does not enter explicitly in this limit. It us monvenient to rite Lills eruation in cerms of the ralial component of the perturbed maynetic field, $Q=i F \xi_{x}$ so that

$$
\begin{equation*}
\frac{Q^{\prime \prime}}{Q}-\frac{F^{\prime \prime}}{F}-k^{2}=0 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{\prime}=\frac{1}{Q}\left(Q_{R}^{\prime}-Q_{L}^{\prime}\right)_{I_{S}} \tag{1711}
\end{equation*}
$$

Bquation (20) can re readily solved in the approximation where k 2 on since che term involving k^{2} in Eq. (19) is stabilizing, this limit represents the
most pessimistic case. The solution is

$$
\begin{equation*}
Q(x)=c_{1} F(x) \int_{a}^{x} \frac{d a}{F^{2}(a)}+c_{2} F(x) \tag{22}
\end{equation*}
$$

where C_{1} and C_{2} are constants. If we take B_{y} to be constant, then the y component of the current 1 s proportional to $\mathrm{F}^{\prime}\{\lambda \mid$. and the boundartes of the plasma are defined such that $F^{\prime}\left(x_{1}\right)=F^{\prime}\left(r_{2}\right)=0$. Dugecher with the bou fary onnditi.ns that $Q(a)=Q(b)=0$, we find

$$
\begin{align*}
& +\operatorname{rr}^{2}\left(r_{s}\right)\left[\frac{b-r_{2}}{F^{2}\left(T_{7}\right)}+\frac{r_{1}-a}{r^{2}\left(r_{1}\right)}\right], \tag{23}
\end{align*}
$$

where P fenotes the princlpal value of the integral. The term involving the se:on: pair of square brackets is positive definite and represents t? ? stabilizina effect of the conducting wall.

It the slab limit the Gradnhafranov equation becomes

$$
\begin{equation*}
y^{\prime \prime}+\frac{r_{0}^{2}}{\psi_{b}^{2}} \frac{d p}{d y}=0 \tag{24}
\end{equation*}
$$

If we take the case where $p=p_{-}(1-y)^{2}, i, e, \lambda_{p}=0$, this becomes a linenr inhomogeneous en tition

$$
y^{\prime \prime}-\frac{2 r_{0}^{2} p_{0}}{\psi_{b}^{2}}(1-y)=0
$$

with solution

$$
\begin{equation*}
y=1-\cos \left[\left(\frac{2 r_{o}^{2} p_{o}}{\psi_{b}^{2}}\right)^{1 / 2}\left(x-r_{o}\right)\right] \tag{26}
\end{equation*}
$$

so that, with $d \equiv\left|r_{1}-r_{0}\right|=\pi / 2!\psi_{b}^{2} /\left.2 r_{0}^{2} p_{0}\right|^{1 / 2}$, we find

$$
\begin{align*}
& B_{z}(r)=\left\{\left.\begin{array}{ll}
-B_{o z} & \sin \frac{\pi}{2}\left(\frac{r-r_{0}}{d}\right), \\
-B_{o z} & \left|r-r_{0}\right|, i+1
\end{array} \right\rvert\,\right. \\
& \cdot 24
\end{align*}
$$

$$
\begin{align*}
& \text { i.e.. } a-r_{1}=b-r_{2}=x \text {, and userl the condition that } \\
& F\left(r_{s}\right)=-k_{z}{ }^{\dot{j} \cdot j z} \leq \ln \left(\frac{\pi}{2} \frac{r^{\prime}-r_{0}}{d}-k_{y} B_{y}=0 \quad,\right. \tag{101}
\end{align*}
$$

defines the position of the gingular surface. Equation (29) shows that unles:i the wall touches the plasma, A^{\prime} is alweys poritive and becomes larqe as the singular surface moves towards the plasag edge. This ia due ir the fact that the resigtive kink is driven by the surrent granlent rather thar the rutren* itself, and the presence of a finite B_{y} allows the singular gurfarse to be locater in the region of large gradient, we compared this result with our

Abstract

numerical method. In Table 1 we show the resulte of A^{\prime} an given by Dq. (29) and aiso by a numerical cage where we set this atpect ratio $R=1000.0 . \delta=$ $0.1 . P_{0}=0.48, B_{2}\left(r_{2}\right)=-0.4$ and $r_{0}=1000.0$. The toroidal mode number m is 1.0 so that $k_{y}=10^{-3} \ll$. We note that the agreament is quite adelafactory.

m n Modes

If $m=0$, the singular surface occurs where $A_{p}=0, i . e .$, on the null trace. The stability Atudy of this mode ghould indicate whether or not the nlasma will tend to break up into axisymmetric filaments. We thus cerry out the nomerical A^{\prime} analysig with the singular surface fixed at r = for varluss value of k.

Setting $m=0$ in Eqs. (9), (10), (11) end (12), the Buler-Lagrange equation can be written

$$
\begin{equation*}
r_{r} z^{\prime}-\left[\frac{1}{r}\left(q+k^{2} r^{2}\right)-\frac{1}{r^{2} B_{p}^{2}}\left(r^{2} B_{\phi}^{2}\right) r-\frac{r^{2}}{B_{p}}\left(\frac{j}{r}\right) \cdot\right] Q_{r}=0 \tag{31}
\end{equation*}
$$

where, we have used the radial component of the magnetic field, $Q_{T} \equiv i k B{ }_{p} \xi_{\text {, }}$ as the dependent variable and $J_{0}=-B_{p}^{\prime}$ "

Note that, gince we are agsuming that $r^{2} B^{2}$ is constant the driving term in Eq. (31) is independent of the magnitude of the pressure, so that the results below is independent of the plasma beta but of course depends on the shape of the profiles, aspect ratio and wall position.

We first do the case for the rounded current profile $\left(\lambda_{p}=0.0\right)$ with an aspect ratio of $5\left(r_{0}=10.0, r_{2}=12.0\right)$ and with several positions, δ, for the conducting shell. The numerical result is shown in fig. 7a where we plot $\Delta^{\prime} d$ versus k for various values of δ. as expected, a clogely placed

```
condicting wall is stabilizing. Also, S' decreases with ir:creaging k which
Indicates that, like the ideal modes, the most unstable cade for th a o occurg
when k T O. Tils is consigtent with the Lehavior of A' near ro in Fiqs. 3-6
since k tends towurd larre values there. Far the profile chosen, the wall
must be located at the plasma edge tr stabilize the modes with small k,
    The results for the flat current model (\lambda = =0.5) are shown in Fig.
7b. There we see that the effect of moving the destabilizing current
gradients away Erom the singular layer and out towards the wall substantially
enhances the stability of the plagme. Here the wall can be one plasma radius
away to achieve stability for all k.
    We also infer from these results that, because of the greater stability
at large kr the plasma will resist the tendency to break up into small
axisymmetric filaments in the vicinity of the nuli irace.
    An inalyticai comparison con also be carried out for the m = o cage.
We have aiready assumed that rB : constant. Now we congtruct an axtremely
flat current profile wher a
```

$$
j_{\phi}=\left|\begin{array}{cc}
j_{0} r & r_{1}<r<r_{2} \tag{32}\\
0 & , \quad \text { otherwise }
\end{array}\right|
$$

This choice of J_{ϕ} is closely related to the flat current profile case, $\lambda_{p}=$ -0.5 which is used previousiy aince we have pointed out in the equilibrium section that flatness in the current really refers to the shape of the quantity j_{ϕ} / r rather than j_{ϕ} itaelfy this can be seen by examining Eq. (2) near the null trace, and is also a feature of equilibria of the solov'ev type [16].

We have then for $I_{1} \leqslant x \leqslant r_{2}$,

$$
\begin{align*}
& B_{p}(r)=-\frac{j_{o}}{2}\left(r^{2}-r_{0}^{2}\right) \tag{33}\\
& p(r)=p_{0}\left[1-\frac{\left(r^{2}-r_{0}^{2}\right)^{2}}{\left(r_{2}^{2}-r_{0}^{2}\right)^{2}}\right] \tag{34}
\end{align*}
$$

with

$$
\begin{equation*}
j_{0}^{2}=\frac{{ }^{8} p_{0}}{\left(r_{2}^{2}-r_{0}^{2}\right)^{2}} \tag{35}
\end{equation*}
$$

where we have used the egulilbrium relation (12) and required that pir 2) $=$ 0. The requirement that $p\left(r_{1}\right)=0$ gives

$$
\begin{equation*}
r_{1}^{2}=2 r_{0}^{2}-r_{2}^{2} \tag{36}
\end{equation*}
$$

Equation (35) is also the condition that $B_{p}\left(E_{1}\right)=-B_{p}\left(r_{2}\right)=\left(2 p_{0}\right)^{1 / 2}$. The quantities $\dagger^{\prime},{ }^{\prime}{ }_{P}$, and p are sketched in Fig. B.

Fquation (31) thus reduces to the modifisd eessel equation, with solution

$$
\begin{equation*}
Q_{r}(r)=C I,(k r)+D K_{1}(K r) \tag{37}
\end{equation*}
$$

with boundary condition $Q_{r}(a)=Q_{r}(b)=0$, and, because of the discontinuity i's j_{ϕ} at r_{1} and r_{2}, the jump conditions which must be satisfied are

$$
\left[Q_{r}\right\}_{r_{2}}=\frac{Q_{r}\left(r_{2}\right)}{Q_{z}\left\{r_{2}\right\}} j_{\psi}\left(r_{2}\right)
$$

$$
\left\lceil Q_{r} \cdot\right]_{r_{1}}=-\frac{Q_{r}\left(r_{q}\right)}{B_{z}\left(r_{i}\right.} j_{\phi}\left(r_{1}\right)
$$

$$
\begin{equation*}
\left\lceil\left. Q_{r}\right|_{r_{1}}=\left\{\left.Q_{r}\right|_{r_{2}}=0 .\right.\right. \tag{38}
\end{equation*}
$$

where $[Q]_{r} \equiv Q\left(r_{+}\right)-Q\left(r_{-}\right)$.
The constants C and D here have different values in the regions which are separated by the current discontinuities at r_{1} and r_{2}. The expression for A^{\prime} becomes, after some algebraic manipulation

$$
\begin{equation*}
A^{\prime} \equiv \Gamma_{I}^{Q_{r}^{\prime}} \prod_{I_{0}}=-\left.\frac{1}{r_{0}} \frac{\alpha_{Q}^{\beta_{r}}-\alpha_{r}^{\beta} \ell}{\alpha_{r}^{I_{1}}+\beta_{r} K_{1}\left|\alpha_{Q}^{I}+\beta_{Q} X_{1}\right|}\right|_{r_{0}} \tag{39}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{X}=1-\left.\frac{r j_{\phi}}{B_{p}} K_{1}\left(I_{q}-v_{a} K_{1}\right)\right|_{r_{1}} \\
& \beta_{\ell}=-v_{a}+\left.\frac{r j_{p}}{B_{p}} I_{1}\left(I_{1}-v_{a} K_{\uparrow}\right)\right|_{I_{1}} \\
& \alpha_{r}=1-\left.\frac{r_{\phi}}{B_{p}} K_{1}\left(1,-v_{b} K_{1}\right)\right|_{r_{2}} \\
& \beta_{r}=-v_{b}+\left.\frac{r j_{\phi}}{B_{p}} I_{1}\left(I_{1}-V_{b} K_{i}\right)\right|_{r_{2}}
\end{aligned}
$$

$$
v_{a}=\frac{I_{1}(k a)}{k_{1}(k a)}
$$

$$
v_{b}=\frac{I_{1}(k b)}{k_{1}(k b)}
$$

In deriving Bq. (39) we have made use of the wronskian relat on

$$
I_{1} K_{1}^{\prime}-I_{1}^{\prime} K_{1}=-\frac{1}{k r}
$$

Abstract

To compare this analytical result with the numerical results we show the calculated values of Δ^{\prime} in $F i g$, (9). The regulte are qualitatively predicter by examining Eq. (31) and Fig. B. The strong gtabilizing forces of the plasma associated with finite values of k compete against the destabilizing kicks of the surrent gradients at r_{1} and r_{2}. Comparison with the flat current profile case of Fig. (7) shows very close agreement, the analyti=al model being the more stable case. This is reasonable since the destabilizing current gradient is further out at the edge of the plesma while remaining close to the stabilfzing influence of the conducting wall, which in this ase can be two plasma radii away for stabi+ization to all k .

Iv. Donclusions

We have idealized a highly elongated tokamak configuration as a stra ght one-dimensional mid-gection, held in equilibrium by appropriate twodimensienial end sections. In the limit of an infinitely long mid-section, we find stability against all ideal mHD modes if the toroidal field remains a
vacum field, the plasma being confined solely by the poloidal ffeld, 1.e., $B_{p} \sim 1$ and $r B_{A}=$ corstant. The total plasma beva can, in principler be arbitrarily close to unity for $p_{p} \gg \theta_{\phi}$, yegardiess of the other equilibrium parameters. Finite-resistivity temring modes limit the arbitrariness of these equitiori'm parameters. The $\Delta^{\prime \prime}$ tearing andysis shows that small aspect ratio, moderately close conducting shell, and a rather flat ourrent profile are stabilizing influences. Moreover, it ig found thit the curves for A^{\prime} are roughly independent of the plasma beta. The axisymmetric (mation resistive modes centered at the null trace appear to be less harmful than those (m x) for which ihe tearing layer is allowed, by the presence of a finite toroidal field, to move into the cegion of larger current gradient. A nominal stable case is one in which the aspect ratio is 5 , the wall at 20% of the minor radius, and the peak plasma beta is 99\%. A tigiter aspect ratio, a more careful fine-tuning of the current profile, and conalderation of the actual gtability threshold of $\Delta^{\prime \prime}$ should relax the restriction on the proximity of the conducting shell.

The stability of the double tearing region presents a special problem, which is not yet fully resolved. This reqion accurs on the small-major-radius side of the plasma, where the pressure-curvature effects are most favorable for stability, so that the threanold value of Λ^{\prime} should be large and positive. A proper resolution of this question would require gome treatment of the interior of the tesistive layuza, in order to continue the Ealer-Lagrange solutions properly into the ideal MHD fegions. This is a tople of rurrent research.

In a more realigtic tokamak configuration, the inner and outer magnetic flux surfaces would be connected through the two-dimensional ends, and a twodinensional analygis is required to study the system rigorousjy. It should be

Abstract

pointed out, however, that the tokamak geometry possesses favarable aver age magnetio curvature, so that stability against low-beta flute-like modes should be at least as good as in the present analysig. Migher- β modes that are localized poloidally, $1 . e .$, ballooning modes, are susceptible to local driving forces on the large-major-radius side and in the end sections. Note, however, that in our long, thin approximation we achieved stability to all ideal modes; connecting the modes from the outer to the more stable inner gection can only enhance the stability for mades lacalized in the outer stralght gection. The stability properties of modes localized in the end sections will depent upnn the detailed end consiquration; special tailoring of the plasma profile in these sections, with reliance on local shear effects [17] and non-Maxwellian features may be recessary for suppreasing the destabilizing forces there. A detailed consideration of the end-section modes, whish may I imit the achievable values of R, will be deferred to a later paper.

ACKNOWLEDGMENT

Helpf'jl discussions with Drs. F. W. Perkins, J. M. Greene, R. B. White, and other co-workers at Princeton are appreciated.

Th.is work was supported by the U.S. Department of Energy, Contract No. $\mathrm{DE}-\mathrm{ACO}-76-\mathrm{CHO} 3073$.

Table
$r_{0}=1000.0, r_{2}=1001.0, h=1001.1, P_{0}=0.08, g_{0}=1000.0 . B_{p}\left(r_{2}\right)=-0.4$

$r_{s}-r_{0}$	Numerical	Analyrical
-0.8	10.3	9.84
- 0.6	2.40	2.36
- 0.4	1.02	1.01
- 0.2	0.60	0.598
-0.1	0.519	0.518
O.0	0.493	0.493
r. 1	0.516	0.518
0.2	0.594	0.598
0.4	1.00	1.01
0.6	2.32	2.36
0.8	9.52	9.84

Appendix

```
    We present here the details of the power series expanaion of the coupled
differential equations
    G-GE=0,
    (A1)
    F \zeta'-\zeta=0.
    (AZ)
```

about the point $r=r_{s-}$. The functiona G(r), F(r) are given in Eqs. (ig) and (17).

$$
\begin{align*}
& \text { Let } x=r-r_{s} \text { and expand } \\
& F(r)=\sum_{\pi ı}^{\infty} E_{m} x^{m} \quad, \\
& \text { (A3) } \\
& G(r)=\sum_{m=0}^{\infty} G_{m} x^{m}, \\
& \xi(r)=\sum_{n=0}^{\infty} \xi_{n} x^{n+\sigma}, \tag{A5}\\
& \zeta(r)=\sum_{n=0}^{\infty} \zeta_{n} x^{n+\sigma} \tag{A6}\\
& \text { The unknowns here are } \xi_{n}, \zeta_{n} \text {, and } \sigma \text {, while } G_{m} \text {, } F_{m} \text { are obtained by Taylor } \\
& \text { expanding } G(x) \text { and } F(x) \text { about } r_{g} \text {. We solve here for } \xi \text { and } \zeta \text { assuming } \\
& \text { arbitrary } F_{m}, G_{m} \text { and, later in this section, present the first few terms of }
\end{align*}
$$

the latter for our specific case.
 relation for determining tha coefficients ξ_{n} and ζ_{n} :

$$
\begin{align*}
& \sum_{m=0}^{n}\left[(m+\sigma)(n+\sigma-1] F_{n-m}-G_{n}-m-2\right] \xi_{m}=0 \\
& \zeta_{n-1-} \sum_{m=0}^{n}(n+a) F_{n-m} \xi_{m}=0 \tag{A7}
\end{align*}
$$

for each n. For our case we have $F_{m}=0$ for $m<2$ and $G_{m}=0$ for $m<0$, and r_{s} is thus a regular singular point of our differential equation. Note that we are avoiding the point where $\mu^{\prime}\left(r_{g}\right)=0$ since F_{2} would vanish and this would lead to an essentidl singularity in the solution, and the assumptions of Eqs. (A5) and (F6) would be invalid.

The lowest order nontrivial equation occurs for $n=2$ and i determines the indicial behavior

$$
\sigma(\sigma+1) F_{2}-G_{0}=0,
$$

so that

$$
\begin{equation*}
\sigma_{l, 5}=-1 / 2-,+\left(-D_{I}\right)^{1 / 2}, \tag{A9}
\end{equation*}
$$

where $D_{I}=-1 / 4-G_{0} / F_{2}$ and the subscript ℓ, a indicates that appropriate : 00 ot of a which gives the large (l) or small (s) solution respectively. We recognize here that Suydan's criterion is contained in 日q. (A9).

For the case where $G_{0} \neq 0$, higher values of n in $B q$ ($A 7$) gives

$$
\begin{align*}
& \text { Fon Const. } \\
& \frac{\xi_{1}}{F_{0}}=-\frac{\sigma}{2}\left[\frac{\sigma(0+2) F_{3}-G_{1}}{G_{0}}\right] . \\
& \frac{\xi_{2}}{r_{0}}=-\frac{0(\sigma+3) F_{4}-G_{2}+\left[(\sigma+1)(0+3) F_{3}-G_{1}\right]\left(\xi_{1}\left(\xi_{0}\right)\right.}{(0+2)(\sigma+3) F_{2}-G_{0}}, \\
& \frac{r_{0}}{r_{0}}=0 \text {, } \\
& \frac{r_{1}}{r_{0}}=\sigma F_{2}=\frac{G_{0}}{a+1} \text {, } \\
& \frac{c_{2}}{E_{0}}=1 / 2\left[G_{1}-\sigma^{2} F_{3}\right] \text {, } \\
& \frac{\zeta_{3}}{F_{3}}=a F_{a}+(a+1) F_{3} \frac{\xi_{1}}{\xi_{0}}+(0+2) F_{2} \frac{\xi_{2}}{\xi_{0}} \text {. ecc. } \tag{A10}
\end{align*}
$$

With the appropriste substitution of $\sigma=\sigma_{\ell, B}$ in thege rofficients we construct the first few terins of the series expansion for the independent Large, small solutions, ε_{q} and ξ_{g}, of d_{q}. (14). In the event that F_{2} and G_{o} is such that $\sigma_{s}-\sigma_{Q} 1 s$ an inteqer, the relations in Eq. (A7) is inapplicable since the coefficients ξ_{m} are not determined. The situation where $G_{0}=0$ is a special case of this accurrence and la treated below.

If $C_{0}=0$ also, the indicial equation is

$$
\sigma(\sigma+1)=0
$$

and the solutions given by the roots of this equation are linearly dependent, For the root $\sigma=0$ weld for the small solution. Fo

$$
\begin{aligned}
& r_{0}=\text { Onnst. } \\
& \frac{1}{r_{n}}=\frac{G_{1}}{2 F_{2}}
\end{aligned}
$$

$$
\frac{r_{2}}{r_{2}}=\frac{1}{r_{2} F_{2}}=\frac{r_{2}}{2 F_{2}} i_{3}-G_{3}+
$$

$$
T_{0}=r=n
$$

$$
\frac{氵_{2}}{i}=\frac{1}{2}=
$$

$$
\frac{3}{F_{0}}=\frac{1}{3} G_{2}+\frac{i}{2} \frac{G_{1}^{2}}{F_{2}}, \quad \text { etc }
$$

The other linearly independent solution, E, can be constructed from x^{\prime} in the usual manner:

$$
r_{q}(r)=r_{s}(r) \quad l^{r} \frac{d r^{\prime}}{F\left(r^{\prime}\right) \xi_{s}^{2}\left(r^{\prime}\right)}
$$

$$
\begin{align*}
& =-\frac{1}{\xi_{0} F_{2}}\left\{\frac{1}{x}+\frac{\xi_{1}}{\xi_{0}} \cdot\left(c_{2}+\frac{\xi_{2}}{\xi_{0}}\right) x+\ldots\right. \\
& +c_{1} \ln |x|\left\{\left.1+\frac{F_{1}}{\xi_{0}} x+\frac{F_{2}}{\varepsilon_{0}} x^{2}+\ldots \right\rvert\,\right\} \tag{A13}
\end{align*}
$$

where

$$
\begin{aligned}
& c_{1} \equiv \frac{F_{3}}{F_{2}}+2 \frac{\varepsilon_{1}}{F_{0}}, \\
& c_{2}=\frac{F_{4}}{F_{2}}+\frac{F_{1}^{2}}{F_{0}^{2}}+2 \frac{F_{2}}{F_{0}}+2 \frac{F_{3}}{F_{2}} \frac{F_{1}}{F_{0}}-c_{1}^{2} .
\end{aligned}
$$

The : onrespondi.. expansion for the large component, ip, is

$$
\begin{align*}
& \because=r \\
& =\frac{1}{r_{0}}\left\{1-2 \frac{r_{1}}{F_{0}} x-\left[3 \frac{r_{2}}{F_{0}}-\frac{r^{2}}{r_{0}^{2}}+\frac{F_{3}}{F_{2}} \frac{r_{0}}{F_{0}}\right] x^{2}\right. \\
& \left.-e_{1} x^{2} \ln |x|\left[\frac{F_{1}}{F_{0}}+\frac{F_{3}}{F_{2}} \frac{F_{0}}{F_{0}}+2 \frac{F_{0}}{F_{0}} x+\ldots\right\} \right\rvert\,, \tag{A14}
\end{align*}
$$

The subscript s on the 'rn'g in Eqs. (A12)-(A14) have been dropped since the meanirg there is unambiguous. we note that since G_{Q} is proportional to p^{\prime}, the cases there the plasma is pressureless or when the singular point lies where $p^{\prime}=0$ (as in out $m=0$ case), must be analyzed by using the series expansion given by these equations.

For our case the first few terms on the Taylor expansion of $F(I)$ and $G(r)$ about r_{s} are calculated as follows. We let

$$
\begin{aligned}
& \hat{F}=k B_{p}-\frac{m}{r} B_{\phi}, \\
& \bar{F}=k r B_{p}+m B_{\phi}, \\
& H=r_{i}^{3} .
\end{aligned}
$$

$$
=\left(k^{2} r^{2}+m^{2}\right)^{-1}
$$

Shen

$$
r=H \widehat{F}^{2} .
$$

ans:

$$
3=2 k^{2} r^{2} \lambda p^{\prime}+r \hat{F}^{2}(1-\lambda)+2 k^{2} r^{2} \lambda^{2} \hat{F} \bar{F}
$$

Hemre at $r=r_{s}$ we have

$$
\begin{aligned}
& F_{0}=F_{1}=0 \text {. } \\
& F_{2}=\frac{\bar{F}^{\prime \prime}}{2}=\mathrm{H} \widehat{F}^{2}, \\
& F_{3}=\frac{F^{\prime}{ }^{\prime}-}{6}=H \hat{F}^{\prime},\left(\frac{\hat{F}^{\prime \prime}}{\hat{F}^{\prime}}+\frac{H^{\prime}}{H}\right), \\
& F_{4}=\frac{F^{\prime \prime \prime}}{24}=H\left(\frac{\hat{F}^{m}}{4}+\frac{\hat{F}^{\prime} \hat{F}^{\prime \prime \prime}}{3}\right)+\frac{H^{\prime \prime}{ }^{\prime}, 2}{2}+H^{\prime} \hat{F} \bar{F}^{\prime \prime} \quad, \\
& G_{0}=2 k^{2} r^{2} \lambda p^{\prime} \quad,
\end{aligned}
$$

$$
\begin{align*}
G_{1} & =G^{\prime}=2 k^{2} r\left[r \lambda p^{\prime \prime}+r \lambda^{2} \hat{F} \hat{F}^{\prime}+p^{\prime}\left(r \lambda^{\prime}+7 \lambda\right)\right], \\
G_{2} & =\frac{1}{2} G^{\prime \prime}=k^{2} r\left[r \lambda p^{\prime} \prime+2 p^{\prime \prime}\left(r \lambda^{\prime}+2 \lambda\right)+p^{\prime}\left(r \lambda^{\prime \prime}+4 \lambda^{\prime}\right)\right. \\
& \left.+r \lambda^{2} \hat{F}^{\prime \prime} \bar{F}+2 r \lambda^{2} \hat{F}^{\prime} \bar{F}^{\prime}+6 \lambda^{2} \bar{F}^{\prime} \bar{F}+4 r \lambda \lambda^{\prime} \hat{F^{\prime}} \bar{F}\right] \\
& +2 k^{2} p^{\prime} \lambda+r \bar{F}^{\prime}(1-\lambda) . \tag{A15}
\end{align*}
$$

It is relevant to determine the accuracy to wh'ch the coefficients, A and A, are calculater in Eq. (16) by using the truncated serios generated here.

Let

$$
f=f^{\circ}+\vec{f}
$$

(A16)
where $f^{\text {D }}$ is any truncated quanticy and f the renainder. Equation (16) qives

$$
\begin{align*}
& A^{\circ}=\frac{r_{2} c_{s}^{0}-c r_{s}^{0}}{w^{0}}, \\
& B^{0}=-\frac{r_{2}^{a}-r t_{p}^{0}}{w^{\circ}}, \tag{A97}
\end{align*}
$$

where

$$
\begin{equation*}
W^{0} \equiv \varepsilon_{p}^{0} r_{s}^{0}-c_{i}^{0} F_{s}^{0} \tag{A18}
\end{equation*}
$$

Using Eq. (A16) for F and F in Eq. (14) and subetituting thege in Eq. (A1J) gives the error in A and B :

$$
\begin{align*}
& \hat{A}=A-A^{\circ}=A \frac{\hat{\zeta}_{i} \xi_{s}^{\circ}-\hat{\xi}_{l} \zeta_{s}^{\circ}}{W^{\circ}}+B \frac{\bar{\zeta}_{s}{ }_{s}^{r_{s}^{\circ}}-\hat{\xi}_{s} \zeta_{B}^{\circ}}{w^{\circ}}, \tag{A19}
\end{align*}
$$

(A20)

The tendency for the contribution of the small solution to be masked by the large one is manifested $i n$ the lagt term of Eq . (A 20), which is generally the largest of these error terms. Retaining only this term, and assuming that the series qiven by Eq . (A10) has n tarms, we find for the situation when $G_{0} \neq$ 0 :

$$
\dot{x}=0 x^{3}
$$

where

$$
\left.x_{1}=2 r_{n} \cdot 1+n=-2 t-D_{1}\right)^{1 / 2}+n .
$$

lysually, $0<-D_{I}=1 / 4$, so that $n=2$ gives reasonably accurate results. However, near the point where F_{2} vanishes, D_{I} gets large and negatave ad consequently n must be large enough to have $\lambda>0$. Alternatively, if n is fixed, acceptable results can be obtained only if the singular aurface is some minimum distance from the point where F_{2} vanishes.

$$
\begin{aligned}
& \text { If } G_{0}=0 \text {, we have } \\
& \hat{B}-\frac{1}{F_{2}} \frac{\bar{\zeta}_{\ell}}{x}+\hat{\xi}_{\ell}
\end{aligned}
$$

so that, to realize errors of $x \ln |x|, x$, or $x^{2} 2 n|x|$ we must have respectively $n=3,4$, or 5 in Eq. (A13) and $n=2,3$, or $4 \mathrm{in} \mathrm{Eq} .(\mathrm{A} 14$).

[^0]
REFERENCES

[1] TODD, A. M. M., MANICKAM, J., OKABAYASHI, M., CHAICE, M. S., GRIMM, R, C., GREENE, J. M., JOHNSON, J. L., Nucl. Fusion 19 (1979) 74 .
[?] BECKER, G., LACKNER, K., in Plasma Physics and Controlled thelear fusion Research 1976 (Froc. 6th Conf. Berchtesgaden, 1976) Vol. II, IAEA Vienna (1977) 401.
[3] CHANCE, M. S., GREEY , J. M., GRIMM, R. C., JOHNSON, J. L., Nucl. Fusion 17 (1977) 65.
[4] GROSSMAN, W., TATARONIS, J. A., HEITZRER, H., Hifs., Fluids 20 (1977) 239.
[5] BERGER, D., BERNARD, L. C., GRUBER, R., TROYON, F., In Plabma physics and Controlled Nuclear Fusion Research 1976 (Proc. 6th Int. Conf. Berchtesgaden, 1976) Vol II, IAEA Vienna (1977) 411.
[6] DOBROTT, D. R., MILLER, R. L., Phys. Fluids 20 (1977) 1361.
(7) wESSON, J. A., Nici. Pueion 18 (1978) 87.
[8! GRIMM, R. C., DEWAR, R. L., MANICRAM, J., CHANCE, M. S., Bull. AT. Phys. Sce. 8 (1980).
[9] NEWCOMB, W. A., Ann. Phys. $10(1960) 232$.
[10j SUYDAM, B. R., 2nd Int. Oanf. Peaceful Usfs At. Energy (Proc. Conf. Geneva, 1958), 31, UN New York (1958) 157.
[11) FURTH, H. P., KILLEEN, J., ROSENBLUTH, M. N., Phys. Fluide 6 (1963; 459.
〔12] GLASSER, A. H., GREENE, J. M., JOHNSON, J. L., Fhy日. Fluids 19, (1975) 875, Phys. Fluids 19, (1976) 567.
[13] BEFNSTEIN, I. B., FRIRMAN, E. A., KRUSKAL, iA. D., KULSRUD, R. M., Proc. Roy. Soc., Ser. A 244, (1958) 17.
[14] BORIS, J., WINSOR, N., Princeton Plasma Fhysica Lab. 652 (1970:.
[15] FUKTK, H. P., RUTHERFORD, P. H., SELBERG, H., Phys. Fluids 16 (1973) 1054.
[16] SOLOV'EV, L. S., Th. Eksp. Teor. Fiz 53 (1967), 626; Sov. Fhys. JETP 26 (1\%8) 400.
[17] GREENE, J. M., CHANCE, M. S., Nucl. Fusion 21 (1981) 453.

Figure Captions

Fig. 1. A sketch of the central one-dimensional region showing the plasma and conducting shell (a). The pololdal magnetic field B_{p} reverses across the null trace (dotted line), and the plasma is contained within the dashed vertical lines. The required terminations at the twodimensional ends are not shown. Figure 1(b). shows, in arbitrary units, the profiles of the pressure, P, pitch, μ and the toroidal and pololdal magnetic fields.

Fig. 2. Tie pressure and surrent profile shapes for the peaked $\left(\lambda_{P}=1.0\right)$, rounded $\left(\lambda_{P}=0.0\right)_{\text {, flat }}\left(\lambda_{D}=-0.5\right)$, and hollow $\left(\lambda_{p}=-1.0\right\}$ models. These shapes are the ones used for the results shown in Fig. $4 b$.

Fig. 3. The effect of the position of the conducting shell on A^{\prime} ' for $R=$ 0.16 (a) and $\beta_{v}=0.5$ (b), with aspect ratio $R=5$. The plasma is enclosed within the dashed veitical lines and the walls are depicted by the hast.ed vertical lines.

Fig. 4. The effect on Δ 'd due to changes in the profile shape. The shapes, which correspond to the valueg of λ_{p} shown in the figure, are shown in Eig. 2. $\beta_{y}=0.16$ (a) and 0.5 (b). The wall position is fixed at 0.2 d , and the aspect ratio, $\mathrm{R}_{\text {, }}$ is 5 .

Fig. 5. The effect of varying β is shown for the flat current case $\left(\lambda_{p}=\right.$ -0.5) and the wall held at $0.2 d$, with $R=5$. The peak β value is shown by each curve, and the corresponding β_{v} and β^{*} ire given in the text.

Fig. 6. Here, the aspect ratio R is varied, with the wall kept at $0.2 d$ and $\beta=0.5$. For the upper curve, $R=5\left(r_{0}=10, r_{2}=12\right)$, the center curve $R=10\left\langle r_{0}=10, r_{2}=11\right\rangle$ and for the lower curve, $R=$ $100\left(r_{0}=10, r_{2}=10.1\right\}$.

Fig. 7. Δ 'd as a function of k for the $m=0$ modes. The numerical values shown on the separate curves denote the respective positions of the conducting sheil. The results for the rounded (a) and flat (b) profiles are shown. The aspect ratio is 5 .

Fig. 8. A sketch of the pressure, current and poloidal fleld profiles for the "extremely" slat current model.

Fig. 9. Plots of Δ 'd as in Fig. ?, but for the analytical model of the "extremely" flat current profile shown in Fig. 8.

Table 1. A comparison of the numerical result with the analytical calculation for a very large aspect ratio case (slab limit). The table shows Δ 'd as a function of the distance, $x_{3}-x_{0}$ of the singular layer from the null trace at x_{0}.

Fig. 1

* 9170141

Fiq. =

Fig. :

Fig. 5

1ig.

$$
\therefore \quad \therefore 3 \therefore 40 \text { in } \quad \therefore \quad \therefore
$$

\#81T0133

[^0]: A necessary check of the accuracy of the calcula'tions is to compare the Wronskian relation, W° as calculated by \mathbb{H}. (A18) with the known value, $W=$ 1.0.

