
Czechoslovak Mathematical Journal

Antonio Boccuto; Xenofon Dimitriou; Nikolaos Papanastassiou
Ideal convergence and divergence of nets in (ℓ)-groups

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 4, 1073–1083

Persistent URL: http://dml.cz/dmlcz/143045

Terms of use:
© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143045
http://dml.cz


Czechoslovak Mathematical Journal, 62 (137) (2012), 1073–1083

IDEAL CONVERGENCE AND DIVERGENCE OF NETS

IN (ℓ)-GROUPS
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Abstract. In this paper we introduce the I- and I∗-convergence and divergence of nets
in (ℓ)-groups. We prove some theorems relating different types of convergence/divergence
for nets in (ℓ)-group setting, in relation with ideals. We consider both order and (D)-
convergence.
By using basic properties of order sequences, some fundamental properties, Cauchy-type

characterizations and comparison results are derived.
We prove that I∗-convergence/divergence implies I-convergence/divergence for every

ideal, admissible for the set of indexes with respect to which the net involved is directed,
and we investigate a class of ideals for which the converse implication holds. Finally we
pose some open problems.
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1. Introduction

The theory of ideal convergence for sequences was introduced in [24] and inde-

pendently in [30] under the name “cofilter convergence”. This notion was further

investigated in [13], [19], [23], [26], [32], [33], where some basic properties are studied.

The I-Cauchy notion was introduced and examined, in the context of metric spaces,

in [15], [20], [29]. The concept of I-convergence was investigated in the setting of

normed spaces in [31] and was extended to the class of topological spaces in [14],

[17], [27], and ideal convergence for nets was presented in [17].

Several applications of ideal convergence have been obtained in the context of

Riesz spaces and lattice groups. In [5] a Bochner-type integral was investigated, and
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in [6] the problem of defining limits by means of suitable integrals was studied in

this setting. In [10] we introduced the concept of ideal convergence in (ℓ)-groups,

we dealt with the main basic properties and in [8], [10] we proved some versions

of basic matrix theorems. Moreover, in [9] we obtained some limit theorems for

ideal pointwise convergent measures taking values in an (ℓ)-group R. Some other

applications of I-convergence in the real case (that is, when R = R) can be found

in [1], [7], concerning weak compactness, Ascoli-type theorems, ideal exhaustiveness

and uniform convergence on compact sets. In [7], [11] some results contained in [21]

were extended to the ideal setting. In [7] the notion of ideal exhaustiveness was used

also to obtain some further versions of limit theorems for ideal pointwise convergent

measures.

In this paper we deal with ideal convergence and ideal divergence of nets in the

(ℓ)-group context. Motivated by earlier results proved in [10] on I-convergence for se-

quences, we prove some technical theorems relating various convergences/divergences

of nets in Dedekind complete (ℓ)-groups. We derive basic properties, some com-

pleteness characterizations and comparison results. Moreover, we deal with I∗-

convergence/divergence for nets in the (ℓ)-group setting and prove that these two

properties imply ideal convergence/divergence for every fixed ideal, admissible with

respect to the index set which form the net involved. Furthermore, we give a class of

ideals for which the converse implications are true. In the proofs we essentially involve

fundamental properties of order sequences. Finally, we pose some open problems.

2. The main results

We begin with the following

Definitions 2.1. (a) An abelian group (R, +) is called (ℓ)-group if it is a lattice

and the following implication holds: a 6 b =⇒ a + c 6 b + c for all a, b, c ∈ R.

If not stated otherwise, in what follows R denotes an (ℓ)-group.

(b) An (ℓ)-group R is said to be Dedekind complete iff every nonempty subset of

R, bounded from above, has supremum in R. A Dedekind complete (ℓ)-group is said

to be super Dedekind complete iff every subset R1 ⊂ R, R1 6= ∅ bounded from above

contains a countable subset having the same supremum as R1.

(c) A pair Λ = (Λ, >) is a directed set iff Λ it a nonempty set and > is a reflexive

and transitive binary relation on Λ, such that for any two elements λ1, λ2 ∈ Λ there

is a λ0 ∈ Λ with λ0 > λ1 and λ0 > λ2. From now on, let us denote by Mλ the set

{ζ ∈ Λ: ζ > λ}, λ ∈ Λ.

(d) We say that a sequence (pn)n of positive elements of R is an (O)-sequence iff

it is decreasing and ∧npn = 0. A net (xλ)λ∈Λ in R (an indexed system of elements
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of R such that the index set Λ is directed) is said to be order-convergent (or (O)-

convergent) to x ∈ R iff there exists an (O)-sequence (pl)l in R such that to every

l ∈ N there corresponds an element λ ∈ Λ with |xζ − x| 6 pl for all ζ ∈ Λ, ζ > λ,

and in this case we will write (O) lim
λ∈Λ

xλ = x.

(e) A bounded double sequence (at,r)t,r in R is called (D)-sequence or regulator

iff for all t ∈ N the sequence (at,r)r is an (O)-sequence. A net (xλ)λ∈Λ in R is

said to be (D)-convergent to x ∈ R (and we write (D) lim
λ∈Λ

xλ = x) iff there exists

a (D)-sequence (at,r)t,r in R, such that to every ϕ ∈ N
N there is a λ0 ∈ Λ such that

|xλ − x| 6
∞
∨

t=1
at,ϕ(t) for all λ ∈ Λ, λ > λ0.

(f) An (ℓ)-group R is said to be weakly σ-distributive iff for every (D)-sequence

(at,r)t,r we have:

∧

ϕ∈NN( ∞
∨

t=1

at,ϕ(t)

)

= 0.

Observe that, if B is the σ-algebra of all Borel subsets of [0, 1] and ν is the Le-

besgue measure, then the space L0([0, 1],B, ν) is weakly σ-distributive (see [3, Ex-

ample 2.17]).

(g) A Dedekind complete Riesz space R is said to have property (PR) (positive

regularity) iff there exists an increasing sequence (hk)k of positive elements of R

such that for every r ∈ R there are a t > 0 and a natural number k such that

|r| 6 thk. Note that, if R is a Riesz space having property (PR), then for each

r ∈ R there is k ∈ N such that |r| 6 khk. Observe that, if R has an order unit u

(that is a positive element such that for all r ∈ R we get |r| 6 tu for some suitable

positive real number t), then R has (PR), while the converse is in general not true:

for instance the space c00 of all real-valued sequences which are eventually 0, with

the coordinatewise order, has property (PR) but does not admit an order unit. The

space c0 of all real-valued sequences convergent to 0, ordered coordinatewise, does

not have property (PR) (see [34]).

(h) A sequence (tk)k of positive elements of R is said to be bounding iff 2tk 6 tk+1

for each k ∈ N.

(i) A subset S of R is (PR)-bounded by a bounding sequence (tk)k iff for every

s ∈ S there exists a positive integer k such that |s| 6 tk. Since (tk)k is bounding,

this implies that |s| 6 tk whenever k > k. Note that, if R has property (PR), then

R is (PR)-bounded by some bounding sequence, but there are many situations in

which we deal with (PR)-bounded sets in a space R without property (PR) (for

example R = L0(X, Σ, µ), where µ : Σ → R ∪ {+∞} is a positive, σ-additive and

σ-finite measure, see for instance [4, Example 4.7]).
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(j) Let (Λ, >) be a directed set. A family of sets I ⊂ P(Λ) is called an ideal of Λ

iff A ∪ B ∈ I whenever A, B ∈ I and for each A ∈ I and B ⊂ A we get B ∈ I. An

ideal is said to be non-trivial iff I 6= ∅ and Λ 6∈ I. A non-trivial ideal I is said to

be (Λ)-admissible iff Λ \ Mλ ∈ I for all λ ∈ Λ.

(k) A (Λ)-admissible ideal I is said to be a (ΛP )-ideal iff for any disjoint sequence

(Aj)j in I there are sets Bj ⊂ Λ and elements pj ∈ Λ, j ∈ N, such that the symmetric

difference Aj∆Bj ⊂ Λ \ Mpj
for all j ∈ N and

∞
⋃

j=1

Bj ∈ I (see also [17]).

(l) Given a fixed (Λ)-admissible ideal I, its dual filter is the set

F = F(I) := {X \ I : I ∈ I}.

When we deal with an ideal I, we always suppose that I is (Λ)-admissible, without

saying it explicitly.

(m) If I is an ideal of Λ, we say that a net (xλ)λ∈Λ in R (OI)-converges to x ∈ R

iff there exists an (O)-sequence (σl)l with the property that

(1) {λ ∈ Λ: |xλ − x| 6 σl} ∈ F

for all l ∈ N.

(n) A net (xλ)λ∈Λ is said to be (OI)-Cauchy iff there is an (O)-sequence (σl)l

such that for each l ∈ N there is a τ ∈ Λ with

{λ ∈ Λ: |xλ − xτ | 6 σl} ∈ F .

(o) A net (xλ)λ in R (DI)-converges to x ∈ R iff there exists a (D)-sequence

(at,r)t,r with the property that

(2)

{

λ ∈ Λ: |xλ − x| 6

∞
∨

t=1

at,ϕ(t)

}

∈ F

for all ϕ ∈ N
N; (xλ)λ is (DI)-Cauchy iff there exists a (D)-sequence (at,r)t,r with

the property that for all ϕ ∈ N
N there is an element τ ∈ Λ such that

{

λ ∈ Λ: |xλ − xτ | 6

∞
∨

t=1

at,ϕ(t)

}

∈ F .

(p) A net (xλ)λ in R (OI∗)- [(DI∗)]-converges to x ∈ R if there exists a set

M ∈ F(I) with (O) lim
λ∈M

xλ = x [(D) lim
λ∈M

xλ = x].
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(q) We say that a net (xλ)λ is I-divergent iff there are an element x ∈ R and

a bounding sequence (tl)l in R with the property that {λ ∈ Λ: |xλ − x| > tl} ∈ F

for every l ∈ N. In this case we say also that (xλ)λ is I-divergent at x.

(r) A net (xλ)λ∈Λ is said to be I∗-divergent at x ∈ R iff there are a set M ∈ F

and a bounding sequence (tl)l in R such that for all l ∈ N there is a λ ∈ M with

|xζ − x| > tl whenever ζ ∈ M , ζ > λ. We say that (xλ)λ is I∗-divergent iff it is

I∗-divergent at some x ∈ R.

Remark 2.2. It is not difficult to check that, if R is endowed with property

(PR), then a net (xλ)λ is I-divergent if and only if there is x ∈ R such that {λ ∈

Λ: |xλ − x| > r} ∈ F for every r ∈ R, r > 0.

Indeed, let r be an arbitrary positive element of R. By property (PR) there exist

an increasing sequence (tl)l in R and an integer l̄ such that r 6 2lh2l for every l > l̄.

Setting tl := 2lh2l , l ∈ N, we get that the sequence (tl)l is bounding, and thus

{λ ∈ Λ: |xλ − x| > tl} ⊂ {λ ∈ Λ: |xλ − x| > r}

for all l > l̄. From this one can easily deduce the “only if” part. The “if” part is

straightforward.

Analogously it is easy to see that, if R has property (PR), then (xλ)λ is I∗-

divergent at x ∈ R iff there is a set M ∈ F such that for every r ∈ R, r > 0, there

is a λ ∈ M with |xζ − x| > r whenever ζ ∈ M , ζ > λ.

The following result holds.

Proposition 2.3. Let (Λ, >) be a directed set, I be a (Λ)-admissible ideal on Λ

and M be an element of the dual filter F . Then (M, >) is a directed set, where the

order is the one induced by Λ.

P r o o f. It is readily seen that (Λ, >) induces a reflexive and transitive order on

M , see > again.

Let now λ1, λ2 ∈ M . There exists τ ∈ Λ such that τ > λ1, τ > λ2. Since I is

by hypothesis (Λ)-admissible, then Mτ := {λ ∈ Λ: λ > τ} ∈ F . Since M , Mτ ∈ F ,

we get M ∩ Mτ ∈ F too. Pick an element λ0 ∈ M , λ0 > τ : we get that λ0 > λ1,

λ0 > λ2. �

We now prove the following relation between order and (D)-convergence of nets

in (ℓ)-groups with respect to ideals.
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Proposition 2.4. Every (OI)-convergent net is (DI)-convergent to the same

limit. Moreover, if R is a super Dedekind complete and weakly σ-distributive (ℓ)-

group, then the converse implication holds too.

P r o o f. Let (xλ)λ∈Λ be a net, (OI)-convergent to x, and (σl)l be an associated

(O)-sequence. For every t, r ∈ N set at,r := σt+r. It is easy to check that the double

sequence (at,r)t,r is a regulator.

Pick arbitrarily ϕ ∈ N
N. By hypothesis, in correspondence with l = 1 + ϕ(1) we

get: {λ ∈ Λ: |xλ − x| 6 σ1+ϕ(1) := a1,ϕ(1)} ∈ F , and a fortiori

{

λ ∈ Λ: |xλ − x| 6

∞
∨

t=1

at,ϕ(t)

}

∈ F .

This concludes the first part.

We now turn to the second part. Let (xλ)λ∈Λ be (OI)-convergent to x, and

(at,r)t,r be a regulator, satisfying the condition of (DI)-convergence. Since R is

super Dedekind complete and weakly σ-distributive, by [2, Theorem 3.1] there exists

an (O)-sequence (σl)l such that for every l ∈ N there is ϕl ∈ N
N with

∞
∨

t=1
at,ϕl(t) 6 σl.

Thus, since by hypothesis

{

λ ∈ Λ: |xλ − x| 6

∞
∨

t=1

at,ϕl(t)

}

∈ F

for all l ∈ N, then a fortiori {λ ∈ Λ: |xλ − x| 6 σl} ∈ F for every l ∈ N. This ends

the proof. �

Analogously as in Proposition 2.4 it is possible to prove the following:

Proposition 2.5. Every (OI)-Cauchy net is (DI)-Cauchy too. Moreover, if R is

a super Dedekind complete and weakly σ-distributive (ℓ)-group, then the converse

is true.

Proposition 2.6. Let I be any fixed (Λ)-admissible ideal of Λ. If (D) lim
λ

xλ = x,

then (DI) lim
λ

xλ = x.

Moreover, if (xλ)λ is an increasing net in R and x ∈ R, then (DI) lim
λ

xλ = x if

and only if (D) lim
λ

xλ = x.

P r o o f. The first part is straightforward.

We now turn to the final part. It is enough to prove the “only if” implication. By

hypothesis there is a (O)-sequence (σl)l such that for all l ∈ N an element λ∗ ∈ Λ

can be found, with

0 6 x − xλ∗ 6 σl.
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By monotonicity we get:

0 6 x − xλ 6 x − xλ∗ 6 σl

whenever λ > λ∗. So the net (xλ)λ (D)-converges monotonically to x, according to

the usual notion of (D)-convergence. This concludes the proof. �

We now prove a Cauchy-type condition, which extends [10, Proposition 2.13]. We

recall that a sequence (xn)n is (O)-Cauchy iff there exists an (O)-sequence (pn)n

such that |xn − xq| 6 pn for all n ∈ N and q > n.

Proposition 2.7. Let (Λ, >) be as above, R be a Dedekind complete (ℓ)-group,

I be any (ΛP )-ideal of Λ, F be its dual filter, and (xλ)λ be a net in R. Then the

following are equivalent:

(i) (xλ)λ is (OI)-convergent;

(ii) (xλ)λ is (OI)-Cauchy;

(iii) there exists an (O)-sequence (σl)l with the property that to every l ∈ N an

element D ∈ F can be found, such that |xλ − xτ | 6 σl whenever λ, τ ∈ D.

P r o o f. (ii) =⇒ (i). Let (xλ)λ be an (OI)-Cauchy sequence. Then, by Propo-

sition 2.5, (xλ)λ is (OI)-Cauchy. Let (εp)p be an (O)-sequence, related with the

(OI)-Cauchy condition: then a sequence (np)p in N can be found, with

(3) {λ ∈ Λ: |xλ − xnp
| 6 εp} ∈ F(I)

for all p ∈ N. Let now p, q ∈ N, p 6= q. Since F is a filter in Λ, we get

{λ ∈ Λ: |xλ − xnp
| 6 εp} ∩ {λ ∈ Λ: |xλ − xnq

| 6 εq} ∈ F .

Thus for every p, q ∈ N with p 6= q there is (ip,q, jp,q) ∈ N
2 with |xip,q ,jp,q

−xmp,np
| 6

εp and |xip,q ,jp,q
− xmq,nq

| 6 εq, and hence |xmp,np
− xmq ,nq

| 6 εp + εq. As (εp)p is

an (O)-sequence, then (xmp,np
)p is an (O)-Cauchy sequence (in the classical sense).

Since every Dedekind complete (ℓ)-group is (O)-complete (see [12]), there exists an

element x ∈ R with x = (O) lim
p

xmp,np
. Thanks to (3) and the main properties of

filters, for every p ∈ N we get:

{λ ∈ Λ: |xλ − x| 6 2εp} ⊃ {λ ∈ Λ: |xλ − xnp
| + |xnp

− x| 6 2εp}

⊃ {λ ∈ Λ: |xnp
− x| 6 εp} ∩ {λ ∈ Λ: |xλ − xnp

| 6 εp} ∈ F .

This concludes the proof.
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(i) =⇒ (iii). Since, by hypothesis, (xλ)λ is (O)-convergent to an element x ∈ R,

there is an (O)-sequence (σl)l with the property that for every l ∈ N there is D ∈ F

with |xλ − x| 6 σl whenever λ ∈ D. Let now λ, τ ∈ D: we get

|xλ − xτ | 6 |xλ − x| + |xτ − x| 6 2σl,

and hence the implication is proved.

(iii) =⇒ (ii). Let (σl)l be an (O)-sequence, satisfying (iii) by hypothesis, pick

arbitrarily l ∈ N and let D ∈ F be as in (iii). Since D ∈ F , there is an element

λ̄ ∈ D. By (iii), for all λ ∈ D we get: |xλ − xλ̄| 6 σl. So (ii) follows. �

Proposition 2.8. Let R be any Dedekind complete (ℓ)-group, and (xλ)λ∈Λ be

a net in R. Suppose that (OI∗) lim
λ∈Λ

xλ = x. Then (OI) lim
λ∈Λ

xλ = x.

P r o o f. By hypothesis, there is M ∈ F(I) such that (O) lim
λ∈M

xλ = x with

respect to a suitable (O)-sequence (σl)l. Then for every l ∈ N there exists λ ∈ M

such that

|xζ − x| 6 σl

whenever ζ ∈ M , ζ > λ. Therefore, we get

{ζ ∈ Λ: |xζ − x| 66 σl} ⊂ Λ \ (M ∩ Mλ) ∈ I.

This ends the proof. �

Proposition 2.9. Let R be a Dedekind complete (ℓ)-group, (xλ)λ be a net in R,

(OI)-convergent to x ∈ R. If I is a (ΛP )-ideal, then (xλ)λ (OI∗)-converges to x.

P r o o f. Let (σj)j be an (O)-sequence related to (OI)-convergence of the net

(xλ)λ∈Λ to x. Set Oj := [−σj , σj ], j ∈ N; A1 := {λ ∈ Λ: xλ − x 6∈ O1} and

Aj : {λ ∈ Λ: xλ − x ∈ Oj−1 \ Oj}, j > 2. It is easy to check that (Aj)j is a disjoint

sequence of elements of I. Since I is a (ΛP )-ideal, in correspondence with (Aj)j there

exist a sequence (Bj)j in P(Λ) and a sequence (pj)j in Λ such that the symmetric

difference Aj∆Bj is contained in Λ \ Mpj
for every j ∈ N and B :=

∞
⋃

j=1

Bj ∈ I. Set

M := Λ \ B: then M ∈ F(I).

Fix arbitrarily l ∈ N. There is λ0 ∈ Λ such that λ0 > pj for all j = 1, . . . , l. By

construction we get:

(4)

( l
⋃

j=1

Bj

)

∩ Mλ0
=

( l
⋃

j=1

Aj

)

∩ Mλ0
.

As I is (Λ)-admissible,Mλ0
∈ F(I). Hence,M∩Mλ0

∈ F(I). Pick now λ ∈ M with

λ > λ0. Choose arbitrarily ζ ∈ M , ζ > λ. Then ζ 6∈ B, and in particular ζ 6∈
l
⋃

j=1

Bj ,
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ζ ∈ Mλ0
. From this and (4) it follows that ζ 6∈

l
⋃

j=1

Aj . Thus xζ − x ∈ Ol, namely

−σl 6 xζ − x 6 σl. So we have proved the existence of an element M of F(I) and

of an (O)-sequence (σl)l with the property that: to every l ∈ N there corresponds

λ ∈ M such that |xζ −x| 6 σl whenever ζ ∈ M , ζ > λ, that is (O) lim
λ∈M

xλ = x. This

completes the proof. �

We now prove the following:

Proposition 2.10. Let R be a Dedekind complete (ℓ)-group, (xλ)λ be a net in

R, I-divergent at x ∈ R. If I is a (ΛP )-ideal, then (xλ)λ I∗-diverges at x.

Conversely, if I is any (Λ)-admissible ideal and (xλ)λ I∗-diverges at x ∈ R, then

(xλ)λ I-diverges at x.

P r o o f. For every j ∈ N, let Hj := {λ ∈ Λ: |xλ − x| 6> tj}; moreover, set

A1 := H1; Aj := Hj \ Hj−1, j > 2. It is easy to check that (Hj)j is an increasing

sequence and (Aj)j is a disjoint sequence of elements of I. Since I is a (ΛP )-ideal,

in correspondence with (Aj)j there exist a sequence (Bj)j in P(Λ) and a sequence

(pj)j in Λ such that Aj∆Bj ⊂ Λ \ Mpj
for every j ∈ N and B :=

∞
⋃

j=1

Bj ∈ I. Set

M := Λ \ B.

Fix arbitrarily l ∈ N. There is λ0 ∈ Λ such that λ0 > pj for all j = 1, . . . , l. By

construction we get:

(5)

( l
⋃

j=1

Bj

)

∩ Mλ0
=

( l
⋃

j=1

Aj

)

∩ Mλ0
.

As I is (Λ)-admissible, Mλ0
∈ F(I). Hence, M ∩ Mλ0

∈ F(I). Pick now λ ∈ M

with λ > λ0. Choose arbitrarily ζ ∈ M , ζ > λ. Then ζ 6∈ B, and in particular

ζ 6∈
l
⋃

j=1

Bj , ζ ∈ Mλ0
. From this and (5) it follows that ζ 6∈

l
⋃

j=1

Aj . Thus ζ 6∈ Hl,

namely |xζ−x| > tl. So we have proved that there exist a setM ∈ F and a bounding

sequence (tl)l in R with the property that: to every l ∈ N there corresponds λ ∈ M

such that |xζ − x| > tl whenever ζ ∈ M , ζ > λ; that is I∗-divergence of the net

(xλ)λ. This ends the proof of the first part.

We now turn to the last part. By hypothesis, there are a set M ∈ F(I) and

a bounding sequence (tl)l in R such that to any l ∈ N there corresponds an element

λ ∈ M with |xζ − x| > tl for all ζ ∈ M , ζ > λ. Thus we get:

{ζ ∈ Λ: |xζ − x| 6> tl} ⊂ Λ \ (M ∩ Mλ) ∈ I.

This concludes the proof. �
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Open problems: (a) Extend the definition of the Kurzweil-Henstock integral

found in [12] to the ideal context.

(b) Explore similar results considering I-convergence of double sequences intro-

duced in [35] and further studied in [16], [18], [22], [25].

(c) Investigate analogous results using the notion of I-convergence to a set intro-

duced in [28].

(d) If the three conditions formulated in Proposition 2.7 are equivalent in an

arbitrary (ℓ)-group R, does this imply that R should be Dedekind complete or that

I should be a (ΛP )-ideal?

Acknowledgement. Our thanks to the referee for his/her valuable comments

and suggestions.
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