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A cryptographer’s fairy tale...

Once upon a time there was a princess who ruled a land
far, far away.

And that princess would receive updates from her military
commanders encrypted using her 2048-bit RSA key.

As the enemy army approached, she decided to protect her private
key.

She wrote half of it on one scroll and sent it with a
horseman riding west, and wrote the other half on
another scroll and sent it with a horseman riding east.

However, one of these men was apprehended by the enemy.

Is her key safe?



The key recovery problem.
A simplified version, without details of RSA.

The princess’s public key is known to the enemy, with

N = pq.

p and q are secret, the princess keeps p as her private key.

The west horseman has the most significant half of p, the east has
the least significant half.

pw · 2512 + pe = p

Given N and pw , can pe be found?



The key recovery problem, continued.

In our application, let

f (x) = pw · 2512 + x so f (pe) ≡ 0 mod p

Theorem (Coppersmith)

Given f (x) = xd + · · ·+ f0, N an integer, can find all x0 such that

f (x0) ≡ 0 mod N

|x0| ≤ N1/d

in time polynomial in logN and d without factoring N.



The key recovery problem, continued.

In our application, let

f (x) = pw · 2512 + x so f (pe) ≡ 0 mod p

Theorem (Coppersmith/Howgrave-Graham)

Given f (x) = xd + · · ·+ f0, N an integer, can find all x0 such that

f (x0) ≡ 0 mod B gcd(B ,N) ≥ Nβ

|x0| ≤ Nβ2/d

in time polynomial in logN and d without factoring N.



Coppersmith’s theorem, proof outline.

Theorem (Coppersmith/Howgrave-Graham)
Given f (x) = xd + · · ·+ f0, N an integer, can find all x0 such that

gcd(f (x0),N) ≥ Nβ |x0| ≤ Nβ2/d

Proof outline.

1. Create a new polynomial Q(x) so that

all desired x0 are roots of Q over Z.

2. Factor Q to find roots.



Proof outline, continued.

1. Ensure any root of f mod B is a root of Q mod Bk :

Q will be linear combination of f (x)iNk−i .

2. Bound coeffs of Q and |x0| to bound |Q(x0)|.
If |Q(x0)| < Bk , then x0 is a root of Q over Z.

(Thus we can forget N and B and just factor Q.)

3. How to find Q with small coeffs?

Lattice basis reduction.

(LLL’s approximation factor only translates into a constant here.)



Analogy between Z and F[z ].

There is a well-known mathematical analogy between integers and
polynomials.

ring of integers
ring of polynomials
(with coeffs in a field)

primes irreducible polynomials

absolute value degree of polynomial

Things work the way you want them to:
division, unique factorization, GCDs, Chinese remaindering...

lattice over Z F[z ]-module

The theorem we just proved is over the integers.

Let’s translate the theorem to polynomials!



A polynomial version of Coppersmith’s theorem.

Theorem (for integers)

Given

f (x) = xd + · · ·+ f0

with coefficients in Z,

N an integer,

can find all

x0

such that

gcd(f (x0),N) ≥ Nβ

|x0| ≤ Nβ2/d

Theorem (for polynomials)

Given

f (x) = xd + · · ·+ f0(z)

with coefficients in F[z ],

N(z) of degree n,

can find all

g(z)

such that

deg gcd(f (g(z)),N(z)) ≥ nβ

deg g(z) ≤ nβ2/d



Reed-Solomon list decoding

Input: {(x1, y1), . . . , (xn, yn)}

Problem: Find all polynomials g
of degree less than ℓ such that

g(xi ) = yi

for at least n − e pairs.

Theorem (Guruswami-Sudan)

There is an efficient algorithm to do so for e < n −
√
nℓ.



Reed-Solomon list decoding

Input: {(x1, y1), . . . , (xn, yn)}

Problem: Find all polynomials g
of degree less than ℓ such that

g(xi ) = yi

for at least n − e pairs.

g(xi ) = yi ←→ g(x) ≡ yi mod (x − xi ).

Set f (x , y) s.t. f (xi , yi ) = 0 and N(x) =
∏
(x − xi ).

β = (n − e)/n.



Check proof for polynomial theorem.

1. Create a new polynomial Q(x) (with coeffs in F[z ]).

Q(x) will be linear combination of f (x)iN(z)k−i .

2. Bound degree of coeffs of Q(x) and g(z) to bound Q(g(z)).

If degQ(g(z)) < k degB(z), then g(z) is a root of Q(x).

3. How to find Q(x) with low-degree coeffs?

Lattice basis reduction.

For non-Archimedean absolute values we can find an exact
shortest vector in polynomial time.



Algebraic-geometric codes.

Natural generalization of Reed-Solomon codes to polynomials
defined on a curve in several dimensions.

◮ (polynomials in several vars, mod out by eqns defining curve)

◮ e.g., x , y satisfying y2 = x3 − x (an elliptic curve)

AG codes beat the Gilbert-Varshamov bound.

All the machinery from the one-variable case generalizes.

A few twists: many absolute values, we must bound them all.

Recover Shokrollahi-Wasserman and Guruswami-Sudan results on
list decoding.

Extends naturally to AG codes defined by multipoint divisors.



Number fields.

AG codes come from
function fields.

(finite extensions of the field of
rational functions in one variable)

What about
number fields?

(finite extensions of the field Q of
rational numbers, e.g., Q(

√
5))

This case completes the analogy.

Find small roots of polynomials modulo ideals in the ring of
integers in a number field.

What does “small” mean? Again several absolute values to bound.

Apply LLL to the canonical embedding of our ideal.
This has also come up recent in lattice-based cryptography

[Peikert Rosen], [Lyubashevsky Peikert Regev].

Running time is exponential in the degree of the number field.



Summary

Show how to extend Coppersmith’s theorem to:

1. Polynomials, where it becomes list-decoding of Reed-Solomon
codes.

2. Function fields, where it becomes list-decoding of
algebraic-geometric codes.

3. Number fields, where it gives solutions to polynomials modulo
ideals in a number field.

What’s the big picture? Powerful analogies.



What about our princess?

Her enemies used lattice basis reduction to efficiently
recover her private key from half the bits and discover
her military secrets.

She didn’t live happily ever after.
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The end.


